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Abstract
A Bayesian feature allocation model (FAM) is presented for identifying cell subpopulations based on multiple 
samples of cell surface or intracellular marker expression level data obtained by cytometry by time of flight 
(CyTOF). Cell subpopulations are characterized by differences in marker expression patterns, and cells are 
clustered into subpopulations based on their observed expression levels. A model-based method is used to 
construct cell clusters within each sample by modeling subpopulations as latent features, using a finite Indian 
buffet process. Non-ignorable missing data due to technical artifacts in mass cytometry instruments are 
accounted for by defining a static missingship mechanism. In contrast with conventional cell clustering 
methods, which cluster observed marker expression levels separately for each sample, the FAM-based 
method can be applied simultaneously to multiple samples, and also identify important cell subpopulations 
likely to be otherwise missed. The proposed FAM-based method is applied to jointly analyse three CyTOF 
datasets to study natural killer (NK) cells. Because the subpopulations identified by the FAM may define novel 
NK cell subsets, this statistical analysis may provide useful information about the biology of NK cells and their 
potential role in cancer immunotherapy which may lead, in turn, to development of improved NK cell therapies.
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1 Introduction
Mass cytometry data have been used for high-throughput characterization of cell subpopulations 
based on unique combinations of surface or intracellular markers that may be expressed by each 
cell. Cytometry by time-of-flight (CyTOF), first introduced in 2009, is a technology that can rap-
idly quantify a large number of biological, phenotypic, or functional markers on single cells 
through use of metal-tagged antibodies. For example, CyTOF can identify up to 40 cell surface 
or intracellular markers in less time and at a higher resolution than previously available methods, 
such as fluorescence cytometry (Cheung & Utz, 2011). Because CyTOF can reveal cellular diver-
sity and heterogeneity that could not be seen previously, it has the potential to rapidly advance the 
study of cellular phenotype and function in immunology.

Despite the potential of CyTOF, analysis of the data that it generates is computationally expen-
sive and challenging, and statistical tools for making inferences about cell subpopulations identi-
fied by CyTOF are quite limited. Manual ‘gating’ is a traditional method in which homogeneous 
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cell clusters are sequentially identified and refined based on a given set of surface markers. Manual 
gating has several severe shortcomings, however, including its inherent subjectivity due to the fact 
that it requires manual analysis, and being unscalable for high-dimensional data with large num-
bers of markers. While manual gating is commonly used in practice, a variety of computational 
methods that automatically identify cell clusters have been proposed to analyse high-dimensional 
cytometry data. Many existing automated methods use dimension reduction techniques and/or 
clustering methods, such as density-based or model-based clustering. For example, FlowSOM, 
given by Van Gassen et al. (2015), uses an unsupervised self-organizing map (SOM) for clustering 
and dimension reduction. A low-dimensional representation of the marker vectors is obtained by 
using unsupervised neural networks for easy visualization in a graph called a map. FlowSOM is 
fast and can be used either as a starting point for manual gating, or as a visualization tool after 
gating has been performed. Other common approaches are density-based clustering methods, in-
cluding DBSCAN (Ester et al., 1996) and ClusterX (H. Chen et al., 2016), and model-based clus-
tering methods, including flowClust (Lo et al., 2009) and BayesFlow (Johnsson et al., 2016). More 
sophisticated clustering methods based on Bayesian non-parametric models also have been pro-
posed, see, for example, by Soriano and Ma (2019). Weber and Robinson (2016) performed a 
study to compare several clustering methods for high-dimensional cytometry data. They analysed 
six publicly available cytometry datasets and compared identified cell subpopulations to cell popu-
lation identities known from expert manual gating. They found that, in many scenarios, 
FlowSOM had significantly shorter runtimes. Moreover, in many studies where manual gating 
was performed, FlowSOM produced the best clusterings, in terms of various clustering metrics, 
when compared to cell clustering by manual gating.

While conventional clustering methods identify subgroups of cells with similar marker expres-
sion values, they often fail to provide direct inferences that identify and characterize cell subpopu-
lations. Clustering methods put cells in the same cluster if their expression levels are similar, and 
they assume implicitly that underlying cell subpopulations can be identified and constructed from 
clusters estimated directly from the marker expression levels. The usefulness of such conventional 
clustering approaches is limited by the fact that observed numerical marker expression values may 
differ substantially due to between-sample variability, often due to technical variation in the cy-
tometry measurement process, as well as variability in the expression measurement process. 
Figure 1 illustrates a toy example. Suppose that the respective log expression levels of markers 
1 and 2 are −2 and −4 on a given cell, and that the corresponding values on a second cell are 
−6 and −4. A negative (or positive) log expression level implies that it is unlikely (or likely) that 
a surface marker is expressed. Although their expression patterns are qualitatively similar and 
are from the same subpopulation, a conventional clustering method is unlikely to include these 
two cells in the same cluster because their marker 1 expression levels are very different. A deeper 
problem is that cell clusters based on expression values may not serve as a useful surrogate for 
identifying cell subpopulations. As a result, most existing clustering methods are used to analyse 
different samples separately.

In this paper, we propose a Bayesian feature allocation model (FAM) to identify and place prob-
abilities on cell subpopulations based on multiple cytometry samples of a vector of cell surface 
marker expression values. Our proposed FAM characterizes cell subpopulations as latent features 
defined in terms of their expression patterns, and clusters individual cells to one of the identified 
subpopulations. We will refer to each latent feature as a ‘subpopulation’. With this FAM, a given 
marker may be expressed in more than one cell subpopulation, and each subpopulation is charac-
terized by a unique marker expression pattern. To characterize subpopulation configurations, we 
introduce a random matrix Z with rows corresponding to markers and columns to subpopula-
tions, with entry 1 denoting expression and 0 denoting non-expression of a marker in a subpopu-
lation. Unlike traditional clustering methods, the FAM constructs latent subpopulations based on 
marker expression patterns, as illustrated by the Z matrix in the top figure in Figure 1. It assigns 
cells 1 and 2 to subpopulation 1, where neither marker is expressed, and it assigns cell 3 to sub-
population 2, where marker 1 is expressed and marker 2 is not expressed. We assume a finite 
Indian buffet process (IBP) as the prior distribution for Z. The IBP is a popular model for latent 
binary features, and it may be obtained as the infinite limit of a Beta-Bernoulli process 
(Ghahramani & Griffiths, 2006). Applications of the IBP prior in FAMs for a range of biological 
applications are given by Hai-son and Bar-Joseph (2011), M. Chen et al. (2013), Xu et al. (2013, 
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2015), Sengupta et al. (2014), Lee et al. (2015, 2016), and Ni et al. (2018). Griffiths and 
Ghahramani (2011) reviews some earlier applications of the IBP. Furthermore, we introduce a vec-
tor of subpopulation abundances wi for each sample (i). This approach provides a framework for 
the joint analysis of multiple samples, and includes structures to account for large 
sample-to-sample variation and abnormalities, such as missing values due to technical artifacts 
in the cytometry data, while quantifying uncertainty in posterior inferences.

