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Summary. Delivering radiation to eradicate a solid tumour while minimizing damage to nearby
critical organs remains a challenge. For oesophageal cancer, radiation therapy may damage
the heart or lungs, and several qualitatively different, possibly recurrent toxicities that are as-
sociated with chemoradiation or surgery may occur, each at two or more possible grades. We
describe a Bayesian group sequential clinical trial design, based on total toxicity burden (TTB)
and the duration of progression-free survival, for comparing two radiation therapy modalities for
oesophageal cancer. Each patient’s toxicities are modelled as a multivariate doubly stochastic
Poisson point process, with marks identifying toxicity grades. Each grade of each type of tox-
icity is assigned a severity weight, elicited from clinical oncologists who are familiar with the
disease and treatments. TTB is defined as a severity-weighted sum over the different toxicities
that may occur up to 12 months from the start of treatment. Latent frailties are used to formulate
a multivariate model for all outcomes. Group sequential decision rules are based on posterior
mean TTB and progression-free survival time. The design proposed is shown to provide both
larger power and smaller mean sample size when compared with a conventional bivariate group
sequential design.

Keywords: Bayesian analysis; Co-primary end points; Frailty model; Prior elicitation;
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1. Introduction

Oesophageal cancer affects over 17000 people per year in the USA, with 5-year survival rates
between 20% and 35%. Standard of care is neoadjuvant chemoradiation, consisting of radi-
ation therapy (RT) and concurrent chemotherapy, possibly followed by surgery. The decision
of whether surgery may be performed is made adaptively on the basis of early chemoradiation
outcomes. Since the oesophagus is nestled between critical organs, dosimetric RT planning is
challenging. An ideal RT plan delivers sufficient dose to the tumour while minimizing or avoiding
radiation exposure to the heart anteriorly, the spinal cord posteriorly and the lungs on either side.

One recently developed X-ray modality, intensity-modulated radiation therapy (IMRT), uses
a computer-controlled multileaf collimator to block the paths of five beams of charged high
energy photons partially. The approach enables flexibility for controlling the extent of intensity
of radiation over the irradiated volume, and thereby has the potential to irradiate the targeted
tumour volume effectively, while limiting radiation exposure to critical organs surrounding the
tumour. However, because X-ray beams deposit energy along a path that passes through the
targeted volume and beyond, IMRT is incapable of sparing healthy tissues directly behind the
tumour. Another modality, proton beam therapy (PBT), delivers radiation by using a beam of
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charged protons that have been accelerated through a cyclotron to high energy levels. Unlike
photons, protons have a limited range and can be modulated to deposit their maximum intensity
at the tumour site, thus sparing the surrounding organs. For example, Zhang et al. (2008) have
demonstrated that PBT results in better sparing of the lung compared with IMRT.

In this paper, we describe a design that is being used to conduct a randomized, group se-
quential clinical trial for comparing radiation modalities for stage II–III oesophageal cancer
(University of Texas MD Anderson Cancer Center, 2015). The purpose of this trial is to deter-
mine whether PBT’s dosimetric advantages over IMRT translate into meaningful improvements
in clinical outcomes, primarily reduced toxicity and prolonged progression-free survival (PFS),
defined as the time to disease progression or recurrence, or death, from the start of RT. Patients
with oesophageal cancer undergoing this regime, called ‘trimodality therapy’, are at risk of sev-
eral qualitatively different toxicities. These may occur at random times and at varying levels of
severity, and some may occur more than once. Toxicities not only impact the patient’s quality of
life but also may decrease the patient’s ability to undergo surgery and thus increase the risk of
recurrence. The surgeon’s decision of whether a patient may undergo surgery includes consider-
ation of toxicities that have occurred with the chemoradiation. Patients who do undergo surgery
are at risk of post-operative complications (POCs), which may be exacerbated by earlier toxic-
ities from the chemoradiation. Although each particular toxicity is unlikely, all are potentially
life threatening, necessitating a design with rules that terminate the trial early if the interim data
suggest that the trimodality regime is safer with one RT modality versus the other. Moreover,
although the risk of toxicity often dominates thinking about RT modalities, delaying disease
recurrence or progression and thereby prolonging survival remains the therapeutic goal.

