Variable Selection in Regression
Via Repeated Data Splitting
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A new algorithm—backward chimination via repeated data spliting (BERDS)—is
proposed for variable selection 1 regression. Imtially. the data are partitioned into two
sets { £,V }, and an exhaustive backward climmation (BE) is performed in E. For cach
p value cutoff v used in BE, the corresponding fitted model from E 1s validated in V7
by computing the sum of squared deviations of observed from predicted values. This is
repeated s times, and the o nunumzing the sum of the n, sums of squares is used as
the cutoft 1n a final BE on the entire data set. BERDS is a modification of the algorithm
BECYV proposed by Thall. Simon and Grier (1992). An extensive simulation study shows
that, compared to BECV, BERDS has a smaller model error and higher probabilities of
excluding noise variables. of selecting each of several uncorrelated true predictors. and
of selecting exactly one of two or three highly correlated true predictors BERDS is also
superior to standard BE with cutoffs 05 or .10, and this superiority increases with the
number of noise variables in the data and the degrec of correlatton among true predictors
An application 15 provided for ilfustration.

Key Words: Cross validation: Data sphiting: Monte Carlo Simulation; Regression:
Vanable Selection.

1. INTRODUCTION

This article introduces and evaluates a new algorithm. backward elimination via
repeated data splitting (BERDS), for selecting predicuive covarates in regression. [t
is a modification of the algorithm backward elimination via cross-validation (BECV)
proposed by Thall, Simon, and Grier (1992). and also may be regarded as a modification
of the Monte Carlo cross-validation method of Shao (1993). We consider the usual linear
regression setting where each case is of the form (}.X) = (Y. Xy...... X,) and it 15
appropriate to assume that (Y | X) = 3, + .4.X; + --- + 3,X,,. The problem is to
select a subset of the p candidate covariates to obtain a final model that provides accurate
and reliable predictions of future values of Y for given X. A general review of subset
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VARIABLE SELECTION IN REGRESSION 417

selection methods 1s given by Miller (1990).

If 3, =0and X, is not highly correlated with a true predictor having nonzero ,3—
that is, it X, is a noise variuble—then it is desirable to exclude X, since its inclusion
increases the predictive variance and also may be musleading substantively. If .3, # 0—
that is, if X, is a rrue predictor, and | 3, | is sufficiently large relative to the standard
deviation ¢ of ¥ | X-~and if morcover X, is not highly correlated with other true
predictors in the model, then it is desirable to include .X,. Because noise variables may
masquerade as true predictors and vice versa due to random variation. the goals of
screening out noise variables while retaining true predictors are inherently antagonistic.
This problem has been studied by Freedman and Pee (1989) in the context of explaining
why simulation results may show marked disagreement with analytical results in variable
selection. Derksen and Keselman (1992) studied several automatic variable selection
methods and found that, in typical cases, from 20% to 74% of the selected variables
are noise variables, the number of noise variables selected varies with the number of
candidate predictors, and the degree ot collinearity among the true predictors has an effect
on the probability each is selected. This is due to the well-known problem of variance
inflation when predictors are correlated, which complicates the vanable selection process
since any mocels containing correlated predictors are unstable.

Here, we are especially interested in settings with a large number of noise variables,
hence the problem of noise variables appearing to have predictive value 1s an important
consideration. Qur simulation results show that BERDS has high probabilities of both
including true predictors and excluding noise variables, and also has a high probability
of selecting exactly one out of two or three highly correlated true predictors.

Stepwise test-based variable selection procedures. such as forward selection (FS)
or backward elimination (BE), rely on one or two predetermined p values. agray and
apntrr for use as test cutoffs at cach stage of the selection algorithm. These cutofts are
arbitrary. Although a particular numerical p value p™ has a well-defined interpretation as
the type 1 error probability in the context of a single test of hypothesis. when agray =
p* 1s used as the cutoff in BE, denoted BE(p*), it may have a broad range of different
meanings depending upon the number of covariates, numerical values of the parameter
estimates, sample size, and . The use of a standard value agyay = .10 as a cutoff in BE
thus 15 analogous to using the criterion ! ﬁ/se (%) | > | as a standard decision criterion
for a single test of the hypothesis 3 -= 0 1n simple linear regression.

Both BEC'V and BERDS first choose a p value cutoff o™ that minimizes an objective
function quaniifying the fit of the model selected by BE(«t), and then perform BE(n™*)
on the entire data set. Thus, both algorithms determine «gtay for BE empirically from
the data, elim:nating the need to choose an arbitrary value of «syay . The fundamental
difference is that. whereas BECV relies on a single K-fold cross-validation (Brieman,
Friedman, Ols1en, and Stone 1984) to obtain an objection function. BERDS uses repeated
data splitting. [n BERDS, the data are partitioned into two sets {£. 17} and an exhaustive
BE is performed in E. For each «, the fitted model obtained by BE(n) in E is validated
in V' by computing the sum of squared deviations of observed from predicted values.
This is repeated 1 times, and the o minimizing the sum of the /n sums of squares s0
obtained is used as the cutoff in a final BE on the entire data set.

This modification. combined with two additional refinements described later, reduces
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the variability of the objective function. Consequently, BERDS provides a substantial
improvement over BECV in terms of both eliminating noise variables and selecting true
predictors. Our simulations indicate that BERDS 1s greatly superior to standard BE with
asray = 05 or .10, and that this superiority increases with both the number of noise
variables in the data and the degree of correlation among the true predictors.

