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Summary. Advances in understanding the biological underpinnings of many cancers have led
increasingly to the use of molecularly targeted anticancer therapies. Because the platelet-
derived growth factor receptor (PDGFR) has been implicated in the progression of prostate
cancer bone metastases, it is of great interest to examine possible relationships between
PDGFR inhibition and therapeutic outcomes. We analyse the association between change
in activated PDGFR (phosphorylated PDGFR) and progression-free survival time based
on large within-patient samples of cell-specific phosphorylated PDGFR values taken before
and after treatment from each of 88 prostate cancer patients. To utilize these paired sam-
ples as covariate data in a regression model for progression-free survival time, and be-
cause the phosphorylated PDGFR distributions are bimodal, we first employ a Bayesian
hierarchical mixture model to obtain a deconvolution of the pretreatment and post-treatment
within-patient phosphorylated PDGFR distributions. We evaluate fits of the mixture model and
a non-mixture model that ignores the bimodality by using a supnorm metric to compare the
empirical distribution of each phosphorylated PDGFR data set with the corresponding fitted
distribution under each model. Our results show that first using the mixture model to account
for the bimodality of the within-patient phosphorylated PDGFR distributions, and then using
the posterior within-patient component mean changes in phosphorylated PDGFR so obtained
as covariates in the regression model for progression-free survival time, provides an improved
estimation.

Keywords: Bayesian analysis; Markov chain Monte Carlo methods; Platelet-derived growth
factor receptor; Prostate cancer; Survival analysis

1. Introduction

In recent years, clarification of the molecular underpinnings of many types of cancer has yielded
improved therapeutic strategies involving so-called ‘targeted therapies.’ If a molecular target is
found to be present in a tumour, the strategy with targeted therapy is to achieve an antidisease
effect by specific inhibition of the target. Biomarkers that are associated with a therapeutic out-
come may facilitate the process of choosing between existing targeted treatments for individual
patients.
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The platelet-derived growth factor receptor (PDGFR) is an established therapeutic target
in several important cancers. PDGFR is of particular interest in men with advanced prostate
cancer involving bone metastases because it frequently is overexpressed in this cancer. Mathew
et al. (2007) conducted a randomized, placebo-controlled clinical trial of the chemotherapeu-
tic agent docetaxel combined with either the oral phosphorylated PDGFR inhibitor imatinib
mesylate (arm DI) or placebo (arm DP) in patients with this disease, with time to disease
progression or death (progression-free survival (PFS)) as the primary end point. A key sec-
ondary end point in this trial was the amount of inhibition of phosphorylated PDGFR since
the putative effect of imatinib on inhibition of phosphorylated PDGFR coupled with the rela-
tionship that is seen between phosphorylated PDGFR inhibition in an experimental model of
bone metastases (Uehara et al., 2003) suggested that a change in phosphorylated PDGFR level
from its baseline level before treatment to its level post treatment may be related to PFS time.
To measure phosphorylated PDGFR inhibition, peripheral blood samples were drawn from
each patient at two different time points: before chemotherapy, and after treatment with one
cycle of chemotherapy. In each sample, the intensity of expression of activated phosphorylated
PDGFR was measured in each of approximately 2000 individual peripheral blood leucocytes
by using immunofluorescent antibodies, capturing these with laser scanning cytometry. It was
hypothesized that the decrease in phosphorylated PDGFR level might be larger in arm DI
owing to phosphorylated PDGFR inhibition by imatinib and that, in turn, the magnitude of
the decrease might be associated with improved PFS. Because very large samples of cell-spe-
cific phosphorylated PDGFR values were obtained at both measurement times for each patient,
very reliable estimates of mean pretreatment and post-treatment phosphorylated PDGFR levels
within each patient were available. The difference between the pretreatment and post-treatment
within-patient sample mean phosphorylated PDGFR levels proved to be associated with PFS
(Mathew et al., 2007). It was noted that in the control arm with docetaxel alone, arm DP, the
mean phosphorylated PDGFR level rose after therapy, but in arm DI a significantly smaller
decrease in phosphorylated PDGFR was seen. On average, patients who had a smaller increase
in phosphorylated PDGFR, corresponding to greater phosphorylated PDGFR inhibition, had
longer PFS times.

Visual examination of the histograms of the within-patient phosphorylated PDGFR samples
indicates that their distributions are clearly bimodal, both before treatment and post treatment.
This is illustrated by Fig. 1, which gives histograms of the log-transformed phosphorylated
PDGFR values for three typical patients. This observation motivated the statistical reanalysis
of this data set that we report here. The main idea of our analysis is to exploit the fact that we
may reliably estimate the entire distribution of phosphorylated PDGFR expression values at
each measurement time for each patient, rather than only their sample means. We hypothesized
that accounting for the bimodality of the phosphorylated PDGFR distributions would improve
the estimation of PFS by providing a more refined representation of phosphorylated PDGFR
inhibition for use as covariates in the regression model.

Technically, the problem is to estimate each within-patient pretreatment and post-treatment
phosphorylated PDGFR distribution, and then to choose a small number of features from each
distribution for use as covariates in a regression model for PFS. To carry out this analysis, we
first fit a Bayesian hierarchical mixture model to the phosphorylated PDGFR data accounting
for the observed bimodality (McLachlan and Peel, 2000; Gelman et al., 2004). We compared
the fit of this model with that of a corresponding, simpler Bayesian hierarchical model ignor-
ing the bimodality, using a supnorm metric to quantify the distance between the empirical
distribution of each observed within-patient phosphorylated PDGFR sample and the corres-
ponding fitted distribution that is obtained under each model. We then used the posteriors of
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Fig. 1. Histograms of the log-transformed phosphorylated PDGFR values for each of three typical patients:
(a) before chemotherapy, patient 1; (b) before chemotherapy, patient 2; (c) before chemotherapy, patient 3;
(d) post chemotherapy, patient 1; (e) post chemotherapy, patient 2; (f) post chemotherapy, patient 3
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parameters characterizing the mean change in phosphorylated PDGFR level that is obtained
from either components of the fitted mixture model or, as a basis for comparison, from the fitted
non-mixture model, as covariates in a regression model for estimating PFS. In particular, under
either hierarchical model for the phosphorylated PDGFR data, the posterior mean changes
are random quantities, and we account for this randomness when using these as covariates in
the regression models for PFS time. Our results indicate that accounting for the bimodality of
the phosphorylated PDGFR distributions yields a substantive improvement in the fit of the
regression model for PFS.