The model and analyses in this paper are motivated by a dataset comprised of three CyTOF sam-
ples of surface marker expression levels in umbilical cord blood (UCB)—derived natural killer 
(NK) cells. NK cells play a critical role in cancer immune surveillance, and are the body’s first 
line of defense against viruses and transformed tumour cells. NK cells have the intrinsic ability 
to infiltrate cancer tissues. Recently, NK cells have been used therapeutically to treat a variety 
of diseases (Lanier, 2008; Wu & Lanier, 2003). In particular, NK cells have emerged as a poten-
tially powerful treatment modality for advanced cancers refractory to conventional therapies (Liu 
et al., 2020; Lupo & Matosevic, 2019; J. S. Miller et al., 2005; Rezvani & Rouce, 2015; Shah et al., 
2017; Suck et al., 2016). Because cell-surface protein expression levels are used as markers to de-
scribe the behaviour of NK cells, accurate identification of diverse NK-cell subpopulations along 
with their composition is crucial to the process of obtaining more complete characterizations of 
their biological processes and functions. The goal of our statistical analysis is to identify and char-
acterize NK cell subpopulations and functions across heterogeneous collections of these cells. This 
may provide critical information for guiding selective ex vivo expansion of UCB-derived NK cells 
for treating specific cancers.

The remainder of this paper is organized as follows. We present the proposed statistical model in 
Section 2, simulation studies in Section 3, and an analysis of the NK cell mass cytometry data in 
Section 4. We close with concluding remarks in Section 5.

2 Probability model
2.1 Sampling model
Index cell samples by i = 1, 2, . . . , I. Suppose that Ni cells, indexed by n = 1, . . . , Ni, are obtained 
from the ith sample, and the expression levels of J markers on each cell within each sample are meas-
ured. Let ỹi,n,j ∈ R+ denote the raw measurement of the expression level of marker j on cell n in sam-
ple i. While raw measurement values reflect actual expression or non-expression of markers on 
cells, they also vary between cells and between samples for several reasons, including biological het-
erogeneity in the range of expression among different populations, as well as experimental artifacts or 
batch effects, such as instrument fluctuations or signal crosstalk among channels designed for 

Figure 1. A stylized overview of the proposed feature allocation model. Z is a binary matrix whose columns define 
latent subpopulations, and w is a vector of cell subpopulation abundances. Two subpopulations are constructed in Z 
based on their marker expression patterns. Cells are clustered into the subpopulations based on their observed 
expression level patterns.
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different markers. While, compared to conventional flow cytometry and the use of fluorescent anti-
bodies, the use of pure metal isotopes minimizes spectral overlap among measurement channels in 
CyTOF, crosstalk still may be observed due to the presence of isotopic impurity, oxide formation, 
and properties related to the mass cytometer. Raw measurements are normalized using cut-off values 
computed by a flow (rather than mass) cytometry algorithm called flowDensity (Malek et al., 2014), 
which aims to gate predefined cell populations of interest, in settings where the gating strategy is 
known. This frees practitioners from the need to manually gate analysis results, but it relies substan-
tially on user-provided information to produce good results. Consequently, cut-offs obtained from 
such algorithms are crude, but useful as a starting point for our analysis. Let ci,j denote the cut-off 
for marker j in sample i obtained by flowDensity. A marker of a cell is likely to be expressed if its ob-
served expression level ỹi,n,j > ci,j, while a value ỹi,n,j < ci,j may imply that marker j is not expressed on 
cell n in sample i. To reduce the skewness of the marker distributions, we will base our model on the 
log-transformed values yi,n,j = log (ỹi,n,j/ci,j) ∈ R. This transformation makes 0 the reference point 
for dichotomizing marker expression and non-expression. To account for the fact that some yi,n,j 

may be missing due to experimental artifacts, we define the binary indicator mi,n,j = 1 if yi,n,j is ob-
served, and mi,n,j = 0 if missing. Denote the probability that yi,n,j is missing by 
Pr(mi,n,j = 0 ∣ yi,n,j) = ρi,n,j(yi,n,j), so 1 − ρi,n,j(yi,n,j) is the probability that yi,n,j is observed. Below, 
we will define the latent subpopulation membership indicator, λi,n, of cell n in sample i. For each 
cell in the ith sample, we assume conditional independence of the cell’s J marker values given its latent 
subpopulation, formally yi,n,1, . . . , yi,n,J ∣ λi,n are independent, and we write the joint model for 
(yi,n,j, mi,n.j) as follows:

yi,n,j ∣ μi,n,j, s2
i,n, λi,n ∼ind N(μi,n,j, s2

i,n) (1) 

and

mi,n,j ∣ ρi,n,j(yi,n,j), λi,n ∼ind Ber(1 − ρi,n,j(yi,n,j)). (2) 

This joint model provides a basis for imputing missing expression levels by drawing yi,n,j from p(yi,n,j ∣ 
mi,n,j) if mi,n,j = 0, and it also facilitates posterior simulation. Below, we will relate the mean expres-
sion μi,n,j to the configuration of cell subpopulation λi,n. To reflect the expert biological knowledge of 
the investigators, a model for ρi,n,j as a function of yi,n,j will be given in the following section.

2.2 Priors

2.2.1 Priors for latent cell subpopulation
We assume that each sample consists of a heterogeneous cell population, and denote the number of 
different latent subpopulations by K. The cell subpopulations are defined by the columns of the J × 
K (marker, subpopulation) stochastic binary matrix Z. The element z j,k ∈ {0, 1} of Z determines 
marker expression by subpopulation, with z j,k = 0 if marker j is not expressed and z j,k = 1 if 
it is expressed for subpopulation k. We construct a feature allocation prior for Z as follows: 
For j = 1, . . . J and k = 1, . . . , K,

z j,k ∣ vk ∼ind Ber(vk) and vk ∣ α ∼iid Be(α/K, 1). (3) 

As K→∞, the limiting distribution of Z in (3) is the IBP (Ghahramani & Griffiths, 2006) with 
parameter α, after removing all columns that contain only zeros. We assume hyperprior α ∼ 
Gamma(aα, bα) with mean aα/bα. The IBP, which is one of the most popular FAMs, thus defines 
a distribution over binary matrices having an unbounded number of columns (features). For our 
purposes, the simpler version of the IBP with finite K provides a very useful statistical tool for iden-
tifying marker expression patterns to define latent cell subpopulations from CyTOF surface mark-
er data. While z j,k in (3) can be 0 or 1 for non-expression/expression, the model can be further 
extended to accommodate ordered categories of a marker expression, such as no/moderate/high 
expressions. For example, we may let z j,k = 0, 1, or 2 for no/moderate/high expressions, and con-
sider the categorical IBP in Sengupta et al. (2014) and Lee et al. (2016) as a prior for such a Z. This 
extended model may be preferred when a finer categorization of expression level is more desirable.
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We assume that each of the K cell subpopulations may potentially appear in each sample, but 
allow their cellular fractions to differ between samples. In addition, we include a special, 
(K + 1)st ‘noisy’ cell type, indexed by k = 0, to address the problem that some cells do not belong 
to any of the K cell subpopulations. In sample i, let 0 < ϵi < 1 denote the proportion of noisy cells 
and (1 − ϵi)wik the proportion of cells belonging to subpopulation k, where wi =(wi,1, . . . , wi,K) 
with 

K
k=1 wi,k = 1 and wi,k > 0, is a probability distribution on {1, . . . , K}. We assume priors 

ϵi ∼iid Be(aϵ, bϵ) with fixed hyperparameters aϵ and bϵ, and wi ∣ K ∼iid DirK(d/K) with fixed hyper-
parameter d. For cell n = 1, . . . , Ni in sample i = 1, . . . , I, we introduce stochastic latent subpo-
pulation indicators (equivalently, cell cluster membership labels) λi,n ∈ {0, 1, . . . , K}. We 
set λi,n = 0 if cell n in sample i does not belong to any of the cell subpopulations in Z, and set λi,n = 
k > 0 if cell n in sample i belongs to subpopulation k. For the latent subpopulation indicators, we 
assume Pr(λi,n = 0 ∣ ϵi) = ϵi to account for noisy cells, and Pr(λi,n = k ∣ λi,n ≠ 0, wi) = wik. Within 
each sample i = 1, . . . , I, assigning cells to subpopulations using {λi,n, i = 1, . . . , Ni} induces 
cell clusters. Thus, in contrast with clustering methods that infer only cell clusters in the ith sample 
based on {yi,n,j}, our proposed method produces direct inferences on both characterization of cell 
subpopulations and cell clusters simultaneously for all samples. This is highly desirable because 
the primary aim is to identify and make inferences about cell subpopulations.