Several model selection methods recently have been proposed. Sauerbrer and Schu-
macher (1992), extending a method of Chen and George (1989). proposed using the
bootstrap to evaluate variables appearing in a set of models obtained from a prelimi-
nary subset selection procedure. Bretman (1992) proposed the litrle bootstrap to estimate
model error as a criterion for model selection. Breiman (1995) proposed the nonnegative
(nn) garrote, which estimates 3 by minimizing >~ (Y, - Z} ¢,3,X,,)" subject to ¢, > 0
and Z/ ¢, < = Tibshirani (1995) proposed a similar method, the lasso, which minimizes
IACAEDIN) X,,)% in B subject to Y | 4, <t The lasso may produce estimators
with .Ai, = 0, thus deleting X, George and McCulloch (1993) proposed a Bayesian
approach to subset selection in regression, relying on Gibbs sampling to approximate
posterior probabilities.

Section 2 provides some background. and Section 3 gives a formal definition of
BERDS. Section 4 presents the results of an extensive simulation study. We first compare
a “standard” version of BERDS to both BECV and standard BE, then evaluate several
versions of BERDS. We next evaluate he sensitivity of BERDS 10 sample size, number
of noise variables in the data. strength of a single true predictor, and the number of highly
correlated true predictors in the data. We then compare BERDS to repeated BECV and
to a hybnd algorithm thut uses the “hittle bootstrap™ of Breiman (1992) in place of
repeated cross validation. We also evaluate BERDS under a model hiving predictors that
are highly nonlinearly associated. Section § uses BERDS to analyse the *
accident data™ discussed 1in Weisberg (1985), and Section 6 contains u discussion.

‘automobile

2. NOTATION AND BACKGROUND

The data for the /th case consist of a response variable Y, and p covariates X, ;... ..
Xopot = 1. n. We denote X; = (1N, .....] ook B = (oo o ), and
Y, | X,)=XB=%h+ 4\, + +3,%,,.

We assume cach Y, | X, 1s normally distributed with variance 1, denoted Y, | X, ~

N(X,B.1). with the 1 cases mutually independent For any model corresponding 1o a
given subset of the p covariates, the parameter vector 8 still has p + | entries but 3, -~ 0
if .Y, is not included n the model. ; = 1.. ..p, hence the non-zero entries of 3 identity
which predictors are in the model.

A useful criterion for evaluating the predictive valuc of a model 8 is its prediction
error PE = E{} ™Y - XB)Z. where Y™ 15 a future observation with covanates X.
Model selection may be carried out by minimizing an estimate of PE as a function of a
tuning parameter, such as the biasing constant in ridge regression. A common device for
esttmating PE 1s cross-validation which, n its simplest form. s carried out by partitioning
the data into an estimation set 12 and a validation set V. obtaining a fitted model in £
and computing an estimate of PE i V. The roles of E and V are then reversed and the
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process repeated. At the other extreme, the PRESS method of Allen (1971) successsively
removes each (Y,.X,) from the data set and obtains a fitted model E(,)(Y | X)), then
estimates PE as

| ) N 7 |
; Z{}l—b(r)(y7‘xz)f-~ (2.1)

sz

Cross-validation has been applied in many areas. including discriminant analysis (Lachen-
bruch and Mickey 1968) and smoothing splines (Golub, Heath. and Wahba 1979). Efron
(1983) used bootstrap cross-validation n the context of logistic regression. Hocking
(1976) and Roecker (1991) used cross-validation to define a stopping rule in FS. Picard
and Cook (1984) discussed cross-validation in hinear regression. and general discussions
were given by Stone (1974), Geisser (1975), and Efron and Tibshirani (1993).

K-fold cross-validation (Breiman et al. 1985) 1s carried out by first partitioning the
data into A" subsets {V7.. .. 1} of equal or nearly equal size. The estimation set E,
= Ur2, % 1s the complement ol the corresponding validation set V,. 3 —=1. . A For
each ;. the model 1s fit in £, and an estimate S5V, of PE 1s computed by evaluatng
this fitted model using the data in 17,. The objective function Z/ 5SSV, s then used as
a criterion to evaluate the model fit 1n the enure data set.

Thall. Simon, and Grier (1992) used A'-told cross-vahidation to select the agray
cutoff in BE, as follows. For each ; = I,... A an exhaustive BE i< performed in the set
L, by deleting each covariate 1n turn until all have been removed from the model, and the
p values and models when each covariate is removed are recorded. For cach ae (0 1).
the estimated parameter vector obtained from B1(«) performed mn [, 15 denoted by
B((v. E ). The criterion for assessing BE(a) as a function of o is the cross-validation
sum of squares

N

N
SSV(a) = Y SSU(a E) = Y SN - N Bl £ (

=1 y=1 el

3]
9

The value " minimizing SSV («v) 15 determined and a final model is selected by per-
forming BE(a™) on the entire data set. This algorithm s backward elimmation via
cross-validaiion, BECV. Because S5V («) evaluates the predictive ability of the model
selected by BE(«) rather than of a given model, it 1s inappropriate to regard S517(a)
as an estimate of PE.

Although BECV 1s effective at screening out noise variables. in many settings it has
an undesirably high probability of also excluding true predictors. This problem arises
from the fact that SSV () 18 very sensitive to the particular partiton {17..... Vin}
chosen. That is. two different partitions arc likely to produce very different S5V (a)
functions, hence very different values of o™ and different final models. Moreover. 1n
most cases 5SSV () is not a smooth function of o with a clearly defined minumum, but
rather exhibits a high degree of local variation.

