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ABSTRACT
We analyze a dataset arising from a clinical trial involving multi-stage chemotherapy regimes for acute
leukemia. The trial design was a 2 × 2 factorial for frontline therapies only. Motivated by the idea that sub-
sequent salvage treatments affect survival time, we model therapy as a dynamic treatment regime (DTR),
that is, an alternating sequence of adaptive treatments or other actions and transition times between dis-
ease states. These sequencesmay vary substantially between patients, depending on how the regime plays
out. To evaluate the regimes, mean overall survival time is expressed as a weighted average of themeans of
all possible sums of successive transitions times. We assume a Bayesian nonparametric survival regression
model for each transition time,with a dependentDirichlet process prior andGaussianprocess basemeasure
(DDP-GP). Posterior simulation is implemented byMarkov chainMonte Carlo (MCMC) sampling.We provide
general guidelines for constructing a prior using empirical Bayes methods. The proposed approach is com-
paredwith inverse probability of treatmentweighting, including a doubly robust augmented version of this
approach, for both single-stage and multi-stage regimes with treatment assignment depending on base-
line covariates. The simulations show that the proposed nonparametric Bayesian approach can substan-
tially improve inference compared to existingmethods. An R program for implementing the DDP-GP-based
Bayesian nonparametric analysis is freely available atwww.ams.jhu.edu/ yxu70. Supplementarymaterials for
this article are available online.

1. Introduction

We analyze a dataset arising from a clinical trial involvingmulti-
stage chemotherapy regimes for acute leukemia. The trial design
was a 2 × 2 factorial for frontline therapies only. However, moti-
vated by the idea that subsequent salvage therapies affect sur-
vival time,Wahed and Thall (2013)modeled and analyzed treat-
ments in the trial as a dynamic treatment regime (DTR), that is,
an alternating sequence of treatments or other actions and tran-
sition times between disease states. We propose a Bayesian non-
parametric (BNP) approach for evaluating such DTRs in which
the outcome at each stage is a random transition time between
two disease states. The final overall survival (OS) time outcome
of primary interest is the sum, T , of a sequence of transition
times. The actually observed sequence is determined by the way
that a patient’s treatment regime plays out, and the mean of T
may be expressed as an appropriately weighted average over all
possible sequences of event times. Our proposed BNP method-
ology for estimating themeanofT is based on the idea of Robins’
G-computation (Robins 1986, 1987).

An algorithm commonly used by oncologists in chemother-
apy of solid tumors is to choose the patient’s initial (frontline)
treatment based on his/her baseline covariates, continue as long
as the patient’s disease is stable, switch to a different chemother-
apy (salvage) if progressive disease (P) occurs, stop chemother-
apy if the tumor is brought into complete or partial remission
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(C), and begin salvage if P occurs at some time after C. There
are many elaborations of this in oncology, including multiple
attempts at salvage therapy, use of consolidation therapy for
patients in remission, suspension of therapy if severe toxicity
is observed, or inclusion of radiation therapy or surgery in the
regime. Another important application of this general adaptive
structure occurs in treatment regimes for psychological disor-
ders or drug addiction. For example, in treatment of schizophre-
nia onemay replace P by a psychotic episode or other worsening
of the subject’s psychological status, C by a specified improve-
ment in mental status, and death by a psychological breakdown
severe enough to require hospitalization.

Denote the action at stage � of the DTR by Z�, which may
be a treatment or a decision to delay or terminate therapy.
Here, stage refers to the decision point in the DTR—that is, the
choice of frontline and possible salvage therapies. At each stage,
one observes a disease state s�, such as P,C, or death (D). Let
T ( j,r) denote the transition time from disease state j to state
r, with j = 0 the patient’s initial disease status. See Figure 1
for an example (details of which will be provided later) with
up to nstage = 3 stages, nstate = 4 disease states, and a total of
nT = 7 different transition times. Because the actions are adap-
tive, the actual number of stages and observed transition times
vary between patients depending on how the specific treatment-
outcome sequence plays out.
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Figure . The scheme.

Formally, a DTR is the sequence Z = (Z1,Z2, . . .), where
each Z� is an adaptive action based on the patient’s history
H�−1 of previous treatments and transition times, and H0 is
the patient’s baseline covariate vector. One possible treatment-
outcome sequence is (H0,Z1,T (0,C),Z2,T (C,D)), in which the
initial chemotherapy Z1 was chosen based on H0, complete
remission (C) was achieved, Z2 was chosen based on H1 =
(H0,Z1,T (0,C)). In this case, Z2 would be consolidation ther-
apy given to keep the patients in remission, that is, prevent
relapse, although consolidation treatments were not included in
the dataset that we will analyze. OS time is T = T (0,C) + T (C,D).
In this case, s1 = C and s2 = D. Similarly, a patient brought into
remission who later suffers progressive disease has sequence
(H0,Z1,T (0,C),T (C,P),Z2,T (P,D)) and T = T (0,C) + T (C,P) +
T (P,D). We will apply BNP methods to estimate the condi-
tional distributions of the transition times given the most recent
histories, with the goal to estimate the mean of T for each
possible DTR. This also will include estimates given specific
baseline covariates, for so-called “individualized” therapy. Key
elements of our proposed approach are quantification of all
sources of uncertainty and prediction of T under a reason-
able set of viable counterfactual DTRs (Wang et al. 2012). BNP
methods have been used in estimating regime effects by Hill
(2011) and Karabatsos and Walker (2012). Hill (2011) focused
on modeling outcomes flexibly using Bayesian additive regres-
sion trees (BART), which required less assumptions in model
fitting. However, the uncertainty of BART increases dramati-
cally when there is complete treatment-subgroup confounding,
and hence limited empirical counterfactuals, which often occurs
in causal inference. Karabatsos and Walker (2012) proposed a
nonparametric mixture model with a stick-breaking prior for
the probability of treatment assignment to provide a more accu-
rately estimated propensity score in the inverse probability of
treatment weighting (IPTW) method.

Since all elements of a DTR may affect T , the clinically rel-
evant problem is optimizing the entire regime, rather than the
treatment at one particular stage. Most clinical trials or data
analyses attempt to reduce variability by focusing on one stage
of the actual DTR, usually frontline or first salvage treatment,
or by combining stages in some manner. This often misrepre-
sents actual clinical practice, and consequently conclusions may
be very misleading. For example, an aggressive frontline cancer

chemotherapy may maximize the probability of C, but it may
cause so much immunologic damage that any salvage treatment
given after rapid relapse, that is, short T (C,P), may be unlikely
to achieve a second remission. In contrast, a milder induction
treatment may be suboptimal to eradicate the tumor, but it
may debulk the tumor sufficiently to facilitate surgical resec-
tion. Such synergies may have profound implications for clin-
ical practice, especially because effects of multi-stage treatment
regimes often are not obvious and may seem counter-intuitive.
Physicians who have not been provided with an evaluation of
the composite effects of entire regimes on the final outcomemay
unknowingly set patients on pathways that include only inferior
regimes.

Amajor practical advantage of BNPmodels is that they often
provide better fits to complicated data structures than can be
obtained using parametric model-based methods. In the case
study that we analyze here, leukemia patients were random-
ized among initial chemotherapy treatments but not among later
salvage therapies, and the BNP model provides a good fit for
each transition time distribution conditional on previous his-
tory. Failure to randomize patients in treatment stages after the
first is typical in clinical trials, most of which ignore all but the
first stage of therapy. In contrast, sequential multi-arm random-
ized treatment (SMART) designs, wherein patients are reran-
domized at stages after the first, have been used in oncology tri-
als (Thall, Millikan, and Sung 2000; Thall et al. 2007a, 2007b;
Wang et al. 2012), and are being used increasingly in trials to
study multi-stage adaptive regimes for behavioral or psycholog-
ical disorders (Dawson and Lavori 2004; Murphy, Collins, and
Rush 2007; Murphy et al. 2007; Connolly and Bernstein 2007).

While rerandomization is desirable, it is not commonly done
and inference has to adjust for this lack of randomization.
A wide array of methods have been proposed for evaluating
DTRs from observational data and longitudinal studies, begin-
ning with the seminal articles by Robins (1986, 1987, 1989,
1997) on G-estimation of structural nested models. Additional
references include applications to longitudinal data in AIDS
(Hernán, Brumback, and Robins 2000), inverse probability of
treatment weighted (IPTW) estimation of marginal structural
models (Murphy, Van Der Laan, and Robins 2001; van der
Laan and Petersen 2007; Robins, Orellana, and Rotnitzky 2008),
augmented IPTW (AIPTW) (Tsiatis 2007; Zhao et al. 2015),
G-estimation for optimal DTRs (Murphy 2003; Robins 2004),
and a review by Moodie, Richardson, and Stephens (2007). A
variety of methods have been developed to evaluate DTRs from
clinical trials (Lavori and Dawson 2000; Thall, Sung, and Estey
2002; Murphy 2005; Goldberg and Kosorok 2012; Zajonc 2012).
For survival analysis, Lunceford, Davidian, and Tsiatis (2002)
introduced ad hoc estimators for the survival distribution and
mean restricted survival time under different treatment poli-
cies. These estimators, although consistent, were inefficient and
did not exploit information from auxiliary covariates. Wahed
and Tsiatis (2006) derived more efficient, easy-to-compute
estimators that included auxiliary covariates for the survival
distribution and related quantities of DTRs. Their estimators
compared DTRs using data from a two-stage randomized trial,
in which two options were available for both stages and the
second-stage treatment assignments were determined by ran-
domization. However, these estimators must be adapted for
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more general or more complicated designs that permit vari-
ous numbers of treatment options at each stage and involve the
scenarios where second-stage treatment is not randomized, but
rather is determined by the attending physicians.

For settings where the DTR’s final overall time, such as sur-
vival time, is the sum of a sequence of transition times, our pro-
posed BNP approach employs a nonparametric survival regres-
sion model for each transition time conditional on the most
recent history of actions and outcomes. We assume a depen-
dentDirichlet process prior withGaussian process basemeasure
(DDP-GP), and summarize a joint posterior by Markov chain
Monte Carlo (MCMC) simulation. To address the important
issue that Bayesian analyses depend on prior assumptions, we
provide guidelines for using empirical Bayes methods to estab-
lish prior hyperparameters. Posterior analyses include estima-
tion of posteriormean overall outcome times and credible inter-
vals for each DTR.

The rest of the article is organized as follows. In Section 2,
we review the motivating study, and give a brief review of DTRs
in settings with successive transition times in Section 3. We
present the DDP-GP model in Section 4. A simulation study of
the BNP approach in single-stage and multi-stage regimes, with
comparison to frequentist IPTW and AIPTW, is summarized in
Section 5. We reanalyze the leukemia trial data in Section 6, and
close with brief discussion in Section 7.

2. A Study of Multi-Stage Chemotherapy Regimes
for Acute Leukemia

Our case study was a clinical trial conducted at The University
of TexasM.D. AndersonCancer Center to evaluate chemothera-
pies for acutemyelogenous leukemia (AML) ormyelo-dysplastic
syndrome (MDS). Patients were randomized fairly among four
frontline combination chemotherapies for remission induc-
tion: fludarabine + cytosine arabinoside (ara-C) plus idarubicin
(FAI), FAI + all-trans-retinoic acid (ATRA), FAI + granulocyte
colony stimulating factor (GCSF), and FAI + ATRA + GCSF.
The goal of induction therapy for AML/MDS was to achieve
complete remission (C), a necessary but not sufficient condition
for long-term survival. Patients who did not achieve C, or who
achieved C but later relapsed, were given salvage treatments as
another attempt to achieve C. Following conventional clinical
practice, patients were not randomized among salvage therapies,
which instead were chosen by the attending physicians based
on clinical judgment. Since there were many types of salvage,
these are broadly classified into two categories as either contain-
ing high dose ara-C (HDAC) or other. This dataset was analyzed
initially using conventional methods (Estey et al. 1999), includ-
ing logistic regression, Kaplan–Meier estimates, and Cox model
regression, including comparisons of the induction therapies in
terms of OS that ignored possible effects of salvage therapies.

Figure 1 illustrates the actual possible therapeutic pathways
and outcomes of the patients during the trial, which is typical
of chemotherapy for AML/MDS. Death might occur (1) during
induction therapy, (2) following salvage therapy if the disease
was resistant to induction, (3) duringC, or (4) following disease
progression afterC.Wahed and Thall (2013) reanalyzed the data
from this trial by accounting for the structure in Figure 1, and

identified 16 DTRs including both frontline and salvage ther-
apies. To correct for bias due to the lack of randomization in
estimating the mean OS times, they used both IPTW (Robins
and Rotnitzky 1992) and G-computation based on a frequen-
tist likelihood. In the G-computation, for each transition time
they first fit accelerated failure time (AFT) regression models
using Weibull, exponential, log-logistic, or lognormal distribu-
tions, and chose the distribution having smallest Bayes informa-
tion criterion (BIC). They then performed likelihood-based G-
computation by first fitting each conditional transition time dis-
tribution regressed on patient baseline covariates and previous
transition times, and then averaging over the empirical covariate
distribution.

Like Wahed and Thall, the primary goal of our analyses of
the AML/MDS dataset is to estimate mean OS and determine
the optimal regime.We build on their approach by replacing the
parametric AFT models for transition times with the DDP-GP
model. We also demonstrate the usefulness of the BNP regres-
sion model for G-computation in simulation studies of single-
stage and multi-stage regimes in which treatment assignments
depend on patient covariates.

3. Dynamic Regimes with Stochastic Transition Times

The case study involves more complicated structure than a styl-
ized linear sequential study, as often is assumed in articles on
DTRs that focus on basic methodology. We introduce the fol-
lowing notation to accommodate this more complex structure.
Denote the set of possible disease states by {0, 1, . . . , nstate},with
0 denoting the patient’s initial state before receiving the first
treatment. The pairs of states (s�−1, s�) for which a transition
s�−1 → s� is possible at stage � of the patient’s therapy depend
on the particular regime. Here, s0 = 0 refers to the patient’s
initial state, before start of therapy. We will identify specific
states using letters such as P, C, etc., as in the earlier exam-
ples, to replace the generic integers. For example, in cancer ther-
apy, s�−1 → C means that a patient’s disease has responded to
treatment, P → Dmeans a patient with progressive disease has
died, and of course D → s� is impossible. We denote the tran-
sition time from state s�−1 to state s� in stage � of treatment by
T (s�−1,s� ), for � = 1, . . . , nstage, the maximum number of stages
in theDTR. In general, it might be necessary to add a third index
to indicate the stage � when the same transitions are possible in
multiple stages. However, in our case study no ambiguity arises
by simply writing T (r,s). To simplify notation for the transition
time distributions, we denote the history of all covariates, treat-
ments, and previous transition times through � stages, before
observation of T (s�−1,s� ) but including the stage � action Z� by
x� = (H�−1,Z�) = (x0,Z1,T (s0,s1 ), . . . ,T (s�−1,s� ),Z�), with x0
=H0. Thus, aDTR is ZZZ= (Z1,Z2, . . .), a sequence of actions for
all possible stages. For example, in the leukemia trial (Figure 1),
Z1 might be FAI+ATRA given as frontline therapy, followed by
salvage therapiesZ2 = salvagewith high dose ara-C if the disease
is resistant to induction, andZ3= other salvage if the patient first
achieves a complete remission (C) but he later suffers progressive
disease (P).

In the leukemia trial, the three possible outcomes follow-
ing induction chemotherapy, C, R, and D, are competing risks.
Thus, only one of the transition times, T (0,C), T (0,R), or T (0,D),
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is observed for each patient. The distribution of s1 is determined
by these three transition times. For example, the probability of
C is

Pr(s1 = C | x0,Z1)

= Pr
[
T (0,C) < min{T (0,R),T (0,D)} | x0,Z1] .

This could be made explicit by including the states in the
notation for xl . We chose not to do this for notational
parsimony.