The main statistical challenge in designing a trial to compare RT modalities used with the
trimodality regime is that the clinical outcomes are very complex. To measure the combined
effect of the diverse array of possible toxicities, we define a statistic, the total toxicity burden
(TTB), which provides a continuous measure of the combined effect of all toxicities experienced
by the patient over the course of follow-up. To construct this statistic, numerical weights of
each possible grade of each toxicity that quantify their relative severities first must be elicited
from the physicians planning the trial. The TTB is defined as a severity-weighted sum over the
different toxicities that may occur. Since some toxicities may occur up to 12 months from the
start of treatment, each patient’s observed TTB is a process that may change over time.

Our trial design treats TTB and PFS as co-primary end points. It relies on a multivariate
Bayesian model that accounts for the incidence and severity of each type of toxicity, and it ac-
counts for dependence between the toxicity vector, an indicator of whether surgery is performed
and PFS. A key feature of the model is that it provides an analytically tractable expression for
mean TTB. The two RT modalities are compared by using two group sequential rules, based
on the posterior distributions of mean TTB and PFS log-hazard-ratio.

Including a vector of qualitatively different toxicities via TTB in this way is very different from
most randomized oncology trials, which are based on PFS or survival, while including toxicities
as secondary outcomes. In most trials, toxicity is monitored informally. When formal decision
rules based on toxicity are used, they are defined by first reducing the vector of toxicities to a
binary indicator of the worst toxicity of any type occurring at or above a given grade, ignoring
recurrences entirely. As a basis for comparison, we consider a trial with two sets of conventional
group sequential rules with O’Brien–Fleming (O’Brien and Fleming, 1979) boundaries: one
based on PFS and the other based on an indicator of any toxicity occurring within 1 year of
follow-up. Our simulations, which are given in Section 5, show that our design yields as much
as a 66% increase in power and 18% reduction in mean sample size when compared with this
conventional design.
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The general problem of designing clinical trials to compare multiple end points has been con-
sidered by many researchers, predominantly using frequentist approaches for testing composite
hypotheses, and relying on large sample normal approximations. O’Brien (1984) considered a
generalized linear least squares statistic for composite alternatives that characterizes treatment
differences between multiple end points by using a common multiplier. Tang et al. (1989a)
proposed an approximate likelihood ratio test for multiple treatment effects over all possible
directions, with application to group sequential design (Tang et al., 1989b). Tang et al. (1993)
provided group sequential critical values for designs based on several types of frequentist mul-
tiple hypothesis testing procedures. Other researches have considered two-stage and multistage
designs for monitoring toxicity and response rates in single-arm trials where both end points
are binary and observed shortly after treatment (Bryant and Day, 1995; Conaway and Petroni,
1995). Quality-adjusted time without symptoms and toxicity methods were developed to incor-
porate health-related quality-of-life measures in analysis of time-to-failure end points (Gelber
et al., 1995). Kosorok et al. (2004) provided a group sequential design for multiple primary end
points with multiple decision rules that control overall type I error and probabilities of con-
cluding incorrect alternatives. O’Neill (2008) discussed challenges in evaluating the risk versus
benefit of new therapies in clinical trial design and analysis.