We hypothesized that repeating cross-vahidation. say rn tumes. and averaging the
m objective functions so obtained would produce a more rehable objective function
and hence an improved algorithm. We found the use of A'-fold cross-validation at each
repetition to be redundant from the viewpoint of data reuse. however. Thus. we simply
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partitioned the data into two sets {£.17}. fit the model in E and validated the fitted
model in V. and repeated this process /7 times 10 obtain an overall objective function.
That 15, we employed repeated data sphinng in place of W -fold cross-validation. To
cuard further agamnst extreme effects of particular partitions we used a trimmed mean
of the /n objective functions and also truncated the domain of o (o guard against local
vartation near (. Our simulation results indicate that the resulting algorithm, BERDS, 1
superior to BECV. This may be attributed to the tact that BERDS uses a Monte Carlo
approximation to full-cross vahdation n place of A'-fold cross-validation.

3. DEFINITION OF BERDS
3.1 BACKWARD ELIMINATION VIA REPEATED DA1A SPLITTING

1. Randomly paraition the data into two complementary subsets. the estmation set
F and the validation set V.

.ld

Perform an exhaustive BE on the data in £ recording the p value a, of the test
of J, =0 versus 4, # 0 when Y, 15 deleted. T < ;) < p. with ag = | for the
full model with all p predictors. Denote by a(F£) and (£ the maximum and
minmmum of {ay. . .a,}. respecuvely. For each ae0. 1] the validation sum of
squares corresponding to the {17 17} split is

SSp o = DY, - X Bl E)

et

-

where fi(u. E)y=p8(a,. £)fora, =min{a, 1, >a. 1 =1..... p}.

3. Repeat steps (1) and (2) 0 times. For cach a¢[0. 1]. denote the rth estimation
set. validation set. and validation sum of squares by . V. and S5, (o) =
SS9y, ta)orespecuvely, - 1o e and define the overall validation sum of
squares S.S(a) to be the 20% trimmed mean of {957 («). .. .. S8, ()}

4. For given percentage 4. denote by L, and {7y, the gth and (100 —¢)th quantiles
of {a(K)) .. LalB )b and {& (). .. L G(1,,) ), respectively. and define o* to
be the value that mimimizes SS{av) over [L,/. U0 ,1] .

5. Obtam the final model by pertorming standard BE(*) on the entire data set.

Steps (1) and (2) apply simple two-fold data sphitting to obtain a validation sum

of squares which estimates the predictive vanability of the model chosen by IBF/(c)
in E. for each empirical o A general discussion of data sphitting is given by Picard
and Berk (1990). Step (3) creates a validation sum of squares that 1s an average of the
values obtaumed by repeating (1) and (2) Steps (1)-(3) of BERDS thus replace the A'-
fold cross-validation steps of BECV. Step (4) symmetrically truncates the a-domain on
which the objective function is minimized to avoid the high degrec of local variation of
SSV (o) near O, which persists even 1f i 1s large. This may be considered an alternative
w the ™.25-5 rule™ of BECV, which detines o™ to be the smallest value of « such that
SSV(a") < SSV(aY) + 255, where o is the true minimizing value and s is an
empirical estimate of the variance of 51 (o). This local vanation is due to the fact
that. for a given partition {E,V} and o <. a(F). the model chosen by BE is simply
(4.0.. .. 0). hence Y =Y and S5, (o) =S ¥, — Y(E)]*. The variability

Ll L
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{a(Er)... ca(E.)} thus produces high variability among S5(n). . 55,,(a) and
consequently high local variation in SS5(a) for values of o ncar 0. This phenomenon
1s even more troublesome for BECV. where the analogous variabthity 15 among the
summands or SS1{«) created by A -fold cross-vahdation.

The two-fold data splitting applied in each 1epetition in BERDS does not switch the
roles of E and V, as is done in two-told cross-vahidation. We use the term “dita sphitting™
rather than “cross-validation™ to underscore this distinction. In particular, BERDS 16 not
the same as n repetitions of BECV with i = 2.

For a given o, the models (o £)... .. Hv, [, ) obtamed from the o repetitions
in BERDS typically will not be the same. Hence. as is the case with S5 () m BECV,
SS(a) really estimates the predictive ability of the model chosen by BE(«) rather than
of a specific model. In particular, 1t 1s inappropriate to use S5(a”) as the bass for
estimating the PE of the final model selected by BERDS.

BERDS has four parameters. The first is the percentage of the data allotted to the
estimation sct. We denote this by 1:V so that. for example. E'V = 90:10 means that
E comprises 90% and V the remaining 10% of the data. The second parameter 15 the
number of repetitions 1. Two additional parameters are the amount of trimming in Step
(3), or more generally the method of averaging the m terms. and the amount of -
domain truncation ¢ in Step (4). Provided that there is a small 10 moderate degree of
trimming of {S5,(a)..... 55, (a)t. BERDS 1s relatively msensitive to thie amount of
trimming. Because the operating characteristics of BERDS begmi to stubitize tor i >
10. we settled on a 20% trim to ensure that at least the maximum and misimuam of
{58 (a).. .. 85, (e} are trimmed in each of the apphications considered. and we use
this trim level throughout. A simulation study of the effects of varymg cach of E.V, m
and ¢ is summarized in Section 4.3