In Section 2, we describe the data structure of the prostate cancer clinical trial and the Bayes-
ian mixture and survival models. In Section 3, we describe the algorithm that was used to fit the
mixture model. We present our analyses of the phosphorylated PDGFR data in Section 4, and
we close with a brief discussion in Section 5.

2. Data structure and models

2.1. Data structure
As mentioned in Section 1, Mathew et al. (2007) conducted a randomized clinical trial to
compare arms DI (docetaxel plus imatinib) and DP (docetaxel plus placebo) in patients with
advanced prostate cancer involving bone metastases. They accrued patients between April 2003
and July 2005 at five tertiary cancer care centres in the USA. Paired samples of the phosphory-
lated PDGFR values from peripheral blood leukocytes from 88 men (41 in arm DI and 47 in arm
DP) were available before and after treatment. The within-patient leukocyte sample sizes {mi}
taken before treatment and {ni} taken post treatment were very similar, with median{mi} =
2021 (90% confidence interval 2000–2074) and median{ni} = 2031 (90% confidence interval
2000–2103).

For patient i=1, . . . , N, let Xi = .Xi,1, . . . , Xi,mi/ denote the phosphorylated PDGFR values
of the mi cells in the pretreatment blood sample, Yi = .Yi,1, . . . , Yi,ni/ the ni phosphorylated
PDGFR values in the post-treatment sample, with X= .X1, . . . , XN/ and Y = .Y1, . . . , YN/. Let
Ti denote PFS time, T o

i the observed value of Ti or right censoring time and "i =1 if Ti =T o
i and

"i =0 otherwise. We shall utilize the covariates Z1i =1 if patient i received DI and Z1i =0 if DP,
Z2i = 1 if the pretreatment haemoglobin level is greater than 11 g dl−1 and Z2i = 0 if not, and
Z3i the pretreatment to post-treatment increase in prostate-specific antigen (PSA) level, and we
denote Zi = .Z1i, Z2i, Z3i/ and Z= .Z1, . . . , ZN/.

2.2. Non-mixture model for the phosphorylated platelet-derived growth factor receptor data
As a basis for comparison, we first fit the following model that ignores the observed bimodality
of the phosphorylated PDGFR data. Denote the mean pretreatment and post-treatment phos-
phorylated PDGFR values for the ith patient by μxi and μyi respectively, with corresponding
precision (inverse variance) parameters τxi and τyi. Each of these parameters corresponds to the
phosphorylated PDGFR values of all leukocytes in the patient’s peripheral blood at the time
that the sample was taken. We assume patient-specific means μxi =μÅ

xi + ξi and μyi =μÅ
yi + ξi,

where ξi = μxi − μÅ
xi = μyi − μÅ

yi is an effect that is associated with patient i that applies both
before and after treatment. Given the patient-specific parameters θi = .ξi, μÅ

xi, μ
Å
yi, τxi, τyi/, we

assume that each pair Xij and Yik are conditionally independent with the normal distribu-
tions

Xij, Yik|θi
ind∼ N.μÅ

xi + ξi, τ
−1
xi /, N.μÅ

yi + ξi, τ
−1
yi /: .1/
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We assume that the elements of θi are a priori mutually independent with priors ξi ∼N.μ̃ξ , τ̃−1
ξ /,

μÅ
xi ∼N.μ̃Å

x , τ̃Å−1
x /, μÅ

yi ∼N.μ̃Å
y , τ̃Å−1

y /, τxi ∼Ga.ãx, b̃x/ and τyi ∼Ga.ãy, b̃y/. Collecting terms, we
denote the hyperparameter vector by θ̃= .μ̃ξ , τ̃ ξ , μ̃Å

x , τ̃Å
x , μ̃Å

y , τ̃Å
y , ãx, b̃x, ãy, b̃y/, and the ith prior

by p1.θi|θ̃/. To complete the hierarchical model specification, we assume vague normal hyper-
priors with mean 0 and precision 0.001 for μ̃Å

x , μ̃Å
y and μ̃ξ and vague gamma hyperpriors with

both shape and inverse scale 0.001 for τ̃Å
x , τ̃Å

y , τ̃ ξ , ãx, b̃x, ãy and b̃y, and we denote the second-level
prior by p2.θ̃|φ/, where φ is the vector of fixed numerical parameter values that determine the
hyperpriors. Denoting θ = .θ1, . . . , θN/, the posterior of θ given the phosphorylated PDGFR
data X, Y is proportional to the product of the patient-specific likelihoods and priors and the
hyperprior,

p.θ|X, Y/∝
N∏

i=1

[{
mi∏

j=1
f.Xij|ξi, μÅ

xi, τxi/
ni∏

k=1
f.Yik|ξi, μÅ

yi, τyi/

}
p1.θi|θ̃/

]
p2.θ̃|φ/:

Under this model, ξi accounts for correlations between pairs .Xij, Yik/. Since E.Xij/=μÅ
xi +

ξi, each μÅ
xi accounts for correlations between pairs .Xij, Xik/, and μÅ

yi accounts for correla-
tions between pairs .Yij, Yik/. These correlations may be computed analytically as functions of
μ̃ξ , μ̃Å

x , μ̃Å
y , τ̃ ξ , τ̃Å

x , τ̃Å
y , τxi and τyi. We shall focus attention on δi =μyi −μxi, the post-treatment

minus pretreatment change in within-patient mean phosphorylated PDGFR level, when used
as a covariate in a time-to-event regression analysis of PFS.