The ideas in this paper are presented in the following sequence. In Section 2, we define TTB
for the oesophageal RT trial. The group sequential design is presented in Section 3. In Section
4, we present the probability model, derive the mean TTB and discuss prior specification and
elicitation. In Section 5, we present results of a simulation study. Section 6 describes our process
and rationale in constructing the model and design for this study and provides general guidelines
for practitioners who may wish to use TTB.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Total toxicity burden

Table 1 presents the 11 toxicities that were monitored in the RT trial. Each toxicity is either
possibly recurrent at random times over the patient’s follow-up period or is a POC evaluated
once, approximately 1 week after surgery. Radiation-induced pulmonary and cardio-vascular
toxicities may occur up to 12 months following RT and thus require long-term follow-up (Abid
et al., 2001; Rancati et al., 2003; Yusuf et al., 2011). Each of the first three possibly recurrent
toxicities, pericardial effusion, pleural effusion and pneumonitis, and the POC anastomotic
leak, is ordinal with three levels of severity. Each of the remaining seven toxicities has one
level of severity. The set of severity weights that were used in the trial are given in Table 1,
with a higher weight corresponding to increased severity. The numerical value of each severity
weight reflects the relative extent of harm that is associated with experiencing the toxicity at the
given level of severity in relation to the other levels of severity of the same toxicity and other
toxicities monitored in the trial. These were elicited from the clinical oncologists planning the
trial and represent the group’s consensus. For example, pericardial effusion requiring medical
but not surgical intervention, and the occurrence of a pulmonary embolism, both have elicited
weight 60 and thus are considered equally harmful. Weights were elicited in the range 0–100
for convenience, since the oncologists were comfortable with this domain. However, any finite
positive domain would work in practice. In our study, w = 0 implies no harm to the patient,
whereas w=100 represents an extent of harm that is imminently life threatening. We describe the
manner in which we elicited the severity weights as well as provide justification for the numerical
values in Section 6 and in section A of the on-line supplementary material.



276 B. P. Hobbs, P. F. Thall and S. H. Lin

Table 1. Toxicities and elicited severity weights for the 11 toxicities that are
monitored in the oesophageal cancer trial†

Level of severity Elicited weight

Recurrent toxicities
Pericardial effusion Non-symptomatic 10

Medical intervention 60
Surgical intervention 90

Pleural effusion Non-symptomatic 10
Medical intervention 30
Surgical intervention 60

Radiation pneumonitis Grade 1–2 20
Grade 3 60
Grade 4–5 90

Pneumonia Occurrence 40
Atrial fibrillation Occurrence 30
Myocardial infarction Occurrence 70

POCs
Anastomotic leak Radiographic only 30

Medical intervention 60
Surgical intervention 90

Acute respiratory distress syndrome Occurrence 90
Pulmonary embolism Occurrence 60
Reintubation Occurrence 70
Stroke Occurrence 90

†Medical rationale to justify the numerical values is provided in the on-line
supplementary material.

Fig. 1 illustrates TTB for a hypothetical patient, computed using each set of weights. Each
spike in Fig. 1(b) indicates either a single toxicity or a collection of POCs. The heights of
the spikes correspond to the weights, and thus illustrate severities. Fig. 1(a) plots the patient’s
TTB over time. The hypothetical patient’s TTB was 0 until she experienced post-operative
reintubation and stroke in week 13, and then successive onsets of pneumonia at weeks 27 and
37. Using the elicited weights, these toxicities contributed severity scores 70 + 90 = 160 at week
13 and 40 at each of weeks 27 and 37.

The following notation expresses the TTB as a function of elicited severity weights and event
indicators arising from two multivariate marked point processes: one characterizing recurrent
toxicity; the other POCs following surgery. Indexing the toxicities in Table 1 by k = 1, : : : , 11,
we denote the vectors of elicited ordinal toxicity severity weights by w1, : : : , w11: For example,
w1 = .w1,1, w1,2, w1,3/ = (10, 60, 90) for the three levels of pericardial effusion, w4 = w4,1 =
30 if atrial fibrillation occurs, and so on (Table 1). Without loss of generality, we represent
patient follow-up as a proportion of the maximum follow-up duration (52 weeks) required to
account for late onset radiation-induced toxicity, t ∈ .0, 1]. Let N.t/={N1.t/, : : : , N6.t/} denote
the multivariate counting process characterizing the numbers of toxicities occurring by time t