Since the number of columns containing non-zero entries under the IBP is random, the dimen-
sions of Z and wi may vary during posterior computation. Because this dimension change may 
cause a high computational cost, especially for big datasets such as those obtained by CyTOF, 
we use a finite version of the IBP with fixed K. Because the number of latent subpopulations is 
not known a priori, we consider a set of different values for K, from which we select one value 
of K using Bayesian model selection criteria. We will discuss this selection process below.

2.2.2 Priors for mean expression level
The mean expression level μi,n,j of marker j for cell n in sample i in (2) is determined by the cell’s 
latent subpopulation. For cells in the noisy cell subpopulation where λi,n = 0, we fix μi,n,j = 0 for all 
j and s2

i,n = s2
ϵ , where s2

ϵ is a large constant. For a cell with λi,n ∈ {1, . . . , K}, if the marker is not 
expressed in cell subpopulation λi,n (i.e., z j,λi,n = 0), we restrict its mean expression level to be a 
negative value, μi,n,j < 0. Specifically, for (i, n, j) with z j,λi,n = 0, we introduce a set of means for ex-

pression levels of markers not expressed, μ⋆
0,ℓ =

ℓ
r=1 δ0,r, where δ0,ℓ ∼iid TN−(ψ0, τ2

0), ℓ = 1, . . . , L0 

with fixed L0. Here, TN−(ψ, τ2) denotes the normal distribution with mean ψ and variance τ2 trun-
cated above at zero. This construction induces the ordering 0 > μ⋆

0,1 > · · · > μ⋆
0,L0

. We then let 

μi,n,j = μ⋆
0,ℓ with probability η0

i,j,ℓ. Note that even for a marker not expressed, positive yi,n,j can be 
observed due to measurement error or estimation error in the cut-off ci,j, and the model accounts 
for such cases through s2

i,n. Similarly, we assume that the mean expression level of marker j takes a 
positive value (μi,n,j > 0) if the marker is expressed (z j,λi,n = 1). For cases with z j,λi,n = 1, we construct 

another set of δ, with distribution δ1,ℓ ∼iid TN+(ψ1, τ2
1), ℓ = 1, . . . , L1 for fixed L1, where TN+(ψ, τ2) 

denotes the normal distribution truncated below at zero with mean ψ and variance τ2. We let 
μ⋆

1,ℓ =
ℓ

r=1 δ1,r, so 0 < μ⋆
1,1 < · · · < μ⋆

1,L1
. We then let μi,n,j = μ⋆

1,ℓ with probability η1
i,j,ℓ, and let s2

i,n = 

σ2
i for λi,n > 0 and assume σ2

i ∼ind IG(aσ, bσ). This leads to a mixture of normals for yi,n,j whose lo-
cation parameters are determined by the cell’s latent subpopulation,

yi,n,j ∣ z j,λi,n = z, μ⋆
z , ηz

i,j, σ2
i ∼ind Fz

i,j =
Lz

ℓ=1

ηz
i,j,ℓ ·N(μ⋆

z,ℓ, σ2
i ), z ∈ {0, 1}, k > 0. (4) 

Finally, we let ηz
i,j ∼iid DirLz (aηz/Lz), for z = 0, 1, i = 1, . . . , I, and j = 1, . . . , J.

The mixture model in (4) encompasses a wide class of distributions, which may be multi-modal 
or skewed. It captures virtually any departure from a conventional distribution, such as a paramet-
ric exponential family model, that may appear to give a good fit to the log-transformed expression 
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values. A key property of (4) is that it allows cells with very different numerical expression values 
to have the same subpopulation if their marker expression/non-expression pattern is the same. The 
mixture model can also account for batch effects through model-based centring and scaling of ob-
served expression levels, in addition to sample and marker-specific cut-off values ci,j. If considered 
more desirable, other batch adjustment approaches can be applied prior to analyses. For example, 
Schuyler et al. (2019) estimates batch effect explicitly and adjusts samples within a batch for data-
sets including technical replicates. This provides a basis for obtaining a succinct representation of 
cell subpopulations. Because the locations μ⋆

z in (4) are shared for all (i, n, j), the model borrows 
strength across both samples and markers, while ηz

i,j = (ηz
i,j,1, . . . , ηz

i,j,Lz ) allows the distribution of 
yi,n,j to vary across both samples and markers. The construction of μ⋆

z,ℓ through δz,ℓ also ensures 
ordering in μ⋆

z,ℓ and circumvents potential identifiability and label-switching issues that may be 
present in conventional Bayesian mixture models (Celeux et al., 2000; Frühwirth-Schnatter, 
2006; Jasra et al., 2005; Stephens, 2000).

2.2.3 Model for the data missingship mechanism
We next build a model for the data missingship distribution. To do this, we incorporate informa-
tion provided by a subject area expert, that a marker expression level is recorded as ‘missing’ in a 
cell (mi,n,j = 0) when the marker’s signal is very weak, which strongly implies that the marker is not 
expressed on that cell. In (2), we model missingship mi,n,j conditional on yi,n,j, i.e., 
mi,n,j ∣ ρi,n,j(yi,n,j) ∼ind Ber(1 − ρi,n,j(yi,n,j)). We assume a logit regression model for the probability 
ρi,n,j that mi,n,j = 0,

logit(ρi,n,j) = β0i + β1iyi,n,j + β2iy
2
i,n,j. (5) 

We take an empirical approach to specify values of βi = (β0i, β1i, β2i) in (5) for each sample i = 
1, . . . , I by using the minimum, first quartile, and median of negative observed expression levels, 
setting their ρi,n,j values to .05, .80, and .50, respectively, and solving for βi. More details of the 
specification of βi are in Online Supplementary Material, Section 2. The proposed specification 
of βi reflects the key fact that when mi,n,j = 0, its potentially observed numerical value is very likely 
negative. The dataset does not contain information for inferring the missingness mechanism, and it 
cannot be anticipated that the imputed values are close to their potentially observed values. 
However, our construction of subpopulations is based on patterns of expression levels, not actual 
expression levels, and the task of recovering Z, w, and λ, which is the primary aim of the analyses, 
is not affected by particular imputed values. We performed sensitivity analyses to the specification 
of the βi’s to examine robustness of the estimation of Z, w, and λ. Additionally, in our simulation 
studies, missing values were generated under a mechanism different from that in (5). The under-
lying cell subpopulations were well recovered even with the misspecified missingness mechanism, 
indicating the model’s robustness. Sections 3 and 4 provide details of the sensitivity analyses. 
There is an extensive literature on analysing data with observations missing not at random, includ-
ing methods for Bayesian data imputation and frequentist multiple imputation (Allison, 2001; 
Franks et al., 2016; Rubin, 1974, 1976; Schafer & Graham, 2002). We refer to them for alterna-
tive models for the missingship mechanism.