2.3. Mixture model for the phosphorylated platelet-derived growth factor receptor data
To account for the bimodality that is observed in the within-patient phosphorylated PDGFR
distributions, we now specify a more general version of the model that was given in Section 2.2
by assuming that each within-patient pretreatment and post-treatment phosphorylated PDGFR
distribution is a mixture of two components, a left and a right distribution. To construct these
mixture distributions, we first augment the observed phosphorylated PDGFR data .Xi, Yi/

of the ith patient with the unobserved (latent) patient-specific mixture indicators ζxij = 1 if
the pretreatment value Xij is drawn from the left-hand side component distribution and 0
if from the right-hand side. Similarly, ζyik = 1 for the left- and 0 for the right-hand side of
the post-treatment distribution. We assume that ζxij ∼Bernoulli.λxi/ and ζyik ∼Bernoulli.λyi/.
Generalizing the non-mixture model formulation that was given above, we assume the normal
distributions in Table 1 for each of the left- and right-hand component distributions of Xi and
Yi.

Under the mixture model, the patient-specific parameter vector now has the more refined
structure θi = .ξi, θLi, θRi, λi/ where θLi = .μÅ

xLi, τxLi, μÅ
yLi, τyLi/, θRi = .μÅ

xRi, τxRi, μÅ
yRi, τyRi/

and λi = .λxi, λyi/. Thus, θi has 11 elements under the mixture model compared with five ele-
ments under the non-mixture model.

Table 1. Patient-specific mean and precision parameters

Expressions for left-hand Expressions for right-hand
side distribution side distribution

Mean Precision Mean Precision

Before treatment μxLi =μÅ
xLi + ξi τxLi μxRi =μÅ

xRi + ξi τxRi

Post treatment μyLi =μÅ
yLi + ξi τyLi μyRi =μÅ

yRi + ξi τyRi
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Given θi, each pair Xij and Yik are again conditionally independent, but to specify the
likelihood contribution of .Xi, Yi/ we now also require the latent mixture indicators ζxi =
.ζxi1, . . . , ζximi/ and ζyi = .ζyi1, . . . , ζyini /. Denoting the probability distribution function (PDF)
of a normal distribution with mean μ and precision τ by fN.·|μ, τ /, the mixture model likeli-
hood for the ith patient’s phosphorylated PDGFR data takes the form

mi∏
j=1

{λxifN.Xij|μÅ
xLi + ξi, τxLi/}ζxij{.1−λxi/fN.Xij|μÅ

xRi + ξi, τxRi/}1−ζxij

×
ni∏

k=1
{λyifN.Yik|μÅ

yLi + ξi, τyLi/}ζyik{.1−λyi/fN.Yik|μÅ
yRi + ξi, τyRi/}1−ζyik :

To generalize the priors to account for the left- and right-hand components of the mix-
ture, we assume that the elements of θi are a priori independent, with ξi ∼ N.μ̃ξ , τ̃−1

ξ /, μÅ
xLi ∼

N.μ̃Å
xL, τ̃Å−1

xL /, μÅ
xRi ∼ N.μ̃Å

xR, τ̃Å−1
xR /, μÅ

yLi ∼ N.μ̃Å
yL, τ̃Å−1

yL /, μÅ
yRi ∼ N.μ̃Å

yR, τ̃Å−1
yR /, τxLi ∼ Ga.ãxL,

b̃xL/, τxRi ∼Ga.ãxR, b̃xR/, τyLi ∼Ga.ãyL, b̃yL/, τyRi ∼Ga.ãyR, b̃yR/, λxi ∼Be.α̃x, β̃x/ and λyi ∼
Be.α̃y, β̃y/. We denote the hyperparameter vector by θ̃ = .θ̃1, θ̃2/ where θ̃1 = .μ̃ξ , τ̃ ξ , μ̃Å

xL, τ̃Å
xL,

μ̃Å
xR, τ̃Å

xR, μ̃Å
yL, τ̃Å

yL, μ̃Å
yR, τ̃Å

yR/, θ̃2 = .ãxL, b̃xL, ãxR, b̃xR, ãyL, b̃yL, ãyR, b̃yR, α̃x, β̃x, α̃y, β̃y/. To
avoid non-identifiability in the mixture model, we require the restrictions μÅ

xLi <μÅ
xRi and μÅ

yLi <

μÅ
yRi, which formalize what can be seen clearly in Fig. 1. There are now two post-treatment minus

pretreatment mean differences, δLi =μyLi −μxLi for the left-hand component distributions and
δRi =μyRi −μxRi for the right-hand components. We assume vague normal hyperpriors with
mean 0 and precision 0.001 for μ̃ξ , μ̃Å

xL, μ̃Å
xR, μ̃Å

yL and μ̃yR, and vague gamma hyperpriors with
both shape and inverse scale 0.001 for the rest of the hyperparameters.

2.4. Regression models for estimating progression-free survival
For the regression analyses of PFS, we first fit a set of candidate time-to-event distributions to
the PFS time data, including the exponential, Weibull, gamma and log-normal. In each model,
the linear term includes a main treatment effect (DI versus DP, the imatinib effect), treatment
group-specific effects of haemoglobin Z2i, and treatment group-specific effects of change in
PSA, Z3i. Under the non-mixture model, the linear term for patient i is

ηnon-mix
i =β0 +β1Z1i +{β2Z1i +β3.1−Z1i/}Z2i +{β4Z1i +β5.1−Z1i/}Z3i

+{β6Z1i +β7.1−Z1i/}δi: .2/

The main imatinib effect is β1, the two treatment group-specific effects of haemoglobin are β2
and β3, the two treatment group-specific effects of change in PSA are β4 and β5, and the two
treatment group-specific effects of the mean change in phosphorylated PDGFR, δi, are β6
and β7. Under the mixture model, the linear term for patient i is

ηmix
i =β0 +β1Z1i +{β2Z1i +β3.1−Z1i/}Z2i +{β4Z1i +β5.1−Z1i/}Z3i

+{β6Z1i +β7.1−Z1i/}δLi +{β8Z1i +β9.1−Z1i/}δRi: .3/

This model includes four terms corresponding to the effects of the mean changes in each com-
ponent of the mixture model for phosphorylated PDGFR, β6 and β7 for the effects of δLi within
the two treatment arms and, similarly, β8 and β9 for the corresponding effects of δRi. The formu-
lations (2) and (3) differ from a conventional Bayesian regression model in that, for each patient,
whereas each of the covariates Z1i, Z2i and Z3i is a single value, each covariate δi in equation
(2) or δiL and δiR in equation (3) is itself a random parameter whose posterior distribution is
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estimated from the phosphorylated PDGFR data. In Section 3.2, we shall provide details of the
model and computational algorithm accounting for the randomness of δi from the non-mixture
model, or .δLi, δRi/ from the mixture model.