When no meaning is lost, we will further simplify nota-
tion and use a single running index on the transition times,
and write T (s�−1,s� ) as Tk, where k = 1, . . . , nT is a running
index of all possible state transitions. For example, in Figure 1
we have up to nstage = 3 stages and nT = 7 possible transi-
tions. Similarly, we will write xk for the corresponding covari-
ate vector. Our use of a single index to identify stage is a slight
abuse of notation since, for example, the actual second stage of
therapy might differ depending on the sequence of outcomes.
For example, stage 2 treatment Z2 of a patient with sequence
(x0,Z1,T (0,R),Z2) is first salvage for resistant disease during
induction with Z1, while stage 3 treatment Z3 of a patient with
sequence (x0,Z1,T (0,C),T (C,P),Z3) is first salvage for progres-
sive disease after achieving response initially with Z1. This lat-
ter example could be elaborated if, under a different regime,
consolidation therapy, Z2, was given for patients who enter
C, in which case the sequence would be (x0,Z1,T (0,C),Z2,

T (C,P),Z3).

Below, we will develop a general BNP model for all possible
conditional distributions p(Tk | xk). For any transition index k,
let Rk denote the risk set, f k the probability density function,
and F̄k the survival function of the transition time, δki is a censor-
ing indicatorwith δki = 1 if patient i is not censored and δki = 0 if
censored, andVk

i is the observed time to the next state or censor-
ing for patient i in risk setRk. For example, in the leukemia trial
consider the transition (0,R), corresponding to the single run-
ning index k = 1. The risk set isR1 = R(0,R) = {1, . . . , n}. Let
Ui denote the time from the start of induction to last followup
for patient i. Then δ1i = 1 if T 1

i = min(Ui,T 1
i ) and the observed

time for patient i isV 1
i = min(T (0,D)i ,T (0,R)i ,T (0,C)i ,Ui) sinceC,

R, and D are competing risks. The likelihood for all possible
sequences of treatments and transition times through nT transi-
tions is the product

L =
nT∏
k=1

∏
i∈Rk

f k(Vk
i | xki )δ

k
i F̄ k(Vk

i | xki )1−δ
k
i . (1)

The overall time for any counterfactual sequence of transition
times is the sum T = ∑nT

k=1 Tk. Our goal is to estimate the
mean of T for each possible ZZZ. Specific details of the likelihood
are given in the Appendix.

4. A Nonparametric BayesianModel for DTR

4.1. DDP andGaussian Process Prior

Our motivation for using the BNP model described in this sec-
tion is that it is highly robust and has full support. To specify

the BNPmodel, we denoteYk = log(Tk) and write the distribu-
tion of [Yk | xk] as Fk(· | xk). For convenience, wewill refer to xk
as “ covariates.”We construct a BNP survival regression model
for Fk(· | xk) by successive elaborations, starting with a model
for a discrete random distribution Gk(·). We then use a Gaus-
sian kernel to extend this to a prior for a continuous random
distribution Fk(·), and finally endow the kernel means with a
regression structure by expressing them as functions of xk. The
latter construction extends Fk to a family {Fk(· | xk)}, indexed
by xk. The construction of Gk(·) and Fk(·) is outlined briefly
below, byway of a brief reviewof BNPmodels. In the end,wewill
only use the last model {Fk(· | xk)}, which we use as a sampling
model for Yk. See, for example, Müller and Mitra (2013) and
Müller and Rodriguez (2013) formore extensive reviews of BNP
inference. In the following discussion we temporarily drop the
superindex k.

The Dirichlet process (DP) prior was first proposed by Fer-
guson (1973) as a probability distribution on ameasurable space
of probability measures. The DP is indexed by two hyperpa-
rameters, a base measure,G0, and a precision parameter, α > 0.
If a random distribution G follows a DP prior, we denote this
by G ∼ DP(α,G0). Denoting a beta distribution by Be(a, b),
if G ∼ DP(α,G0) then G(A) ∼ Be{αG0(A), α[1 − G0(A)]} for
any measurable set A, and in particular E{G(A)} = G0(A). Let
δ(θ ) denote a point mass at θ . Sethuraman (1994) provided a
useful representation of the DP as G = ∑∞

h=0 whδ(θh), where

θh
iid∼ G0, and the weights wh are generated sequentially from

rescaled beta distributions as wh/(1 −∑h−1
r=1 wr) ∼ Be(1, α),

the so-called “stick-breaking” construction. The discrete nature
of G is awkward in many applications. A DP mixture model
extends the DPmodel by replacing each point mass δ(θh)with a
continuous kernel centered at θh. Without loss of generality, we
will use a normal kernel. LetN(·; μ, σ ) denote a normal kernel
with mean μ and standard deviation σ . The DP mixture model
assumes

G =
∞∑
h=0

whN(· ; θh, σ ). (2)

The use and interpretation of (2) is very similar to that of a finite
mixture of normal models. In practical applications, the sum in
(2) is often truncated at a reasonable finite value. This model
is useful for density estimation under iid sampling from an
unknown distribution, and it provides good fits to a wide vari-
ety of datasets because a mixture of normals can closely approx-
imate virtually any distribution (Ishwaran and James 2001).

To include the regression on covariates that we will need for
the survival model of each conditional transition time distribu-
tion, Fk(· | xk), we extend the DP mixture to a dependent DP
(DDP), which was first proposed by MacEachern (1999). The
basic idea of a DDP is to endow each θ kh with additional struc-
ture that specifies how it varies as a function of covariates xk.
Writing this regression function as θ kh (x

k) for the argument in
each summand in (2), and returning to the conditional transi-
tion time distributions, we assume that

Fk(y | xk) =
∞∑
h=0

wk
h N(y; θ kh (xk), σ k). (3)



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 925

This form of the DDP, which includes both the convolution with
a normal kernel and functional dependence on covariates, pro-
vides a very flexible regression model.

To complete our specification of theDDP, wewill assume that
the θ kh (·)’s are independent realizations from a Gaussian pro-
cess (GP) prior. The GP was first popularized by O’Hagan and
Kingman (1978) in Bayesian inference for a random function
(unrelated to the use in a DDP prior). For more recent discus-
sions see, for example, Rasmussen and Williams (2006), Neal
(1995), and Shi et al. (2007). Temporarily suppressing the tran-
sition superindex k and running index h in (3), a GP is a stochas-
tic process θ (·) in which (θ (x1), . . . , θ (xn)) has a multivari-
ate normal distribution with mean vector (μ(x1), . . . , μ(xn))
and (n × n) covariance matrix with (i, j) element C(xi, x j) for
any set of n ≥ 1 covariate vectors xi. We denote this by θ (x) ∼
GP(μ,C).

We use the GP prior to define the dependence of θ kh (x
k) as a

function of xk by assuming {θ kh (xk)} ∼ GP(μk
h,C

k), as a func-
tion of xk, for fixed h. That is, there is a separate GP for each
term indexed by h in (3). We will refer to the DDPwith a convo-
lution using a normal kernel and a GP prior on the normal ker-
nel means as a DDP-GPmodel. While the mean and covariance
processes of the GP can be quite general, in practice,Ck(xki , xkj )
is often parameterized as a function C(xki , xkj; ξ k), where ξ k is
a vector of hyperparameters, and the mean function is indexed
similarly by hyperparameters βk

h and written as μk
h(x

k; βk
h). In

the DTR setting, since each covariate vector xk is a history, its
entries can include baseline covariates, transition times, and
indicators of previous treatments or actions. To obtain numer-
ically reasonable parameterizations of the GP functions Ck and
μk
h, we standardize numerical-valued covariates such as age. We

now have

{θ kh (xk)} ∼ GP
(
μk
h(·),Ck(·, ·)) h = 1, 2, . . .

To specify the form of μk
h and Ck, let i = 1, 2, . . . , index

patients, so that xki is the history of patient i at transition k, and
define the indicator δi j = I(i = j)= 1 if i = j and 0 otherwise.
We model the mean function μk

h(·) as a linear regression, by
assuming that

μk
h
(
xki ; βk

h
) = xki β

k
h. (4)

For patients i and j, we assume that the covariance process takes
the form

Ck(xki , x
k
j ) = exp

⎧⎨⎩−
Mk∑
m=1

(xkim − xkjm)
2

⎫⎬⎭
+δi jJ2, i, j = 1, . . . , n, (5)

where Mk is the number of covariates at transition k and J
is the variance on the diagonal reflecting the amount of jit-
ter (Bernardo, Berger, and Smith 1999), which usually takes a
small value (e.g., J = 0.1). There are no further hyperparameters
ξ k to index the covariance function. For binary covariates, the
quadratic form in (5) reduces to counting the number of binary
covariates in which two patients differ. If desired, additional
hyperparameters could be introduced in (5) to obtainmore flex-
ible covariance functions. However, in practice this form of the
covariance matrix yields a strong correlation for observations

on patients with very similar xk, and has been adopted widely
(Williams 1998).

Combining all of these structures, we denote the model for
the conditional distribution of the kth transition time as Fk ∼
DDP-GP

{{μk
h},Ck;αk, {βk

h}, σ k} , recalling that the weights of
the DDP are generated sequentially as wk

h/(1 −∑h−1
r=1 wk

r ) ∼
Be(1, αk). For later reference we state the full model. For
k = 1, . . . , nT

p
(
yki | xki , Fk) = Fk (yki | xki

)
Fk ∼ DDP-GP

{{μk
h},Ck;αk, {βk

h}, σ k} . (6)

4.2. Determining Prior Hyperparameters

As priors forβk
h in (6) we assumeβk

h ∼ N(βk
0, �

k
0 ) for each tran-

sition time k, with (σ k)−2 iid∼ Ga(λ1, λ2) and αk
iid∼ Ga(λ3, λ4).

To apply the DDP-GP model, one must first determine
numerical values for the fixed hyperparameters {βk

0, �
k
0, k =

1, 2, . . .} and λ = (λ1, λ2, λ3, λ4). This is a critical step. These
numerical hyperparameter values must facilitate posterior com-
putation, and they should not introduce inappropriately strong
information into the prior that would invalidate posterior infer-
ences. With this in mind, the hyperparameters (βk

0, �
k
0 ) for the

kth transition time covariate effect distributionmay be obtained
via empirical Bayes by doing preliminary fits of a lognormal dis-
tribution Yk = log(Tk) ∼ N(xkβk

0, σ
k
0 ) for each transition k.

Similarly, we assume a diagonal matrix for �k
0 with the diago-

nal values also obtained from the preliminary fit of the lognor-
mal distribution. Once an empirical estimate of σ k is obtained,
one can tune (λ1, λ2) so that the prior mean of σ k matches the
empirical estimate and the variance equals 1 or a suitably large
value to ensure a vague prior. Finally, information about αk typ-
ically is not available in practice. We use λ3 = λ4 = 1.

This approach works in practice because the parameter βk
0

specifies the prior mean for the mean function of the GP prior,
which in turn formalizes the regression of Tk on the covari-
ates xk, including treatment selection. The imputed treatment
effects hinge on the predictive distribution under that regres-
sion. Excessive prior shrinkage could smooth away the treat-
ment effect that is the main focus. The use of an empirical
Bayes type prior in the present setting is similar to empirical
Bayes priors in hierarchicalmodels. This type of empirical Bayes
approach for hyperparameter selection is commonly used when
a full prior elicitation is either not possible or is impractical.
Inference is not sensitive to values of the hyperparameters λ that
determine the priors ofσ k andαk for two reasons. First, the stan-
dard deviation σ k is the scale of the kernel that is used to smooth
the discrete random probability measure generated by the DDP
prior. It is important for reporting a smooth fit, that is, for dis-
play, but it is not critical for the imputed fits in our regression set-
ting. Assuming some regularity of the posterior mean function,
smoothing adds only minor corrections. Second, the total mass
parameter αk determines the number of unique clusters formed
in the underlying Polya urn. However, because most clusters are
small, changing the prior of αk does not significantly change the
posterior predictive values that are the basis for the proposed
inference.
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The conjugacy of the implied multivariate normal on
{θ kh (xki ), i = 0, . . . , n} and the normal kernel in (3) greatly
simplify computations, since any Markov chain Monte Carlo
(MCMC) scheme forDPmixturemodels can be used.MacEach-
ern and Müller (1998) and Neal (2000) described specific algo-
rithms to implement posterior MCMC simulation in DPM
models. Ishwaran and James (2001) developed alternative com-
putational algorithms based on finite DPs, which truncated (2)
after a finite number of terms. We provide details of MCMC
computations in the online supplement.

4.3. ComputingMean Survival Time

We apply the Bayesian nonparametric DDP-GPmodel to obtain
posterior means and credible intervals of mean survival time
under each DTR. In the motivating leukemia trial, recall that
the disease states are D (death), R (resistant disease), C (com-
plete remission), and P (progressive disease). In stage � = 1
(induction chemotherapy), the three events D, R, and C are
competing risks, so only one can be observed. We define seven
counterfactual transition times Tk

i , where k indexes the tran-
sitions (0,D), (0,R), (0,C), (R,D), (C,D), (C,P), and (P,D)
(Figure 1). A dynamic treatment regime for this data may be
expressed as Z = (Z1,Z2,1,Z2,2), where Z1 is the induction
chemo, Z2,1 is the salvage therapy given if s1i = R, and Z2,2 is
the salvage therapy given if s1i = C and s2i = P.

Our primary goal is to estimate mean survival time for each
DTRZwhile accounting for baseline covariates and nonrandom
treatment assignment.Under theDDP-GPmodel, we denote the
mean survival time for a future patient under Z by

η(Z) = E(T | Z). (7)

In terms of the seven counterfactual transition times, the sur-
vival time for a future patient i = n + 1 is

Ti = I(s1i = D)T (0,D)i + I(s1i = R)
(
T (0,R)i + T (R,D)i

)
+I(s1i = C)

{
I(s2i = D)

(
T (0,C)i + T (C,D)i

)
+I(s2i = P)

(
T (0,C)i + T (C,P)i + T (P,D)i

)}
. (8)

The expectation of (8) under the DDP-GP model is evalu-
ated by applying the law of total probability, using the same
steps as in Wahed and Thall (2013). We first condition on the
four possible cases, (s1i = D), (s1i = R), (s1i = C, s2i = D),
and (s1i = C, s2i = P), compute the conditional expecta-
tion in each case, and then average across the cases. This
computation requires evaluating seven expressions for the con-
ditional mean transition times ηk(Z, xk) = E(Tk | Z, xk) under
Fk(· | xk), for each k. For example,
η(P,D)(Z1,Z2,2, x0,T (0,C),T (C,P)) is the conditional mean
remaining survival time, from P toD, given thatC was achieved
in stage 1 with frontline therapy Z1, followed by P and salvage
therapy Z2,2 in stage 2. The DDP-GP models for Fk(· | xk),
k = 1, . . . , nT = 7 define most of the marginalization for the
expectation in η(Z), leaving only conditioning on the baseline
covariates x0i . As Wahed and Thall (2013), we use the empirical
covariate distribution p̂(x0) over the observed patients to define
an overall mean survival time (7). Note that the DDP-GPmodel

does not accommodate time-varying covariates. The described
evaluation of η(Z) is an application of Robins’ G-computation
(Robins 1986; Robins, Hernán, and Brumback 2000). The
complete expression is given as Equation (A.5) in the Appendix.
In the upcoming discussion, we will use η(Z) to evaluate the
proposed approach.

5. Simulation Studies

We conducted four simulation studies to evaluate the perfor-
mance of the proposed DDP-GPmodel for T in survival regres-
sion. The simulations focused on estimation of survival regres-
sion (simulation 1); regime effects in a study with two treatment
arms and single-stage regimes (simulation 2); and regime effects
in two studies with multi-stage regimes (simulations 3 and 4).
For each of the latter three studies, the treatment assignment
probabilities depended on patient covariates. That is, we intro-
duced treatment selection bias. In all four simulations, we imple-
mented inference under DDP-GP models. In simulation 1, we
used a single survival regression F(Yi | xi) for a patient-specific
baseline covariate vector xi. For simulation 2, we still used a sin-
gle DDP-GP model F(Yi | xi,Zi), now adding a treatment indi-
cator Zi to the survival regression model to estimate the causal
effect. In simulations 3 and 4, we used independent DDP-GP
models Fk(Yk

i | xki ) formultiple transition times, k = 1, . . . , nT ,
similar to the application in our case study. For all four simula-
tion studies, the hyperprior parameters were determined using
the empirical Bayes approach described earlier. For all posterior
computations,MCMC simulationwas implementedwith an ini-
tial burn-in of 2000 iterations and a total of 5000 iterations, thin-
ning out in batches of 10. This worked well in all cases, with
convergence diagnostics using the R package coda showing
no evidence of practical convergence problems. Traceplots and
empirical autocorrelation plots (not shown) for the imputed
parameters indicated a well-mixing Markov chain.

