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Abstract
A Bayesian method is proposed for personalized treat-
ment selection in settings where data are available
from a randomized clinical trial with two or more out-
comes. The motivating application is a randomized trial
that compared letrozole plus bevacizumab to letrozole
alone as first-line therapy for hormone receptor-positive
advanced breast cancer. The combination treatment arm
had larger median progression-free survival time, but
also a higher rate of severe toxicities. This suggests that
the risk-benefit trade-off between these two outcomes
should play a central role in selecting each patient’s
treatment, particularly since older patients are less likely
to tolerate severe toxicities. To quantify the desirability
of each possible outcome combination for an individ-
ual patient, we elicited from breast cancer oncologists
a utility function that varied with age. The utility was
used as an explicit criterion for quantifying risk-benefit
trade-offs when making personalized treatment selec-
tions. A Bayesian nonparametric multivariate regression
model with a dependent Dirichlet process prior was fit
to the trial data. Under the fitted model, a new patient’s
treatment can be selected based on the posterior pre-
dictive utility distribution. For the breast cancer trial
dataset, the optimal treatment depends on the patient’s
age, with the combination preferable for patients 70
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years or younger and the single agent preferable for
patients older than 70.

K E Y W O R D S

Bayesian nonparametrics, dependent Dirichlet process, multivariate
probit regression, precision medicine, statistical decision making,
utility function

1 INTRODUCTION

Nearly all published clinical trial results focus on statistical inferences about effects of treatments
and patient prognostic variables on clinical outcomes. This may fall short of what is needed
by practicing physicians to make informed treatment decisions for individual patients. In many
settings, estimated effects on efficacy and toxicity lead to conflicting treatment choices, and
the relative desirability of two treatments also may vary with patient prognostic variables. Our
motivating dataset, which illustrates this class of problems, arose from a phase III study of
targeted agents for treating hormone receptor-positive advanced breast cancer, reported by
Dickler et al. (2016). Patients were randomized between letrozole plus bevacizumab (L + B) and
letrozole plus placebo (L). The primary efficacy endpoint was progression-free survival (PFS)
time, defined as the time from the treatment to disease progression or death from any cause. Due
to safety concerns, 21 different types of toxicity were monitored, including the type and grade
(0 = none to 5 = fatal) of each occurrence. A statistically significant PFS improvement was
seen with L + B compared to L (one-sided p-value = 0.016), with estimated median PFS
20.2 months (95% confidence interval, CI, 17.0–24.1) with L + B compared to 15.6 months
(95% CI 12.9 – 19.7) with L. Consideration of toxicities led to the opposite conclusion, with
46.8% of patients treated with L + B experiencing severe (grade ≥ 3) toxicities compared to
14.2% with L.

Considering each outcome alone, selecting an optimal treatment is straightforward, since
longer PFS and less toxicity each is more desirable. This leads to the problematic conclusions that
L + B is preferable in terms of PFS but L is preferable in terms of toxicity. Thus, when considering
these two outcomes together, as must be done in practice by a physician when choosing between
the treatments for an individual patient, decision making is not straightforward. In our analy-
ses, rather than dichotomizing toxicity severity, we will use total toxicity burden (TTB) (Bekele
& Thall, 2004; Le-Rademacher et al., 2020) to summarize each patient’s adverse events. In gen-
eral, for K toxicities z = (z1, … , zK), where each zk is a grade in {0, … , J − 1}, we define the
scaled TTB to be q =

∑K
k=1zk∕{K × (J − 1)}, which takes on values between 0 and 1. Figure 1 illus-

trates the TTB distributions and Kaplan–Meier estimates of the PFS survival function for each
treatment arm in the breast cancer dataset, with L + B represented by blue and L by red. The
questions that we will address in this paper are how one may use the available data to choose
between L + B and L for a new breast cancer patient, and how this may be done in other, similar
settings.

We assume that each patient’s data can be summarized as a vector, y, of clinical outcomes,
a vector, x, of prognostic covariates, and a treatment indicator variable, 𝜏. A Bayesian regres-
sion model, f ( y | 𝜏, x, 𝜽) is assumed and fit to the data, where 𝜽 denotes the model’s parameter
vector. For the breast cancer trial data, y = (y1, y2) with y1 = PFS time and y2 = TTB. Using the
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LEE et al. 1607

F I G U R E 1 For the breast cancer data, histograms of scaled total toxicity burden (TTB) are given in panels
(a) and (b). Panel (c) illustrates Kaplan–Meier estimates of survival functions, S(t). Blue and red represent
treatments, letrozole plus bevacizumab (L + B) and letrozole plus placebo (L) respectively. [Colour figure can be
viewed at wileyonlinelibrary.com]

breast cancer trial data for illustration, we extend the usual statistical process of data analysis by
connecting it with medical decision making by practicing physicians. To do this, we first construct
a family of utility functions, with each utility assigning numerical desirability scores U( y, x) to
all y = (PFS time, TTB) pairs for a patient with prognostic variables x. In a given setting, a physi-
cian and patient may choose a particular utility function from the family that best represents the
patient’s subjective trade-offs. Because the trade-off between PFS and TTB may vary with x, the
desirability of a particular pair of treatment options may not be the same for all patients, and this
may lead to different treatment preferences for two patients having different x.

Decision analysis based on utility functions certainly is not new. This has been studied and
applied in many areas, including business (e.g. Loewenstein et al., 1989; Pennings & Smidts,
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2003), engineering (e.g. Bagočius et al., 2014; Chen et al., 1998) and operations research (e.g. Roy
et al., 2017; Walsh et al., 2004). Two papers of a five-part primer on medical decision analysis are
given by Detsky et al. (1997) and Naglie et al. (1997). However, formal utility-based decision proce-
dures are seldom included in statistical data analysis reports. Our application of the methodology
to the breast cancer dataset illustrates how a utility function and Bayesian statistical model can be
used to choose between two treatments for a patient with given prognostic variables. To establish
the idea that outcome utilities can be used as practical tools for decision making, and illustrate
the range of potential applications, Supplementary Section 2 provides examples of utility func-
tions for different types of outcome vectors. These include a one-dimensional ordinal outcome,
binary (response, toxicity) indicators, and the two ordinal categorical outcomes (disease status,
toxicity severity).