for the six recurrent toxicities. The 1×Mk vector Zk,j.t/={Zk,j,1.t/, : : : , Zk,j,Mk
.t/} denotes the

multinomial point process that marks the severity of the jth occurrence of toxicity type k. Each
Zk,j,m.t/ is a simple point process with Zk,j,m.tÅ/ = 1, for all tÅ > t if the jth incidence of the
kth toxicity occurs at the mth level of severity before time t. If the jth event has not occurred by
time t, then Zk,j,m.tÅ/=0, for all m=1, : : : , Mk.

We use the elicited weights wk, the observed occurrence processes Nk.t/ and the mark processes
Zk.t/ to define the toxicity burden for the kth recurrent toxicity at follow-up time t,
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Fig. 1. (a) Example of toxicity severity scores and (b) their sum, the TTB, for a single patient: �, POCs; �,
recurrent toxicities

BREC
k .t/=

Nk.t/∑
j=1

w′
kZk,j.t/=

Nk.t/∑
j=1

Mk∑
m=1

wk,m Zk,j,m.t/: .1/

The jth occurrence of recurrent toxicity type k produces a jump of size w′
k Zk,j.t/ in the BREC

k .t/

process at the event time. We define the TTB contributed by the six recurrent toxicities at follow-up
time t as the sum

BREC.t/=
6∑

k=1
BREC

k .t/:

For the subset of patients who undergo surgery, there are five possible POCs in the RT trial.
These consist of one ordinal-valued toxicity, anastomotic leak, indexed by k = 7, with M7 = 3
levels, and four binary-valued toxicities for which Mk ≡ 1, indexed by k = 8, : : : , 11. The POCs
are assessed only once, approximately 1 week following surgery. Let {S.t/=0, 1 :0<t<1} denote
an event process with at most a single jump discontinuity of size 1 at the time that surgery is
performed. Matching indices for recurrent events .k, j, m/ = (toxicity type, recurrence number,
severity level), we use Z7.t/={Z7,1,1.t/, Z7,1,2.t/, Z7,1,3.t/} to denote the vector of severity level
indicators for the ordinal-valued POC. The occurrence indicators for the four remaining POCs
are denoted by Zk,1,1.t/, k = 8, : : : , 11. We define the toxicity burden contributed by POCs at
follow-up time t as

BPOC.t/=S.t/

{
3∑

m=1
w7,mZ7,1,m.t/+

11∑
k=8

wk,1Zk,1,1.t/

}
:

We can now define each patient’s TTB at follow-up time t as the sum of these two components:
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B.t/=BREC.t/+BPOC.t/: .2/

Because we account for occurrence over time and possible recurrences, this definition generalizes
that used for Bayesian phase I dose finding by Bekele and Thall (2004).

3. Group sequential bivariate trial design

Because toxicities that are induced by RT are rare but serious, our trial must include interim
monitoring based on TTB. In planning the RT trial, the participating oncologists were unwilling
to continue randomizing if the data showed strong evidence of a difference between PBT and
IMRT for either TTB or PFS. Consequently, these are co-primary end points, and the group
sequential design stops the trial early if one modality is superior with respect to TTB, PFS or
both. The trial’s decision scheme thus is complex. For each interim decision, there are three
possibilities for each of the two outcomes, namely that PBT is superior, IMRT is superior or
neither is superior. This yields nine possible joint decisions.

At any trial time, patients will have different follow-up times t1, : : : , tn, and some will have
undergone surgery whereas others will not, so in general their TTBs will not be comparable.
For example, BREC.0:5/ and BREC.1/ correspond to different follow-up periods. Thus, we shall
conduct the trial by specifying a joint model for the multivariate patient outcome, deriving the
resulting expectation of TTB, E{B.1/}, and formulating group sequential decision rules for
comparing safety by using the intermodality difference in mean TTB. Importantly, E{B.1/} is
the function of severity weights and model parameters (we shall use θ to denote model param-
eters) that characterizes the extent of TTB experienced by a patient on average over the course of
the entire at-risk duration for one modality. Our trial’s decision rules are based on the resulting
posteriors of the difference in mean TTB, Δ.θ, w/=E{B.1/ | IMRT}−E{B.1/ | PBT}, and the
PFS log-hazard-ratio δξ : Model specification and derivation of Δ.θ, w/ are given in Section 4.