5.1. Fitting a Survival RegressionModel

In simulation 1, we considered four scenarios, with n = 50, 100,
or 200 observations without censoring or n = 200 with 23%
censoring. The details of simulation 1 are presented in Supple-
ment B. Comparing the DDP-GP model with maximum likeli-
hood estimates under the AFT model with Weibull, lognormal,
and exponential distributions, the estimates under the DDP-GP
model reliably recovered the shape of the true survival function
and avoided the excessive bias seen with the AFT models.

5.2. Estimating a Treatment Effect in Single-Stage Regimes

Simulation 2 was designed to investigate inference under the
DDP-GP model for the regime effect in a single-stage treat-
ment setting. The simulated data represent what might be
obtained in an observational setting where treatment is chosen
by the attending physician based on patient covariates, rather
than from a fairly randomized clinical trial. We simulated a
binary treatment indicator Zi ∈ {0 = control, 1 = experimen-
tal} that depended on two continuous covariates, xi = (Li,Wi),
for n = 100 patients, i = 1, . . . , n. For example, Li could be a
patient’s creatinine to quantify kidney function, and Wi could
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be body weight. We generated Li from a mixture of normals,
Li ∼ 1

2N(40, 10
2)+ 1

2N(20, 10
2), which could correspond to

a subgroup of patients having worse kidney function (higher
creatinine level) due to damage from prior chemotherapy. We
assumed that Wi ∼ Unif(−√

12,
√
12), a uniform with zero

mean and unit standard deviation, which could arise from stan-
dardizing a uniformly distributed raw variable. We generated
the treatment indicators using the modified logistic regression
model

p(Zi = 1 | Li,Wi)

=

⎧⎪⎨⎪⎩
0.05 if

{
1 + exp[−2(Li − 30)/10]

}−1 ≤ 0.05
0.95 if

{
1 + exp[−2(Li − 30)/10]

}−1 ≥ 0.95{
1 + exp[−2(Li − 30)/10]

}−1 otherwise,

that is, a logistic regression model with intercept 30 and slope
1/5 truncated at 0.05 and 0.95. This produces a very unbalanced
treatment assignment, for example, p(Zi = 1 | Li = 40) = 0.88
versus p(Zi = 1 | Li = 20) = 0.12. This could arise in a setting
where standard therapy (the “control”), Z = 0, is known to be
nephrotoxic, while it is believed by most of the treating physi-
cians that the experimental therapy, Zi = 1, is not, so patients
with high creatinine aremore likely to be given the experimental
therapy. In this simulation study, the goal is to estimate the com-
parative effect on survival of the experimental therapy versus
the control. In the two treatment arms, we generated patients’
responses from

Y (1) ∼ 1
2
N
(
3 − 0.2L + √

L − 0.1W, σ
)

+1
2
N
(
2 − 0.2L + √

L − 0.1W, σ
)

and

Y (0) ∼ N(−0.2L + √
L − 0.1W, σ ),

with σ = 0.4. We simulated 1000 trials. Note that under the
simulation truth the treatment effect, E[Y (1)−Y (0) | x =
(L,W )] = 2.5, is constant across L,W .

Figure 2(a) plots the simulation truth for the mean response
curve under Z = 1 and Z = 0 versus L, with W ≡ 0, in one
randomly selected trial. The upper red solid curve repre-
sents E[Y (1) | L,W = 0] and the lower black curve represents
E[Y (0) | L,W = 0]. The red dots close to the upper curve are
the observations for experimental arm patients and the black
dots close to the lower curve are the observations for the con-
trol arm patients. We define an average treatment effect for
the entire population under the simulation truth as ATE� =
1
n
∑n

i=1 E[Yi(1)−Yi(0)] = 2.5.
We implemented inference for a survival regression

F(Yi | xi,Zi) using the proposed DDP-GP model (6).
Figure 2(b) summarizes inference for the data from panel (a).
Let Ŷi(z) = E(Yn+1 | Ln+1 = Li,Wn+1 = Wi,Zn+1 = z, data)
denote the posterior expected response for a future patient
n + 1. We defined an estimated average treatment effect as
ATEDDP = 1

n
∑n

i=1[Ŷi(1)− Ŷi(0)]. Figure 2(b) shows the
estimated average treatment effect (horizontal red line), and
credible intervals for individual effects Ŷi(1)− Ŷi(0) (vertical
line segments, located at Li).

... Inverse Probability of TreatmentWeighting (IPTW)
For comparison, we also implemented inference using naive
linear regression (LR), using an IPTW estimator, and an aug-
mented IPTW (AIPTW) estimator for the average treatment
effect. The LR estimator is based on a linear regression for
log survival times, ignoring the lack of randomization. We
use linear predictor functions Yi(1) = β10 + β11Li + β12Wi +
ε1i and Yi(0) = β00 + β01Li + β02Wi + ε0i. Denoting the least-
square estimates by β̂z j for z = 0, 1 and j = 0, 1, 2, the esti-
mated means are Ê{Yi(z)} = β̂z0 + β̂z1Li + β̂z2Wi. We define
an estimated average treatment effect based on the LR model
as ATELR = 1

n
∑

i [Ê{Yi(1)} − Ê{Yi(0)}].Denote the propensity
score πi = pr(Zi = 1 | xi). The IPTW method corrects for bias
due to lack of randomization by assigning each patient i a weight
bi equal to the inverse of an estimate of p(Zi | xi), the conditional
probability of receiving his or her actual treatment (Robins,
Hernán, and Brumback 2000). When Zi = 1, bi = 1/πi; when
Zi = 0, bi = 1/(1 − πi). An estimate of πi is obtained by fitting
a logistic regression model. We define the IPTWmean outcome
estimator

IPTW(Z = z) =
∑

i I(Zi = z)biYi∑
i I(Zi = z)bi

,

and corresponding average treatment effect estimate
ATEIPTW = IPTW(Z = 1)− IPTW(Z = 0).

... Augmented IPTW (AIPTW)
The AIPTW estimate (Robins 2000) is a doubly robust gener-
alization of the IPTW. It is consistent whenever the outcome
regression model is correct and/or the propensity score model
is correct. We evaluate the AIPTW estimator for average treat-
ment effect (ATE):

ATEAIPTW = 1
n

n∑
i=1

{[
I(Zi = 1)Yi

π̂i
− I(Zi = 0)Yi

1 − π̂i

]
− I(Zi = 1)− π̂i

π̂i(1 − π̂i)

[
(1 − π̂i)Ê(Yi | Zi = 1, xi)

+π̂iÊ(Yi | Zi = 0, xi)
]}
, (9)

where π̂i is the estimated propensity score using logistic regres-
sion and Ê(Yi | Zi, xi) is estimated by a linear regression model,
i = 0, 1.

Figure 2(b) shows ATEDDP,ATELR,ATEIPTW, andATEAIPTW
for one simulated dataset under this simulation setup.We found
E(ATEDDP | data) = 2.31, with 90% posterior credible inter-
val (1.89, 2.96), compared with the simulation truth ATE� =
2.5. In contrast, ATELR = 4.13 overestimates, while the IPTW
method underestimates, with ATEIPTW = 1.11. The AIPTW
method reports ATEAIPTW = 2.73. In Figure 2(b), the vertical
green and blue segments are marginal 90% posterior credible
intervals for the treatment effect (under the DDP-GP model) at
each observed L value. Lengths of posterior credible intervals
larger than 2 are highlighted by blue segments. Note how the
uncertainty bounds grow wider in the range where there is less
overlap across treatment groups, that is, over a range of covariate
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Figure . Simulation . (a) Simulated data for one (treatment, control) pair. The upper red solid curve represents E[Y (1) | X ], the lower black curve represents E[Y (0) | X ]
givenW = 0. The red dots close to the upper curve are the treated observations and the black dots close to the lower curve are the untreated. (b) Average treatment
effect estimations ATE� (black solid line), ATEDDP (red line), ATEIPTW (turquoise blue), ATEAIPTW (dark green), ATELR (heliotrope). The vertical line segments are marginal
% posterior intervals for the treatment effect at each L value from treated observations (under the DDP-GP model).

values for which we do not observe reliable empirical counter-
factuals for each data point (e.g., L > 50). Most of the credible
intervals reasonably cover the true treatment effect.

Figure 2(b) reports inference for one hypothetical dataset.
For a comparison of average behavior, we carried out exten-
sive simulations and report the distribution of estimated regime
effects across these simulations. We compared the regime effect
estimates obtained byDDP-GP, IPTW,AIPTW, and LR based on
data from 1000 simulated trials. Figure 3 shows density plots of
the distributions of estimated regime effects. Compared to the
estimates obtained from DDP-GP or AIPTW, the IPTW esti-
mates are much more variable, ranging from 1.14 to 7.13. The
LR estimates are highly biased, and overestimate the true effects.
The distribution of estimated regime effects under the DDP-GP
model is highly concentrated around the simulation truth.

Figure . Simulation . The density plot of estimated regime effects by DDP-GP,
IPTW, AIPTW and linear regression in  trials. The truth is indicated by a black
vertical line.

5.3. Regime Effect forMulti-Stage Regimes

Simulation 3 was designed to examine inference on strategy
effects for multi-stage regimes with a general DTR setup. This
simulation is similar to the scenario in Moodie, Richardson,
and Stephens (2007). We simulated samples of size n = 200.
Patients were randomized to initial induction therapy or not,
coded as Z1

i = a1 and Z1
i = a2, with the randomization prob-

abilities based on their baseline CD4 counts, which were sim-
ulated as Li ∼ N(450, 102). For frontline therapy, we used the
model p(Z1

i = a1 | Li) = 0.8 I(Li < 450)+ 0.2 I(Li ≥ 450).
To focus on covariate-dependent induction and salvage ther-
apies, we assumed for simplicity that all patients were resis-
tant to the induction therapy. Let X ∼ LN(m, s) denote
a lognormal random variable with log(X ) ∼ N(m, s),
we simulated the times T (0,R)i ∼ LN(2 + 0.005Li, 0.3).
The salvage treatment for each patient Z2

i was assigned
with probability p(Z2

i = 1 | Z1
i ,T

(0,R)
i ) = Z1

i expit(1 −
0.003T (0,R)i )+ (1 − Z1

i )expit(−0.8 − 0.004T (0,R)i ), where
expit(u) = eu/(1 + eu). For the first-stage transition times, we
generated transition times T (R,D)i ∼ LN(β(R,D)x(R,D)i , 0.3),
where β(R,D) = (−0.5, 0.03, 0.2, 0.5, 0.3) and x(R,D)i =
(1, Li, Z1

i , log(T
(0,R)
i ),Z2

i ).
The goal is to estimate mean survival time for each DTR

(Z1,Z2). We have four possible DTRs in this simulation. We
applied the Bayesian nonparametricDDP-GPmodel, IPTW, and
AIPTW (Zhang et al. 2013) to each simulated dataset to estimate
mean survival for each of the four possible DTRs. When imple-
menting IPTW and AIPTW, we estimated the propensity score
using logistic regression and the outcome model using AFT
regression models with a lognormal distribution. For the non-
parametric Bayesian inference, we defined independent DDP-
GPmodels Fk(Yk

i | xki ) as in (6) for each of the nT = 2 log tran-
sition times Yk

i = logTk
i . Figure 4(a) compares the mean sur-

vival estimates using boxplots of (Estimated mean survival −
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Figure . (a) Simulation  and (b) simulation . The yellow boxplots show posterior estimatedmean OS using the DPP-GPmodel under each of the regimes as a difference
with the simulation truth over  simulations. The green and blue boxes show the corresponding inferences under the IPTW and AIPTW approaches, respectively. In each
notched box-whisker plot, the box shows the interquartile range (IQR) from st quantile (Q1) to rd quantile (Q3), and the mid-line is the median. The top whisker denotes
Q3 + 1.5 ∗ IQR and the bottom whiskerQ1 − 1.5 ∗ IQR. The notch displays a confidence interval for the median, that is, median±1.57 ∗ IQR/

√
1000.

Simulation truth), based on 1000 simulated datasets, arranged
by inference method (DDP-GP, IPTW, and AIPTW) and by the
four possible DTRs (the four subplots). Note that the DDP-GP
and the AIPTW estimates are on average closer to the truth and
havemuch smaller variability, compared to the IPTW estimates,
across all four strategies. Because we use the same outcome
regression models as the simulation truth when implementing
the AIPTW method, it performs well in this simulation study.
In summary, both the DDP-GP and the AIPTWmethods show
satisfactory performance in this example, although the DDP-
GP estimates show slightly smaller variability than the AIPTW
estimates.

Simulation 4 is a stylized version of the leukemia data that we
will analyze in Section 6. We simulated samples of size n = 200
and patients’ blood glucose values Li ∼ N(100, 102). Patients
initially were randomized equally between two induction ther-
apies Z1 ∈ {a1, a2}. We then generated a response (see below).
Patients who were resistant (R) to the assigned induction thera-
pies were then assigned salvage treatment Z2,1 ∈ {b11, b12}. Sal-
vage treatments were randomized using the rule p(Z2,1 = b11 |
Li) = 0.8 I(Li < 100)+ 0.2 I(Li ≥ 100).Patients who achieved
C and subsequently suffered disease progression (P), were given
salvage treatment Z2,2 ∈ {b21, b22}, using p(Z2,2 = b21 | Li) =
0.2 I(Li < 100)+ 0.85 I(Li ≥ 100). Finally, the survival time
for each patient was evaluated as

Ti =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T (0,R)i + T (R,D)i if patient i had

(L,Z1,T (0,R),Z2,1)

T (0,C)i + T (C,P)i + T (P,D)i if patient i had
(L,Z1,T (0,C),T (C,P),Z2,2).

We simulated the times of the two competing risks R
and C as T (0,R)i ∼ LN(β(0,R)x(0,R)i , σ (0,R)) and T (0,C)i ∼
LN(β(0,C)x(0,C)i , σ (0,C)), where β(0,R) = (2, 0.02, 0), β(0,C)

= (1.5, 0.03, −0.8), with xki = (1, Li,Z1
i ) for k ∈

{(0,R), (0,C)}. For the three possible second-stage tran-
sitions k ∈ {(R,D), (C,P), (P,D)}, we generated (compet-
ing) transition times Tk

i ∼ LN(βkxki , σ k), where β(R,D) =
(−0.5, 0.03, 0.2, 0.5, 0.3), β(C,P) = (1, 0.05, 1, −0.6),

β(P,D) =(0.8, 0.04, 1.5, −1, 0.5, 0.5), with covariate
vectors x(R,D)i = (1, Li, Z1

i , log(T
(0,R)
i ),Z2,1

i ), x(C,P)i =
(1, Li,Z1

i , log(T
(0,C)
i )), and x(P,D)i = (1, Li,Z1

i , log(T (0,C)i ),

log(T (C,P)i ),Z2,2
i ). We simulated N = 1000 trials with 15%

censoring.
The goal is to estimate mean survival time for each DTR

(Z1,Z2,1,Z2,2). We performed inference under the Bayesian
nonparametric DDP-GP model, IPTW, and AIPTW for each
simulated dataset to estimate mean survival for each of the
eight possible DTRs. When implementing IPTW and AIPTW,
we estimated the propensity score using logistic regression and
the outcome model using AFT regression models with a log-
normal distribution. For the nonparametric Bayesian inference,
we defined independent DDP-GP models Fk(Yk

i | xki ) for each
of the nT = 5 log transition times Yk

i = logTk
i . Figure 4(b)

compares mean survival estimates using boxplots of (Estimated
mean survival − Simulation truth), based on 1000 simulated
datasets. The boxplots are arranged by inference method (DDP-
GP, IPTW,AIPTW) and by all eight possibleDTRs. In this simu-
lation, both the propensity score model and the outcome model
are incorrect when we implement the IPTW and AIPTWmeth-
ods. In this case, the DDP-GP estimates on average are much
closer to the truth and have much smaller variability, compared
to the IPTW and AIPTW estimates, across all eight strategies as
shown in Figure 4(b).