For the breast cancer data analysis, we develop a robust Bayesian regression model,
f ( y | 𝜏, x, 𝜽), that assumes latent patient frailties to account for association among the elements of
y and z, and describes how each outcome varies as a function of treatment, 𝜏, and baseline covari-
ates, x. We formulate a joint Bayesian nonparametric (BNP) multivariate regression model that
includes a vector of continuous latent variables defined to represent ordinal toxicity outcomes,
using the dependent Dirichlet process (DDP) (MacEachern, 1999). We use a linear DDP devel-
oped by De Iorio et al. (2004, 2009). DDP models are highly flexible and provide a robust basis for
inferences about regression relationships. BNP models have been applied to a broad range of sta-
tistical problems, including density estimation, regression, clustering and survival analysis. See,
for example, Müller et al. (2015) for general applications, Mitra and Müller (2015) for applica-
tions in biostatistics, or Müller and Mitra (2013); Thall et al. (2017) for overviews and illustrations.
Given a Bayesian model f ( y | 𝜏, x, 𝜽) and utility function U( y, x), we use posterior predictive
utility distributions as a basis for deciding between treatments for a new patient with prognostic
variables x. We choose the treatment that yields the greatest posterior mean utility.

The remainder of the paper is organized as follows. Section 2.1 formulates a bivariate regres-
sion model for clinical outcomes PFS time and TTB, and provides a predictive distribution of (PFS,
TTB) for a future patient as a function of the patient’s covariates and each potential treatment
that may be given to the patient. Section 2.2 provides computational details for implementation.
In Section 3, we describe a utility function that varies with PFS, TTB and covariates in order to
represent a personalized risk-benefit trade-off between PFS and TTB. The utility function is con-
structed using separate contributions from PFS time and TTB, with each contribution constrained
so that it is logically consistent and reflects elicited expert opinion. The predictive distribution
allows one to estimate the utility of each treatment for a future patient with given covariates, and
provides a way to compute the probability that each treatment is preferred for the future patient.
In Section 4, we illustrate the methodology by applying it to make personalized treatment selec-
tions based on the breast cancer trial data. In Section 5, a simulation study is presented to illustrate
general properties of the proposed decision-making approach. We close with a brief discussion in
Section 6.

2 A BNR MODEL

2.1 Sampling distribution and prior specification

Let ti ∈ R+ denote PFS time during the follow-up period (0, ci], for patient i = 1, … , n. The
observed time of failure (progression or death) or independent administrative censoring at ci is
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LEE et al. 1609

to
i = min(ti, ci), with 𝛿i = 1 if PFS time was observed, ti ≤ ci, and 𝛿i = 0 if censored, ti > ci. Denote

the ordinal variable zi,k ∈ {0, 1, … , J − 1} for the maximum grade that patient i experienced of
toxicity type k = 1, … , K. Censoring is assumed to be independent of ti, toxicity occurrences,
and covariates. Denote the ith patient’s vector of baseline covariates by xi = (xi,1, … , xi,P), and
the observed data by  = {(to

i , 𝛿i, zi, 𝜏i, xi), i = 1, … ,n}, where zi = (zi,1, … , zi,K). In the breast
cancer dataset, there are n = 340 patients after removing three patients having to = 0, K = 21
toxicity categories and J = 6 severity grades, where grade 0 = no occurrence of that toxicity type
and 5 = death. If a subject died due to a toxicity type k occurrence, the corresponding zi,k = 5 was
recorded with observed survival time to

i = ti and 𝛿i = 1. We include P = 3 prognostic covariates,
x1 = age, an indicator x2 of measurable disease at baseline, and an indicator x3 of whether the
patient’s disease free interval prior to trial entry was greater than 24 months, in addition to the
indicator 𝜏 of treatment L + B.

To construct a model that accounts for heterogeneity between patients not explained
by the covariates, we introduce real-valued (K + 1)−dimensional multivariate normal latent
frailty vectors, si = (si,0, si,1, … , si,K)′ for i = 1, … , n. We assume si |Ω

iid∼ NK+1(0,Ω) and Ω ∼
Inv-Wishart(aΩ,Ω0). Following Chib and Greenberg (1998), we construct a multinomial probit
model for the ordinal toxicity outcomes zi by introducing the unobserved real-valued latent vari-
ables z̃i = (z̃i,1, … , z̃i,K), where z̃i,k ∈ R, and define zi,k = j if and only if uk, j < z̃i,k ≤ uk, j+1, where
uk,0 < uk,1 < · · · < uk,J denote toxicity type-specific cutoffs for each k. This is a common modelling
strategy that uses real-valued latent variables to induce a tractable multivariate distribution on a
vector of observed ordinal categorical variables, and greatly facilitates computation. For logarithm
transformed PFS time, ̃t = log(t), latent variables z̃i, treatment 𝜏i, and covariates xi, we assume

(̃ti, z̃i) | 𝜏i, xi, si
indep∼ h(̃ti, z̃i | 𝜏i, xi, si), where (̃ti, z̃i) ∈ R

K + 1
. (1)