4. SIMULATIONS
4.1 SIMULATION DESIGN

In the studies summarized n Scctions 4.2-4.4, the covariates are gencrated as uni-
form randoir variables on the interval [—3. 43, denoted (7] -3. +3] Enther V(0. 11 or
lognormal covariates are employed n the studies summarnized in Section 4 5 In all cases.
Y is generatad as a N(X3.1). Partial F tests are used throughout. although m general
any reasonable test for 3, = 0 under a model containing .\, will do We guantify the
predictive strength of each X, by the magnitude of 4, /o for which a two-sided .05-level
t test of J;, = 0 achieves a ginven power under the model £(Y | X) = Y, 3, Unless
otherwise stated, all “true predictors™ in the simulations have individual power 95, This
implies that, for [7[-3. +3] covariates, .5 =.306..209, and .102 for / = 50, 100, and 400,
respectively. The lognormal covariates with power figures .25 and 99 for & = 100 used
in the final study in Section 4.5 have .3 = 062 and .285. jespectively. We determined
these numerical .5 values in empnical calibration studies analogous to that of Thall,
Simon. and Grier (1992). The method of L Ecuyer and Cote (1991) was used to gener-
ate uniform random variables. and the method of Ahrens and Dieter (1975) to generate
multivariate normal random vectors Each A-vector of correlated unmiform covariates was
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Table 1 Operating Characterstics of BERDS' Compared to BECV and Standard Backward Elimi-
nation, Under Model 1

10 noise variables 20 noise variables

BERDS BECV BE(.05) BE(10) BERDS BECV BE(.05) BE(.10)

n =250
Power 978 930 953 979 933 824 .924 .947
# Noise 824 1.21 590 120 138 922 1.60 2.99
ME 112 130 106 136 177 160 197 263
a 076 121 — e .047 035 — —
n =100
Power 979 928 939 968 941 852 .925 955
# Noise 928 1.17 542 111 107 111 1.26 2.45
ME 060 068  .055 069 080 .083 .092 122
a* 090 126 — — .046 050 — —
n =400
Power 977 925 944 969 948 .860 934 961
#Noise 100 134 .540 104 101 1.09 103 206
ME .015 017 013 017 019 021 021 028
a* .099 141 — — 052 058 — —

IBERDS based on m = 20 repetitions of a 50 50 E V split.

obtained by first generating a A-variate normal (Z,..... Z, ) with mean 0y, all variances
1 and all correlations .90, and then defining X, = 6®(Z,) — 3. for y = 1..... k. where
® denotes the standard normal cdf. The vector (X...... Y, ) has marginal U[—3. +3]

variables with correlations .89, Vectors of correlated lognormal covariates were obtained
similarly by defining .X', = exp(,). which yields multivariate standard lognormals with
correlations .85.

We evaluate each selection algorithm in terms of (1) the mean probability of including
gach of one or more uncorrelated true predictors, or alternatively the probabilities of
selecting exactly ; out of A correlated true predictors, j = 0. 1.. _A; (2) the number of
of noise variables included in the final model: and (3) the model error

| A -
ME = — Yo E(Y X 4.1
=D (Y, [ X,)! (4.1)

=1

Although ME cannot be computed in practice because £(Y ' X) 15 not known, it ts a
natural criterion for evaluating a fitted model in a simulation study.

All simulations ivolve 1,000 repetitions of each case, and each reported value is
the mean from these repetitions. All computations reported here were carried out on a
DEC AlphaServer 2100 5/250 running OSF/1.

4.2 ComMPARISON oF BERDS 1o BECV AnD BE

The first simulations compare a standard version of BERDS, with mn = 20, E:V = 50:50.
and «o-domain [Legy. Upl. to BECV, BE(.05), and BE(.10). We consider the 12 data
structures defined by (1) n = 50, 100. or 400: (2) either one true predictor (Model
1) or two correlated true predictors (Model 2): and (3) 10 or 20 noise variables. We
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Table 2. Operating Characteristics of BERDS' Compared to BECV and Standard Backward Elimi-
nation, Under Mode! 2

10 noise variables

20 noise varnables

BERDS BECV BE(05) BE(.10) BERDS BECY BE(05) BE(10)
n =250
Pr{Both] Q07 199 037 107 000 046 032 109
Pr[One] 993 800 963 893 100 954 968 891
# Noise 149 162 723 131 288 111 173 313
ME 113 171 158 186 130 173 234 296
o* C14 160 - — 010 045 — —
n =100
Pr[Both] 000 217 011 082 000 .059 016 .081
Pr[One] 100 783 989 918 100 941 984 919
# Noise 081 1.56 579 115 104 116 124 250
ME 052 .085 076 091 054 089 106 140
n* g12 171 -— —_— 006 060 — —
n = 400
Pr{Both] 005 254 006 055 000 089 010 057
Pr{One] 995 746 994 945 100 911 990 943
# Noise C95 167 527 102 096 135 105 207
ME C13 .022 .019 022 013 024 026 033
a* Cc15 191 — — 007 Q77 — —

TBERDS based on m = 20 repetitions of a 50-50 E.V split.

include only one true predictor in Model 1 because additional simulations with multiple
uncorrelated p-edictors produced the same substantive and qualitative results.

Tables 1 and 2 summarize the results under Models 1 and 2. respectively. When
interpreting the simulation results, it 1s important to bear in mind that the performance
of BE(.05) or BE(.10) under a given model is essentially a matter of luck, since agray
1s arbitrary. For example, m the case # = 100 with 10 noise variables under Model 1,
Table 1 shows that on average BERDS chooses empirical o = .090 and has ME =
.060. each of which 1s bracketed by the corresponding values agpay = .05, .10, and ME
= .055. .069 for BE. Thus, in terms of ME. in this case by chance BE(.05) wins and
BE(.10) loses compared to BERDS. If there are 20 rather than 10 noise variables with
n = 100, however, then both versions of BE perform very poorly compared to BERDS,
with MEgg 45)/MEgrrps = 1.15 and MEgg 16)/MEggrps = 1.52. In all six cases con-
sidered under Model 1. BERDS has higher power than BECV. with substanrially larger
differences in power when more noise variables are present. Aside from the case n=50
with 20 noise variables. BERDS mcludes fewer noise variables and has smaller ME than
BECV. The one anomalous case tllustrates an important constderation in implementing
BERDS, «since here E:V = 50:50 with i7 = 50 requires fits of models with 22 parameters
in estimation sets having 25 observations. If E 'V =90:10 is used mstead so that each E
has 45 observations. then on average BERDS has power .946. selects 1.30 noise variables
and has ME = 153, which s an improvement over BECV. It thus appears that BERDS is
uniformly superior to BECV under Model 1, provided that some care 15 taken to ensure
that the number of observations in the estimation set is not oo close to p.