2.2.4 Selection of K
Instead of estimating K, we cast the problem of selecting a value for K as a model comparison prob-
lem. This reduces the computational burden, especially for large datasets. To identify a value of K 
that optimizes model fit while penalizing for high model complexity, we choose K using the devi-
ance criterion information (DIC, Spiegelhalter et al., 2002) and log pseudo marginal likelihood 
(LPML, Geisser & Eddy, 1979; Gelfand & Dey, 1994). The DIC and LPML are commonly 
used to quantify goodness-of-fit for comparing Bayesian models. The DIC measures posterior pre-
diction error based on deviance penalized by model complexity, with lower values corresponding 
to a better fit. The LPML is a metric based on cross-validated posterior predictive probability, and 
is defined as the sum of the logarithms of conditional predictive ordinates (CPOs), with larger 
LPML corresponding to a better fit. Details of the computation of DIC and LPML are given in 
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Online Supplementary Material, Section 3. In addition, we count the number of subpopulations 
having negligible weights, 


i,k I(wi,k < 1%), for each value of K and plot the LPML against the 

number of such subpopulations. A model with larger K may produce cell subpopulations with 
very small wi,k that only make subtle contributions to model fit in terms of LPML. We thus search 
for a value of K, where the change rate of the increase in LPML drops. J. W. Miller and Dunson 
(2018) used a similar calibration method to tune a model hyperparameter that determines how 
much coarsening is required to obtain a model that maximizes model fit while maintaining low 
model complexity.

2.3 Posterior computation
Let θ = Z, w, δ0, δ1, σ2, η0, η1, λ, v, ϵ, α

 
denote all model parameters. Let y and m denote the 

vectors of yi,n,j and mi,n,j values for all (i, n, j). The posterior distribution of θ is

p(θ ∣ y, m, K) ∝ p(θ ∣ K)


i,n,j

p(mi,n,j ∣ yi,n,j, θ, K)p(yi,n,j ∣ θ, K)

∝ p(θ ∣ K)


i,n



j

ρ1−mi,n,j

i,n,j


Lz j,λi,n

ℓ=1

η
z j,λi,n

i,j,ℓ ϕ(yi,n,j ∣ μ⋆
z j,λi,n ,ℓ, σ2

i )

⎡

⎣

⎤

⎦

1(λi,n>0)

×


j

ρ1−mi,n,j

i,n,j × ϕ(yi,n,j ∣ 0, s2
ϵ )

 1(λi,n=0)

,

(6) 

where ϕ(y ∣ μ, σ2) denotes the density of a normal distribution with mean μ and variance σ2 eval-
uated at y. Since ρi,n,j is a constant for a given y with fixed β’s, the terms p(mi,n,j = 1) = (1 − ρi,n,j)

mi,n,j 

for observed yi,n,j do not appear in (6). Posterior simulation can be done via standard Markov 
chain Monte Carlo (MCMC) methods with Gibbs and Metropolis steps. Each parameter is up-
dated sequentially by sampling from its full conditional distribution. Details of the posterior simu-
lation are described in Online Supplementary Material, Section 1.

Summarizing the joint posterior distribution p(θ ∣ y, m, K) is challenging, especially for Z, 
which may be susceptible to label-switching problems common in mixture models. Moreover, 
the distributions of wi and λi depend on Z. To summarize the posterior distribution of 
(Z, wi, λi) with point estimates, we extend the sequentially allocated latent structure optimization 
(SALSO) method in Dahl and Müller (2017) to incorporate wi. To summarize random feature al-
location matrices, we first construct Ai = {Ai,(j,j′)(Z)}, the J × J pairwise allocation matrix corre-
sponding to a binary matrix Z, where

Ai,(j,j′)(Z) =
K

k=1

wi,k × 1(z j,k = 1) × 1(z j′,k = 1), for 1 ≤ j, j′ ≤ J, (7) 

is the number of active features that markers j and j′ have in common in sample i, weighted by wi,k. 
The form of (7) encourages selection of entries in Z based on subpopulations that are prevalent in 
the samples. We find a point estimate Ẑi for sample i that minimizes the sum of the element-wise 
squared distances

argmin
Z

J

j=1

J

j′=1

(A(Z)i,(j,j′) − A̅i,(j,j′))
2, 

where A̅i,(j,j′) is the pairwise allocation matrix averaged by the posterior distribution of Z and wi. 
We use posterior Monte Carlo samples to obtain posterior point estimates Ẑi as follows. Suppose 
that we obtain B posterior samples simulated from the posterior distribution of θ. For the bth pos-
terior sample of Z and wi, we compute the J × J adjacency matrix, A(b)

i = {A(b)
i,(j,j′)}, b = 1, . . . , B and 
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then the mean adjacency matrix A̅i =
B

b=1 A(b)
i /B. We determine a posterior point estimate of Z 

for sample i by minimizing the sum of squared deviation, Ẑi = argminZ


j,j′ (A
(b)
i,j,j′ − A̅i,j,j′ )

2, where 

Ẑi ∈ Z(1). . .Z(B) 
. For Ẑi = Z(b), we report the posterior point estimates ŵi = w(b)

i and λ̂i,n = λ(b)
i,n . 

Alternatively, we can find estimates Ẑ common for all samples by finding Ẑ such that

Ẑ = argmin
Z

I

i=1

J

j=1

J

j′=1

(A(Z)i,(j,j′) − A̅i,(j,j′))
2.

Similar to Ẑi, we use posterior samples obtained through MCMC simulation, and report posterior 
sample b′ that achieves the minimum as point estimates common for all i, Ẑ = Z(b′). We then let 
ŵi = w(b′)

i and λ̂i,n = λ(b′)
i,n .

Because the model is complex and the dataset is large, as an alternative method for posterior 
computation we explored the use of variational inference (VI), which approximates the posterior 
distribution of θ through optimization (Blei et al., 2017; Wainwright & Jordan, 2008; Zhang 
et al., 2018). Because VI tends to be faster than MCMC, it is a popular emerging alternative, es-
pecially for complex models and/or large datasets. We used automatic differentiation variational 
inference (ADVI) (Kucukelbir et al., 2017) to simplify the process of implementing variational in-
ference for differentiable models. ADVI requires no model-specific analytical derivations of deriv-
atives, and it is relatively simple to implement using an automatic differentiation library such as 
PyTorch (Paszke et al., 2017), TensorFlow (Abadi et al., 2015), and Flux (Innes, 2018). Details 
of the VI implementation using ADVI are included in Online Supplementary Material, Section 
1.2. A Julia package CytofResearch implementing this methodology is available at https:// 
github.com/luiarthur/CytofResearch. The repository also includes a brief demonstration of how 
to use the software at https://github.com/luiarthur/CytofResearch/tree/master/demos/minimal- 
example.