We take a BNP approach for modelling h in (1) that allows flexible regression struc-
tures by assuming the DDP (MacEachern, 1999), which is a family of random probability
distributions indexed by (𝜏, x). Specifically, we use a linear-DDP that induces covariate
dependence through linear regression structures (De Iorio et al., 2004, 2009). Denoting
x̃′i = (1, 𝜏i, x′i), 𝜷 = (𝛽0, 𝛽𝜏 , 𝛽1, … , 𝛽P)′ and 𝜶k = (𝛼k,0, 𝛼k,𝜏 , 𝛼k,1, … , 𝛼k,P)′, we assume the sim-
ple parametric linear combinations 𝜂0(x̃i) = 𝜷′x̃i and 𝜂k(x̃i) = 𝜶′kx̃i, for each k = 1, … , K. We
denote 𝜼(x̃i) = (𝜂0(x̃i), … , 𝜂K(x̃i)) and construct a model for h through a convolution with a
normal kernel

h(̃ti, z̃i | 𝜏i, xi, si) =
∫

𝜙K+1(̃ti, z̃i |𝜼(x̃i) + si,Σ)dG(𝜷,𝜶1, … ,𝜶K), (2)

where 𝜙d(⋅|a,B) is the density function of the d−variate normal distribution with mean vec-
tor a and d × d covariance matrix B > 0. We use the Dirichlet process (DP) as a prior for the
random mixing distribution G in (2). This gives a DP mixture of multivariate normal linear
models,

h(̃ti, z̃i | 𝜏i, xi, si) =
∞∑

m=1
wm𝜙K+1(̃ti, z̃i |𝜼m(x̃i) + si,Σ), (3)

where 𝜼m(x̃i) = (𝜂m,0(x̃i), … , 𝜂m,K(x̃i)) with 𝜂m,0(x̃i) = 𝜷′mx̃i and 𝜂m,k(x̃i) = 𝜶′m,kx̃i. The weights
{wm} are constructed via Sethuraman’s (1994) so-called ‘stick-breaking’ process by assuming
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1610 LEE et al.

wm∕
∏m−1

m′=1(1 − wm′ ) iid∼ Be(1, 𝜉), with fixed 𝜉 > 0. For the covariate and treatment effect parameters
in (3), we assume

𝜷m
iid∼ MVNP+2(𝜷, 𝜅2IP+2) and 𝜶m,k|𝜶k,V iid∼ MVNP+2(𝜶k,V ) (4)

with 𝜷 and 𝜅

2 fixed, where MVNP+2 represents a (P+ 2)-dimensional multivariate normal distri-
bution. In (4), 𝜷 = (𝛽0, 𝛽𝜏 , 𝛽1, … , 𝛽P) and 𝜶k = (𝛼k,0, 𝛼k,𝜏 , 𝛼k,1, … , 𝛼k,P) are (P+ 2)-dimensional
mean vectors and V = diag[v2

p] is a (P+ 2) × (P + 2) matrix. We assume 𝛼k,p
indep∼ N(=𝛼p, v2

𝛼

) with

fixed =𝛼p and v2
𝛼

, and v2
p

iid∼ IG(av, bv) with fixed av and bv for p = 0, … , P. The hierarchical struc-
ture for 𝜶m,k enables the model to borrow information across the toxicity categories. The model
in (3) incorporates 𝜏 and x linearly in the mean of each normal summand. Due to the fact that the
distribution of (̃t, z̃) is a weighted average of multivariate normal distributions, each with its own
linear term, the model accounts for possible effects of 𝜏 and x on (̃t, z̃) that can be nonlinear and
quite complex, including interactions between two or more variables in (𝜏, x). This construction
thus provides a flexible modelling framework for inference and prediction, avoiding restrictive
assumptions of linearity or additivity in the covariate effects. This facilitates accurate decision
making by avoiding restrictions imposed by conventional parametric models, such as the propor-
tional hazards model. We let Σ = diag(𝜎2

t , 𝜎
2
z , … , 𝜎

2
z ), which implies conditional independence

between ̃ti and z̃i,k given si. Due to the conditional independence, the marginal distributions from
(3) can be expressed as the weighted averages

̃ti | 𝜏i, xi, si,0
indep∼ f (̃ti | 𝜏i, xi, si,0) =

∞∑

m=1
wm𝜙1(̃ti | 𝜂m,0(x̃i) + si,0, 𝜎

2
t ),

z̃i,k | 𝜏i, xi, si,k
indep∼ gk(z̃i,k | 𝜏i, xi, si,k) =

∞∑

m=1
wm𝜙1(z̃i,k | 𝜂m,k(x̃i) + si,k, 𝜎

2
z )

(5)

That is, f and each gk also is a linear DDP mixture distribution. The marginal distribution of each
zi,k is obtained by integrating over the latent variables,

P(zi,k = j | 𝜏i, xi, si,k) =
∞∑

m=1
wm
∫

uk, j+1

uk, j

𝜙1(z̃ | 𝜂m,k(x̃i) + si,k, 𝜎
2
z )dz̃. (6)

Marginalizing by averaging over s in (3), the resulting DP mixture model, h(̃t, z̃ | 𝜏, x), has covari-
ance matrix Σ+Ω. Thus,Ω induces dependence between PFS time and the toxicities within each
patient, in addition to explaining additional variability between patients not explained by 𝜏 and x.

To ensure identifiability in the multivariate ordinal regression model, we fix 𝜎2
z and set uk,1 = 0

for all k. We also set uk,0 = −∞, and uk,J = ∞, and P(zi,k < 0) = 0 and P(zi,k ≤ J − 1) = 1. We let the
cut-offs uk,j, j = 2, … , J−1 be random for flexibility, by defining uk,j = uk,j−1 + ek,j−1 k = 1, … , K
and with error terms ek,j

iid∼ Ga(ae, be), for j = 2, … , J − 1. Lastly, we assume 𝜎

2
t ∼ IG(at, bt).