Model 2 15 somewhat more realistic but also more problematic in that, if both true
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Table 3 Operating Characteristics of BERDS' for Varying m and E.V Proportions

m = 10 repetitions m = 20 repetitions
E:V  50.50 90.10 50 50 90 10
Model 1
Power 976 .978 976 .982
# Noise 107 124 894 1.22
ME .062 061 059 .061
o .103 137 .089 126
Model 2
Pr{Both] .010 170 .005 151
Pr[{One] 990 .830 995 849
# Noise 197 117 147 981
ME 058 077 055 075
ot 024 .136 015 114

T'n =100 with 10 noise vanables

predictors are selected, then the fitted final model will be highly unstable. An attractive
property of BERDS in this case is that it 1s nearly certain to select exactly one of the
two highly correlated true predictors and exclude the other. In Table 2, we denote by
Pr[Both] and Pr[One] the respective probabilities of selecting both true predictors and
of selecting exactly one of the two. The values of Pr{One| for BERDS are larger than
those for any of the other three algorithms in all cases considered. Consequently, the
supertority of BERDS to standard BE is even more pronounced under Model 2, with
MEgg/MEggrps ranging from 1.40 to 2.59 and this ratio increasing with the number of
noise variables present. This illustrates the arbitrariness of the values astay = .05 and
.10 typically used in BE. A somewhat surprising result is that BERDS also includes a
much smaller number of noise variables than does BECV when the true predictors are
correlated. The combined result of these effects is that BERDS has a substantially smaller
ME than BECYV in all six cases considered.

We also considered the case of five true predictors, both uncorrelated and with
common correlation .90, for n = 100 with 10 noise variables. BERDS and BECV have
very similar operating characteristics when the five true predictors are uncorrelated. with
ME = .138 for BERDS and .133 for BECV. In the case of five highly correlated true
predictors, (1) exactly 1. 2, 3. 4, or 5 of the five are selected with respective probabilities
.06, .57, 31, .04, and .02 by BERDS and with probabilities .01, .26, .35, .22, and .17
by BECV; (2) BERDS selects about 73% as many noise variables as BECV: and (3)
BERDS has ME = .142 compared to .148 for BECV.

4.3 EFreEcTs OF THE BERDS PARAMETERS

To assess the sensitivity of BERDS to its parameters, we considered the case n
= 100 with 10 noise variables for . = 10 or 20 repetitions, split sizes E:V = 50:50
and 90:10. and «-domain truncation parameter ¢ = (), 90, or 100. Recall that ¢ = 0
corresponds 10 no truncation, ¢ = 90 to truncating [0, 1] below at the 90th percentile
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of {a(E))..... o(E,, 1} and above at the 10th percentile of {&(F,). ...a(E),)}. and
q = 100 to truncating at the maximum and minimum of these sets.

Regardless ot m or E:V, BERDS behaves very poorly under Model 1 without any «-
domain truncation (g = 0), hence we do not discuss this case further. Table 3 summarizes
simulation results for ¢ == 90. Under Model | with E:V = 50:50 the use of 4 =: 90 rather
than ¢ = 1CO (not tabled) has little effect on power but reduces the number of noise
variables sclected by 20% to 36% and hence reduces the ME by 8% to 14%, with a
smaller reduction in ME for E:V - 90:10. These results indicate that. under Model 1.
g = 90 is superior to ¢ = 100, and m = 10 or 20 with E'V = 50:50 or 90:10 give
about the same ME and power Under Model 2, however, the split proportion E:V =
50:50 yields a uniformly and substantially smaller ME than does E:V = 90 10. primarily
because Pr{One] is much larger when E:V = 50:50.

To assess more thoroughly the effects of the number of repetitions, we carried out
an extensive simulation study with /v = 2,3... .50 under Model | for n == 100 with 10
noise variables. In Figure 1, ME is plotted as a function of n: for ¢ = 90 or 100 and E:V
= 50:50 or J0:10. Corresponding plots of ' on m (not included) appear very similar
to those of ME on m. The use of ¢ = 100 with E:V = 50-50 produces an algorithm
with the very unattractive property that both o' and ME inctrease monotomcally with 12,
although this effect disappears for E:V = 90:10 In contrast. for ¢ -= 90 both " and ME
stabilize by m = 10 to 20. and this is the casc for either spht si1ze.

Based on all of these results, we conclude that a reasonable standard version of
BERDS has «-domain "Lgy. {/1y]. E:V = 50:50, and 1 = 20, although a larger value of
m can do no harm. For small sample sizes, however, it may be advisable to use E:V =
90:10 to ensure that the number ol observations in E 1s not too close to p. We further
discuss choice of split size in Scction 6.