Denoting either the non-mixture or mixture model form of the linear term by η, we consid-
ered an exponential distribution with PDFf.t|η/= exp.−η/ exp{−exp.−η/t}, a Weibull distri-
bution with PDF

f.t|η, ν/=νtν−1 exp.−η/exp{−exp.−η/tν},

a gamma distribution with PDF

f.t|η, ν/= exp.−η/ν tν−1exp{−exp.−η/t}=Γ.ν/

and a log-normal distribution with PDF

f.t|η, ν/= .ν=2π/1=2t−1exp[−ν{log.t/−η}2=2]:

We assumed vague normal prior distributions with mean 0 and precision 0.001 for the βjs in
each linear term and a vague gamma prior distribution with both shape and inverse scale 0.001
for any of the additional scale or shape parameters ν appearing in the time-to-event model PDF.
To choose a model for the PFS analyses, we compared the fits of the four distributions by using
the deviance information criterion DIC (Spiegelhalter et al., 2002) and the Bayes information
criterion BIC (Schwarz, 1978).

3. Model fitting

We used Markov chain Monte Carlo methods to obtain samples from the posterior distribu-
tions of the parameters for both the non-mixture and the mixture models (Gilks et al., 1996;
McLachlan and Peel, 2000), and also for the time-to-event regression model fits. Each algo-
rithm was run in five parallel chains to assess convergence of the Markov chain Monte Carlo
algorithm. A burn-in of 1000 and a chain of length 20000, retaining every 10th sample, pro-
vided adequate convergence. The sampling scheme that we used to compute posteriors for the
hierarchical mixture model is described in Appendix A.

3.1. Computation of the regression model parameter posterior
Since the patient-specific parameters δi under the non-mixture model, or δiL and δiR under the
mixture model, are used as covariates in the linear terms (2) and (3) of the regression models,
it is important to clarify how the posteriors are computed. For simplicity, denote the PFS time
data by T, the changes in mean phosphorylated PDGFR by δ and the covariate parameters by
β. The posterior of the regression model parameters is

p.β, ν|T, Z, X, Y/=
∫

p.β, ν|T, Z, δ/p.δ|X, Y/dδ: .4/

This accounts for the uncertainty in δ given the phosphorylated PDGFR data. Equation (4)
relies on the assumption that δ is conditionally independent of .T, Z/ given .X, Y/. We computed
the posterior in equation (4) by using the method that is given in section 4.3 of Mwalili et al.
(2005), as follows. At each iteration of the Markov chain Monte Carlo algorithm for obtaining
the posterior of .β, ν/, for each patient i=1, . . . , N, a value of θi was sampled from p.θi|X, Y/,
and the resulting δi = δ.θi/ under the non-mixture model or .δLi, δRi/= .δLi.θi/, δRi.θi// under
the mixture model were incorporated into the linear component of the regression model for
PFS.
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3.2. Goodness-of-fit analysis for the phosphorylated platelet-derived growth factor receptor
models
To compare how well the mixture and non-mixture models fit the phosphorylated PDGFR
data, we used the following supnorm metric. The basic idea is to compute the maximum dis-
tance between the empirical distribution of each pretreatment and post-treatment within-patient
phosphorylated PDGFR sample and the corresponding predictive distribution under each fit-
ted model, and then to use these maximum distances to determine whether the mixture or
non-mixture model provides a better fit. To do this, we first computed the empirical cumulative
distribution functions of Xi and Yi for each i=1, . . . , N:

F̂ i.x/= 1
mi

mi∑
j=1

I.Xij �x/,

Ĝi.y/= 1
ni

ni∑
k=1

I.Yik �y/,

where I.A/ denotes the indicator of the event A. Next, we fixed x0 < mini,j{Xij} and y0 <

mini,j{Yij} and a sufficiently small increment Δ in the domains of X and Y, and computed the
corresponding empirical estimated probability increments

Dxih ≡ F̂ i{x0 + .h+1/Δ}− F̂ i.x0 +hΔ/

and

Dyih ≡ Ĝi{y0 + .h+1/Δ}− Ĝi.y0 +hΔ/

for h= 0, . . . , H and i= 1, . . . , N. We set x0 = y0 = 0:49, Δ= 0:02 and H = 75, after taking the
ranges and variability of X and Y into account. For the mixture model, given ξi and θxi = .μÅ

xLi,
μÅ

xRi, τxLi, τxRi, λxi/, the pretreatment phosphorylated PDGFR distribution was the mixture of
normals

f mix
xi .x|ξi, θxi/=λxi fN.x|ξi +μÅ

xLi, τ
−1
xLi/+ .1−λxi/fN.x|ξi +μÅ

xRi, τ
−1
xRi/,

and we defined the estimated mixture distribution f̂ mix
xi .x/ to be the posterior mean of f mix

xi .x|ξi,
θxi/, with the estimated post-treatment phosphorylated PDGFR mixture distribution f̂ yi

mix.y/

obtained similarly. The supnorm metrics for patient i with data Xi and Yi are

Sxi = max
0�h�H

|Dxih − f̂ mix
xi {x0 + .h+0:5/Δ}|

and

Syi = max
0�h�H

|Dyih − f̂ mix
yi {y0 + .h+0:5/Δ}|,

and we used Si = max{Sxi, Syi} for our goodness-of-fit analysis of the mixture model. For the
non-mixture model, we applied the same method by using the conventional unimodal normal
distributions

f non-mix
xi .x|ξi, μÅ

xi, τxi/=fN.x|ξi +μÅ
xi, τ

−1
xi /

and

f non-mix
yi .y|ξi +μÅ

yi, τyi/=fN.y|ξi +μÅ
yi, τ

−1
yi /:
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4. Results

4.1. Fit of the non-mixture and mixture models to the phosphorylated platelet-
derived growth factor receptor data
The population distributions of the patient-specific mean phosphorylated PDGFR differences
post treatment and before treatment under the non-mixture and mixture models are summa-
rized in Table 2, which gives the posterior means and standard devisions in the population level
distributions for δi, δLi and δRi. The most important message in Table 2 is that the left- and
right-hand component mean changes in phosphorylated PDGFR, δLi and δRi, have very differ-
ent population distributions. Comparing these two distributions with that of δi shows that the
non-mixture model obfuscates the bimodality of the phosphorylated PDGFR distributions, and
that δi is actually a weighted average of δLi and δRi. An interesting property of the pretreatment
and post-treatment mixing proportions λxi and λyi is that the individual posterior estimates
of λxi and λyi are virtually both on average 0.20, but both vary substantially, roughly between
0.05 and 0.40. Moreover, the dispersion of the left-hand component distribution is much larger
than that of the right-hand component. The posterior estimates of the patient-specific standard
deviations of the left-hand components τ