2.2 Posterior inference

Collecting terms, 𝜽 = (wm, 𝜷m, 𝜎
2
t ,𝜶m,k, e, 𝛼k,p, v2

p,Ω) is the vector of all model parameters,
and ̃𝜽 = (M, 𝜷, at, bt, 𝜅

2
,

=
𝛼p, v2

𝛼

, av, bv, aΩ,Ω0) is the vector of all fixed hyper-parameters. Given
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LEE et al. 1611

̃𝜽 and data , the joint posterior of 𝜽 and the patient-specific random effects s = {si,

i = 1, … ,n} is

p(𝜽, s |, ̃𝜽) ∝

{ n∏

i=1
p(̃to

i , 𝛿i, zi | 𝜏i, xi, si,𝜽, ̃𝜽) × p(si |𝜽, ̃𝜽)

}

p(𝜽| ̃𝜽), (7)

where the joint likelihood of the observed data for the ith patient is the product

p(̃to
i , 𝛿i, zi | 𝜏i, xi, si,𝜽, ̃𝜽) = {f (̃ti | 𝜏i, xi, si,0, 𝜷, 𝜎

2
t )}

𝛿i{1 − F(̃ti | 𝜏i, xi, si,0, 𝜷, 𝜎
2
t )}

1−𝛿i

×
K∏

k=1
p(zik | 𝜏i, xi, si,k,𝜶k,uk).

We use Markov chain Monte Carlo (MCMC) simulation to generate posterior samples of the
parameter and latent variable vectors, (𝜽, s). For computational convenience, we approximate the
DDP in (5) by truncating the infinite number of mixture components of F and Gk to the finite value
M. The final weight is set to wM = 1 −

∑M−1
m=1 wm to ensure that F and Gk are proper distributions.

For sufficiently large M, the truncated sum produces inferences virtually identical to those with
the infinite sum (Ishwaran & James, 2001; Rodriguez & Dunson, 2011). As discussed in Rodriguez
and Dunson (2011), if there is a discrepancy between the posterior distributions under the trun-
cated and infinite sums, then the model is sensitive to the choice of M. Any value of M that has a
small value for wM is sufficiently large to produce a negligible discrepancy. We examined the pos-
terior distribution of wM , and assessed sensitivity of the model to several different M values for
the breast cancer dataset. We found that the truncated process is robust to the choice of M, if M
is sufficiently large. This led us to use M = 15 for the data analysis and simulation studies. Com-
putational details are given in Supplementary Section 1.1. A computer program ‘utility-analysis’
for fitting the proposed model is available from https://users.soe.ucsc.edu/juheelee/.

3 UTILITY FUNCTIONS FOR PFS AND TTB

In this section, we describe how a utility function was constructed for the breast cancer data
analysis. While we focus on the case where y consists of PFS time and TTB, the methodology may
be applied generally in settings where y is a single variable, a bivariate binary or ordinal variable,
or some combination of two or more discrete and continuous outcomes. Examples are given in
Supplementary Section 2.

Given the reduction of the K-dimensional toxicity vector z to the scaled TTB q, 0 ≤ q ≤ 1,
we will construct a utility function for the pair (t, q). A departure of our utility formulation from
previous published outcome utilities is that we construct U so that it varies with covariates x as
well as the outcomes (t, q). We let 𝜏 = 1 for L+ B and 𝜏 = 0 for L, so choosing 𝜏 for a future patient
with a covariates xnew is the target of our decision analysis. To ensure a consistent utility function
that quantifies trade-offs between t and q for each x, we require

U(t, q, x) > U(t, q′, x) if q < q′ for any t, and U(t, q, x) < U(t′, q, x) if t < t′ for any q.

That is, considered individually with the other outcome variable fixed, smaller TTB and longer
PFS each must be more desirable.
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1612 LEE et al.

The form of the utility function given here, and the numerical values that it takes on, were
obtained based on the consensus of two medical oncologists who are co-authors of this paper, PM
and BL, one of whom is a breast cancer subspecialist. The first step of our construction was to
specify a parametric total utility function, which we defined generally as the product

Utot(t, q, x) = UPFS(t, x) × UTTB(q, x), (8)

subject to the constraints 0 ≤ UPFS(t, x) ≤ Umax and 0 < UTTB(q, x) ≤ 1. For a given x, the utility
component UTTB(q, x) acts multiplicatively to decrease the utility component UPFS(t, x), and one
may regard multiplying by UTTB(q, x) as penalizing the PFS utility, where the magnitude of the
penalty is determined by q.

To apply this to the breast cancer dataset, we constructed a functional form for (8) to reflect
this particular treatment setting. We denote the prognostic covariates by x1 = Age, an indica-
tor x2 of measurable disease, and an indicator x3 of whether the patient’s disease free interval
prior to trial entry was > 24 months, with all three included in the regression models for out-
comes t and z. While the randomization for the breast cancer trial was stratified by x2 and x3
to improve precision, based on clinical experience PM and BL decided that neither x2 nor x3
should have any effect on the utility function, whereas x1 = Age is included in UTTB. This is
because, in clinical practice, the utility gained by greater PFS is similar regardless of age group,
while older patients tend to care more about maintaining a good quality of life, quantified by a
lower TTB. Thus, older patients are less likely than younger patients to accept a higher level of
toxicity for the same PFS benefit. Accordingly, we only used the prognostic covariate x1 = Age
in the utility function, and constructed Utot(t, q, x) = Utot(t, q,Age) so that, for any PFS time t,
a given value q > 0 for TTB decreases the utility for an older patient more than for a young
patient. We also assumed that UPFS(t,Age) = UPFS(t). We set Umax = 100 since the domain (0, 100)
is easy to interpret, and set UTTB(0,Age) = 1 for any Age. Thus, if a patient has no toxicity (q = 0)
then Utot(t, 0,Age) = UPFS(t). For example, if q = 0.50, UPFS(36) = 80, and UTTB(0.50, 60) = 0.50,
then the utility of 60-month PFS time and TTB = 0.5 is Utot(36, 0.50, 60) = 80 × 0.5 = 40 for a
60-year-old patient, whereas UTTB(0.50, 40) = 0.70 for a 40-year-old patient gives the much higher
total utility Utot(36, 0.50, 40) = 80 × 0.7 = 56.