4.4 SENSITIVITY TO THE DATA STRUCTURE

In this section we study the sensitivity of BERDS to different data structures. Specif-
ically, we consider the case n = 100 with 10 noise variables and one true {'[—3. +3]
predictor with 3 = .209—that is, ndividual power .95—and vary in turn each of the
parameters (1) sample size n: (2) number of notse variables: (3) number of highly corre-
lated true predictors; and (4) coefficient +f of a single truc predictor. The standard version
of BERDS defined above 1s used throughout.

Figure 2 summarizes all four of these simulation studies in terms of the 16 plots of
each of the outcome variables ME. number of noise variables selected. average power,
and " on cach of the four variables listed previously. The first column of plots indicates
that the performance of BERDS improves with increasing sample size. and also that
the emprrically chosen p value o* decreases with 2 and then appears to stabilize at an
asymptote.

The second column summarizes what may called the “necdle-in-a-haystack™ scenario,
since the number of noise variables grows large while there is only one true predictor.
BERDS appzars to be remarkably msensitive to the number of noise variables 1n the data,
since a' apoarently adjusts to the number of noise variables automatically, decreasing

Copyright ©@2001 All Rights Reserved



426 P.F. TnaLL, K.E. RusseLL, AND R.M. SimMoN

E:V = 50:50 E:V =90:10
o Q
q=90 & - 3
o o
w
5 - g
o o
- 2 - 2
g 5 1 g 5.
w o [
= s
2 oo le 2 .0~
= 8 B = 8 -
(=] o
L=
g g
(=3 o
T T T T T
10 20 30 40 50
# Repetitions # Repetitions
a=100 & 2 ]
=]
o o
- 9O . 2
g S g 51
w o w o
+ =
. - I
= 8 = 8 4
o o
o
g g
(=] o
L] T T T AJ T T T T T
10 20 30 40 50 10 20 30 40 50
# Repaetitions # Repetitions

Figure | Model Error Versus Number of Repetitions in BERDS

with the amount of noise. Although there 1s a degradation of power with increasing noise,
it is quite small since even with 30 noise variables the power 1s still .93.

The third column of plots summarizes the sensitivity of BERDS to the number pgy of
true predictors with common correlation .90. The plots of the number of noise variables
selected and o™ have similar patterns. with both jumping as pgy increases from 3 to
4. The actual number of noise variables selected is quite small, however. The “power”
in the (3,3) plot of the matrix is [number of true predictors selected}/po, and this is
remarkably flat at about .50. Recall that BERDS is almost certain to select exactly one
of two true predictors with correlation .90, as noted n the lower half of Table 2, and
even when pyy = 3 the mean number selected is 1.08. Thus, when pgy = 2 or 3, BERDS
is nearly certain to include cxactly one, with the number selected increasing thereafter
to an asymptote of roughly pgy/2. That is, BERDS selects about half the number of
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Predictors, and the 3 of One True Predicior BERDS 1y umplamented with £V = SO-50 and m = 20 Except for
the one parametcr varted m cach column of four plots, n = 100, there are 10 none varables, there 1s one rue
predictor, and 3= 209 (73 = .95)

equicorrelated true predictors when pgy > 3.

The plots in column 4 dlustrate the sensitivity of BERDS to the strength of one
true predictor, in terms of the magnitude of its parameter ,3. Not surprisingly. the power
increases with 4. and this plot has the uppearance of a conventional power curve. ME
shows a gradual decrease with 3. although the magnitude of this decrease 18 small
compared to the drop in ME with increasing sample size. The decrease in o™ with
.3 1s quite pronounced over the domam studied. Together with the fact that fewer noise
variables are selected as .7 increases. this iHustrates the ability ot BERDS to automatically
eliminate noise variables while retaming true predictors.

It is alsc informative to consider the matrix ot plots across its rows—that 15, 1n
terms of the output variables ME, number of noise variables selected. average power.
and a”. ME appears relatively insensitive to both the number of noise variables and 3.
but decreases with n and increases with pgg. It thus appears that. beyond gy = 2 or 3,
BERDS has rouble dealing with collinearity. This 15 further illustrated by the second
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row of plots. where the only thing that causes the number of noise variables selected 1o
increase substantially 1s an increase i pog. The third row indicates that BERDS has good
power under a wide range of settings. The tourth row illustrates the manner in which the
a” chosen by BERDS automatically adjusts to the particular data structure.

4.5  ADDITIONAL STUDIES

Various other ways to compute an objective function in the algorithm are possible.
We consider the following two. Because each repetition in BERDS fits in E and validates
in V but does not then reverse the roles of E and V. BERDS is not the same thing as
repeating BECV with A7 = 2. A natural question 1s whether repeating the V-fold cross-
validation in BECV can achieve the same improvement as BERDS. To address this we
considered a modified version of BECV which uses repeated Iv-fold cross-validation,
with etther ' = 2 or k' - 10. A similar question is how well the algorithm performs
using the little bootstrap proposed by Breiman (1992) in place of repeated data splitting to
obtain an objective function. To implement this, we first carried out an exhaustive BE on

the entire data set to obtan empirical pvalues {ay ..o, Followig Breiman (1995,
p / \ 1 ¢
p. 375). we generated {¢. 7t o~ nd V(0777 using the full model MSE for o and

t=.6,.7.or & then defined ¥, - Y, +7,. and performed BE(a) on {()~’,‘ X, <y < i}
to obtam .J(a) for cach empirical o, The little bootstrap estimate of PE is

Zu; X, a0y = 23/(a). (42)
t= 1

where
Bty =+ 2 E 18X, 30 (4.3)

o

and the expectation 1s over the simulated {7} To obtain 13,(a) we repeated this 25
times and used the mean 1n place of the E operator