6. Evaluation of the Leukemia Trial Regimes

6.1. LeukemiaData—Inference for the Survival Regression

To analyze the AML-MDS trial data under the proposed DDP-
GP model, we first implement posterior inference for six of
the nT = 7 transition times. The exception is T (C,D). Due to
the limited sample size—only 9 patients died after C without
first suffering disease progression (P)—we do not implement
the DDP-GP model, and instead use an intercept-only Weibull
AFT model. Table 1 summarizes the data. The table reports the
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Table . The sample median of each transition time is given, with lower % quan-
tile and upper % quantile in the parenthesis next to each median.

Resistance Die after resistance

Induction N TR (days) Salvage N T (R,D) (days)

All   (,) All   (,)
FAI   (,) HDAC   (,)
FAI+ATRA   (,)
FAI+GCSF   (.,.) non-HDAC   (, .)
FAI+ATRA+GCSF   (, )

CR Die after progression

Induction N TC (days) Salvage N T (P,D) (days)

All   (,) All   (,)
FAI   (, ) HDAC   (,.)
FAI+ATRA   (., )
FAI+GCSF  . (,.) non-HDAC  . (., .)
FAI+ATRA+GCSF   (,)

number of patients and median transition times for some
selected transitions.

We first report results forT (R,D). Of 210 patients, 39 (18.57%)
experienced resistance to their induction therapies. The rate of

resistance varied across regimes, from 31% for patients receiv-
ing FAI, 24% for FAI plus ATRA, 7.8% for FAI plus GCSF, and
10% for FAI plus ATRAplus GCSF. The times to treatment resis-
tance were longer, with greater variability in the FAI plus GCSF
arm compared to the other three arms. Among the 39 patients
who were resistant to induction therapies, 27 were given HDAC
as salvage treatment, of whom 2 were censored before observ-
ing death. Figure 5 summarizes survival regression under the
proposed DDP-GP model by plotting posterior predicted sur-
vival functions for a hypothetical future patient at age 61 with
poor prognosis cytogenetic abnormality. The figure shows pos-
terior predicted survival functions, arranged by different induc-
tion therapies Z1 (the four curves in each panel), T (0,R), and
Z2,1 (as indicated in the subtitle). Figure 5 shows that patients
with shorter T (0,R) had lower predicted survival once their can-
cer became resistant. Also, patients with s1 = R who received
Z2,1 = HDAC as salvage had worse predicted survival than
patients who received salvage treatment with non-HDAC. Sim-
ilar results can be obtained for other transition times.

Next, we summarize results of the survival regression for
T (C,P). Among the n = 210 patients, 102 (48.6%) achieved C,
with C rates of 37%, 48%, 53%, and 56% in the FAI, FAI plus
ATRA, FAI plus GCSF, and FAI plus GCSF plus ATRA arms,

Figure . Survival regression for T (R,D) in theAML-MDS trial. Panels (a)–(d) show theposterior estimated survival functions for a future patient at age with poor prognosis
cytogenetic abnormality, with T (0,R) and Z2,1 as indicated. Survival curves are shown for four induction therapies. Black, red, green, and blue curves indicate Z1 = FAI,
FAI+ATRA, FAI+GCSF, and FAI+ATRA+GCSF, respectively.
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Figure . The effect of T (0,C) on T (C,P) at age  with poor cytogenetic abnormal-
ity. Black, red, green, and blue curves represent induction treatments FAI, FAI+ATRA,
FAI+GCSF, and FAI+ATRA+GCSF, respectively. Solid lines and dotted lines represent
T (0,C) = 20 and T (0,C) = 30, respectively. The longer it takes to achieve C, the
shorter the period of time that the patient remained inC.

respectively. Of the 102 patients who achieved CR, 93 experi-
enced disease progression before death or being lost to follow-
up. Among these 93 relapsed patients, 53 received salvage treat-
ment with HDAC. For a hypothetical future patient at age 61
with poor prognosis cytogenetic abnormality, Figure 6 summa-
rizes survival regression functions for each of the four induction
therapies, with solid lines representing T (0,C) = 20 and dotted
lines representing T (0,C) = 30. The four dotted lines are below
the four corresponding solid lines, indicating that T (0,C) was
associated with T (C,P). This observation coincides with the well-
known phenomenon in chemotherapy for AML or MDS that,
regardless of induction therapy, the longer it takes to achieveC,
the shorter the period that the patient remains inC.

Similarly, we summarize results for the survival regression
for T (P,D). For a patient with poor prognosis cytogenetic abnor-
mality, Figure 7 shows the posterior predicted survival functions
under different combinations of induction therapy and age. Pan-
els (a) and (c) show the survival functions of a patient assigned
salvage treatment HDAC with age 46 or 76, while panels
(b) and (d) plot the corresponding survival functions for the
patient assigned non-HDAC as salvage. Four different colors

Figure . AML-MDS trial data in transition (P,D): Panels (a) and (c) show the posterior estimated survival functions of patient at age  and  with poor cytogenetic
abnormality assigned to salvage treatment HDAC for four induction therapies, respectively. Panels (b) and (d) show the posterior estimated survival functions of patient
at age  and  with poor cytogenetic abnormality assigned to salvage treatment non-HDAC for four induction therapies, respectively. Black, red, green, and blue curves
represent induction treatments FAI, FAI+ATRA, FAI+GCSF, and FAI+ATRA+GCSF, respectively.
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Table. Meanoverall survival timeunder the IPTWmethodand theposteriormean
and % credible interval (CI) under the DDP-GP model.

Estimated mean OS times (days)
DDP-GP

Regime (A, B1, B2) IPTW Posterior mean 90% CI

(FAI, HDAC, HDAC) . . (. .)
(FAI, HDAC, other) . . (. .)
(FAI, other, HDAC) . . (. .)
(FAI, other, other) . . (. .)
(FAI+ATRA, HDAC, HDAC) . . (. .)
(FAI+ATRA, HDAC, other) . . (. .)
(FAI+ATRA, other, HDAC) . . (. .)
(FAI+ATRA, other, other) . . (. .)
(FAI+GCSF, HDAC, HDAC) . . (. .)
(FAI+GCSF, HDAC, other) . . (. .)
(FAI+GCSF, other, HDAC) . . (. .)
(FAI+GCSF, other, other) . . (. .)
(FAI+ATRA+GCSF, HDAC, HDAC) . . (. .)
(FAI+ATRA+GCSF, HDAC, other) . . (. .)
(FAI+ATRA+GCSF, other, HDAC) . . (. .)
(FAI+ATRA+GCSF, other, other) . . (. .)

represent the four induction therapies. Figure 7 shows that resid-
ual survival time after disease progression followingC was asso-
ciated with both age and salvage therapy. Older patients were
more likely to have shorter residual life once their disease pro-
gressed, and patients given HDAC as salvage died more quickly
than patients given non-HDAC salvage.

6.2. Estimating the Regime Effects

In the AML-MDS trial, the four induction therapies and two
salvage therapies define a total of 16 regimes. Mean survival
time estimates under each of the 16 regimes were calculated
using posterior inference under independent DDP-GP models
Fk(Yk

i | xki ) for each of the nT = 7 transition times. For com-
parison, we also evaluated mean survival times using the IPTW
method. See Equation (A.7) in the Appendix for details. Table 2
summarizes the results using IPTW and the DDP-GP model,
including 90% credible intervals. Figure 8 shows boxplots of
the marginal posterior distributions of survival times under the
DDP-GP model for the 16 regimes.

The two methods give very different estimates for mean
survival time, with the DDP-GP likelihood-based estimator
much larger than the corresponding IPTW estimator for most
regimes. The differences are expected due to the distinct prop-
erties of these two methods. The IPTW estimator uses the
covariates to estimate the regime probability weights. In con-
trast, the DDP-GP likelihood-based method computes mean
survival time, using G-computation, accounting for patients’
covariates and previous transition times in addition to treatment
followed by marginalizing over the empirical covariate distri-
bution to obtain η(Z). Additionally, the IPTW estimate is cal-
culated from the overall samples, whereas the likelihood-based
DDP-GP method models each transition time distribution sep-
arately, which reduces the effective sample size for eachmodel fit
and thus increases the overall variability even though they share
the same prior for the βk’s.

Figure . Marginal posterior distributions of overall survival time under the DDP-GP model for all  regimes.
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For both methods, the estimates were smallest for the four
regimes with FAI as induction therapy regardless of salvage
treatment, and the 90% credible intervals were relatively small
for these inferior regimes. Under the IPTW method, the esti-
mates were largest for the four regimes with FAI plus ATRA as
induction therapy, and the best regime is (FAI+ATRA, other,
HDAC).With theDDP-GP likelihood-based approach, FAI plus
ATRA as induction also gave the largest estimates, except for
the regimes (FAI+GCSF, HDAC, other) and (FAI+GCSF, other,
other), while the best regime is (FAI+ATRA, other, other). Most
importantly, the DDP-GP likelihood-based approach showed
that (FAI + ATRA, Z2,1, other) was superior to (FAI + ATRA,
Z2,1, HDAC) regardless of Z2,1. Therefore, our results suggest
that (1) FAI plus ATRA was the best induction therapy, (2) if
the patient’s disease was resistant to FAI plus ATRA, then it
was irrelevant whether the salvage therapy contained HDAC,
and (3) if patients experienced progression after achieving C
with FAI plus ATRA, then salvage therapy with non-HDACwas
superior.

These conclusions, although not confirmatory, contradict
those given by Estey et al. (1999), who concluded that none of
the three adjuvant combinations FAI plusATRA, FAI plusGCSF,
or FAI plus ATRA plus GCSF were significantly different from
FAI alone with respect to either survival or event-free survival
time, based on consideration of only the frontline therapies by
applying conventional Cox regression and hypothesis testing.

7. Conclusions

We have proposed a Bayesian nonparametric DDP-GP model
for analyzing survival data and evaluating joint effects of
induction-salvage therapies in clinical trials, using the posterior
estimates, to predict survival for future patients. The Bayesian
paradigm works very well, and the simulation studies suggest
that our DDP-GP method yields more reliable estimates than
IPTW and AIPTW. The DDP-GP model can be extended eas-
ily to multivariate outcomes. In Equation (2), this could be done
by replacing the normal distribution with a multivariate normal
distribution as the base measure. A referee has noted that, in
settings where interpretability is important, our proposed BNP
approach could be applied in the context of a policy search algo-
rithm (Orellana, Rotnitzky, and Robins 2010; Zhang et al. 2012a,
2012b; Zhao et al. 2012; Zhang et al. 2013; Zhao et al. 2014,
2015).

We employed two different methods to evaluate the 16 possi-
ble two-stage regimes for choosing induction and salvage thera-
pies in the leukemia trial data. The IPTWmethod estimates the
regime effect by using covariates only to compute the assign-
ment probabilities of salvage therapies to correct for bias. In
contrast, likelihood-based G-computation under the DDP-GP
model accounts for all possible outcome paths, the transition
times between successive states, and effects of covariates and
previous outcomes, on each transition time. Although the two
methods gave different numerical estimates of mean survival
time, they both reached the conclusion that FAI plus ATRA was
the best induction therapy andFAIwas theworst induction ther-
apy. Although our current models are set up for two-stage treat-
ment regimes, they easily can be extended to other applications
with multi-stage regimes.

Appendix: The Complete Expression of Likelihood and
the IPTWMethod

A.. Likelihood
The following structure is adapted from Wahed and Thall (2013),
and is included here for completeness. The risk sets of the seven
transition times in the leukemia trial are defined as follows. Let
R0 = {1, . . . , n} denote the initial risk set at the start of induction
chemotherapy, and R(0,r) = {i : s1i = r} for r = D,C,R, so R0 =
R(0,D) ∪ R(0,C) ∪ R(0,R). Similarly, R(C,P) = {i : s1i = C, s2i = P}
is the later risk set for T (P,D).

To record right censoring, letUi denote the time from the start
of induction to last followup for patient i. We assume that Ui is
conditionally independent of the transition time given prior tran-
sition times and other covariates. Censoring of event times occurs
by competing risk and/or loss to followup. For patient i in the risk
set for transition time Tk

i , let δki = 1 if patient i is not censored and
0 if patient i is right censored. For example, δ(0,D)i = 1 for i ∈ R0

if T (0,D)i = min(Ui,T (0,D)i ,T (0,C)i ,T (0,R)i ). Similarly, δ(R,D)i = 1 for
i ∈ R(0,R) if T (0,R)i + T (R,D)i < Ui and δ(P,D)i = 1 for i ∈ R(C,P) if
T (0,C)i + T (C,P)i + T (P,D)i < Ui.

For i ∈ R0, let V 0
i = min(T (0,D)i ,T (0,R)i ,T (0,C)i ,Ui) denote the

observed time for the stage 1 event or censoring. For i ∈ R(0,C) let
VC
i = min(T (C,D)i ,T (C,P)i ,Ui − T (0,C)i ) denote the observed event

time for the competing risksD and P and loss to followup. Similarly,
for i ∈ R(0,R), letVR

i = min(T (R,D)i ,Ui − T (0,R)i ), and for i ∈ R(C,P)

letV (C,P)
i = min(T (P,D)i ,Ui − T (0,C)i − T (C,P)i ).

The joint likelihood function is the product L = L1L2L3L4.

The first factor L1 corresponds to response to induction
therapy,

L1 =
∏
i∈R0

∏
r∈{D,R,C}

f (0,r)
(
V 0
i | x(0,r)i

)δ(0,r)i
F̄ (0,r)

(
V 0
i | x(0,r)i

)1−δ(0,r)i
,

(A.1)
where F̄k = 1 − Fk. The second factor L2 corresponds to patients
i ∈ R(0,R) who experience resistance to induction and receive sal-
vage Z2,1,

L2 =
∏

i∈R(0,R)

f (R,D)
(
VR
i | x(R,D)i

)δ(R,D)i
F̄ (R,D)

(
VR
i | x(R,D)i

)1−δ(R,D)i
.

(A.2)
The third factor L3 is the likelihood contribution from patients
achievingC,

L3 =
∏

i∈R(0,C)

∏
k=(C,D),(C,P)

f k
(
VC
i | xki

)δki F̄ k (VC
i | xki

)1−δki . (A.3)

The fourth factor L4 is the contribution from patients who experi-
ence tumor progression afterC,

L4 =
∏

i∈R(C,P)

f (P,D)
(
V (C,P)
i | x(P,D)i

)δ(P,D)i
F̄ (P,D)

(
V (C,P)
i | x(P,D)i

)1−δ(P,D)i
.

(A.4)
The mean survival time of a patient treated with regime Z =

(Z1,Z2,1,Z2,2) is

η(Z) =
∫ [

p
(
s1 = D | x0,Z1) η(0,D) (x0,Z1) ]d p̂(x0)
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+
∫ {

p
(
s1 = R | x0,Z1) [ηR (x0,Z1)

+
∫
η(R,D)

(
x0,Z1,Z2,1,T (0,R)) dμ(T (0,R) )

]}
d p̂(x0)

+
∫

p
(
s1 = C | x0,Z1) [ηC (x0,Z1)

+
∫ [

p
(
s2 = D | s1 = C, x0,Z1,T (0,C)) η(C,D) (x0,Z1,TC)

+p
(
s2 = P | s1 = C, x0,Z1,T (0,C)) [η(C,P) (x0,Z1,T (0,C))

+
∫
η(P,D)

(
x0,Z1,Z2,2T (0,C),T (C,P)) dμ (T (C,P)) ]

×dμ
(
T (0,C)) ]d p̂(x0). (A.5)

A.. IPTW
We compute the IPTW estimates for overall mean survival with
regime Z as

IPTW(Z) =
n∑
i=1

wi(Z)Ti /
n∑

i=1

wi(Z), (A.6)

where

wi(Z) = I(Z = Zi)δi

K̂(Ui)

[
I(s1i = D)+ I(s1i = R)

×Ii(Z2,1)/P̂r
(
Z2,1 | s1i = R,Z1, x0i ,T

(0,R)
i

)
+I(s1i = C, s2i = D)
+I(s1i = C, s2i = P)Ii(Z2,2)/P̂r

(
Z2,2 | s1i = C,

s2i = P,Z1, x0i ,T
(0,C)
i ,T (C,P)i

)]
.