For the PFS component, the clinicians PM and BL specified the particular values UPFS(24) =
50, UPFS(48) = 95, and required lim

t→∞
UPFS(t) = 100 for patients with any Age. This was based on

the clinical experience that, in the hormone receptor-positive metastatic breast cancer setting, the
increase in utility with increasing PFS is linear for up to 4 years, after which there is generally
not much increase in utility with increasing PFS. This is due, in part, to the availability of newer
regimens that can be given as salvage therapy to patients whose disease progresses after 4 years.
To reflect this, we constructed the following parametric function for UPFS(t):

UPFS(t) =
⎧
⎪
⎨
⎪
⎩

U0

(
t
t0

)a
if t < t0

Umax
1+exp(−b1t)

if t ≥ t0,
(9)

and we set t0 = 48 months, U0 = 95, and Umax = 100. This function increases in t up to 48
months, with a small additional increase for t > 48 months. Since UPFS(24) = 50, the equation
95 × (24∕48)a = 50 gives a = 0.926. Similarly, since UPFS(48) = 100∕{1 + exp(−b148)} = 95, this
gives b1 = 0.061. The resulting function UPFS(t) is plotted in Figure 2(a).
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LEE et al. 1613

F I G U R E 2 Illustration of utility functions. Panel (a) has UPFS(t), the utility function of progression-free
survival (PFS) time with t = PFS time. Panels (b)–(d) have the total utility functions Utot(t, q,Age), where t = PFS
time and q = total toxicity burden (TTB). [Colour figure can be viewed at wileyonlinelibrary.com]

We defined UTTB(q,Age) to vary with Age so that it decreases at a faster rate for older Age. PM
and BL established numerical values of UTTB in [0, 1] for each pair of (q, Age) values specified on
a grid. These are tabulated in Supplementary Table 2. We constructed a parametric function that
closely approximates these elicited TTB utilities by exploring various functional forms, and chose

UTTB(q,Age) = exp{−q2∕(2g2(Age))}, for 0 ≤ q ≤ 1, (10)
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1614 LEE et al.

where g(Age) = exp(c0 + c1Age). As q increases, the total utility given in (8) decreases by a
factor of the above exponential function of q2

, and UPFS is penalized in Utot using this
exponential value. If no toxicity occurs, that is, q = 0, then UTTB(0,Age) = 1 and Utot(t, q,Age) =
UPFS(t), as required. The function UTTB(q,Age) has an inflection point at q = g(Age), and for any
q > g(Age), Utot decreases to 0 very quickly. We defined g(Age) to be a decreasing function of Age
so that UTTB(q,Age) decreases in q faster for larger values of Age. To obtain this, we restricted
c1 < 0 and calibrated the values of c0 and c1 using the elicited numerical utilities. The numerical
values c0 = 0.823 and c1 = −0.05 yield a good approximation. Details are given in Supplementary
Section 2. Figure 2b,c compares Utot(t, q,Age) (solid line) to the elicited values (dots connected by
dotted lines) for Age = 50, 65 and 85. In each plot, different colours represent different values of
q. The figure illustrates how Utot(t, q,Age) decreases with q, and how the magnitude of decrease
changes with Age. The specific utility function described here may be questioned due to its subjec-
tivity. However, ordering the consequences of decisions is inherently subjective and is necessary
for decision making, and using an explicit utility function that is constructed based on expert
knowledge produces meaningful decisions.

To use this structure for individualized treatment selection, we exploit the Bayesian model
to compute the posterior predictive (PP) distribution of (̃t, z) for a new patient with prognostic
covariates xnew = (xnew

1 , xnew
2 , xnew

3 ) assuming a particular 𝜏 is given to the patient, similar to the
examples in Supplementary Section 2,

p(̃t, z | 𝜏, xnew
,) =

∫ ∫
p(̃t, z |𝜽, snew

, xnew
, 𝜏)p(𝜽, snew |)dsnewd𝜽. (11)

By averaging the likelihood of the new patient’s future outcomes (̃t, z) over the joint posterior dis-
tribution of (𝜽, snew), the PP distribution in (11) provides a fully model-based criterion for making
inferences to compare treatments, with appropriate quantification of uncertainty. The PP distri-
bution of the utility, p{Utot(t, q,Agenew) | 𝜏, xnew

,}, for a new patient with prognostic covariates
xnew can be derived directly from (11).

We use the predictive mean total utility for each 𝜏 as a basis for treatment selection. For 𝜏 = 0
corresponding to L and 𝜏 = 1 for L + B, the predictive mean total utility is

utot(𝜏, xnew) =
J−1∑

z1=0
…

J−1∑

zK=1∫R

Utot(̃t, q,Agenew)p(̃t, z | 𝜏,, xnew)d̃t. (12)

One may choose the treatment 𝜏 having larger utot(𝜏, xnew) for the new patient. In general,
utot(𝜏, xnew) is a function of the entire xnew vector and 𝜏 through the utility function and∕or the
probability distribution, and this still would be the case if Utot did not depend on Age.