3 Simulation studies
In this section, we present simulation studies to assess the performance of the proposed 
FAM-based method for identifying features and clustering cells within each sample, and we com-
pare the FAM to an alternative model and method. We simulated data for I = 3 samples, each with 
20 markers, consisting of Ni = 4,000, 500, and 1,000 cells, for i = 1, 2, and 3, respectively. We set 
the true number of latent features (subpopulations) to be KTR = 5 and specified a J × 5 binary 
feature-allocation matrix ZTR and 5-dimensional vectors wTR

i as follows: We first simulated 
ZTR by setting zTR

j,k = 1 with probability 0.6. If any column or row in ZTR consisted of all 0’s, 

the entire matrix was re-sampled. We then simulated wTR
i from a Dirichlet distribution with pa-

rameters being random permutations of (1, . . . , 5) for each i. This was done so that the resulting 
elements of wTR

i would be likely to contain both large and small values. The assumed ZTR and wTR
i 

are given in Figure 2. We set ϵTR
i = 5% of the cells to be noisy for all i. We specified the mixture 

models for the expression levels by setting μ⋆,TR
0 = ( − 1, − 2.3, − 3.5) and μ⋆,TR

1 = (1, 2, 3) 

with L0,TR = L1,TR = 3, and simulating mixture weights ηz,TR
i,j from a Dirichlet distribution with 

parameters a random permutation of (1, . . . , Lz,TR), for z ∈ 0, 1{ } and each (i, j). The values of 
σ2,TR

i were set to 0.2, 0.1, and 0.3 for samples 1, 2, and 3, respectively. We then simulated latent 
subpopulation indicators λTR

i,n with probabilities Pr(λTR
i,n = 0) = ϵTR

i and 

Pr(λTR
i,n = k ∣ λTR

i,n ≠ 0) = wTR
i,k . We generated yi,n,j ∼iid N(0, 9) for all (i, n, j) with λTR

i,n = 0. 

Otherwise, we generated yi,n,j from a mixture of normals, 
Lz,TR

ℓ=1 ηz,TR
i,j ·N(μ⋆,TR

zℓ , σ2,TR
i ) given 

zTR
jλTR

i,n
= z for each (i, n, j). To simulate the missingship indicators, mi,n,j, we first generated the pro-

portions pi,j of missing values for each (i, j) from a Unif(0, 0.7 ·


k wTR
i,k (1 − zTR

j,k )) and sampled 

pi,j × Ni cells without replacement with probability proportional to {1 + exp ( − 9.2 − 
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2.3yi,n,j)}
−1.We let yi,n,j = NA if mi,n,j = 0. Under the true missingness mechanism, a marker having 

a lower expression level has a higher chance of being recorded as missing. Note that the true mech-
anism is different from that assumed in (5). As the results will show, the model’s performance of 
recovering the true cell subpopulation structure is robust to misspecification of the data missing-
ship mechanism model. Heatmaps of the simulated y are shown in Figure 4b, d and f. The yi,n,j’s 
are sorted within a sample according to their posterior subpopulation indicator estimates λ̂i,n, 
which we explain below. The colours red, blue, and black represent high expression levels, low 
expression levels, and missing values, respectively.

We fit a separate model for each K = 2, 3, . . . , 10, fixing L0 = L1 = 5 and s2
ϵ = 10 for each K. We 

specified the remaining fixed hyper-parameters as follows: aα = bα = 0.1 for α; ψz = 1 and τ2
z = 1 for 

δz,ℓ; aσ = 3 and bσ = 2 for σ2
i ; aηz = 1 for ηi,j; d = 1 for wi; aϵ = 1 and bϵ = 99 for ϵi. The specification 

implies a weakly informative prior, except for ϵi. The values of aϵ and bϵ are used to strongly imply 
that only a small fraction of cells belongs to the noisy cell type, k = 0. We used the empirical ap-
proach described in Section 2 to obtain values of β for the missingship mechanism. For each i, we 
initialized the missing values at −β2i/(2β1i), which corresponds to the largest missing probabilities 
a priori. To initialize λi,n, wi, Z, α, and ηz

i,j, we applied density-based clustering via finite Gaussian 
mixture models using the MClust package (Scrucca et al., 2016), and used the resulting clustering 
of yi,n,j. Other reasonable methods can be used for the Markov chain initialization. We then drew 
samples of θ and imputed missing values of yi,n,j using MCMC simulation based on 16,000 iter-
ations, discarding the first 10,000 iterations as burn-in for each model, and then thinned by keep-
ing every other draw. We monitored convergence and mixing of the MCMC posterior simulation 
by inspecting trace plots of the log-likelihood. Online Supplementary Material, Figure 2 shows 
trace plots of the log-likelihood from two independent chains with different initial values. The 
plots show only minor differences, indicating that the two chains traced out a common distribu-
tion. The burn-in period was chosen via visual inspection of the trace plots of the log-likelihoods. 
Posterior inference for a model with K = 5 took 10 hr for 16,000 iterations on an interactive Linux 
server with four Intel Xeon E5-4650 processors and 512 GB of random access memory.

For each value of K, we computed the LPML and DIC, and obtained point estimates Ẑi, ŵi and 
λ̂i using the method described in Section 2.3. Figure 3a,b, respectively, show plots of LPML and 
DIC as functions of K. Figure 3c plots LPML against the number of subpopulations with 
ŵi,k < 1%. The increase in LPML is very minimal, while negligible subpopulations are added 
for values of K > 5. The plots clearly indicate that K̂ = 5 yields a parsimonious model with 
good fit. Figure 4 illustrates Ẑi, ŵi and λ̂i,n for K̂ = 5. Panels (a), (c) and (e) show Ẑi and ŵi for 

Figure 2. Design of Simulation 1. ZTR and wTR are illustrated in (a) and (b), respectively. KTR = 5, J = 20, and I = 3 
are assumed. In (a), black represents zTR

j,k = 1 (marker expression) and white represents zTR
j,k = 0 (marker 

non-expression).
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samples 1, 2, and 3, respectively. The subpopulations with ŵik > 1% are included in the plots of Ẑi. 
The estimates Ẑi and ŵi are close to their truth values in Figure 2 for all samples, implying that the 
true cell population structure is well recovered. We quantified the proximity between the point es-
timates, Ẑi and ŵi and their truth using the metrics, dZ

i and dw
i defined in Online Supplementary 

Material, Section 4. The metrics also indicate that the point estimates are close to their truth. More 
details are in Online Supplementary Material, Section 4.

We compared the resulting clustering of the cells by λ̂i,n,j to the truth. We used the adjusted Rand 
index (ARI) (Hubert & Arabie, 1985), which measures the agreement between two sets of cluster-
ings. A larger value implies greater agreement, and in the case of random clusterings, ARI is ex-
pected to be 0. ARI can be negative in cases where the agreement between clusters is less than 
what is expected from random clusterings. The obtained ARIs are above 0.99 for all samples, in-
dicating that the model recovers the true cell clusters very well. The heatmaps of y rearranged by 
cell clustering membership estimates λ̂i,n are shown in panels (b), (d), and (f) of Figure 4, where the 
colours, red, blue, and black represent high, low, and missing expression levels, respectively. The 
horizontal yellow lines separate cells by λ̂i,n. The figures also show that the cell clustering based on 
the estimated subpopulations captures the true clustering of y quite well.

We also fit the model to the simulated data using ADVI, with a mini-batch size of 2,000, K = 30, 
and 20,000 iterations. The time required to fit the model was approximately 6 hr for 20,000 iter-
ations, which is substantially faster than that of the analogous MCMC method. Online 
Supplementary Material, Figure 3 shows the posterior estimates of Z, w, and λi,n obtained via 
ADVI. Inferences for model parameters using ADVI are similar to those using MCMC. The simu-
lation truth for the model parameters θ are well recovered, as in the MCMC implementation.