Let D.τ / denote the observed data for all patients enrolled by trial time τ : Let "TTB denote a
small value of Δ.θ, w/ and "PFS a small value of δξ that are considered clinically insignificant.
At interim analysis time τ , the safety comparison is based on posterior probabilities that the
difference in mean TTB of one modality compared with the other exceeds "TTB:

ϕPB."TTB, τ /=Pr{Δ.θ, w/>"TTB|D.τ /}
in favour of PBT, and

ϕIM."TTB, τ /=Pr{−Δ.θ, w/>"TTB|D.τ /}
in favour of IMRT.

Similarly, the PFS comparison is based on the posterior probability that the PFS log-hazard-
ratio exceeds "PFS in favour of one modality compared with the other:

χPB."PFS, τ /=Pr{δξ >"PFS|D.τ /}
in favour of PBT, and

χIM."PFS, τ /=Pr{−δξ >"PFS|D.τ /}
in favour of IMRT.

The model, which is described in Section 4, is formulated such that larger values ofϕPB."TTB, τ /

represent stronger a posteriori evidence that PBT is the safer modality, whereas larger values
of χPB."PFS, τ / correspond to PBT being more effective for delaying recurrence or progression



Bayesian Group Sequential Clinical Trial Design 279

and prolonging survival. Similarly, larger ϕIM."TTB, τ / or χIM."PFS, τ / correspond to superior
safety or effectiveness of IMRT.

Numerical values of "TTB and "PFS must be specified in the context of possible values of
Δ.θ, w/ and δξ : Whereas the log-hazard-ratio δξ is readily interpretable, the magnitude of clinical
relevance for Δ.θ, w/ may be less obvious. For the RT trial, any improvement in mean TTB
or PFS was considered clinically relevant by the participating oncologists; therefore posterior
probabilities were computed using "TTB ="PFS =0: The resulting decision rules are structurally
similar to the multiple-hypothesis test-based method of Kosorok et al. (2004) using ‘vague’
alternative hypotheses.

To conduct a trial with the group sequential comparisons, we must determine both the ‘timing’
and the minimal extent of ‘evidence’ that is required to confer each decision at each analysis
time. For our trial, we defined posterior thresholds on ϕ and χ as functions of information
statistics, which are referred to hereafter as ‘decision boundaries’, with which the posterior
probabilities will be compared to make decisions during the trial. The information statistics
characterize the proportion of total information, I.τ / ∈ [0, 1], that has been observed at the
time of analysis in relation to the maximum possible information that could be observed in the
trial. Using accumulated information, rather than calendar time or sample size, to decide when
to perform the interim comparisons provides robustness to misspecification of the assumed rate
of enrolment, which is a common practical issue in group sequential trials.

Let n.τ / denote the number of patients enrolled by τ . We used the cumulative follow-up
duration at τ , ITTB.τ / = Σn.τ /

i=1 ti=N, to define an information statistic for TTB. Because ti
denotes the ith patient’s proportion of total follow-up out of 52 weeks, ITTB represents the
cumulative follow-up for toxicity as a proportion of total follow-up that would be observed if
all N patients were monitored for toxicity for the entire post-RT toxicity at-risk period of 52
weeks. Let Ci.τ / indicate whether the ith patient’s PFS duration is right censored at trial time
τ . The appropriate information statistic for PFS is the proportion of events by τ , IPFS.τ / =
Σn.τ /