In general, another criterion for comparing treatments 𝜏 and 𝜏

′ studied in a trial is to com-
pare the PP distributions p{Utot(t, q,Agenew) | 𝜏, xnew

,} and p{Utot(t, q,Agenew) | 𝜏′, xnew
,} of

the total utilities. To do this, we define the posterior probability that treatment 𝜏′ has a larger total
utility than treatment 𝜏 for a new patient with prognostic variables xnew,

Δ(xnew
, 𝜏, 𝜏

′) = Pr{Utot(t(𝜏), q(𝜏),Agenew) < Utot(t(𝜏′), q(𝜏′),Agenew) | 𝜏, 𝜏′,, xnew}. (13)

One may select 𝜏′ to treat a new patient with xnew if Δ(xnew
, 𝜏, 𝜏

′) ≥ 0.5, and otherwise select 𝜏.
This can be done by first computing the joint PP distribution of (̃t(𝜏), z(𝜏), ̃t(𝜏′), z(𝜏′)), that is, of
two sets of outcomes with one for each treatment,
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LEE et al. 1615

p(̃t(𝜏), z(𝜏), ̃t(𝜏′), z(𝜏′) | 𝜏, 𝜏′, xnew
,) =

∫ ∫
p(̃t(𝜏), z(𝜏) |𝜽, snew

, xnew
, 𝜏)

× p(̃t(𝜏′), z(𝜏′) |𝜽, snew
, xnew

, 𝜏

′)p(snew
,𝜽 |)dsnewd𝜽,

(14)

which can be used in turn to computeΔ(xnew
, 𝜏, 𝜏

′). Although Utot depends on xnew only through
Age, the joint distribution in (14) depends on the entire xnew and (𝜏, 𝜏′), and Δ does as well.
The decision criteria utot(𝜏, xnew) and Δ(xnew

, 𝜏, 𝜏

′) may be computed numerically using MCMC
samples of 𝜽 simulated from p(𝜽 |, ̃𝜽). Computational details are given in Supplementary
Section 1.2.

4 DECISION MAKING FOR THE BREAST CANCER DATA

In this section, we illustrate the proposed decision-making procedures by application to the breast
cancer dataset. We fit the statistical model in Section 2 to the data and used the elicited utility in
Section 3. To fit the Bayesian model, we specified values of the fixed hyperparameters ̃𝜽 as follows.
We let the DP concentration parameter be 𝜉 = 1, 𝜅2 = 5 for the prior of 𝛽m,p, av = 5 and bv = 1
for the priors of v2

p, ae = be = 3 for the priors of ek,j, and at = 3 and bt = 1 for the prior of 𝜎2
t . We

fixed 𝛽p = 0, p ≥ 1 and used the empirical average of the observed ̃t to specify 𝛽0. Similarly, we
let =𝛼p = 0, p = 1, … , P and used the empirical probabilities of zi,k being 0 to determine =𝛼0. We
fixed 𝜎

2
z = 9. For Ω, we let aΩ = 50, and Ω0 = 0.01(aΩ − K − 1)IK+1. We discarded the first 20,000

iterates for burn-in, and kept the next 5000 iterates for posterior inference. We examined mixing
and convergence of the Markov chains using trace plots, and did not find evidence of poor mixing
or bad convergence.

Estimates of the posterior predictive distributions of t, q and Utot are shown in Figure 3 for
a future patient with xnew = (Agenew

, 0, 0). The top, middle and bottom rows of the figure corre-
spond to Agenew = 55, 65 and 75 years, with treatment L (𝜏 = 0) represented by red and L + B
(𝜏 = 1) by blue. PP estimates of the survival functions S(t | 𝜏, xnew

,)with 95% pointwise credible
intervals are given in the left column, and the middle column gives estimates of the PP distri-
butions, p(q | 𝜏, xnew

,), of TTB. Estimated S(t | 𝜏, xnew
,) for L + B are slightly above those for

L at all ages, indicating a small overall improvement in PFS with L + B. In contrast, estimated
p(q | 𝜏, xnew

,) for L + B have much longer and thicker right tails, indicating an increased risk
of toxicity events with L + B compared to L. From the figures, effects of Age on PFS and TTB are
small. Additional comparisons of the PP distributions of PFS (t) and TTB (q) for treatments L and
L + B for more values of xnew are given in panels (b) and (c) of Supplementary Figures 1 and 2.
These give PP point estimates of t and q as functions of xnew. Panel (a) of the figures shows esti-
mated PP probabilities that L + B yields greater PFS than L, and that L + B yields greater TTB
than L. The figures also indicate that L + B tends to yield better PFS than L, while L + B is more
likely to be associated with higher TTB. Swanson and Lin (1994) also noted that older patients are
more likely to respond to hormone therapies such as L + B or L. Our inferences for PFS and TTB
considered individually agree with the findings reported by Dickler et al. (2016).

As noted earlier, because treatment comparisons based on TTB and PFS considered separately
lead in opposite directions, these results do not provide a clear basis for choosing one treatment
over the other, either overall or for individual patients. Considering the outcomes together by
using the utility function of treatment and Age provides a useful tool for resolving this problem.
The plots in the rightmost column of Figure 3 compare PP distributions of Utot for the two
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1616 LEE et al.

F I G U R E 3 [Breast Cancer Trial Data] Estimated posterior predictive (PP) survival functions S(t |) where
 denotes data, are given in panels (a), (d) and (g); estimates of PP cumulative distributions of total toxicity
burden (TTB, Q) in panels (b), (e) and (h); and PP distribution estimates of total utility Utot in (c), (f) and (i). The
top, middle and bottom rows are correspond to ages ( xnew

1 ) 55, 65 and 75 years. Covariates (xnew
2 , xnew

3 ) = (0, 0),
which indicate the absence of measurable disease at baseline and the patient’s disease free interval prior to trial
entry ≤ 24 months, are fixed. In each panel, red and blue represent treatments L (𝜏 = 0) and L + B (𝜏 = 1),
respectively. [Colour figure can be viewed at wileyonlinelibrary.com]
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LEE et al. 1617

treatments, as functions of Age, indicating that the utility benefit of L + B over L diminishes with
increasing Age. In the plot, we assume that xnew

2 = 0 and xnew
3 = 0. Posterior predictive estimates

̂Δ(xnew
,L,L + B) of the probabilities that treatment L + B has greater utility than treatment L are

0.56, 0.54 and 0.46 for 55-, 65- and 75-year-old patients respectively. Thus, in terms of overall util-
ity accounting for both PFS and TTB, decisions based on ̂Δ(xnew