(A.7)

In (A.7), K̂ is the Kaplan–Meier estimator of the censoring survival
distribution K(u) = P(U ≥ t ) at time t . Ii(Z) is an indicator of
treatment Z and 0 otherwise, and P̂r(Z2,1 | s1i = C,Z1, x0i ,T

(0,R)
i )

is the probability of receiving salvage treatment Z2,1 estimated
using logistic regression, and similarly for P̂r(Z2,2 | s1i = C, s2i =
P,Z1, x0i ,T

(0,C)
i ,T (C,P)i ). The above estimator has been shown to be

consistent under suitable assumptions (Scharfstein, Rotnitzky, and
Robins 1999; Wahed and Thall 2013).

SupplementaryMaterials

The supplementary material includes the details of MCMC posterior sam-
pling for the proposed DDP-GP model and more simulation studies.
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1. Introduction

We congratulate Xu, Muller, Wahed, and Thall (hereafter,
XMWT) on an interesting and novel article and we thank the
Editors for organizing these discussions. The integration of non-
parametric Bayesian (NPB) methods and optimal treatment
regimes was long overdue; we expect that the work of XMWT
will be the first in a long and fruitful line of research. There is
currently a great amount of interest in non-parametric meth-
ods for estimation of optimal treatment regimes; for example,
recently proposedmethodology includes kernel-based methods
(Zhao et al. 2009, 2012, 2015, 2014; Zhou et al. 2015), nearest-
neighbor methods (Zhou and Kosorok 2016), generalized addi-
tive models (Moodie, Dean, and Sun 2013), boosting (Kang,
Janes, andHuang 2014), and trees (Laber and Zhao 2015; Doove
et al. 2015; Zhang et al. 2015). This interest stems in part from
a desire to mitigate the risk of model misspecification as it is
well-known that the optimal treatment regime can be a highly
nonlinear function of patient covariates even under simple gen-
erative models (Laber, Linn, and Stefanski 2014; Schulte et al.
2014). NPB methods are in line with this trend and, as we dis-
cuss below, may possess a number of advantages over existing
methods in the context of policy-search algorithms.

However, nonparametric estimation of an optimal treatment
regime often comes at the price of a loss of interpretability
within a domain context which can be a major detriment to
scientific progress, especially if estimation is done a secondary,
hypothesis-generating analysis. In this discussion, we argue that
NPB methods can have tremendous value as an engine for
policy-search algorithms used to estimate an optimal treatment
regime within a prespecified class (Robins, Orellana, and Rot-
nitzky 2008; Orellana, Rotnitzky, and Robins 2010; Zhao et al.
2012; Zhang et al. 2012, 2013; Zhao et al. 2014, 2015). An
advantage of policy-searchmethods is that the prespecified class
can be chosen to ensure parsimony and interpretability, etc.
However, applying NPB methods for this purpose is challeng-
ing because of the curse of dimensionality, we expect that the
authors will have some insight into this issue.

In Section 2, we discuss whether NPB methods are neces-
sary if the primary goal is to evaluate the marginal mean out-
come under a small number of fixed regimes and compare the
method of XMWTwith a flexible accelerated failure timemodel
(Wahed and Thall 2013). In Section 3, we describe a schematic

CONTACT Eric Laber eblaber@ncsu.edu Department of Statistics, North Carolina State University,  Stinson Drive, Campus Box , Raleigh, NC -.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

for NPB methods for policy-search with sequential transition
times. We make concluding remarks and discuss directions for
future research in Section 4.

2. Nonparametric BayesianMethods for Evaluating
Fixed Treatment Regimes

XMWT use nonparametric Bayesian (NPB) methods to evalu-
ate a finite set of fixed treatment regimes. This requires estimat-
ing a series of densities conditional on a patient’s covariate and
outcome trajectory. Thus, to estimate the marginal mean out-
come under each fixed regime, they must take the intermediate
step of performing conditional density estimation; this density
can be high-dimensional, especially if one desires to incorporate
accumulating longitudinal patient information to individualize
multi-stage treatment decisions (see Section 3). Furthermore, as
XMWT illustrate, implementation of NBP methods for evalu-
ating fixed treatment regimes is highly non-trivial. In contrast,
existing regression-based or inverse-probability weighting esti-
mators of the marginal mean outcome under a fixed treatment
regime involve minimal modeling and computational burden
(Zhang et al. 2012, 2013). However, inverse-weighting meth-
ods can be highly variable especially if the number of treatment
combinations is large and the sample size is small; and para-
metric regression-based estimators can be highly biased if the
regression model is misspecified. NPB methods seem to pro-
vide a nice compromise in that modeling the conditional den-
sities introduces enough structure to reduce variability yet the
class of densities is sufficiently rich to avoid severe misspecifica-
tion. A similar, butmuch simpler compromise, is to use a flexible
regression-based estimator to estimate the marginal mean out-
come under each fixed regime (this approach was advocated by
Taylor, Cheng, and Foster 2015).

2.1. A Simple Semiparametric Model

To illustrate the use of a flexible regression-based estimator, we
apply a semiparametric accelerated failure time model based
on Wahed and Thall (2013); using the notation of XMWT, this
model postulates that the transitionT (themodel is applied sep-
arately for each arm of the study) follows the additive model

log(T ) = α +
p∑

l=1

bl (xl )+ ε, (1)

©  American Statistical Association
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Figure . Simulation results for single-stage trials under Settings  (left) and  (right).
The boxplots show the differences between estimated and true causal effects over
the  simulateddatasets using thedependentDirichlet processmodel (“DDP-GP”)
and the semiparametric models with linear (“Ln”) and nonlinear (“NLn”) means and
Gaussian (“Gs”) and mixture of Gaussians (“MGs”) residuals.

where x = (x1, . . . , xp) are the covariates, bl are smooth
functions; and ε is an independent error term with smooth
density. For binary covariates (e.g., treatment indicators) we
take bl (xl ) = xlβl ; for continuous covariates we model bl using
M b-spline basis functions, bl (u) = ∑M

m=1 ψm(u)γl j, where
ψ1, . . . , ψM are a fixed b-splines basis functions and γl j are
unknown coefficients. The density of ε is assumed to be a finite
mixture of J normals, f (u) = ∑J

j=1 p jφ(u;μ j, σ
2
1 ), where φ is

theGaussian density function. For illustration,we fix J = M = 5
and use the following priors: α, β j

iid∼ Normal(0, 1002);

γl j
iid∼ Normal(0, σ 2

2 ); μ j
iid∼ Normal(0, σ 2

3 ); (p1, . . . , pJ ) ∼
Dirichlet(1, . . . , 1); and σ 2

k
iid∼ InvGamma(0.1, 0.1). Censoring

is handled using standard data augmentation methods (Tanner
and Wong 1987), and given the complete imputed dataset all
parameters have conjugate full conditional distributions leading
to straightforward Gibbs sampling. We generate 5000 MCMC
samples and discard the first 2000 as burn-in. For the three-
stage clinical trial data described below, this requires around 20
sec on a standard PC (as opposed to approximately 50 min for
the fully nonparametric model of XMWT).

We compare thismodel to theDDP-GPmethod of XMWT in
a suite of simulation experiments. To explore the effects of differ-
ent types of model misspecification we fit the above model with
linear (“Ln”) mean, that is,M = 1 and bl (xl ) = xl , and nonlin-
ear (“NLn”) mean, M = 5 as above, and with Gaussian (“Gs”)
residuals, that is, J = 1 and μ1 = 0, and a mixture of J Gaussian
(“MGs”) densities as above. This gives four models for compar-
ison in Figures 1, 2, and 3. For all scenarios we generate and fit
100 simulated datasets and report boxplots of the estimated sam-
pling distribution of the difference between causal effect estima-
tion errors as in Figure 4 of XMWT.

2.2. Setting 1: Single-Stage AdditiveModel

We simulated data as in Simulation 2 in XMWT. The model in
(1) is applied with x = (Z,W, L). As in our simplified model
(1), the mean under this scenario is a nonlinear function of the
covariates and the residual distribution is a mixture of normals
that does not depend on the covariates. As expected, the “NLn-
MGs” model with nonlinear mean and non-Gaussian errors
yields the most accurate estimates (Figure 1, left). Surprisingly,

Figure . Simulation results for three-stage trials under Setting . The boxplots
show the differences between estimated and true causal effects over the  sim-
ulated datasets using the Dependent Dirichlet Process model (“DDP-GP”) and the
semiparametric models with linear (“Ln”) and nonlinear (“NLn”) means and Gaus-
sian (“Gs”) and mixture of Gaussians (“MGs”) residuals.

even for the complex data-generation scheme the linear Gaus-
sian model (“LnGs”) outperforms the DDP-GP.

2.3. Setting 2: Single-Stage NonadditiveModel

To explore the extent to which violation of model assumptions
degrades performance, we simulated data from an even more
pathological case than Setting 1. In this setting, the covariates L
andW and the treatment group indicator Z are generated as in
Setting 1, but the responses are generated as

Y (Z) = PZ(x)N(4, 1)+ [1 − PZ(x)]N(1, 1),

where η = −0.2L + √
L − 0.1W , logit[P0(x)] = η − 1, and

logit[P1(x)] = η + 2. This model cannot be written in the form
of (1) because themean is not an additive function of the covari-
ates and the residual distribution depends on the covariates. In
this case, the DDP-GP model outperforms all four variations of
(1).

2.4. Setting 3: Multistage LinearModel

We also compared the semiparametric model in (1) with the
DDP-GP using data simulated from the three-stage clinical trial
specified by Simulation 4 in XMWT. The semiparametricmodel

Figure . Simulation results for three-stage trials under Setting . The boxplots
show the differences between estimated and true causal effects over the  sim-
ulated datasets using the Dependent Dirichlet Process model (“DDP-GP”) and the
semiparametric models with linear (“Ln”) and nonlinear (“NLn”) means and Gaus-
sian (“Gs”) and mixture of Gaussians (“MGs”) residuals.
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(1) was applied separately of the each arm of the trial. In this set-
ting all log survival time are generated asGaussianwithmean set
to a linear combination of the covariates. The best-performing
model in Figure 2 is indeed the multivariate regression model
“LnGs,” followed closely by the linear mean model with mixture
of Gaussian residuals. The comparison of the DDP-GP to other
nonlinear mean models is mixed; the DDP-GP model performs
well in some cases and poorly in others.

2.5. Setting 4: Multi-Stage NonlinearModel

In the final simulation, we considered a three-stage trial with
nonlinear mean function by modifying Setting 3’s assump-
tions about the log survival distributions as follows. We add a
quadratic term in the first stage, x(0,R)i = x(0,C)i = (1, L2i ,Z1

i ),
with β(0,R) = (2, 0.01, 0) and β(0,C) = (1.5, 0.02,−0.8). We
also added a square root transformation (which is valid because
the log survival times are positive almost surely) at the second
stage

x(R,D)i =
(
1, L2i ,Z

1
i ,

√
log

(
T (0,R)i

)
,Z2,1

i

)

x(C,P)i =
(
1, L2i ,Z

1
i ,

√
log

(
T (0,C)i

))

x(P,D)i =
(
1, L2i ,Z

1
i ,

√
log

(
T (0,C)i

)
, log

(
T (C,P)i

)
,Z2,2

i

)

with β(R,D) = (−0.5, 0.015, 0.2, 1.0, 0.3), β(C,P) = (1.0, 0.03,
1.0,−1.0), and β(P,D) = (0.8, 0.01, 1.5,−1.0, 0.7,
0.5). As shown in Figure 3, the full “NlnMGs” model con-
sistently outperforms the DDP-GP model, and the multiple
linear model “LnGs” also often produces smaller errors than
the DDP-GP.

2.6. Summary

While the full BNPmodel is theoretically appealing, estimating a
conditional density that varies over several covariates is a daunt-
ing task. These additional simulations illustrate that for the small
datasets considered here, quite often simpler models yield faster
and more stable estimates than the full BNP model. In some
nonlinear and/or non-Gaussian cases, we find that even multi-
ple linear regression outperforms theDDP-GP approach. There-
fore, despite the elegance of the full BNP approach, we conclude
that there is still room for standardmodel fitting combined with
careful regression diagnostics.

3. Nonparametric BayesianMethods for Policy-Search

Policy-search methods use a flexible model for the mean under
any regime and estimate the optimal regime with the maximizer
of this fitted model over a prespecified class of regimes. NPB
methods are well-suited to policy-search as they permit flexi-
blemodeling of themean outcome (or other suitable functional)
and also allow Bayesian machinery to be leveraged to conduct
inference.

To simplify our development, we assume a two-stage
decision problem with no censoring; though the transition
times are random, possibly outcome-dependent, and not all
patients progress through both stages. The extension to cen-
sored data is straightforward. We assume that the observed
data are D = {(X1,i,A1,i,T1,i,X2,i,A2,i,T2,i)}ni=1 which com-
prise n independent, identically distributed trajectories of the
form (X1,A1,Y1,X2,A2,Y2), where:X1 ∈ R

p1 denotes baseline
patient covariates; A1 ∈ A1 denote the first treatment actually
received; T1 ∈ R+ denotes the time until death or transition to
the second treatment stage; X2 ∈ R

p2 denotes interim covari-
ate information collected during the first treatment period, for
example, disease progression, remission, etc.; A2 ∈ A2 denotes
the second treatment actually received; and T2 ∈ R+ denotes
time until death in the second stage. DefineH1 = X1 andH2 =
(Xᵀ

1 ,A1,T1,Xᵀ
2 )

ᵀ so that Ht is the information available to the
decision maker at time t = 1, 2.

A treatment regime is a pair of functions, π = (π1, π2), one
per stage of intervention, so that under π a patient present-
ing with Ht = ht at time t is recommended treatment πt (ht ).
We restrict attention to regimes in a prespecified class� which
might be constrained to ensure parsimony or interpretability;
we assume that all regimes are feasible (Schulte et al. 2014) so
that any π ∈ � satisfies πt (Ht ) ∈ ψt (Ht ) with probability one,
where ψt (ht ) ⊆ At is the set of treatments that can be feasi-
bly (ethically) assigned to a subject with Ht = ht for t = 1, 2.
To define an optimal treatment regime we use the language of
potential outcomes (Rubin 1978; Splawa-Neyman, Dabrowska,
and Speed 1990). DefineH∗

2(a1) to be the potential second stage
history under first-stage treatment a1, T∗

2 (a1, a2) the potential
time in the second stage under treatment sequence (a1, a2). Let
D∗(a1) = D{H∗

2(a2)} denote the indicator that a patient transi-
tions to the second stage; T∗

2 (a1, a2) is only defined if D∗(a1) =
0. In concordance with XMWT, the potential outcome of inter-
est is T∗

1 (a1)+ T∗
2 (a1, a2){1 − D∗(a1)}. The expected outcome

under a regime π is

V (π) = E

⎛⎝∑
(a1,a2)

[
T∗
1 (a1)+ T∗

2 (a1, a2)
{
1 − D∗(a1)

}]
× 1a1=π1(H 1)

1
a2=π2

{
H∗

2 (a1)
}) .

The optimal regime, say πopt ∈ �, satisfiesV (πopt) ≥ V (π) for
all π ∈ �.