−1=2
xLi and τ

−1=2
yLi are on average about 0.16, whereas

those of the right-hand components τ
−1=2
xRi and τ

−1=2
yRi are on average about 0.05. These statistics

reflect what can be seen in Fig. 1. Thus, the hierarchical model appears to be quite appropriate
for all elements of θi.

Computing the supnorm metrics S1, . . . , S88 to compare the goodness of fit for the non-mix-
ture and mixture models for the within-patient phosphorylated PDGFR data gave median{Si}=
0:098 with fifth and 95th percentiles 0.048 and 0.155 for the non-mixture model, compared with
median{Si}=0:033 with fifth and 95th percentiles 0.016 and 0.055 for the mixture model. Thus,
the mixture model appears to provide a substantially better fit.

4.2 Regression analyses for progression-free survival time
Table 3 gives the DIC- and BIC-values for the fitted regression models for PFS, under the
mixture formulation, for each of four event time distributions. Both statistics indicate that the
log-normal distribution gives the best fit. In particular, this allows the hazard of PFS time to
be non-monotone.

Table 2. Summary of the posterior distributions of the means and standard deviations
SD of the population level parameters for the patient-specific post-treatment minus pre-
treatment mean phosphorylated PDGFR differences, obtained under either the non-mix-
ture model or the mixture model

Model Population level Posterior quantities
parameter

Mean 5% quantile 95% quantile

Non-mixture Mean(δi/= μ̃Å
y − μ̃Å

x 0.016 0.008 0.024
SD(δi/= .τ̃Å−1

y + τ̃Å−1
x /1=2 0.047 0.042 0.053

Mixture Mean(δLi/= μ̃Å
yL − μ̃Å

xL 0.035 0.032 0.038
SD(δLi/= .τ̃Å−1

yL + τ̃Å−1
xL /1=2 0.070 0.060 0.087

Mean(δRi/= μ̃Å
yR − μ̃Å

xR 0.007 0.006 0.009
SD(δRi/= .τ̃Å−1

yR + τ̃Å−1
xR /1=2 0.053 0.047 0.058
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Table 3. Deviance information criterion
DIC and Bayesian information criterion
BIC for four competing event time distri-
butions used to estimate PFS time under
the mixture model

Distribution DIC BIC

Exponential 417.62 451.10
Weibull 405.67 442.38
Gamma 405.16 442.37
Log-normal 397.03 433.19

Table 4. Fitted log-normal non-mixture and mixture regression models for estimating PFS time†

Variable Results for the Results for the Results for the reduced
non-mixture model mixture model mixture model

β̂ (SD) Pr(β >0|data) β̂ (SD) Pr(β >0|data) β̂ (SD) Pr(β >0|data)

Intercept 1.02 (0.37) 0.997 1.08 (0.38) 0.997 1.11 (0.36) 0.999
DI versus DP −0.04 (0.60) 0.468 −0.15 (0.62) 0.405 −0.16 (0.59) 0.388
Haemoglobin in DI 0.87 (0.51) 0.956 0.93 (0.51) 0.968 0.91 (0.50) 0.964
Haemoglobin in DP 0.76 (0.40) 0.970 0.68 (0.41) 0.952 0.68 (0.39) 0.960
PSA in DI −0.27 (0.18) 0.059 −0.24 (0.18) 0.083 −0.24 (0.18) 0.080
PSA in DP −0.33 (0.14) 0.010 −0.33 (0.15) 0.010 −0.35 (0.14) 0.005
δi in DI 1.61 (2.64) 0.732 — — — —
δi in DP 3.26 (3.63) 0.819 — — — —
δLi in DI — — 0.06 (1.30) 0.519 — —
δLi in DP — — 0.84 (1.18) 0.766 — —
δRi in DI — — 3.29 (3.48) 0.830 3.30 (3.40) 0.836
δRi in DP — — 5.72 (3.57) 0.947 5.29 (3.52) 0.936

DIC 395.15 397.03 393.07
BIC 425.07 433.19 422.70

†The reduced mixture model includes the right-hand mean changes but not the left-hand mean changes in phos-
phorylated PDGFR. The posterior mean of each regression coefficient is denoted by β̂, with its standard deviation
SD given in parentheses. DIC is the deviance information criterion, BIC the Bayesian information criterion, DI
the docetaxel plus imatinib arm and DP the docetaxel plus placebo arm.

Table 4 summarizes three fitted log-normal regression models, first using the non-mixture
model for phosphorylated PDGFR to obtain a single mean change δi for use as a covariate,
then using the pair of mean changes δLi and δRi that are obtained from the mixture model as co-
variates and finally a reduced model using only the right-hand component estimated means δRi.
In all fits, as shown earlier in the definitions of ηnon-mix