i=1 {1−Ci.τ /}=N. To use ϕ and χ for decision making at trial time τ , we defined boundaries
on the posterior probability domain by using the function

cy.τ /=1−βy.Iy/α
y
.τ /, for y ≡TTB or y ≡PFS: .3/

The exponents αTTB,αPFS > 0 and scaling parameters 0 <βTTB,βPFS < 1 must be calibrated
to obtain a design that satisfies prespecified size, power and optimality criteria. The approach
is similar to the boundary functions that were proposed by Wathen and Thall (2008). The
boundaries (3) are consistent with conventional group sequential designs (O’Brien and Fleming,
1979; Lan and DeMets, 1983; DeMets and Lan, 1994) in the sense that early stopping requires
a smaller numerical difference as more information accrues during the trial.

The nine joint decision rules are given in Table 2. Decisions 1, 2 or 4 each would lead to the
conclusion that PBT is superior, since it is superior to IMRT for either both end points or at
least one end point without evidence of a clinically significant difference for the other. Similarly,
Decisions 6, 8 or 9 would lead to the conclusion that IMRT is superior. Decision 5 corresponds to
the absence of evidence for a meaningful difference between PBT and IMRT for either end point.
Decision 5 may be achieved at the end of the trial; in this case it might be described as failing
to reject the global null hypothesis. Decisions 3 and 7 both conclude that, with either modality,
it is inferior for one outcome and superior for the other. These conclusions are not made by
conventional hypothesis tests but easily could arise in any clinical setting where treatments have
both harmful and beneficial effects. At the extremes, decisions 1 and 9 might be called ‘win–win’
decisions and represent extremely optimistic scenarios that are rarely obtained in practice. For
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Table 2. Joint decision rules for monitoring TTB and PFS at trial time τ†

PFS rule TTB rule

ϕPB >cTTB ϕPB ∨ϕIM <cTTB ϕIM >cTTB

χPB >cPFS 1, PBT safer and more
effective

2, PBT more effective with
indeterminate safety

3, IMRT safer and less
effective

χPB ∨χIM <cPFS 4, PBT safer with
indeterminate efficacy

5, continue enrolling
patients

6, IMRT safer with
indeterminate efficacy

χIM >cPFS 7, PBT safer and less
effective

8, IMRT more effective
with indeterminate
safety

9, IMRT safer and more
effective

†For brevity, we denote the posterior probabilities ϕPB =ϕPB."TTB, τ /, ϕIM =ϕIM."TTB, τ /, χPB =χPB."PFS, τ /
and χIM = χIM."PFS, τ / and the monitoring boundaries cTTB = cTTB.τ / and cPFS = cPFS.τ /. u ∨ v =
maximum{u, v}:

this treatment regime and disease, it is considered unethical to continue randomizing patients
if one modality is determined to be inferior for either end point. Thus, the only case where the
trial is continued interimly is under decision 5, since it reflects clinical equipoise, or indifference
for both PFS and TTB.

For trial conduct, the decision rules are applied at three interim analyses when 33%, 50% and
67% of the expected total information has accrued and utilized at the final analysis 1 year after
the patient enrolment period has ended. Patients are expected to be enrolled at a rate of four per
month, requiring a total of 3.75 years to reach the targeted maximum enrolment of N = 180,
and 4.75 years to complete patient follow-up.

4. Probability model

We expect associations between the toxicities, surgery and PFS. Thus, we formulated our model
to induce a dependence structure that we believed was qualitatively consistent with the clinical
context, for which we made the following assumptions. Radiation delivered to the thoracic cavity
may adversely affect critical organs and thus has the potential to reduce survival. Additionally, a
patient with early RT-induced toxicity is less likely to undergo surgery, hence experiencing both
a higher risk of disease progression and a lower risk of POCs. To reflect these assumptions, we
used the following frailty model. Indexing patients by i= 1, : : : , n, let {Ui, i= 1, : : : , n} denote
independent and identically distributed random patient frailties with E.Ui/=1 and var.Ui/=φ.
To induce positive correlation between the counts of the recurrent toxicities, we employed the
common device of assuming that the kth recurrent toxicity process Ni,k.t/ of patient i in treatment
arm x is Poisson distributed with conditional intensity UiZψk.x/: This is presented in Section 4.1.
We used an exponential model for time to surgery (which is presented in Section 4.2) with hazard
rate multiplied by U−1