To express πopt in terms of the data generating model
we make the following assumptions which are standard
in the context of estimating optimal treatment regimes
(Robins 2004; Schulte et al. 2014): (A1) consistency,
H2 = H∗

2(A1), T2 = T∗
2 (A1,A2); (A2) sequential ignorability,

{H∗
2(a1),T∗

2 (a1, a2)}(a1,a2)∈A1×A2 ⊥ At |Ht ; and (A3) positivity,
P(At = at |Ht = ht ) ≥ ε for some ε > 0, all at ∈ ψt (ht ), and
almost all ht for t = 1, 2. In addition, we make the stable unit
treatment value assumption (SUTVA). Under the foregoing
assumptions, it can be shown that for any π ∈ �
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V (π) =
∫

[t1 + t2(1 − d)] fT2|H2 ,A2 (t2|h2, a2)δπ2(h2)
(a2)

fH2|A1,H1 (h2|a1, h1)δπ1(h1)
(a1) fH1 (h1)

× dλ(t2, h2, h1, a1, a2), (2)

where λ is a dominating measure, δu(·) denotes a point mass at
u, and fW |Z(w|z) denotes the conditional density ofW given Z,
and we have used the fact that t1, d are functions of h2. Given
the expression forV (π) in (2) a natural approach to estimating
πopt is to first construct estimators f̂T2|H2,A2 , f̂H2|H1,A1 , and f̂H1 of
fT2|H2,A2 , fH2|H1,A1 , and fH1 and subsequently

π̂
plug−in
n

= argmax
π∈�

∫
[t1 + t2(1 − d)] f̂T2|H2,A2 (t2|h2, a2)δπ2(h2)

(a2)

f̂H2|A1,H1 (h2|a1, h1)δπ1(h1)
(a1) f̂H1 (h1)

× dλ(t2, h2, h1, a1, a2). (3)

Of course one of the primary difficulties with this approach
is estimating the requisite conditional densities which may be
high-dimensional (the problem becomes even worse as the
number of treatment stages increases and the dimension of the
history grows). An appeal of nonparametric Bayesian (NPB)
methods is the ability to impose structure on these densities by
anchoring them to parsimonious parametric densities through
the prior; thus, at least in principle, NPB methods permit as
much flexibility as the data can shoulder. One approach would
be to use a use a mixture of Gaussian processes prior anchored
to normal (log) linear models, that is, one might postulate the
following models

log(T2) = Hᵀ
2,0β2,0 + A2H2,1 + δ2(H2,A2)

H2 = �1,0H1 + A1�1,1H1 + δ1(H1,A1)

log(T1) = Hᵀ
1,0β1,0 + A1Hᵀ

1,1β1,1 + δ0(H1,A1),

where H j,0,H j,1 are known features constructed from H j,
β2,0, β2,1,�1,0,�1,1, β1,0, β1,1 are unknown parameters, and
δ2, δ1, δ0 are errors with unspecified distributions. The distri-
bution of H1 can be modeled using standard methods. Using
the DDP-GP prior of XMWT for δ j with a strong prior on the
covariance kernel of each Gaussian process being identically
zero corresponds to strong weighting on the (log)linear models
with normal errors.

A schematic for NPB policy-search is as follows. Postulate
a prior G for f = ( fT2|H2,A2 , fH2|H1,A1 , fH1 ), and let P( f |D)
denote the posterior distribution of f . The an NPB estimator
could be taken to be the posterior mode

π̂NPB−mode
n = argmax

π∈�
E

{
V f (π )

∣∣D}
= argmax

π∈�

∫ (∫
[t1 + t2(1 − d)] fT2|H2,A2

×(t2|h2, a2)δπ2(h2)
(a2)

fH2|A1,H1 (h2|a1, h1)δπ1(h1)

×(a1) fH1 (h1)dλ(t2, h2, h1, a1, a2)
)
dP( f |D),

whereV f (π ) is themarginalmean outcome computed using (2)
with density f . An advantage of this form is that it permits: (i)
estimation within a prespecified class which may be restricted
to be interpretable, respect cost constraints, etc.; (ii) inferences
that are notoriously difficult under a frequentist paradigm; and
(iii) estimation of regimes that optimize a functional other than
a mean, for example, a quantile or measure of variability. For
example, to illustrate (ii) suppose �1 is a class of regimes com-
posed of decision rules representable as trees and�2 is the space
of all feasible regimes, then one can compute a posterior cred-
ible set for the difference maxπ∈�2 V f (π )− maxπ∈�1 V f (π ).
If this credible interval lies above zero then one may con-
clude that the class of regimes �1 is not sufficiently expressive
and opt to enrich this class. In contrast, standard asymptotic
approaches for constructing a confidence interval, for exam-
ple, the bootstrap or series approximations, for this difference
cannot be applied without modification because the marginal
mean outcome V (π ) is a nonsmooth functional of the under-
lying generative distribution (e.g., Van Der Vaart 1991; Hirano
and Porter 2009; Laber et al. 2014; Chakraborty, Laber, and
Zhao 2014). It would be interesting to investigate the oper-
ating characteristics of an NPB approach to these inferential
problems.

4. Discussion

NPB methods have great potential for estimation of and
inference for optimal treatment regimes. Under suitable iden-
tifiability conditions, they can be used to estimate regimes that
optimize essentially any smooth functional of the potential
outcome distribution. Furthermore, the underlying Bayesian
machinery makes it straightforward to construct credible sets
for functionals for which standard frequentist inference proce-
dures cannot be applied withoutmodification. However, it is not
apparent whether these credible sets will have good frequentist
operating characteristics. Investigation of frequentist properties
of NPB methods in the context of treatment regimes would be
of great interest.

5. Simulation of Comparing Several Models

5.1. Single-Stage Regimes

We simulated the data under the same setting as indicated in
simulation 2 in the article. There are two continuous covariates,
xi = (Li,Wi), for n = 100 patients, i = 1, ..., n. We generated
Li from amixture of normals, Li ∼ 1

2N(40, 10
2)+ 1

2N(20, 10
2).

We generated Wi from a uniform with zero mean and unit
standard deviation, Wi ∼ Uni f (−√

12,
√
12). We generated

the treatment indicators Zi ∈ {0 = control, 1 = experimental}
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using the modified logistic regression model

p(Zi = 1|Li,Wi) =
⎧⎨⎩
0.05 if{1 + exp[−2(Li − 30)/10]}−1 ≤ 0.05
0.95 if{1 + exp[−2(Li − 30)/10]}−1 ≥ 0.95
{1 + exp[−2(Li − 30)/10]}−1 otherwise

We generated patients’ responses differently for different treat-
ments from

Y (1) ∼ 1
2
N(3 − 0.2L + √

L − 0.1W, σ )

+1
2
N(2 − 0.2L + √

L − 0.1W, σ )

and

Y (0) ∼ N(−0.2L + √
L − 0.1W, σ )

with σ = 0.4. Under the simulation truth the treatment effect,
E[Y (1)−Y (0)|x = (L,W )] = 2.5, is constant across L,W .

We implemented inference for F(Yi|xi,Zi) using the DDP-
GP model. Let Ŷi(z) = E(Yn+1|Ln+1 = Li,Wn+1 = Wi,Zn+1 =
z, data) denote the posterior expected response for a future
patient. The estimated average treatment effect(ATE) is defined
as 1

n
∑n

i=1[Ŷi(1)− Ŷi(0)].
We then applied linear regression method to the simu-

lated data to estimate the average treatment effect. We used
data of the patients who received treatment 1 to fit the lin-
ear model of treatment 1: Yi(1) = β10 + β11Li + β12Wi + εi.
We used data of patients with treatment 0 to fit: Yi(0) =
β00 + β01Li + β02Wi + εi. Denoting the least-square estimates
by β̂z j for z = 0, 1 and j = 0, 1, 2. We applied two fitted regres-
sion model to estimate mean potential repsonse of each patient
given treatment 1 and treatment 0: Ê{Yi(z)} = β̂z0Li + β̂z2Wi,
for z = 0, 1, and i = 1, ..., n. Then we can estimate average
treatment effect as 1

n
∑

i[Ê{Yi(1)} − Ê{Yi(0)}].
Then we used IPTW to estimate ATE. The IPTW method

assigns each patients i a weight bi equal to the inverse of
an estimate of p(Zi|xi). Let πi = p(Zi = 1|xi). An estimate of
πi is obtained by fitting a logistic regression model. When
Zi = 1, bi = 1/πi; when Zi = 0, bi = 1/(1 − πi). We define the
IPTWmean outcome estimator

IPTW(Z = z) =
∑

i I(Zi = z)biYi∑
i I(Zi = z)bi

and corresponding average treatment effect estimate
ATEIPTW = IPTW(Z = 1)− IPTW(Z = 0).

Finally, We used AIPTW, which is a doubly robust general-
ization of the IPTW, to estimate ATE.

ATEAIPTW = 1
n

n∑
i=1

{[
I(Zi = 1)Yi

π̂i
− I(Zi = 0)Yi

1 − π̂i

]

− I(Zi = 1)− π̂i

π̂i(1 − π̂i)

[
(1 − π̂i)Ê(Yi|Zi = 1, xi)

+π̂iÊ(Yi|Zi = 0, xi)
]}
.

We simulated 100 trials and draw the density plot of esti-
mated regime effects by DDP-GP linear regression, IPTW and
AIPTW in 100 trials. The truth is indicated by a black vertical
line.

Under this simulation setting, it seems linear regression
worked as well as DDP-GP model, which are less variable and
close to true effects. However, DDP-GPmodel tookmuch longer
time to fit by MCMC sampling.

5.2. Multistage Regimes

Also, we simulated the data under the same setting as indi-
cated in simulation 4 in the article. We simulated sam-
ples of size n = 200 and patients’ blood glucose values
Li ∼ N(100, 102). Patients initially were randomized equally
between two induction therapies Z1 ∈ {a1, a2}. Patients who
were resistant (R) to the assigned induction therapies were then
assigned salvage treatment Z2,1 ∈ {b11, b12}. Salvage treatments
were randomized using the rule p(Z2,1 = b11|Li) = 0.8(Li <
100)+ 0.2I(Li ≥ 100). Patients who achieved C and subse-
quently suffered disease progression (P), were given salvage
treatment Z2,2 ∈ {b21, b22}, using p(Z2,2 = b21|Li) = 0.2(Li <
100)+ 0.85I(Li ≥ 100). The survival time for each patient was
evaluated as

Ti =

⎧⎪⎪⎨⎪⎪⎩
T (0,R)i + T (R,D)i if patient i had sequence

(L,Z1,T (0,R),Z2,1)

T (0,C)i + T (C,P)i if patient i had sequence
+T (P,D)i (L,Z1,T (0,C),T (C,P),Z2,2).

We simulated tT (0,R) ∼ LN(β(0,R)x(0,R)i , σ (0,R)) and T (0,C) ∼
LN(β(0,C)x(0,C)i , σ (0,C)), where β(0,R) = (2, 0.02, 0), β(0,C) =
(1.5, 0.03,−0.8), with x(0,R)i = (1, Li,Z1

i ) for k ∈ {(0,R),
(0,C)}. For the second stage transitions k ∈
{(R,D), (C,P), (P,D)}, we generated Tk

i ∼ LN(βkxki , σ k),
where β(R,D) = (−0.5, 0.03, 0.2, 0.5, 0.3), x(R,D)i = (1, Li,Z1

i ,

log(T (0,R)i ),Z2,1
i ), β(C,P) = (1, 0.05, 1,−0.6), x(C,P)i = (1, Li,

Z1
i , log(T

(0,C)
i )),β(C,D) = (0.8, 0.04, 1.5,−1, 0.5, 0.5), x(P,D)i =
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(1, Li,Z1
i , log(T

(0,C)
i ), log(T (C,P)i ),Z2,2

i ). We simulated 100 tri-
als.

We used several different models to fit the simulated data
and estimated mean survival time for each DTR (Z1,Z2,1,Z2,2)

using fittedmodels. Themodels we have implemented including
DDP-GP model proposed in the article, IPTW and AFT regres-
sion models with different specification of error distribution.
The AFT model is in the form

log(Ti) = β0 + β1zi1 + · · · + βpzip + σεi.

We assume two parametric error(ε) distributions for AFT
models: normal distribution and extreme value distribution
with two parameters. Accordingly, the distribution of T is log-
normal distribution and weibull distribution, respectively. We
also implemented a semiparametric AFT model with smooth
error distribution, which is expressed as a mixture of G-spines.
We compared the estimated treatment regime effect with the
truth. The differences are summarized in the boxplot, which is
arranged by different methods and by eight possible DTRs.

In our simulation scenario, the true distribution for the error
term is normal distribution. We can see from the boxplot, when
the error distribution is correctly specified (normal) in the AFT
model, the estimated mean survival time is very close to the
truth; when the error distribution is not correctly specified
(extreme value) in the AFT model, the estimated mean survival
time is a little bit biased. AFT model with error distribution
expressed as a mixture of G-splines is more flexible. We don’t
need to specify any parametric error distribution for the AFT
model so as to reduce bias caused by misspecification.

Compared with DDP-GP model proposed in the article,
semiparametric AFT model takes much shorter time to fit
and performs even a little bit better in this simulation sce-
nario. Maybe it is because survival time between states is lin-
early generated in the simulation setting. DDP-GPmodel might
be able to accommodate to more complicated data structure
better.

6. Personalized Treatment Regime

The proposed approach in the article gave one general choice of
treatment regimes for all the patients since they evaluated mean
overall survival time by averaging over the empirical covariate

distribution. We think we can apply the DDP-GP approach in
the context of policy search algorithm by evaluating individual-
specific treatment regime and gave treatment recommenda-
tions for patients based on their baseline covariates and disease
progression.
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ABSTRACT
Xu,Müller,Wahed, and Thall proposed aBayesianmodel to analyze an acute leukemia study involvingmulti-
stage chemotherapy regimes. We discuss two alternative methods, Q-learning and O-learning, to solve the
sameproblem from themachine learningpoint of view. Thenumerical studies show that thesemethods can
be flexible and have advantages in some situations to handle treatment heterogeneity while being robust
to model misspecification.

1. Introduction

There is increasing recognition that optimal therapies should
account for individual heterogeneity and be adaptive over time.
Thus, in recent clinical trials and observational studies, dynamic
treatment regimes (DTR) have drawn significant attention. We
congratulate Xu,Müller,Wahed, and Thall on their contribution
in proposing a novel applicable and competitivemethod for ana-
lyzing the clinical trial for acute leukemia involving multi-stage
chemotherapy regimes. Specifically, there is a sequence of treat-
ments beginning at induction and followed by subsequent sal-
vage therapies which depend on disease stage. The combination
of these therapies affect patient overall survival time, which con-
sists of the sum of the transition times between each involved
disease stage. To evaluate joint effects of induction-salvage ther-
apies on patient survival, Xu et al. (2016) build a Bayesian non-
parametric survival regression model, assuming a Dependent
Dirichlet Process prior with Gaussian Process (DDP-GP) base
for each transition time. The numerical results show that such
a Bayesian paradigm can produce an accurate estimate for the
joint effects of induction-salvage therapies when compared with
IPTW and AIPTW (Zhang et al. 2013). Moreover, the authors
indicate that such a model could be extended to the situation
where the therapy effect is heterogeneous in the population.

CONTACT Michael R. Kosorok kosorok@unc.edu Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, .

In addition to the Bayesian methods, there are some recently
developed machine learning tools that have achieved success in
estimating individualized DTRs which are somewhat more fre-
quentist in perspective. In this article, we would like to intro-
duce two representatives, Q-learning and O-learning, and illus-
trate how they can be used to solve the same problem addressed
in Xu et al. (2016). A major advantage of these two alternative
approaches is their relaxed assumptions on the joint distribu-
tion of feature variables and clinical outcomes such as survival
time. Specifically, one does not need to model the entire pro-
cess to construct the optimal treatment regimes. ForQ-learning,
conditional expectations are modeled but not the entire pro-
cess. For O-learning, only the treatment decision boundary and
propensity score (when needed) are modeled. These reduc-
tions in modeling requirements can be significant relative to
approaches which requiremodeling of the entire process. In this
article, we investigate the performances of Bayesian DDP-GP
proposed in Xu et al. (2016), Q-learning and O-learning when
certain assumptions fail, including (1) when the treatment effect
is heterogeneous in the population and (2) when the log transi-
tion times are not Gaussian.

The article is organized as follows. In Sections 2 and 3, we
briefly introduce the general ideas of Q-learning andO-learning
and focus on how to modify them for the DTR setup in Xu et al.

©  American Statistical Association
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Figure . Redefinition of the Scheme under the proposed Q-learning Framework.
The states in red square boxes (i.e., initialization, resistance and progression) are the
treatment decision-making points that are used to split the two stages. Complete
remission (C) is not considered as a splitting point since no decision action can be
taken. Censoring time could happen at the end of each stage.

(2016). In Section 4, we present simulation studies comparing
the Bayesian DDP-GP model and the proposed methods when
the assumptions hold or fail. In Section 5, we apply the proposed
Q-learning to the multi-stage acute leukemia trial data.We con-
clude with a brief discussions in Section 6.