,L,L + B) would be to give L + B
to patients with Agenew

< 70, but give L to patients with Agenew ≥ 70.
Figure 4(a) illustrates ̂Δ(xnew

,L,L + B) on a grid of Agenew = xnew
1 values for the combinations

(xnew
2 , xnew

3 ) = (0, 0), (0, 1), (1, 0) and (1, 1). Overall, while L + B tends to yield a greater utility
for younger patients, L is expected to have a greater utility for older patients. Although PFS is
improved by L + B for patients of all ages, increases in TTB with both L + B and age make it
less desirable for older patients. For example, ̂Δ(xnew

,L,L + B) < 0.5 for a 70-year-old patient,
with xnew = (70, 0, 1) (dashed line), implying that L is a better treatment option than L + B for
this patient. The differences in Δ for varying (xnew

2 , xnew
3 ) values are small, and the values of x2

and x3 do not change any decisions significantly. Posterior expected utility estimates ̂utot(xnew
, 𝜏)

are computed on the age grid for different treatment options, shown in panels (b) and (c) of the
figure. The figure in panel (c) shows that the expected utility decreases rapidly with age for L+ B,
while it increases slightly for L. Thus, Age-specific recommendations in terms of ̂utot(xnew

, 𝜏) and
̂Δ(xnew

,L,L + B) are the same for these values of (xnew
2 , xnew

3 ).

5 SIMULATION STUDY

In this section, we summarize a simulation study to illustrate the performance of the proposed
utility-based decision-making procedure. To generate data similar to the breast cancer dataset,
we set the number of patients to be n = 350, with three covariates and K = 20 toxicity types each
having J = 6 grades. To mimic the covariate distribution in the breast cancer dataset, we randomly
drew a sample of size 350 from (𝜏i, xi,1, xi,2) with replacement, where 𝜏, x1 and x2 are a binary
treatment indicator, age, and a binary indicator of disease measurability, respectively, so our P= 2.

We simulated patient-specific frailty vectors sTR
i for correlation between yTR

i = (̃tTR
i , z̃TR

i )
within a patient. To illustrate how the BNP model flexibly accommodates complicated rela-
tionships between 𝜏i, xi and yi, we generated yTR

i from a mixture of two regression functions,
each having main effects for 𝜏 and xp, and their interaction effects. Specifically, we generated
sTR

i
iid∼ NK+1(0,ΩTR), where ΩTR assumes that variances of sTR

i,k are 0.05 and correlations between
sTR

i,k and sTR
i,k′ are 0.5 if k, k′ > 0 and k ≠ k′, and −0.5 if k or k′ = 0. Given sTR

i , we then generated
yTR

i from the following distribution with probability 0.4,

̃ti |xi, sTR
i,0

indep∼ N(4.0 − 0.5𝜏i + 0.5xi,1 + 0.5𝜏ixi,1 + sTR
i,0 , 0.6),

z̃i,k |xi, sTR
i,k ,𝜶

TR indep∼ N(𝛼TR
1,k,0 + 𝛼

TR
1,k,1𝜏i + 𝛼

TR
1,k,2xi,1 + 𝛼

TR
1,k,3𝜏ixi,1 + sTR

i,k , 4),

where 𝛼

TR
1,k,0

iid∼ U(−4.5,−4.0), 𝛼TR
1,k,1

iid∼ U(0.5, 1.0), 𝛼TR
1,k,2

iid∼ U(0.3, 0.8), and 𝛼

TR
1,k,3

iid∼ U(0, 0.5) were
simulated for all k. With the remaining probability 0.6, we generated

̃ti |xi, sTR
i,0

indep∼ N(1.5 + 0.8𝜏i − 0.5x2,i + sTR
i,0 , 0.6)

z̃i,k |xi, sTR
i,k ,𝜶

TR indep∼ N(𝛼TR
2,k,0 + 𝛼

TR
2,k,1𝜏i + 𝛼

TR
2,k,2xi,2 + sTR

i,k , 4),
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1618 LEE et al.

F I G U R E 4 [Breast Cancer Trial Data] (a) Estimated posterior predictive (PP) probability ̂Δ(xnew
,L,L + B)

that treatment letrozole plus bevacizumab (L + B) has greater utility than treatment letrozole plus placebo (L) for
different cases of xnew = (xnew

1 , xnew
2 , xnew

3 ), where xnew
1 = age, xnew

2 = the presence of measurable disease at
baseline, and xnew

3 = disease free interval prior to trial entry > 24 months for an unobserved patient. Panels (b)
and (c) give posterior predictive mean utility estimates ̂utot(𝜏, xnew) for treatments 𝜏 = L + B and L, respectively,
for different values of xnew. [Colour figure can be viewed at wileyonlinelibrary.com]
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LEE et al. 1619

where 𝛼

TR
2,k,0

iid∼ U(−4.5,−4.0), 𝛼TR
2,k,1

iid∼ U(1.0, 1.5), and 𝛼

TR
2,k,2

iid∼ U(0.5, 1.0) were simulated for all k.

We simulated censoring times ci
iid∼ N(4.63, 2), and let to

i = min(ti, ci) and 𝛿i = 1(ci < ti). In the sim-
ulated data, 22.86% of ti’s was censored. For ordinal outcomes zi,k, we simulated toxicity type
specific cutoff points uTR

k,j , j = 2, … , J − 1 for each k, and let zi,k = j if uTR
k,j−1 < z̃TR

i,k ≤ uTR
k,j . Details

of the simulation setup are given in Supplementary Section 5. The utility function Utot(t, q,Age)
elicited in Section 3 is assumed.