The results are summarized in Table 4 For comparability to standard BERDS.
repeated BECV s based on a 20% tnmmed mean of {SS5,{a).; = ... .. m} from
= 10 repetiions with a-domain [Loy. 7 o). Thus. BECV with repeated two-fold cross-
validation and BERDS have the same amount of data 1euse. BERDS is greatly supertor
to BECV under Model 2 according to all three eritena, while under Model 1 BECV
with repeated two-fold cross-validatnon has shightly tewer noise variables, slightly less
power. and shghly smaller ME. An unexpected result 1s that BECV with repeated 10-fold
cross-validatton performs relatively poorly under either model. It Iikewisc appears that
use of the httle bootstrap m place of repeated data sphtting to choose the cutoff for BE
does not produce an algorithm with good properties. It 15 possible that modification of
the algorithm. possibly by scarching over a difterent set of o's or increasing the number
ol repetitions to estimate £3/{a ). may produce an improved method

An assocrate editor has suggested evaluating BERDS under a model where the
covartates are nonlinearly assocrated or have asymmetric margimals. If X is partitioned
into (X, Xaywith3=1( 4 3, ). mgeneral 1Y [ X = 343X, BAE(Xs 1 Xy)
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Table 4 Companson of BERDS to Repeated BECV and BE with the Little Bootstrap !

BERDS  Repeated BECV ~ Little bootstrap

o 2-fold ____10-fo]([ _t=6 =7 t=8
Model 1
Power 976 951 915 818 794 766
# Noise .894 675 860 176 146 120
ME 059 054 06t 086 084 083
o 089 N70 094 135 105 082
Mode! 2
Pr[Both] 005 048 142 246 180 138
Pr{One] .995 952 858 555 569 587
Pr[Neither] 000 Q00 000 199 251 275
# Noise 147 594 889 214 155 125
ME 056 074 074 176 192 199
o 015 067 106 193 131 099

“m = 20 for BERDS with 50.50 E'V proportion, and m = 10 for
repeated BECV, n = 100 and 10 noise vanables

and var(y Xy) = a7 + B’z\mr(X; - X3, hence if 3> = 0 a nonlinear association
between the two subvectors of covartates may have a nontrivial etfect on any variable
selection procedure. To study this we define Model 3. which has six lognormal covartates
obtained frorn standard normals with common correlaton S0, vielding correlations .39
among the lognormals. The maodel has two strong predictors. two weak predictors, and

two “noise” covariates. Specthically. £ = 5 285. corresponding 1o idividual power
figures .99 for v = {00, 4y - 4 - 062 conesponding to mdrvidual power 25, and

Js - 3 =0 Due to the assocrations between cach of <.\, and the other covariates,
E(Y | N Yo) #£0 henee Ns and N, are not really noise variables

A simulation study under Mode! 3 with - 100 15 summarized in Table 5. BERDS
and BECV have veryv sumilar performance under this model. and the four algorithms have
nearly identical ME. The average « ' values .27 selected by BERDS and .41 by BECV
are quite large compared to the usual agryy = .05 or 10, essenually because there 16
very hde “norse.” Both BERDS and BECV have higher power figures than BE(.03)
and BE(.10). with smull differences for the strong predictors but larger differences for
the weak predictors and covariates with .4 = 0 Thus, although BERDS 15 not markedly
superior to standard BE with regard to ME m this case. 1t has @ much higher proba-

Tabl2 5 Operating Characteristics of BERDS! BEC V. and BE under Model 3

__ Selection probabiity  BERDS — BECV  BE(05) _ BE(10)

Strong Covarates 988 992 972 978
Weak Covanates 458 585 245 344
Covariates With 7 - O 290 433 077 128
ME 070 070 062 068
at 271 411 - -

" BERDS based on m = 20 repetitions of a 50 50 E V split, n= 100
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bility of selecting the correct model {X ;. X,. 3. X }. Moreover. the model {X, X5}
selected most frequenlty by BE 15 incorrect and heteroscedastic. These results indicate
that BERDS adapts quite well to situations where the predictors have nonlinear marginals
and nonlinear associations.

5. THE HIGHWAY ACCIDENT DATA

In this section we apply BERDS to the highway accident data presented and analyzed
in detail by Weisberg (1985 and also analyzed by Thall et al. (1992). The data consist of
n = 39 cases (highway sections) with p = 13 covariates that are candidates for predicting
the outcome ¥ = number of automobile accidents per million miles.

To obtain a more complete picture of the behavior of BERDS in this data set we
applied it 100 times, since the results of BERDS are random, like those of any method
involving sampling from the data. To examine the distribution of final modeis chosen,
we did this for for 1 = 10, 20. 50, 100, 500, 1,000, and 2.000. In a single application
of BECV with A = 19 to these data. Thall et al. (1992) obtained the model {1.4.9}.
Because increasing A in BECV 1s analogous to increasing the E.V proportion in BERDS,
we repeated BECV 100 times for IV = 10 and /A" = 19 The results for BECV and those
for BERDS with /1 = 10, 20, and 50 arc summarized in Table 6. and plots of S5(«) on
o for i = 20 and 2.000 are given in Figure 3
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Table 6. Application to the Highway Accident Data

Number of times
selected out of 100

BERDS BECV
Model vanables Cp RZ  m=10 m=20 m=50 K=10 K=19
1.9 381 652 2 0 0 1 0
1,49 236 701 0 0 0 3 1
1,4,89,12 - 383 745 23 22 19 20 21
1,3.4,8,9.12 881 752 20 24 41 15 19
13,48,9.12,13 245 756 16 16 9 17 12
1,3,4,7,8,9,12,13 427 758 9 6 1 3 3
1.3,45,7.8,9,12,13 614 759 1 1 2 1 1
1,3.45,7,8,9,11,12,13 802 760 29 31 28 31 27
1.2,3,45,7,8,9,10,11 12,13 121 760 ¢} 0 0 0 14
1,2,3,456,7,89,10,11,12,13 140 761 0 0 0 9 2