We assessed the sensitivity of the model to the data missingship mechanism by fitting the FAM 
using different specifications of β with K = K̂, and comparing the inferences. The two different 
specifications of β are given in Online Supplementary Material, Table 3. The estimates of θ do 
not change significantly across different specifications of β. Point estimates of Z, wi, and λi,n are 
shown in Online Supplementary Material, Figures 4 and 5. The estimates Ẑ remain the same 
for all specifications of β, and the ŵi values also are very similar. Online Supplementary 
Material, Table 3 shows that LPML and DIC are slightly better for the data missingship mecha-
nisms that encourage imputing smaller missing values yi,n,j. This results in μ⋆

0,L0
, the smallest of 

the mixture component locations for non-expressed markers, being smaller than that obtained 
under the other specifications, accidentally more closely resembling the simulation truth. 
Details of the sensitivity analysis are in Online Supplementary Material, Section 4.

We compared our model via simulation to FlowSOM in Van Gassen et al. (2015), which is im-
plemented in the R package FlowSOM (Van Gassen et al., 2017). FlowSOM fits a model with a 
varying number of clusters and selects a value of K that minimizes the within-cluster variance while 
also minimizing the number of clusters via an ‘elbow’ criterion, an ad hoc graphical method that 
chooses K such that K + 1 does not substantially increase the percentage of variation explained. 
FlowSOM does not impute missing values, so we used all y assuming that there is no missing y. 
In practice, missing values could be pre-imputed, or multiple imputation could be employed. 
Note that FlowSOM does not account for variability between samples. We combined the samples 

(a) (b) (c)

Figure 3. Results of Simulation 1. Plots of (a) LPML = log pseudo marginal likelihood, (b) DIC = deviance information 
criterion, and (c) calibration metric, for K = 2, . . . , 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Results of Simulation 1. In (a,c), the transpose Ẑ ′i of Ẑi and ŵ i are shown for samples 1 and 2, respectively, 
with markers that are expressed denoted by black and not expressed by white. Only subpopulations with ŵik > 1%

are included. Heatmaps of yi are shown for sample 1 in (b) and sample 2 in (d). Cells are given in rows and markers 
are given in columns, with cells ordered by posterior point estimates of their subpopulation indicators, λ̂i,n. High and 
low expression levels are represented by red and blue, respectively, and black represents missing values. Yellow 
horizontal lines separate cells into five subpopulations. In (e), the transpose Ẑ ′i of Ẑi and ŵ i are shown for sample 3, 
with markers that are expressed denoted by black and not expressed by white. Only subpopulations with ŵik > 1%

are included. Heatmaps of yi for sample 3 is shown in (f). Cells are given in rows and markers are given in columns, 
with cells ordered by posterior point estimates of their subpopulation indicators, λ̂i,n. High and low expression levels 
are represented by red and blue, respectively, and black represents missing values. Yellow horizontal lines separate 
cells into five subpopulations.
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for analysis to avoid a further ad-hoc process of finding common clusters among the samples. If 
desired, one might do separate analyses for each of the samples. FlowSOM was considerably faster 
than our model, with a computation time of 6 s on the simulated dataset. FlowSOM identified four 
cell clusters, as summarized in Figure 5, where the cells are rearranged by their cluster membership 
estimates in each sample. The fourth cluster (shown near the top of the heatmaps) is a mix of the 
cells having the true subpopulations 1 and 2 that differ only by markers 4 and 17, and its perform-
ance of cell clustering deteriorates. We again computed the ARI to compare the clustering esti-
mates obtained by FlowSOM to the truth. The ARIs obtained under FlowSOM are 0.945, 
0.738, and 0.935 for samples 1, 2, and 3, respectively. The ARI in sample 2 is especially low 
for FlowSOM because the two cell subpopulations combined by FlowSOM have large abundances 
in the sample. Table 1 summarizes the ARIs from FAM with K = 5 and FlowSOM, and shows that 
our FAM outperforms FlowSOM in estimation of cell clustering. More importantly, FlowSOM 
does not provide a model or inferences for the latent structure of cell subpopulations. For this 
simulation scenario, the FAM easily recovers the truth, but a clustering-based method such as 
FlowSOM may perform poorly in cell clustering. In addition, we compared our FAM to 
FlowMeans (Aghaeepour et al., 2011) and PhenoGraph (Levine, Simonds, Bendall, Davis, 
Tadmor, et al., 2015; Levine, Simonds, Bendall, Davis, El-ad, et al., 2015). Similar to 
FlowSOM, they are cell clustering algorithms based on marker expression levels and available 
in R and Python, respectively. Specifically, FlowMeans is a K-means-based clustering algorithm 
and automatically selects the number of clusters using a change point detection algorithm. 
PhenoGraph constructs a nearest-neighbour graph of cells that represents the phenotypic relation-
ships between cells and partitions the graph into subpopulations of similar cells. As summarized in 
Table 1, compared to the FAM, these methods yield lower ARI values for all samples. FlowMeans 
found four cell clusters by combining the true subpopulations 1 and 2, resulting in poor cell 

(a) (b) (c)

Figure 5. Results of Simulation 1 (continued). Heatmaps of yi for clusters estimated by FlowSOM, with cells 
ordered by the cluster labels λi,n. Cells are in rows and markers are in columns. High, low, and missing expression 
levels are in red, blue, and black, respectively. Yellow horizontal lines separate the identified cell clusters. (a) Sample 1, 
(b) sample 2, and (c) sample 3.

Table 1. Adjusted rand index (ARI) for FAM and the comparators, FlowSOM, FlowMeans, and PhenoGraph, by 
sample for simulation 1

Method Sample 1 Sample 2 Sample 3

FAM (K = 5) 0.999 0.993 0.999

FlowSOM 0.945 0.738 0.935

FlowMeans 0.949 0.732 0.938

PhenoGraph 0.977 0.912 0.968

Note. Higher ARI is better, and values closer to 1 indicate that estimated clusters are closer to the truth.
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clustering. On the other hand, PhenoGraph found seven clusters by including two redundant 
clusters. More discussion of the comparison is included in Online Supplementary Material, 
Section 4.1.

We further examined the performance of our FAM in an additional simulation study, 
Simulation 2, in which we kept most of the set-up used in Simulation 1, but assumed a more com-
plex subpopulation structure with much larger numbers of cells, by assuming KTR = 10 and 
N = (40,000, 5,000, 10,000). ZTR and wTR

i are illustrated in Online Supplementary Material, 
Figure 8. We considered ten models with K = 2, 4, . . . , 20. For the fixed hyperparameters, we 
let L0 = L1 = 5, and the remaining specifications for hyperparameters were the same as those in 
Simulation 1. The model comparison metrics strongly suggest K̂ = 10, for which the posterior 
point estimates of the underlying structure, including Z, w, and λi,n recover the simulation truth 
quite well, as shown in Online Supplementary Material, Figure 11. In contrast, in this case, 
FlowSOM groups cells into two subpopulations that have similar configurations, similarly to 
Simulation 1, and estimates nine cell clusters. The FAM provides direct inference on cell subpopu-
lations, and the cell clustering by subpopulations is superior to that obtained by the comparators. 
Details of Simulation 2, including a sensitivity analysis for the data missingship mechanism and 
fast computation using ADVI, are given in Online Supplementary Material, Section 4.2.