i : The conditional distribution of PFS Yi given Ui, which is presented below
in Section 4.3, is assumed to follow a piecewise exponential distribution with the baseline hazard
on each time subinterval multiplied by Ui. Details are given in section B of the on-line supple-
mentary material. Averaging over the distribution of Ui, these assumptions give a model with

(a) association between the recurrent toxicity counts Ni,1.t/, : : : , Ni,6.t/,
(b) each Ni,k.t/ negatively correlated with Yi, so that increased toxicity is associated with

shorter PFS, and
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(c) negative association between surgery and the incidence of each recurrent toxicity, and
positive association between surgery and PFS.

Moreover, the model must also yield analytical tractability for expressing the difference in
mean TTB between treatment modalities as a function of model parameters and severity weights,
since its posterior along with the posterior distribution for the PFS hazard ratio are used in the
group sequential procedure. We assumed that the frailties follow an inverse gamma distribution,
Ui ∼Γ−1.1=φ+2, 1=φ+1/: This gives a multivariate model that yields an analytically tractable
expression for the mean TTB difference. We considered other parametric and non-parametric
models, but we did not use them because they required numerical integration to compute mean
TTB, which complicated computation of the design’s operating characteristics.

Our model represents just one possible set of assumptions. Moreover, alternative methods
could have been used to account for interdependence between toxicities, surgery and PFS. For
example, instead of using recurrent event processes, one could assume that a transformation
g.·/, applied to the TTB-statistic and perhaps scaled per follow-up duration (i.e. g{B.t/=t})
is Gaussian. Then one could conceivably proceed by specifying a multivariate normal model
for the transformed TTB statistic in conjunction with transformations of the time-to-surgery
and time-to-PFS end points. A perhaps more appealing, but less tractable, solution might use
copulas to describe the dependence between toxicities, surgery and PFS.

4.1. Recurrent toxicity processes
Initially, we considered a model with toxicity-specific marked point processes for severities
and treatment effects for both event recurrence and severity probabilities. For the six recurrent
toxicities, this requires a minimum of 18 model parameters. Similarly, assuming POC-specific
marked point processes with a modality effect for the rate of surgery and separate modality
effects for the severity probabilities for each of the five POCs requires a minimum of 12 model
parameters. We found this model to be too complex to use as a practical basis for trial design.

To simplify the model further and to reduce its dimension, we now exploit the fact that
treatment comparisons based on TTB need only consider the incidence of each possible total
toxicity severity. Together, the recurrent toxicities in the RT trial may have one of seven unique
severities: wÅ = .10, 20, 30, 40, 60, 70, 90/: Thus, with a slight abuse of notation, hereafter we
formulate the model in terms of the counting processes Ni,1.t/ for all toxicities of any type
giving total severity 10, Ni,2.t/ for all toxicities of any type with total severity 20, and so on.
Hereafter, the toxicity index is k = 1, : : : , 7 rather than 1, : : : , 11. This reduces the number of
model parameters from 30 to 18. However, to assess robustness in the simulation studies that
are described in Section 5, we shall use a saturated 11-dimensional marked point process model
to generate the data.

We assume that each patient’s risk of radiation-induced toxicity depends on the type of irra-
diation that is delivered (at the group level) as well as the anatomic location of the tumour (at
the patient level). The latter impacts the dosimetric plan and thereby determines the extent of
irradiation that is delivered to healthy tissues in neighbouring regions. To accommodate intra-
patient dependence, we used doubly stochastic Poisson (Cox) processes to induce association
between recurrent toxicity severity (Cox, 1955; Snyder and Miller, 1991; Jacobsen, 2006; Cook
and Lawless, 2007).