2. Q-Learning in Finding the Dynamic Treatment
Regimes

Q-learning is a reinforcement learning method that can be used
to estimate the optimal personalized treatment strategy in a
sequence of clinical decisions over time (Murphy 2003). It aims
to estimate a sequence of time-varyingQ functions by taking the
patients’ state and the clinical decision at each stage as inputs.
In the end, Q-learning returns the estimated Q function and
the corresponding optimal treatments for each stage. Next, we
present how to adapt the Q-learning to solve the DTR problems
discussed in Xu et al. (2016) and use their acute Leukemia exam-
ple for illustration.

Using similar notations as in Xu et al. (2016), we let Tk rep-
resent the transition times from the nT possible state transi-
tions and let k be one of the following transitions in the acute
Leukemia example: (0,R), (0,D), (0,C), (C,D), (R,D) , (C,P),
and (P,D). In addition, we use Z1, Z2,1 and Z2,2 to represent the
indicator of the frontline therapy, the salvage with High Dose
Ara-C (HDAC) for those having resistance and the other salvage
for those patients who first achieve a complete remission but suf-
fer progressive disease later. To explain the proposedQ-learning,
we need to clarify the definition of stages and states under our
framework. We define the end of the stage as either the decision
making time point or the failure time point. To be specific, the
first stage starts at the beginning of the study when patients are
randomly assigned to frontline therapy groups and ends when
one of the following events occur: resistance (R), progression
(P), death (D) and missing to follow-up. The reason that we do
not mark complete remission (C) as the start of the second stage
is that no decision action can be taken at this point. Figure 1

illustrates our definition above, where the states in red square
boxes are all the decisionmaking points so that the second stage
begins when either resistance or progression occurs. Further-
more, we allow data censoring to happen at the end of each stage,
that is, before resistance, before progression or before death.

Based on the defined stages in Figure 1, we introduce the
steps of a backward Q-learning strategy in finding the opti-
mal therapy at each stage. For simplicity, we only consider the
two stage setting and similarly one can extend the method for
multiple-stage situations. Starting at the second stage, we assume
that the two state transitions (i.e., (R,D) and (P,D)) are inde-
pendent of each other. In this way, treating the two transition
times T (R,D) and T (P,D) as the response, we can formulate the
optimal therapy estimation problem in Stage 2 as follows:

π̂2,1 = argmax
Z2,1

{
Q̂2R

(H1R,Z2,1)} , for the resistance group,
π̂2,2 = argmax

Z2,2

{
Q̂2P

(H1P,Z2,2)} , for the progression group,

(1)

where the two Q functions (i.e., Q̂2R and Q̂2P) are respectively
for the resistance group and progression group at the beginning
of Stage 2, and allow both of them to have either a parametric
or nonparametric form. The H1R and H1P in (1) denote all
the information at the end of the first stage for the two cor-
responding groups. They may contain the baseline covariates,
initial treatment, observed time to event during the first stage
and all the measurements at the end of the first stage. Based on
π̂2,1 and π̂2,2, we define the estimated value function at Stage
2 as V̂2 = IRD · Q̂2R(H1R, π̂2,1)+ IPDQ̂2P(H1P, π̂2,2), where the
indicator functions, IRD and IPD, indicate whether the patient is
in the resistance or progression state at the beginning of Stage
2. The quantity V̂2 indicates the expected survival time at Stage
2 for a given individual assuming that the optimal treatment is
given at Stage 2.

Once the optimal therapy is estimated for the second stage,
we consider adding the transition time at Stage 1 into the
response and then estimate the corresponding optimal treat-
ment as follows. First, we compute the pseudovalue

T̃ = IDT (0,D) + IRD
(
T (0,R) + V̂2

)
+ IPD

(
T (0,P) + V̂2

)
for each individual, where ID indicates whether the patient has
either failure or no follow-up in the first stage. LetH0 represents
all the information in baseline covariate measurements and let
d1 is the possible decision action for the first clinical stage, which
has the same parameter space asZ1 in this case. The pseudovalue
T̃ replaces the observed values of both T (R,D) and T (P,D) with
the corresponding expected times if the optimal treatment were
applied at the second stage. We then regress T̃ on H0 and d1
to obtain the estimated Stage 1 Q-function Q̂1(H0, d1). Stage 1
optimal treatment is then estimated as

π̂1 = argmax
d1

Q̂1(H0, d1). (2)

We aim to find d1 to maximize (2) and the maximal objective
value is denoted as V̂1. The base learner with the highest V̂1 value
would be desirable. For demonstration, we use linear regression



944 J. CHEN ET AL.

and exponential survival regression as the two base learners of
Q2R, Q2P and Q1 in the numeric studies below.

The proposed Q-learning method can be quite flexible in
certain situations. Specifically, since Q-learning does not fit the
entire process of the transitions, we do not necessarily need any
distributional assumption to build the model. Furthermore, the
base learners in either (1) or (2) do not have to be linear or para-
metric. Thus,we can chose themodelwhich fits the data the best.
For example, some nonparametric learning tools could end up
with high-prediction accuracy when the variable relationship is
complex. Such tools include random forest, boosting and kernel
methods (Hastie Tibshirani, and Friedman 2011). In addition,
the heterogeneity of the treatment effect can also be detected by
simply including the treatment-covariate interaction terms into
the Q functions at each stage.

3. O-Learning in Finding the Dynamic Treatment
Regimes

Estimating the overall treatment effect in a population is not
always necessary when detecting the optimal treatment at each
stage. Accordingly, another possible approach is one of the O-
learning extensions to dynamic treatment regimes, that is, back-
ward outcome weighted learning (BOWL, Zhao et al. 2015a).
BOWL provides a new paradigm for framing the optimal DTR
identification and formulates it into a weighted classification
problem with the clinical outcome as weights. The estimation
of BOWL proceeds backward to find the optimal treatment rule
at each stage to maximize the cumulative rewards over the sub-
sequent time. To apply BOWL to solve the problem discussed in
Figure 1, we need to modify the steps by introducing the indi-
cator functions used in the Q-learning approach above. Specifi-
cally, we first write the BOWL algorithm for the second stage as

f2R = argmin
f

En

[
T (R,D)φ(Z2,1 f (H1R))

π2,1(Z2,1,H1R)
+ λ2‖ f ‖2

]
,

for the resistance group,

f2P = argmin
f

En

[
T (P,D)φ(Z2,2 f (H1P))

π2,2(Z2,2,H1P)
+ λ2‖ f ‖2

]
,

for the progression group, (3)

where the surrogate loss function φ(t ) = max(1 − t, 0), En
denotes the empirical mean over the sample, π2,1(z,H1) =
Pr(Z2,1 = z|H1), π2,2(z,H1) = Pr(Z2,2 = z|H1), ‖ · ‖2 deno-
tes the square of L2 norm, and λ2 is the tuning parameter that
controls model complexity. After the classifiers f2R and f2P
are obtained, the corresponding estimate of the optimal treat-
ment rule for the second stage, d2, can be calculated through
d̂2(H1) = IRD · I( f2R(H1R) > 0)+ IPD · I( f2P(H1P) > 0).
Based on d̂2, we have the classifier for the first stage as

f1 = argmin
f1

En

[(
ID

T (0,D)

π1(Z1,H0)

+ IRD
I(Z2,1 = d̂2(H1)) · (T (0,R) + T (R,D))

π1(Z1,H0)π2,1(Z2,1,H1)

+IPD
I(Z2,2 = d̂2(H1)) · (T (0,P) + T (P,D))

π1(Z1,H0)π2,2(Z2,2,H1)

)

·φ(Z1 f1(H0))+ λ1‖ f1‖2
]
, (4)

where π1(z,H0) = Pr(Z1 = z|H0), and λ1 is the tuning
parameter controlling model complexity of (4). We obtain
the estimate of the optimal treatment rule d1 for Stage 1 via
d̂1(H0) = I( f1(H0) > 0). Essentially, BOWL aims to assign
the patients having good clinical outcome to the same treatment
they received and to assign the opposite treatment otherwise.
The advantage of the adjusted BOWL is that its estimate is
obtained under a nonparametric framework, so that BOWL can
effectively handle the potentially complex relationships between
sequential treatments and prognostic variables at each stage.

So far, the adjusted BOWL cannot be used directly for
data with censoring. However, one can develop such an exten-
sion by estimating the distribution of censoring times in each
stage as Zhao et al. (2015b) has done in the single stage sce-
nario. In this article, we do not cover such an extension but
only apply BOWL to simulated datasets which do not have
censoring.

4. Simulation Studies

In this section, we compare the DDP-GP Bayesian model in Xu
et al. (2016) with the adjusted Q-learning and O-learning intro-
duced in Sections 2 and 3. Specifically, forQLearning,we choose
two popular base learners for the Q function: linear regression
(Q-learn-1 in Table 1) and exponential survival regression (Q-
learn-2) with the transition times as the response, as described
previously. We include all the interaction terms between treat-
ments and baseline covariates at each stage. To make a fair com-
parison, in addition to the original DDP-GP Bayesian model
(DDP-GP-1), we also implement a modified version which has
these interaction terms in the mean structure (DDP-GP-2). In
the O-learning implementation, we treat both f1, f2R, and f2P
as linear classifiers for simplicity. Also for simplicity, we do not
include censoring in the simulations.

We consider four simulation scenarios arising from Simula-
tion 4 of Xu et al. (2016). First, we add a new variable S and con-
sider both situations where the true model either includes or
exclude interactions between S and the salvage treatment with
HDAC. Second, we discuss the scenarios when the underlying
Gaussian distribution assumption fails for the log survival time
to examine model robustness against distribution misspecifica-
tion. In addition, since the proposed O-learning is not yet capa-
ble of handling censoring, we always let the transition events
happen before censoring for all the patients. In each simula-
tion setting, we generate a single, fixed population set of size
N = 2000 and then sample n = 200 training observations from
this population 50 times. For each such sample, the selected
methods are applied to the generated sample and then used to
predict the optimal treatment for both the sample and the pop-
ulation. The model performance is then evaluated by the esti-
mated value function V̂1 for the combined sample and popula-
tion groups. We now introduce the setting details for the four
simulation cases as follows.
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Simulation 1a: Gaussian distribution with no interaction
term. Similar to Simulation 4 in Xu et al. (2016), we first
generate the patients’ baseline blood glucose L and the
new baseline subgroup indicator S as Li ∼ N(100, 102) and
Si ∼ Bernoulli(p = 0.5) for i = 1, . . . ,N. It is clear that neither
of these two variables is time dependent. In the first stage, we
randomly assign patients into one of the induction therapy
groups Z1 ∈ {0, 1}. The transition times of the competing
risks R and C are generated by T (0,R)i ∼ LN(β(0,R)x(0,R)i , σ 2)

and T (0,C)i ∼ LN(β(0,C)x(0,C)i , σ 2) where β(0,R) = (2, 0.02, 0),
β(0,C) = (1.5, 0.03,−0.8), σ = 0.3 and x(0,R)i = x(0,C)i =
(1, Li,Z1

i ). Similarly, for the next three possible transitions
for which k ∈ {(R,D), (C,P), (P,D)}, we generate the transi-
tion time Tk

i ∼ LN(βkxki , σ 2) with coefficients to be β(R,D) =
(−0.5, 0.03, 0.2, 0.5, 0.3, 0, 0), β(C,P) = (1, 0.05, 1,−0.6) and
β(P,D) = (0.8, 0.04, 1.5,−1,−1,−0.5, 0). The corresponding
covariate vectors are x(R,D)i = (1, Li,Z1

i , logT
(0,R)
i ,Z2,1

i , Si, Si ·
Z2,1), x(P,D)i = (1, Li,Z1

i , logT
(0,C)
i , logT (C,P)i ,Z2,2

i , Si · Z2,2
i )

and x(C,P)i = (1, Li,Z1
i , logT

(0,C)
i ). One can tell that in this case,

the new factor Si is not influential on the treatment selection at
all.

Simulation 1b: T distribution with no interaction term. The
only difference between Simulation 1b and Simulation 1a is
that all the error terms of the log survival time in each stage
are changed from being Gaussian distributed to being t dis-
tributedwith degrees of freedom10. For example, under this set-
ting, logT (0,R)i = β(0,R)x(0,R)i + εi where εi ∼ t(d f = 10). All
the underlying coefficients remain the same.

Simulation 2a: Gaussian distribution with interaction terms.
Compared with Simulation 1a, the only change made in
this case is to include the nonzero underlying interaction
coefficients. Specifically, we have the underlying coefficients
as β(0,R) = (2, 0.02, 0), β(0,C) = (1.5, 0.03,−0.8), β(R,D) =
(−0.5, 0.03, 0.2, 0.5, 0.3, 0,−0.5), β(C,P) = (1, 0.05, 1,−0.6)
and β(P,D) = (0.8, 0.04, 1.5,−1,−1,−0.5, 1). Such a setting
introduces a heterogeneous treatment effect caused by the dif-
ferent values of Si in the second stage for both resistance and
progression groups. For example, according to the new β(P,D),
one can tell that the HDAC therapy will only help increase the
survival time of those patients undergoing progressionwhohave
Si = 1 at baseline.

Simulation 2b: T distribution with interaction terms. The dif-
ference between Simulation 2b and Simulation 2a is similar to
that between the first two simulations, that is, all the error terms

for the log survival times are now changed from being Gaussian
distributed to being t distributed with degrees of freedom 10.

The predicted optimal value function, that is, V̂1, for all
the selected models is presented in Table 1 for both the
samples and populations. Higher values indicate better out-
comes from the treatment regimes being estimated. For simu-
lation 1a, the five selected methods perform similarly in terms
of the expected value function while the modified DDP-GP
model has a larger variance compared to the predicted opti-
mal Q functions. When the Gaussian distribution assumption
no longer holds in Simulation 1b, both of the DDP-GP mod-
els and Q-learning with exponential survival regression come
up with lower expected value function. This decrease in perfor-
mance could originate from the improper assumptions on the
transition time distribution. When the true model contains the
treatment–covariate interaction terms—and thus the optimal
treatment varies from patient to patient—neither the original
DDP-GP nor the modified DDP-GP models perform as well
as the remaining three models. The Q-learning with exponen-
tial survival model achieves the highest average value function
in this case. This performance may indicate that minor para-
metric model misspecification may not be a severe problem
for Q-learning. In the last setting, where the Gaussian assump-
tions no longer hold but treatment–covariate interaction terms
are present, the O-learning performs best. Generally speak-
ing, Q-learning and O-learning appear to perform better under
modelmisspecification, whileO-learning appears to be themost
robust tomodelmisspecification but perhapsmore variable than
Q-learning.

5. Application to the Leukemia Trial Regimes

Due to the censoring issue as mentioned early, we only apply Q-
learning illustrated in Section 2 to the Leukemia clinical trial
regimes dataset in Xu et al. (2016). Although BOWL can be
extended to censored data, this is beyond the scope of the cur-
rent article. We choose the exponential survival regression as
the base learner. In contrast to Xu et al. (2016), we let both
H1 and H0 further contain the interaction term between the
baseline age and therapy. As a consequence, we find that both
interactions of (Z2,1, age) and (Z2,2, age) are statistically sig-
nificant under an α = 0.1 significance level when implement-
ing the second stage Q-learning. According to the estimated
coefficients, we find that for patients suffering resistance, the

Table . Simulation Studies: The estimated value function for sample and population (Pop.) including means and the corresponding standard deviations (in parentheses)
over the  replicates. The true model column represents the situation where we plug in the true coefficients and true optimal treatment to calculate the value function;
DDP-GP- and DDP-GP- stand for the situations where the Bayesian DDP-GP model excludes and includes the interaction terms; Q-learn- and Q-learn- denote the cases
when we use Q-learning with linear regression and exponential survival regression as the base learner.

Cs Stat. True Model DDP-GP- DDP-GP- Q-learn- Q-learn- O-learn

a Sample . (.) . (.) . (.) . (.) 7.19 (0.04) . (.)
Pop. . () . (.) . (.) . (.) 7.17 (0.02) . (.)

b Sample . (.) . (.) . (.) 6.98 (0.12) . (.) . (.)
Pop. . () . (.) . (.) 6.99 (0.11) . (.) . (.)

a Sample . (.) . (.) . (.) . (.) 7.57 (0.07) . (.)
Pop. . () . (.) . (.) . (.) 7.55 (0.06) . (.)

b Sample . (.) . (.) . (.) . (.) . (.) 6.87 (0.20)
Pop. . () . (.) . (.) . (.) . (.) 6.73 (0.21)
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Table . Application of Q-learning with exponential survival regression to the
Leukemia Trial Regimes: selected coefficient estimates in Stage . Z2 represents Z2,1
for the resistance group and Z2,2 for the progression group.