4 Analysis of cord blood-derived NK cell data
We next report an analysis of the CyTOF dataset of surface marker expression levels on 
UCB-derived NK cells. Identifying and characterizing NK cell subpopulations in terms of marker 
expression may serve as a critical step to identifying NK cell subpopulations to develop 
disease-specific therapies for a variety of severe hematologic malignancies. To gain insight into 
the phenotype of cord blood-derived NK cells, CyTOF was used with a customized panel including 
32 antibodies against well-established inhibitory and activating receptors, as well as differenti-
ation, homing, and cytotoxicity markers relevant to NK cell biology and function. Our NK cell 
dataset consists of three samples collected from different cord blood donors, containing 41,474, 
10,454, and 5,177 cells, respectively. We first obtained the cut-off values ci,j using flowDensity 
and computed the transformed raw expression levels, yi,n,j = log (ỹi,n,j/ci,j) if mi,n,j = 1 as explained 
in Section 2.1. We let yi,n,j = NA if mi,n,j = 0. Because markers that are either expressed or not ex-
pressed in most of cells are not informative for constructing subpopulations under our FAM, we 
removed markers having positive values in more than 90% of the cells in all samples, or with miss-
ing or negative values in over 90% of the cells in all samples. We also removed all cells with an 
expression level yi,n,j < −6 for any marker. This accounted for only a very small number of cells, 
and it encourages imputed marker expression levels to be in a reasonable range. Thus, we recom-
mend removing outliers in this fashion. After this preprocessing, J = 20 markers remained and the 
numbers of cells in the samples were Ni= 38,636, 9,555, and 4,827 for subsequent analysis. 
Online Supplementary Material, Table 6 lists the markers included in the analysis. Figure 7b, d, 
and e shows heatmaps of y after rearranging the cells by posterior estimates λ̂in of the cell cluster-
ings for each sample. Using a threshold of 90% to remove some markers yields a reasonable set of 
markers, but may seem arbitrary. We performed the analyses with different choices of the thresh-
old, such as 0.85 and 0.95. The results are presented in Online Supplementary Material, Section 5. 
We also plotted the data using the data visualization technique ‘t-SNE (t-Distributed Stochastic 
Neighbour Embedding)’ in Online Supplementary Material, Figure 18a–c. t-SNE is a popular 
method for visualization of high-dimensional data in a two- or three-dimensional map through 
stochastic neighbour embedding (Maaten & Hinton, 2008; Van Der Maaten, 2014). It also is 
used for detecting clusters in data. We used Barnes-Hut-SNE implemented in the Python library 
sklearn to obtain two-dimensional t-SNE embeddings separately for each sample. For compari-
son, Online Supplementary Material, Figure 18d-(ℓ) plots the obtained two-dimensional 
t-SNEs colour-coded by the clusterings estimated by the comparators. We fit our FAM over a 
grid for K from 3 to 33 in increments of 3, as opposed to increments of 1, due to constraints on 
computational resources available to us. We set L0 = 5 and L1 = 3. We set priors and the data mis-
singship mechanism as outlined in Section 3. The specified values of the fixed hyperparameters al-
low a reasonable amount of prior uncertainty, and with the large values of Ni, the prior has a small 
effect on the posterior inference. Also, as will be shown below, the model’s performance is not 
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sensitive to the specification of βi. Random parameters θ also were initialized in a similar manner. 
6,000 samples from the posterior distribution of the model parameters were obtained after a 
burn-in of 10,000 iterations. The posterior samples were thinned by selecting every other sample 
to yield a total of 3,000 samples. As done in the simulation study, we monitored convergence and 
mixing of the MCMC posterior simulation by inspecting trace plots of the log-likelihood. Online 
Supplementary Material, Figure 17 shows trace plots of the log-likelihood from two independent 
chains with different initial values. The plots show only minor differences, indicating that the two 
chains traced out a common distribution. The burn-in period was, again, chosen via visual inspec-
tion of the trace plots of the log-likelihoods.

Figure 6a and b display LPML and DIC as functions of K. The LPML changes sharply for small 
values of K, and tapers at K = 21, indicating that K̂ = 21. A similar pattern is seen for DIC. As de-
picted in Figure 6c, our additional calibration method also indicates that the models with K > 21 
include more cell subpopulations comprising less than one per cent of a sample (i.e., 


i,k ŵi,k < 1%

is larger), and improve fit only minimally.
Figure 7 summarizes posterior inference on the latent cell population structure with K̂ = 21. The 

cells are grouped by their estimated cell subpopulation indicators λ̂i,n. The figure shows the esti-
mated cell subpopulations Ẑi (in the left column) and clustered marker expression levels yi (in 
the right column) for the samples. Cells having subpopulations with larger ŵi,k are shown at 
the bottom of the heatmaps. The subpopulations with the two largest ŵi,k are different in the sam-
ples. The resulting inference indicates that the composition of the NK cell population varies across 
the samples, pointing to variations in the phenotype of NK cells among different cord blood do-
nors. We observe similarities in the phenotypes of NK cells from samples 2 and 3, however, while 
sample 1 displays a different phenotype and a distinct distribution of cell subsets. NK cells from all 
three samples express 2B4, CD94, DNAM-1, NKG2A, NKG2D, Siglec-7, NKp30, and Zap70 in 
the majority of their identified subpopulations. These markers dictate NK cell functional status. 
While their interactions are very complicated, taken together they provide a basis for determining 
whether NK cells have a normal function, and whether they are mature or not.

Despite great variability between cord blood sample 1 and the other two cord blood samples, all 
three had a significant subset of cells with an immature phenotype. Cord blood 1 Cluster 7, cord 
blood 2 Cluster 17 and cord blood 3 Cluster 6 comprise the largest population of immature cells, 
defined as EOMES (−), TBET (−), and KIR (−). Markers KIR2DL3 and KIR3DL1 belong to killer- 
cell immunoglobulin-like receptors (KIRs). These immature clusters of NK cells still retain expres-
sion of 2B4, NKG2A, NKG2D, CD94 and NKp30. In particular, NKp30 is a natural cytotoxicity 
receptor, while KIR is not. This implies that, despite great variability between sample 1 and the 
other two samples, all three have a significant subset of cells with an immature phenotype. 
Markers EOMES, TBET, Zap70 and KIR are not expressed in the largest subpopulation of 
each sample, indicating that those are subsets of immature cells. An immature phenotype of NK 
cells usually is associated with low diversity and low effector function in the absence of exogenous 
cytokines, Li et al. (2019) and Sarvaria et al. (2017), while a mature NK cell phenotype has been 
linked to superior cytotoxicity and better clinical outcomes in cancer patients (Carlsten & Jaras, 

(a) (b) (c)

Figure 6. Analysis of UCB-derived NK cell data. Plots of (a) LPML, (b) DIC, and (c) calibration metric, for 
K = 3, 6, . . . , 33.
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(a) (b)

(c) (d)

(d) (e)

Figure 7. Analysis of the UCB-derived NK cell data. Ẑ ′i and ŵ i of samples i = 1 and 2 are illustrated in panels (a) and 
(c), respectively, with markers that are expressed denoted by black and not expressed by white. Only 
subpopulations with ŵik > 1% are included. Heatmaps of expression level yi are shown in panels (b) and (d) for 
samples 1 and 2, respectively, with cells in rows and markers columns. Each column thus contains the expression 
levels of one marker for all cells in a sample. High, low, and missing expression levels are red, blue, and black, 
respectively. Cells are ordered by the posterior estimates of their clustering memberships, λ̂i,n. Yellow horizontal 
lines separate cells by different subpopulations. Ẑ ′i and ŵ i of sample 3 are illustrated in panel (e), with markers that 
are expressed dented by black and not expressed by white. Only subpopulations with ŵik > 1% are included. 
Heatmaps of yi are shown in panel (f) for sample 3. Cells are in rows and markers in columns. Each column contains 
the expression levels of a marker for all cells in the sample. High, low, and missing expression levels are red, blue, 
and black, respectively. Cells are ordered by the posterior estimates of their clustering memberships, λ̂i,n. Yellow 
horizontal lines separate cells by different subpopulations. (a) Ẑ ′1 and ŵ1. (b) Clustering of y1nj . (c) Ẑ ′2 and ŵ2. (d) 
Clustering of y2nj . (e) Ẑ ′3 and ŵ3 and (f) Clustering of y3nj .
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2019; Ilander et al., 2017). These immature clusters of NK cells still retain expression of 2B4, 
CD94, NKG2A, NKG2D, and NKp30.