i and ηmix
i , the effects of these

covariates on PFS were evaluated by assuming a fully interactive model with different
covariate effects within the two treatment arms. Under the Bayesian formulation, for a given
covariate a coefficient β with posterior concentrated around 0 corresponds to no effect, whereas
a value of Pr.β > 0|data/ close to either 0 or 1 has the interpretation that PFS changes
substantially with the covariate. This corresponds to a small p-value in a frequentist anal-
ysis, but without the usual problem of interpretability. Under the log-normal model, β > 0
and β < 0 correspond respectively to longer and shorter PFS, on average. Thus, the positive
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values of the pretreatment haemoglobin effects correspond to a higher pretreatment haemo-
globin level being associated with longer PFS. The negative values of the post-treatment PSA
minus pretreatment PSA effects correspond to the well-known fact that a rising PSA is asso-
ciated with disease progression in prostate cancer. However, this effect was much larger in
the placebo arm than in the imatinib arm, which suggests that imatinib may disrupt the
effect of change in PSA on PFS time. Whereas the mean change δi that is obtained from the
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Fig. 2. Plots of the estimated hazard functions under the final log-normal mixture model, given in Table 4,
that includes δRi but not δLi (within each of the six plots, the three hazards correspond to δRi set equal to its
10% (-- - - - - - ), mean ( ) and 90% (– – –) points; the remaining covariate, haemoglobin, is set equal
to its mean in all plots): (a) arm DI, PSA 10th percentile; (b) arm DI, PSA 50th percentile; (c) arm DI, PSA
90th percentile; (d) arm DP, 10th percentile; (e) arm DP, 50th percentile; (f) arm DP, 90th percentile
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non-mixture model is moderately associated with PFS, the effect of the mean change δRi from
the mixture model is quite strong in the DP arm. It thus appears that δi has been deconvol-
uted into a strongly associated component δRi and a weakly associated component δLi by
the mixture model. This is supported by the DIC- and BIC-values in Table 4, which indicate
that the regression model including δRi but not δLi in each arm gives a better fit than either
the regression model including both δLi and δRi, or including only δi from the non-mixture
model.

Fig. 2 gives plots of the estimated covariate-adjusted hazard functions under the reduced
log-normal model that includes δRi but not δLi. Figs 2(a)–2(c) and Figs 2(d)–2(f) correspond
respectively to the DI and DP arms, Figs 2(a) and 2(d), 2(b) and 2(e), and 2(c) and 2(f) cor-
respond to an increase in PSA evaluated respectively at its 10th, 50th and 90th percentiles, and
within each of the six plots the estimated hazard is given for δRi evaluated at its 10%, mean
and 90% points. Fig. 2 may be regarded as a graphical analysis of covariance, illustrating the
increasing hazard of disease progression with larger increase in PSA, a higher hazard in the
imatinib arm compared with placebo, a decreasing hazard with larger δRi and the interactions
of both the increase in PSA and δRi with treatment arm.

5. Discussion

In this analysis, we assumed patient-specific mean and precision parameters to analyse the
phosphorylated PDGFR data, and we introduced patient-specific mixture parameters for de-
convoluting the phosphorylated PDGFR distributions. Rather than fixing hyperparameters of
priors for the patient-specific parameters, we assumed a hierarchical model. One could assume
simpler, more parsimonious models, e.g. a model where common data precision parameters are
assumed among patients. For the phosphorylated PDGFR data, however, the goodness-of-fit
analyses that were based on the supnorm metric indicated that the models including patient-
specific precision parameters provide better fits.

The fact that the δRi-effect was much larger in the placebo arm compared with the imatinib
arm, like the PSA effect, may indicate that imatinib disrupts the effect of the change in phosphor-
ylated PDGFR. It may be hypothesized that the two component distributions of phosphorylated
PDGFR represent different subsets of leukocytes, i.e. neutrophils, monocytes or lymphocytes,
with variable roles in facilitating antitumour efficacy of taxane therapy. Alternatively, they
may simply represent two leukocyte subpopulations that have different capacities as cellular
surrogates for a pharmaco-dynamic signature of antitumour efficacy, but with no functional
difference. A third possibility is that the left-hand component distribution is an artefact of a
problem with the laboratory method, although we have not been able to identify such a source
of the bimodality.

Our analyses show that, although a decline in PSA and a rise in phosphorylated PDGFR are
associated with longer PFS, these effects are much smaller in the imatinib arm. These results sug-
gest that imatinib may disrupt the effects of these covariates on PFS. To validate this apparent
effect of imatinib, however, further investigation with a larger cohort of patients would be
required.
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Appendix A

The Markov chain Monte Carlo sampling scheme that we used to fit the mixture model was carried out as
follows. We used Gibbs sampling from standard conditional distributions (steps 1–8) in combination with
Metropolis–Hastings steps for sampling from non-standard conditional distributions (steps 9 and 10).

First, initialize the parameters ξ.0/
i , μÅ.0/

xLi , μÅ.0/
xRi , μÅ.0/

yLi , μÅ.0/
yRi , τ .0/

xLi, τ
.0/
xRi, τ

.0/
yLi, τ

.0/
yRi, λ

.0/
xi and λ.0/

yi for i=1, . . . , N

and the hyperparameters μ̃.0/
ξ , μ̃xL

Å.0/, μ̃xR
Å.0/, μ̃yL

Å.0/, μ̃yR
Å.0/, τ̃ ξ

.0/, τ̃ xL
Å.0/, τ̃ xR

Å.0/, τ̃ yL
Å.0/, τ̃ yR

Å.0/, α̃.0/
x , β̃.0/

x , α̃.0/
y , β̃y

.0/, ã
.0/
xL ,

b̃xL
.0/, ã

.0/
xR, b̃

.0/
xR, ã

.0/
yL, b̃

.0/
yL, ã

.0/
yR and b̃

.0/
yR by using the within-patient pretreatment and post-treatment empirical

means and variances of the phosphorylated PDGFR samples to obtain the initial values.
For each iteration t =1, 2, . . . , carry out the following steps.

Step 1: sample the latent mixture indicator variables ζ.t+1/
xij and ζ.t+1/

yik , for j = 1, . . . , mi and k =
1, . . . , ni, respectively from Bernoulli.z.t/