Supplementary Figure 3(a), (b) and (e) illustrate the true total utility p(Utot |𝜏, x,𝜽TR), TTB
distribution p(q | 𝜏, x,𝜽TR), and PFS survival function S(t | 𝜏, x,𝜽TR) (solid lines) in the simulation.
The covariate vector x = (65, 0) of a 65-year-old patient with no measurable disease is used for
illustration. In each plot, red represents 𝜏 = 0 and blue represents 𝜏 = 1. From panels (b) and (e),
treatment 𝜏 = 1 has a greater TTB and greater expected PFS time than treatment 𝜏 = 0, which
complicates treatment choice. This is resolved by panel (a), which shows that Utot with 𝜏 = 1
(blue) is stochastically greater than Utot with 𝜏 = 0 (red), implying that 𝜏 = 1 is better for a patient
with x = (65, 0). Supplementary Figure 4 gives

ΔTR(x, 0, 1) = Pr(Utot(t(0), q(0),Age) < Utot(t(1), q(1),Age) | 𝜏 = 0, 𝜏′ = 1, x,𝜽TR),

with the true expected utilities U
TR
(𝜏, x) = E(Utot | 𝜏, x,𝜽TR) shown in dark green symbols for

varying Age. For both treatments, the expected utility decreases with Age, shown in panels (a)
and (b). The difference in U

TR
(𝜏, x) between the treatments and ΔTR(x, 0, 1) decrease with Age,

indicating that the superiority of treatment 𝜏 = 1 compared to treatment 𝜏′ = 0 diminishes with
Age.

We specified values of the fixed hyperparameters similar to those in Section 4, and ran the
MCMC simulation as described in Section 2.2. Posterior inferences are summarized in Supple-
mentary Figure 3. The posterior predictive distributions, p(q | 𝜏, xnew

,) and S(t | 𝜏, xnew
,)with

xnew = (65, 0), are shown in Supplementary Figure 3c–e, respectively, where 𝜏 = 0 and 1 are
in red and blue respectively. In panel (e), the dashed lines represent the posterior mean esti-
mates with 95% pointwise credible intervals in the shaded areas. Comparing the estimates in
panels (d) and (e) to the truth under in panels (b), and (e) shows that the flexible BNP regression
model captures the simulation truth reasonably well, which provides a good basis for accurate
statistical decision making. For example, the posterior predictive distribution of Utot in panel
(c) that provides a comprehensive criterion for treatment comparison, and is close to the truth
in panel (a).

Supplementary Figure 4 illustrates posterior estimates ̂Δ(x, 0, 1) of the probabilities that 𝜏 = 1
has greater utility than 𝜏 = 0, and compares posterior estimates of expected utilities ̂u(𝜏, xnew) for
each of 𝜏 = 0 and 1, the varying xnew = (xnew

1 , xnew
2 ). For xnew

1 = Age, a grid from 40 to 80 years in
5-year increments was used, and values of xnew

2 ∈ {0, 1} are indicated by the symbols, + and ×,
respectively, with true values given in dark green. The model recovers the simulation truth rea-
sonably well, and the decision-making procedure based onΔ(x, 0, 1) in Section 3, selects the truly
superior treatment for all cases of xnew. From panels (b) and (c), we observe discrepancies between
̂utot(𝜏, xnew) and UTR

tot (𝜏, xnew) for small x1 (Age). However, the ranks of ̂utot(𝜏, xnew) between the
treatments are well estimated and the procedure of choosing 𝜏 to maximize ̂utot(𝜏, xnew) reliably
selects the treatments with truly greater utility.

We simulated 100 datasets to further examine the performance of the proposed
decision-making procedures. The results are summarized in Supplementary Figure 5. Panels (a)
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and (d) of the figure show the distributions of ̂Δ(xnew
, 0, 1) over the 100 datasets, for xnew

2 = 0 and
1, respectively, where the symbols + and × represent ΔTR(xnew

, 0, 1) with xnew
2 = 0 and 1 respec-

tively. In most cases, the proposed decision-making procedure based on Δ(x, 0, 1) produces the
correct decisions. Panels (b), (c), (e) and (f) illustrate the distributions of predictive mean utility
estimates, ̂utot(xnew

, 𝜏), using the 100 datasets for (x1, x3) = (0, 0), (1, 0), (0, 1) and (1, 1) respec-
tively. The proposed model produces reasonably good estimates of the expected utilities, and the
ordering of utot(xnew

, 𝜏) are also well estimated overall.

6 DISCUSSION

We have presented a formal decision-making framework based on utility functions to address
the goal of statistical decision making based on data from a randomized clinical trial. The key
elements of our methodology are a multivariate Bayesian regression model and a utility function
of outcomes and covariates. We assumed a DDP, which is a general, flexible family of Bayesian
regression models.

The methodology was illustrated with a breast cancer dataset from a randomized clinical trial.
This required close collaboration with oncologists to elicit a utility function that reflected this
clinical setting, and the resulting utility function varied with Age to reflect different risk-benefit
trade-offs between PFS and TTB for older versus younger patients. Our application illustrates
that, by establishing a utility function that quantifies the risk-benefit trade-off between two
competing outcomes, one can derive a rational basis for making treatment choices in set-
tings where simpler comparisons in terms of individual outcomes give different, contradictory
choices.

The particular form of our utility function was tailored to the breast cancer setting, and may
not be appropriate in other clinical settings. In general, the requirements are that U( y,x) must be
consistent in the arguments of y so that it makes sense, and that it be tractable enough to facilitate
application. Beyond that, a utility should be constructed so that it provides a sensible basis for
quantifying trade-offs between different outcomes. It also should be kept in mind that, if U is
constructed to be a function of y but not x, both the posterior mean utility u(𝜏, x) and Δ(x, 𝜏, 𝜏′)
still will vary with x due to the regression structure of f ( y | 𝜏, x, 𝜽), and thus both criteria still will
serve as a basis for making personalized treatment decisions.

Our framework may be generalized to accommodate more complex clinical settings, such
as meta-analysis of multiple studies, optimization of a multi-stage treatment strategies or
non-medical applications. Although the key elements will remain the same, such applications
may be complex and will require tailoring to particular settings.
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