The figure shows that, in terms of ME, there is very little difference between the
model {1.4,8 9,12} and any model containing these tive variables as a proper subset.
As noted by Weisberg (1985), this is the model obtained by BE using 2.0 as the cutoff
on the F-statistic domain, and also by FS using this as both the enter and stay cutoffs.
An exhaustive BE shows that any agiay between (164 and .347 yields this model. While
the distribution of final models chosen by BERDS must converge to a unit mass on one
model as 1» — oc. this convergence 1s rather slow for this data set. For values of m >
50. the two models {[.3.4.8.9.12} and {1.3.4.5.7.8.9.11.12.13} are chosen with
successively higher frequencies. with the latter chosen 97% of the time when m =2,000.
This application illustrates the usefulness of examining the plot of SS(«) on o when
applying BERDS.

6. DISCUSSION

BE is wicely used in linear regression. Although the typical values gy = .05 or
.10 used as the p value cutoff in BE are arbitrary and do not correspond to the type I error
of a single tes. of hypothesis, many reports of data analyses involving BE treat agray as
a standard statistical significance level. Although many statisticians have recognized that
it is improper to interpret agay (0 this way, there have been few methods proposed for
selection of this parameter.

We have introduced and examined by simulation and application a new algorithm,
BERDS. for variable selection in lincar regression. It is a modification of the algorithm
BECYV proposed by Thall et al. (1992), and is a continuation of their attempt to select
astay empirically using the data. Both algorithms are based on the approach of choosing
astay = «v for use in BE by first minumizing an objective function that quantifies model
fit as a function of a. In particular. BERDS does away with the problem of choosing an
arbitrary cutoff when applymg BE.

Thall et a:. (1992) used 10-fold cross-validation to obtain a validation sum of squares
SSV' (), analogously to the use of cross-validation by Breiman et al. (1985). The par-
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tition into 10 subsets was randomly selected and the resulting SS17(«v) was quite noisy
as a function of «v and highly dependent on the particular partition chosen. We have
determined that this noise can be reduced by using repeated data splitting and averaging
the estimated functions SS)(a),.....59,,(a) over the replications to obtain an overall
SS(ev). We used a 20% trimmed mean of these values in order to further smooth the
function. To reduce the noise at the endpoints of the domain of SS(«). we liumited the
range of agray over which the minimization takes place, rather than using a version of
the ad hoc 1-SE rule originally used by Breiman et al. (1985) and also used by Thall et
al. (1992).

Breiman et al. (1985) used 10-fold cross-validation because it was less computation-
ally demanding than leave-one-out cross-validation. X' -fold cross-validation estimates
PE for a model based on (1 ~ A~} observations. This has been widely viewed as a
reason for usmg large A, which approaches the leave-one-out procedure. The models
determined n the A" estimation subsets £,... [y are highly “correlated” however.
Although using a large K provides an estimate of PE for a model developed on a sample
size close to n, the estimalte itself 1s of reduced precision because it is based on a smaller
validation set V. The facts that i different E-V pairs are used and that the random
selection of the partitton 1tself may be replicated does not change the fundamental fact
that V is small.

The optimal division between £ and 17 in BERDS depends on the sample size. the
number and distribution of the covariates, the residual variance, and other factors. Shao
(1993) showed that leave-one-out cross-validation does not even provide a consistent
estimate of PE. To obtain consistency, both the size 1y of E and the size ny of V' must
increase without limit as n — ~. Ideally. one would like 11 = n and ny- = n, but of
course this is impossible when using internal cross-validation that requires data splitting.
For the range of conditions considered in this article. we found that simple two-fold
data splitting performed as well as. and 1in many cases substantially better than, /'-fold
cross-validation. This s due to the fact that BERDS uses a Monte Carlo approximation
to full-cross validation 1n place of '-fold cross-validation, hence 1s more efficient. We
also found that using A’ = 2 with 112/2 replications was no better than using half the data
for estimation and the other half for validation, without reversing the roles of the two
sets, while replicating the selection of the random partition m tumes. Picard and Berk
(1990) discussed the trade-off between making n . large to obtain a reliable model fit
and making n7y- large to obtamn a rchable validation, and they provided specific criteria
for optimizing split size in linear regression. 1t seems reasonable that the behavior of
BERDS can be improved by optimizing split size empirically, and this 18 an important
issue for future investigation.

We found that using m = 20 replications enabled agjay to be determined in a
manner that provided models with much better prediction characteristics than BECV. As
noted in Section 5. however, this 15 not to say that the same model 15 always selected
by BERDS with 1 = 20. When therc are several models with similar S5(a)’s, while
the probability distribution of sclected models must converge to a point mass on one
model with increasing i1, this convergence may be very slow. Although uniqueness of
the model selected among models with similar SS{«v)’s may not be important, it may
be worthwhile to identify models having very similar SS(a)’s and decide which to use
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on other bases. While a single application of the procedure. with say m = 20, provides
a single objective function, it may be worthwhile to replicate the analysis with other
groups of m partitions in order to identify the models that provide similar 5.5(a)’s. If 1t
is important o uniquely identify one model. alternatives to random selection of partitions
should be examined.

[Received April 1996. Revived November 1996.)
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