In addition, we identified three subpopulations (12, 15, and 21) that are conserved among the 
three samples, although at lower percentages in sample 1. In these subpopulations, EOMES and 
TBET are expressed, indicating that they are a more mature phenotype. The subset with expres-
sion of EOMES and TBET could be further divided into three subpopulations based on the expres-
sions of markers CD8, CD16, TIGIT, and KIR. Subpopulations 12 and 21 are very similar, sharing 
positivity for CD16, CD8 and TIGIT, and are differentiated by KIR expression, which are negative 
in subpopulation 21 and positive in subpopulation 12. Subpopulation 15, however, is negative for 
CD16, CD8, TIGIT and KIR, making EOMES and TBET its only differentiation markers. These 
novel subsets of cord blood NK cells have not been described in the literature previously, and may 
need to be further validated. We also identified cluster 3 as an important conserved cluster among 
all 3 samples, which is positive for NKG2C, CD62L and CD27, which could indicate a memory 
subset in cord blood NK cells which has not been well described previously. Taken together, these 
data indicate that the FAM allows not only the definition of biologically recognized subsets of NK 
cells, but also may be applied for the discovery of novel NK cell subpopulations.

Model sensitivity to the specification of the data missingship mechanism in the NK cell data ana-
lysis was assessed by fitting the FAM under two additional specifications of β, which we call data 
missingship mechanisms (MM) I and II. We will refer to the previous (default) missingship mech-
anism as MM-0. Online Supplementary Material, Tables 7 and 8 list the different data missingship 
mechanism specifications and the corresponding β values, respectively. Under the different speci-
fications of β, the estimates Ẑi and ŵi are similar, as shown in Online Supplementary Material, 
Figures 20 and 21. The subpopulations estimated under MM-I and MM-II are identical to or differ 
by no more than three markers, when compared to those under MM-0.

We also fit the model to the UCB-derived NK cell data computing posteriors using ADVI with a 
mini-batch size of 2,000 and K = 30 for 20,000 iterations. The runtime was approximately 6 hr on 
the previously described machine. Online Supplementary Material, Figure 22 summarizes the pos-
terior distribution of Z and the posterior mode of cell clusterings λ̂i,n. The cell subpopulations in-
ferred by ADVI are similar to those obtained by MCMC, but the cell clustering estimates are quite 
different. Notably, subpopulations with large ŵik can be found in the estimates obtained by both 
methods, e.g., the subpopulations with the largest abundances in sample 1. For subpopulations 
with smaller ŵik, we do not find clear matches. The cluster sizes obtained by ADVI are larger 
than those obtained from MCMC and cells in the clusters are less homogeneous. It thus appears 
that ADVI should be used very cautiously in this type of setting, and that its shorter runtime com-
pared to MCMC may be a false economy.

For comparison, we also applied the comparators to the UCB data. We fixed the missing values 
of yi,n,j at the minimum of the negative observed values of y for each (i, j) prior to analysis. 
FlowSOM identified 13 cell clusters in the samples. Heatmaps of yi,n,j rearranged by cell clustering 
estimates by FlowSOM are given in Figure 8a–c. Heterogeneity between cells within clusters esti-
mated under FlowSOM is noticeably greater than that under the proposed FAM shown in 
Figure 7. For example, marker 10 shows a mix of red, blue, and black colours for cluster 1, the 
largest cluster. The proportions of cells assigned to the clusters are summarized in Figure 8d. 
The clusters obtained by FlowSOM are much larger than those obtained by the FAM. In particu-
lar, cluster 1 under FlowSOM contains 36.7%, 53.8%, and 54.1% of the cells in samples 1–3, re-
spectively. The cluster estimates by FlowMeans and PhenoGraph are presented in Online 
Supplementary Material, Figures 18 and 19. FlowMeans produces a cluster that contains 
74.82%, 66.44%, and 74.77% of the cells in the samples, respectively. On the other hand, the 
clustering estimate by PhenoGraph has many small clusters, with the largest clusters of the samples 
containing 7.53%, 13.09%, and 15.02% of the cells. More details are presented in Online 
Supplementary Material, Section 5 Lastly, note that the comparators do not produce an explicit 
inference on the characterization of subpopulations. Online Supplementary Material, Table 1
summarizes the time required to fit each of the various models (FAM-MCMC, FAM-ADVI, 
PhenoGraph, FlowSOM, FlowMeans) to each of the two simulated data sets and the real UCB 
data.
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5 Discussion
We have proposed a Bayesian FAM to identify and estimate cell subpopulations using CyTOF 
data. Our FAM identifies latent subpopulations, defined as functions of the marker expression lev-
els, and fits the data in multiple samples simultaneously. The model accounts formally for missing 
values and between-sample variability. The fitted FAM assigns each cell in each sample to exactly 
one subpopulation, but each surface marker can belong to more than one subpopulation. The 
method also yields cell clusters within each sample that are defined in terms of the inferred subpo-
pulations. We constructed a data missingship mechanism based on expert knowledge, and we ex-
amined the robustness of the model to the specification of the missingship mechanism through 
simulation. This showed that inferences were not sensitive to changes in the specification of the 
missingship mechanism. Compared to established clustering methods, including FlowSOM, the 
proposed FAM is more effective at discovering latent subpopulations when the underlying cell 
subpopulations are similar.

(a) (b)

(c) (d)

Figure 8. [CB Data: Comparison to FlowSOM] Heatmaps of cells in (a)–(c) for samples 1–3, respectively. Cells are 
arranged by the cluster membership estimates by FlowSOM. The clusters are separated by yellow horizontal lines, 
with the most abundant clusters in each sample closer to the bottom. High, low, and missing expression levels are 
red, blue, and black, respectively. The proportions of the cells in the estimated clusters are shown in (d). 
(a) Clustering of y1nj , (b) clustering of y2nj , (c) clustering of y3nj , and (d) proportions.
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Our proposed FAM can be extended to accommodate similar but more complex data structures, 
in particular, data including covariates. For example, samples with similar covariates may also 
have similar cell subpopulation structures. The model can incorporate such information by in-
corporating appropriate regression submodels, to enhance inferences and study how the structures 
may change with covariates. One also may introduce the concept of ‘repulsiveness’ to latent fea-
tures and obtain a more parsimonious representation of the latent subpopulations by discouraging 
the creation of redundant subpopulations. Repulsive models, which are more likely to produce 
features that differ from each other substantially, have been developed mostly in the context of 
mixture models (e.g., see Petralia et al., 2012; Quinlan et al., 2018; Xie & Xu, 2019). Xu et al. 
(2016) used the detrimental point process (DPP) for a repulsive FAM that uses the determinant 
of a matrix as a repulsiveness metric. A model that explicitly penalizes the inclusion of similar fea-
tures also can be developed to replace the IBP in our model.
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