xij/ and Bernoulli(z.t/
yik) distributions, where

z
.t/
xij = λ.t/

xi fN.Xij|μÅ.t/
xLi + ξ.t/

i , τ .t/
xLi/

λ.t/
xi fN.Xij|μÅ.t/

xLi + ξ.t/
i , τ .t/

xLi/+ .1−λ.t/
xi /fN.Xij|μÅ.t/

xRi + ξ.t/
i , τ .t/

xRi/
,

z
.t/
yik = λ.t/

yi fN.Yik|μÅ.t/
yLi + ξ.t/

i , τ .t/
yLi/

λ.t/
yi fN.Yik|μÅ.t/

yLi + ξ.t/
i , τ .t/

yLi/+ .1−λ.t/
yi /fN.Yik|μÅ.t/

yRi + ξ.t/
i , τ .t/

yRi/
,

and repeat this step for each i=1, . . . , N.
Step 2: sample ξ.t+1/

i for i=1, . . . , N from the normal distribution

N

{
M

.t/
ξ

S
.t/
ξ

, .S
.t/
ξ /−1

}
.5/

where

M
.t/
ξ = τ̃ .t/

ξ μ̃.t/
ξ + τ .t/

xLi

(
mi∑

j=1
ζ.t+1/

xij

)
.X̄Li −μÅ.t/

xLi /+ τ .t/
xRi

{
mi∑

j=1
.1− ζ.t+1/

xij /

}
.X̄Ri −μÅ.t/

xRi /

+ τ .t/
yLi

(
ni∑

k=1
ζ.t+1/

yik

)
.ȲLi −μÅ.t/

yLi /+ τ .t/
yRi

{
ni∑

k=1
.1− ζ.t+1/

yik /

}
.ȲRi −μÅ.t/

yRi /

and

S
.t/
ξ = τ̃ .t/

ξ + τ .t/
xLi

mi∑
j=1

ζ.t+1/
xij + τ .t/

xRi

mi∑
j=1

.1− ζ.t+1/
xij /+ τ .t/

yLi

ni∑
k=1

ζ.t+1/
yik + τ .t/

yRi

ni∑
k=1

.1− ζ.t+1/
yik /:

Also

X̄Li =
(

mi∑
j=1

ζ.t+1/
xij Xij

)/
mi∑

j=1
ζ.t+1/

xij ,

X̄Ri =
{

mi∑
j=1

.1− ζ.t+1/
xij /Xij

}/
mi∑

j=1
.1− ζ.t+1/

xij /,

ȲLi =
{

ni∑
k=1

ζ.t+1/
yik Yik

}/
ni∑

k=1
ζ.t+1/

yik

and

ȲRi =
{

ni∑
k=1

.1− ζ.t+1/
yik /Yik

}/
ni∑

k=1
.1− ζ.t+1/

yik /:

Step 3: sample μÅ.t+1/
xLi and μÅ.t+1/

xRi for i=1, . . . , N, under the constraint μÅ.t+1/
xLi <μÅ.t+1/

xRi , using the inverse
cumulative distribution method, through the following substeps 3(a)–3(d).
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(a) Sample μxLi
.t+1/ from the normal distribution

N

{
M

.t/
μxL

S
.t/
μxL

, .S
.t/
μxL/−1

}
.6/

where

M
.t/
μxL = τ̃Å.t/

xL μ̃Å.t/
xL + τ .t/

xLi

(
mi∑

j=1
ζ.t+1/

xij

)
.X̄Li − ξ.t+1/

i /

and

S
.t/
μxL = τ̃Å.t/

xL + τ .t/
xLi

mi∑
j=1

ζ.t+1/
xij :

(b) Calculate
∫ ∞

μ
Å.t+1/
xLi

φ.μÅ
xRi/dμÅ

xRi =1−Φ.μÅ.t+1/
xLi /, where the quantity Φ.μÅ.t+1/

xLi / is the normal cumu-
lative distribution function at μxLi

Å.t+1/ under the normal distribution

N

{
M

.t/
μxR

S
.t/
μxR

, .S
.t/
μxR/−1

}
.7/

where

M
.t/
μxR = τ̃Å.t/

xR μ̃Å.t/
xR + τ .t/

xRi

{
mi∑

j=1
.1− ζ.t+1/

xij /

}
.X̄Ri − ξ.t+1/

i /

and

S
.t/
μxR = τ̃Å.t/

xR + τ .t/
xRi

mi∑
j=1

.1− ζ.t+1/
xij /:

(c) Sample u
.t+1/
2 from U{Φ.μÅ.t+1/

xLi /, 1}.
(d) Sample μÅ.t+1/

xRi from Φ−1.u
.t+1/
2 /, where Φ−1.u

.t+1/
2 / is the inverse normal cumulative distribution

function evaluated at u
.t+1/
2 under the normal distribution (7).

Step 4: sample μÅ.t+1/
yLi and μÅ.t+1/

yRi for i=1, . . . , N, similarly to step 3, under the restriction that μÅ.t+1/
yLi <

μÅ.t+1/
yRi .

Step 5: sample the mixture parameters λ.t+1/
xi and λ.t+1/

yi for i=1, . . . , N respectively from

Be
(

α̃.t/
x +

mi∑
j=1

ζ.t+1/
xij , β̃

.t/

x +mi −
mi∑

j=1
ζ.t+1/

xij

)

and

Be
(

α̃.t/
y +

ni∑
k=1

ζ.t+1/
yik , β̃

.t/

y +ni −
ni∑

k=1
ζ.t+1/

yik

)
,

where .α̃x, β̃x/ and .α̃y, β̃y/ denote the hyperparameters of the priors of λxi and λyi respectively. The
simulations in this step are subject to the constraint that λ.t+1/

xi and λ.t+1/
yi are restricted to the interval

[0.001, 0.999].
Step 6: sample τ .t+1/

xLi , τ .t+1/
xRi , τ .t+1/

yLi and τ .t+1/
yRi for i=1, . . . , N respectively from

Ga

⎧⎨
⎩ã

.t/
xL +

mi∑
j=1

ζ.t+1/
xij

2
, b̃

.t/

xL +

mi∑
j=1

ζ.t+1/
xij .Xij −μÅ.t+1/

xLi − ξ.t+1/
i /2

2

⎫⎬
⎭,

Ga

⎧⎨
⎩ã

.t/
xR +

mi∑
j=1

.1− ζ.t+1/
xij /

2
, b̃

.t/

xR +

mi∑
j=1

.1− ζ.t+1/
xij /.Xij −μÅ.t+1/

xRi − ξ.t+1/
i /2

2

⎫⎬
⎭,
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Ga

⎧⎨
⎩ã

.t/
yL +

ni∑
k=1

ζ.t+1/
yik

2
, b̃

.t/

yL +

ni∑
k=1

ζ.t+1/
yik .Yik −μÅ.t+1/

yLi − ξ.t+1/
i /2

2

⎫⎬
⎭

and

Ga

⎧⎨
⎩ã

.t/
yR +

ni∑
k=1

.1− ζ.t+1/
yik /

2
, b̃

.t/

yR +

ni∑
k=1

.1− ζ.t+1/
yik /.Yik −μÅ.t+1/

yRi − ξ.t+1/
i /2

2

⎫⎬
⎭,

where .ãxL, b̃xL/, .ãxR, b̃xR/, .ãyL, b̃yL/ and .ãyR, b̃yR/ denote the hyperparameters of the priors of τxLi,
τxRi, τyLi and τyRi respectively.
Step 7: sample μ̃.t+1/