Group Resistance Progression

Terms Estimate Std Estimate Std
Z2 . . . .
Z2 · age −. . −. .
age −. . −. .

Table . Application of Q-learning with exponential survival regression to the
Leukemia Trial Regimes: selected coefficient estimates in Stage . For the treatment
Z1 , the level ,,, indicate FAI, FAI+ATRA, FAI+GCSF, FAI+ATRA+GCSF respectively
and we choose level FAI as the reference.

Terms Z1 Z1 · age Age

Treatment Level       –
Estimate − . − . − . . . . − .
Std . . . . . . .

HDAC group always has a longer survival time than the non-
HDAC group, which is consistent with the discoveries of Xu
et al. (2016). For the patients suffering progression in the sec-
ond stage, however, Q-learning finds that theHDACwould only
be effective for the young age group (those patients younger
than 22 years old approximately). In the first-stage implemen-
tation, Q-learning draws a similar conclusion as in the sec-
ond stage in that the interaction between the therapy Z1 and
age is statistically significant when controlling for the cytoge-
netic abnormality level. The estimated coefficients show that
FAI+ATRA would be the best therapy in the younger age
group (<54) while FAI+GCSF would be the optimal therapy
for the older age group. This conclusion is slightly different
from the one drawn by only considering treatments main effect
(Figure 8 in Xu et al. (2016)) but seems to be implied by Figure 6
in Xu et al. (2016). The Q-learning value function estimate indi-
cates that it is possible to increase the average survival time by
81 days by assigning the estimated optimal treatment. We dis-
play the coefficient estimates for the treatment factor, age and
their interactions in Table 3 (Stage 1) and Table 2 (Stage 2).

6. Discussion

In summary, the Bayesian DDP-GP model can perform very
well when the distribution assumptions hold and the model
specification is correct according to the numeric examples. In
practice, onemight also need to pay attention to the cases where
some exceptions to themodel assumptions happen, and in these
settings the proposed Q-learning and O-learning methods are
good alternatives. In particular, O-learning focuses on finding
a decision treatment rule to maximize an objective function
which reflects the benefit of using such a rule. According to its
algorithm, O-learning does not calculate the overall treatment
effect directly as is done in the Bayesian DDP-GP model. Q-
learning concentrates on maximizing the cumulative reward by
specifying the relationship between the Q-function and treat-
ment at each stage. On the one hand, both O- and Q- learn-
ing methods can have more flexible model specifications and
do not depend on assumptions regarding the response distri-
bution. On the other hand, since the Bayesian DDP-GP model
aims tomake inference based on the posterior distribution of the
estimate, it can additionally conduct tests of the null hypotheses

of treatment effects and thus control type-I error as long as the
distribution assumptions hold. This makes power analysis and
sample size calculation more straightforward. In contrast, sam-
ple size computations for Q-learning and O-learning are more
complicated and the increased model flexibility may necessitate
larger sample sizes to achieve the same power. Subgroup analy-
sis, which aims to identify subgroups of patients with enhanced
treatment effects, may be viewed as an intermediate method for
assessing treatment effects and facilitating power analysis and
sample size calculations (Yusuf et al., 1991; Brookes et al., 2004;
Rothwell, 2005; Shen and He, 2015; Fan, Song, and Lu 2016).

We would also like to point out some recent literature for
dynamic treatment regimes for survival outcomes. Goldberg
and Kosorok (2012) developed Q-learning for right-censored
data when the censoring is completely independent of both
the failure time and patient covariates. Jiang et al. (2015)
developed optimal dynamic treatment regimes for maximizing
t-year survival probability. Bai et al. (2015) considered optimal
dynamic treatment regimes for survival endpoints using locally-
efficient, doubly-robust estimators from a classification perspec-
tive.While extremely promising, some barriers to general use of
thesemethods in practice remain, warranting the need for ongo-
ing research.
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Comment

Lorenzo Trippa and Giovanni Parmigiani

Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Harvard Cancer Center, Boston, MA, USA

We congratulate the authors for the development of an excel-
lent Bayesian nonparametric methodology to evaluate dynamic
treatment regimes (DTR) . This challenging task is motivated in
their article by the need of comparing, in cancer research, com-
peting treatment strategies that involve selection of front-line
therapies followed by salvage treatments at tumor recurrence.
Beyond this important application, this new methodology can
be directly used in other medical areas, as well as different dis-
ciplines such as economics and pedagogy.

A DTR is a plan, or more formally a function, which selects
a treatment, based on an individual’s time-varying profile
including patients’ characteristics, disease history, and previous
interventions. Different treatments can be selected by the DTR
during the course of an individual’s disease history. The authors
provide an elegant framework to identify optimal or nearly
optimal DTRs at the completion of a partially randomized
study, where randomization only involves the assignment of
the front-line treatment but not the subsequent second-line
treatments. Partial randomization and the need for integrating
information on nonrandomized second-line interventions,
which are not controlled by the investigators, are common
in trials of advanced cancer. In this context, flexible mod-
eling of disease histories is particularly valuable and, in the
absence of reliable short-term surrogate outcomes, can support
superiority/noninferiority evaluation of new experimental
treatments.

The authors’ framework can be summarized into two main
components, (i) a flexible probability model for the entire dis-
ease history, that accounts for baseline individual characteristics
and time-varying interventions, and (ii) a posteriori evaluation
of candidate DTRs based on integration of a key metric, for
example, life expectancy, over the posterior distribution. These
two components are then followed, as should be the case in
such a complex analysis, by a critical review of the approach
considering possible weaknesses of the prior and modeling
assumptions. Nonparametric models, in this setting, cannot
avoid assumptions that require careful considerations, such as

CONTACT Lorenzo Trippa ltrippa@jimmy.harvard.edu Dana-Farber Cancer Institute, Harvard Cancer Center, Boston, MA , USA.

the absence of unmeasured confounders that drive the assign-
ment of second-line treatments. These are potential sources of
bias and erroneous conclusions in the comparison of DTRs with
which any modeling approach needs to grapple. It is important
to give them proper weight in the communication of the results
especially in view of planning future studies.

We found the proposed Bayesian nonparametric approach
attractive for several reasons. We mention three next.

First, a pragmatic consideration: selection of appropriate
parametric assumptions in DTR can be extremely time consum-
ing and involve a large number of goodness of fit summaries
and modeling decisions, even with a modest number of treat-
ments and relatively simple criteria to classify patients during
their disease history. A flexible nonparametric model can allow
the user, to a large extent, to circumvent this tedious process.
In our view, this is an important advantage of nonparametric
approaches in this context.

Second, as in several other estimation problems, Bayesian
modeling has the advantage of allowing straightforward and
solid integration of the uncertainty propagating from each com-
ponent of the disease history model, ranging from the estima-
tion of the response probabilities under competing front-line
treatments to the estimation of the survival curves after progres-
sion under various salvage treatments. A natural alternative to
Bayesian approaches could be resampling methods tailored to
DTR; see, for example, Chakraborty, Laber, and Zhao (2013).

Third, the authors’ framework allows one to easily move
beyond the key metric of expected survival under competing
DTRs. Author Peter Thall has been influential in the develop-
ment of jointmodels of multiple outcomes inmedicine, through
an important series of articles that explain the advantages of
joint modeling of toxicities and efficacy outcomes, for example
survival, to optimize the treatment dose in oncology (Thall and
Cook 2004). Building on the methodology introduced by Xu
and colleagues, we envision more complex Bayesian models
that involve a broader spectrum of conditions and clinically
relevant events in the individual disease history. Potentially,
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posterior samples of key parameters can be stored and inter-
rogated at a later time to estimate personalized optimal DTRs
that account for both individual conditions and the individual
preferences. DTRs ranking can, for example, depend strongly
on the risk of severe toxicities for some patients, and on the
probability of tumor response for other patients.

Post-processing of the posterior distributions generated by
Xu and colleagues could further enrich the set of results deliv-
erable to the medical community. For example, it can be use-
ful to identify the key components that drive differences in
expected survival (or other metrics) across DTRs. This requires
translating a complex posterior distribution into clearly inter-
pretable summaries such as “Treatment A is recommended as
first-line treatment. Although the response rates and times to
tumor recurrence are comparable across treatments A, B, and
C, there is evidence that patients who respond to treatment
A have longer survival after progression.” In this example, the
disease history component that drives the recommendation is
clearly identified: survival after tumor progression for patients
that responded to treatment A. This type of summaries could
facilitate the interpretation of DTRs comparisons, and have the
potential of pointing attention in the right direction for follow-
up studies that consider the same or related malignancies.

We next provide a similar example based on the dataset ana-
lyzed by Xu and colleagues.

Response rates across first-line treatments are comparable
and, when we focus on patients that respond before twomonths
from enrollment, we observe similar risks of recurrenceduring
the first year from enrollment. For the set of 50 patients who
respondwithin twomonths but recurred within 1 year, expected
survival after recurrence appears to be markedly inferior for

the FAI first-line treatment group compared to the others. We
identified this subset of patients with rudimentary exploratory
analyses. Post-processing of the posterior distribution can pro-
vide a more principled way to identify and emphasize disease
history components that drive variation in overall survival,
or other key metrics, across DTRs. This example illustrates
such variation, and suggests that an even more productive use
of the approach of Xu and colleagues could be achieved by
using post-processing to produce highly representative of the
nonparametric posterior distribution. Adapting existing post-
processing principles (Hahn and Carvalho 2015) and subsets
selection techniques (as those developed by Peter Müller and
coauthors; Müller, Sivaganesan, and Laud 2010) to DTR, as
well as developing new post-processing methodologies to sum-
marize complex DTRs posterior distributions, could further
strengthen the applicability and impact of the authors’ approach.

In conclusion, we greet with enthusiasm the highly innova-
tive contribution of Xu and colleagues.
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1. We thank Chen, Liu, and Zeng et al. (CLZ) for their dis-
cussion of our Bayesian nonparametric (BNP) model-
based methodology. They propose Q-learning methods
as alternative approaches, and provide simulations to
evaluate several methods, dubbed Q-learn-1, Q-learn-2,
and O-learning, and two methods, based on versions of
our DDP-GPmodel, that they call DDP-GP-1 and DDP-
GP-2. The simulation results in their Table 1 show supe-
rior performance for Q-learn-1, Q-learn-2, and O-learn,

CONTACT Peter Müller pmueller@math.utexas.edu Department of Mathematics, University of Texas at Austin,  University Station C, Austin, TX .

in terms of closeness of the estimate to the simulation
truth. However, the DDP-GP-1 and DDP-GP-2 are not
the proposed BNP model. Rather, like the other meth-
ods, these twomethods aim to optimize a value function,
which is based on expected survival time following either
resistance to induction chemoor progression. Each value
function is a function of Q-functions and estimated opti-
mal Stage 2 decisions, although the specific forms of their
Q-functions are unclear.
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Simulation Scenario a of CLZ

Regime True Mean OS (days) DDP-GP Estimate of Mean OS

(,,) . .
(,,) . .
(,,) . .
(,,) . .
(,,) . .
(,,) . ,
(,,) . .
(,,) . .

The BNP approach has a different goal. To be spe-
cific, denote T = OS time, x = patient covariates, θ =
model parameter,Z=DTR,μT (x,Z, θ )=E(T |x,Z, θ ),
andμT (Z, θ )=

∫
x μT (x,Z, θ )dp(x). The goal is to esti-

mate the posterior mean of μT (Z, θ ) for each Z, by
computing μ̂T (Z) = E{μT (Z, θ )|data} under the DDP-
GP model. These posterior estimates can be used to
choose a nominally optimal Z, although the substan-
tial variability in the estimates for the leukemia dataset
renders any claim of optimality somewhat questionable.
As illustrated in our Figure 7, one also may compute
the covariate-specific posterior estimate μ̂T (x,Z) =
E{μT (x,Z, θ )|data} for given x, to evaluate individual-
ized therapies.
The numerical values in the column “True Model” of

Table 1 of CLZ are not mean OS times. To clarify this
point, since simulation 1a of CLZ is the same as our sim-
ulation 4, below we tabulate μ̂T (x,Z) obtained from the
actual DDP-GP method, based on 50 replications per
case, under simulation scenario 2a of CLZ.
CLZ conclude “In summary, the Bayesian DDP-GP

model can perform very well when the distribution
assumptions hold and the model specification is cor-
rect according to the numeric examples.” We disagree
with the latter qualification in this conclusion. TheDDP-
GP model has full support and, essentially, is a mixture
model that can fit virtually any distribution with high
accuracy. Consequently, in any case, the posterior mean
OS will be close to the truth, subject to the usual lim-
itations of overall sample size and number of subjects
per regime. Our additional simulation results under Sce-
nario 2a studied by CLZ appear to confirm this.
Two additional points are worth mentioning. In our

motivating example, finding the optimal sequential deci-
sion by direct comparison of all possible policies is
not prohibitively difficult, since one can list all possible
DTRs, write down a likelihood, and compute posteriors,
with the optimal policy the Z maximizing μ̂T (Z). For
more complicated problems, finding the optimal sequen-
tial policy can be much more difficult. We agree that, in
such settings, Q-learning, O-learning, and similar meth-
ods may be preferable, since writing down and fitting a
full likelihood may not be practical.

2. We thank Trippa and Parmigiani (TP) for their kind
words, and their useful discussion ofmany key issues.We

agree that potential effects of unmeasured confounders
are very important, and that any inferences about DTRs
should be qualified by noting the possibility of such
effects. We agree with TP that an important extension of
our methodology will be to evaluate and optimize DTRs
based on multiple outcomes at each stage of the regime.
This has been described by Lee et al. (2015, 2016), in
a phase I–II dose-finding setting with a utility func-
tion U (YE,YT ) quantifying the trade-off between dis-
crete efficacy YE and toxicityYT , in each of two cycles of
therapy. However, the development of Lee et al. assumes
a Bayesian hierarchical model, rather than a BNPmodel.
To use trade-off utilities with continuous variables, aside
from censoring, at calendar time t let T (t ) denote a sub-
ject’s survival time and B(t ) the subject’s total toxicity
burden, as defined in Hobbs, Thall, and Lin (2016). A
utility U (t ) = U {T (t ),B(t )} can be established using
the elicitation process given in Thall et al. (2013), to
explicitly quantify the trade-off between T (t ) and B(t ).
One may use U (t ) as the objective function for eval-
uating multi-stage regimes, assuming an appropriate
Bayesian nonparametric model for the joint distribution
of [T (t ),B(t )|Z, x]. This could be the basis for opti-
mizing either overall or personalized regimes. Similar
utility based analyses also have been carried out in a
semi-competing risks setting by Murray et al. (2016). It
is also worth noting that, if one does not wish to assume
a BNPmodel in multi-stage treatment settings, trade-off
utilities still may be used as the basis for defining a Q-
function approach.
We also agree with TP that principled post-processing

of the posterior, beyond simply estimating mean OS, is a
very important undertaking that potentially can identify
important disease history components relevant to ther-
apeutic decision making. This is an important area for
future research in DTR settings.

3. We thank Guan, Laber, and Reich (GLR) for their
detailed discussion of our methodology, their argument
that Bayesian nonparametric methods can serve as “an
engine for policy-search algorithms,” and their presenta-
tion of interesting alternative methods.
GLR propose and study a set of semi-parametric

AFT models for transition times with covariate effects
modeled using b-splines and additive residuals assumed
to follow a mixture of normals. This greatly reduces
computing time for this type of model, compared to
the DDP-GP. To place this computational advantage into
perspective, however, it should be kept in mind that,
in practice, given the four models specified by GLR or
some similar set of candidate models, one would need
to perform goodness-of-fit analysis as a basis for either
choosing one best model, or possibly do model averag-
ing. The time needed to carry out this additional model
criticism would be an additional consideration. Still, it
is very interesting to see cases where the DDP-GP does
not perform as well as some of the simpler proposals
of GLR. It seems clear that this is a rich area for future
research.
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