ξ , μ̃Å.t+1/
xL , μ̃Å.t+1/

yL , μ̃Å.t+1/
xR and μ̃Å.t+1/

yR respectively from the normal distributions

N

{
τφ
ξ μφ

ξ +N τ̃ .t/
ξ μ̄.t+1/

ξ

τφ
ξ +N τ̃ .t/

ξ

, .τφ
ξ +N τ̃ .t/

ξ /−1

}
,

N

{
τφ

xLμφ
xL +N τ̃Å.t/

xL μ̄Å.t+1/
xL

τφ
xL +N τ̃Å.t/

xL

, .τφ
xL +N τ̃Å.t/

xL /−1

}
,

N

{
τφ

xRμφ
xR +N τ̃Å.t/

xR μ̄Å.t+1/
xR

τφ
xR +N τ̃Å.t/

xR

, .τφ
xR +N τ̃Å.t/

xR /−1

}
,

N

{
τφ

yLμφ
yL +N τ̃Å.t/

yL μ̄Å.t+1/
yL

τφ
yL +N τ̃Å.t/

yL

, .τφ
yL +N τ̃Å.t/

yL /−1

}

and

N

{
τφ

yRμφ
yR +N τ̃Å.t/

yR μ̄Å.t+1/
yR

τφ
yR +N τ̃Å.t/

yR

, .τφ
yR +N τ̃Å.t/

yR /−1

}
,

where μ̄ξ
.t+1/ = N−1ΣN

i=1ξ
.t+1/
i , μ̄Å.t+1/

xL = N−1ΣN
i=1μ

Å.t+1/
xLi , μ̄Å.t+1/

yL = N−1ΣN
i=1μ

Å.t+1/
yLi , μ̄Å.t+1/

xR = N−1 ×
ΣN

i=1μ
Å.t+1/
xRi and μ̄Å.t+1/

yR = N−1ΣN
i=1μyRi

Å.t+1/. The pairs of .μφ
ξ , τφ

ξ /, .μφ
xL, τφ

xL/, .μφ
xR, τφ

xR/, .μφ
yL, τφ

yL/ and
.μφ

yR, τφ
yR/ are fixed numerical mean and precision parameter values that determine the hyperpriors

for μ̃ξ , μ̃Å
xL, μ̃Å

yL, μ̃Å
xR and μ̃Å

yR respectively.
Step 8: sample τ̃ ξ

.t+1/, τ̃ xL
Å.t+1/, τ̃ yL

Å.t+1/, τ̃ xR
Å.t+1/ and τ̃Å.t+1/

yR respectively from

Ga
[
a

φ
ξ +N,

{
b

φ
ξ +

N∑
i=1

.ξ.t+1/
i − μ̃.t+1/

ξ /2

}−1 ]
,

Ga
[
a

φ
xL +N,

{
b

φ
xL +

N∑
i=1

.μÅ.t+1/
xLi − μ̃Å.t+1/

xL /2

}−1 ]
,

Ga
[
a

φ
xR +N,

{
b

φ
xR +

N∑
i=1

.μÅ.t+1/
xRi − μ̃Å.t+1/

xR /2

}−1 ]
,

Ga
[
a

φ
yL +N,

{
b

φ
yL +

N∑
i=1

.μÅ.t+1/
yLi − μ̃Å.t+1/

yL /2

}−1 ]
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and

Ga
[
a

φ
yR +N,

{
b

φ
yR +

N∑
i=1

.μÅ.t+1/
yRi − μ̃Å.t+1/

yR /2

}−1 ]
:

The pairs of .a
φ
ξ , b

φ
ξ /, .a

φ
xL, b

φ
xL/, .a

φ
xR, b

φ
xR/, .a

φ
yL, b

φ
yL/ and .a

φ
yR, b

φ
yR/ are fixed numerical shape and inverse

scale parameter values that determine the hyperpriors for τ̃ ξ , τ̃Å
xL, τ̃Å

yL, τ̃Å
xR and τ̃Å

yR respectively.
Step 9: generate .α̃.t+1/

x , β̃
.t+1/

x / and .α̃.t+1/
y , β̃

.t+1/

y / by using the Metropolis–Hastings algorithm. The
Metropolis–Hastings algorithm was implemented using a product of two independent log-normal dis-
tributions as a proposal distribution.

(a) Draw a sample as a candidate for new α̃x from a log-normal distribution with mean m
.t/
α̃x

and
standard deviation σα̃x fixed at 0.1 on the log-scale. m

.t/
α̃x

is given by log(α̃.t/
x /+σ2

α̃x
. Perform the

same sampling for β̃x with σβ̃x
fixed at 0.15.

(b) Compute a ratio r.t+1/ defined as

r.t+1/ = p.α̃new
x , β̃

new

x |λx/

p.α̃.t/
x , β̃

.t/

x |λx/

q.α̃.t/
x , β̃

.t/

x |α̃new
x , β̃

new

x /

q.α̃new
x , β̃

new

x |α̃.t/
x , β̃

.t/

x /

where q.·/ denotes a proposal distribution and λx = .λx1, . . . , λxN/.
(c) Accept the new candidates with a probability min(1, r.t+1/); otherwise the values of α̃x and β̃x

remain unchanged.
(d) Generate α̃.t+1/

y and β̃
.t+1/

y , similarly to steps 9(a)–9(c).

Step 10: generate .ã
.t+1/
xL , b̃

.t+1/

xL /, .ã
.t+1/
xR , b̃

.t+1/

xR /, .ã
.t+1/
yL , b̃

.t+1/

yL / and .ã
.t+1/
yR , b̃

.t+1/

yR /, using the Metropol-
is–Hastings algorithms, similarly to step 9.
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