We shall denote treatment by x=−0:5 for IMRT and x=0:5 for PBT. Letψk.x/=λk exp.−xδ
ψ
k /

denote the mean rate of recurrent toxicity severity k for a patient in treatment arm x. Thus,
λk >0 is the baseline rate and δψk is the real-valued PBT versus IMRT RT modality effect on the
log-mean-rate. We assume that, given Ui and xi, the kth recurrent severity process {Ni,k.t/, t �
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0|Ui, xi} for patient i is a Poisson process with conditional intensity Uiψk.xi/: The random
frailty Ui acts as a common scalar of the mean rates of Ni,1.t/, : : : , Ni,7.t/ inducing positive
association between the event processes. Since E.Ui/= 1, after averaging over the distribution
of Ui, Ni,k.t/ has unconditional mean tψk.xi/, variance tψ.xi/ + φt2ψk.xi/

2 and covariance
cov{Ni,r.t/, Ni,l.t/|xi}=φt2ψr.xi/ψl.xi/: The frailty variance φ determines the degree of asso-
ciation between counts over disjoint intervals within each event process as well as the degree
of association between different event processes (Cox and Isham, 1980; Breslow, 1984; Lawless,
1987a,b).

A likelihood is necessary to conduct posterior inference. Section B.1 of the on-line supple-
mentary material provides the likelihood contribution for the toxicity count vector Ni.t/: Our
model is parameterized so that larger treatment effects, denoted by δwith appropriate subscripts
and superscripts, correspond to superiority of PBT over IMRT. For example, a larger positive
value of δψk corresponds to a smaller event rate for recurrent severity k with PBT versus IMRT.

4.2. Surgery process and post-operative complications
Because TTB is the sum B.t/=BREC.t/+BPOC.t/, treatment comparison based on E{B.t/} is
influenced by the probability of undergoing surgery following chemoradiation, and thus becom-
ing at risk of POCs. We assumed that a patient experiencing a severe toxicity with chemoradiation
is less likely to undergo surgery, whereas surgery reduces the risk of disease recurrence and thus
is positively associated with PFS. To reflect these relationships, given frailty Ui and treatment
arm xi, we assume that the time-to-surgery distribution is exponential with conditional hazard
rate λ̃ exp.xiδ̃/=Ui, inducing dependence with Ni.t/ and PFS as per our assumptions whenφ>0.
Thus, λ̃ is the baseline rate and δ̃ is the real-valued PBT versus IMRT RT modality effect, with
δ̃> 0 corresponding to increased relative rate of surgery in favour of PBT. Section B.2 of the
on-line supplementary material provides the likelihood contribution. However, as described in
Section 5.1, we evaluate our design’s operating characteristics by generating surgery times with
an approximation of the baseline hazard function that we expect to observe in the trial by using
a piecewise constant model.

The POCs that are monitored in this trial are serious, rare events. A major motivation for
the trial is whether the relative incidences or severities of these POCs may differ between the
two RT modalities, since chemoradiation may impact the extent to which a patient tolerates
surgery. Because all five POCs are assessed at a single time point following surgery, we use a
multinomial model for the aggregate severity of the POCs. There are 24 possible values of the
total POC severity (computed from Table 1) which we denote in order from least to most severe
by w̃ = .0, 30, : : : , 400/: Let Zi.t/={Zi,1.t/, : : : , Zi,24.t/} denote the vector of aggregate severity
level indicators for patient i, whereby Σ24

m=1 Zi,m.t/ = 1 if S.t/ > 0, and Zi,m.t/ = 0, for all m

otherwise. We assume that [Zi.t/|xi]∼multinomial{π.xi/}, with RT-specific probability vector
π.xi/={π1.xi/, : : : ,π24.xi/}, where Σ24

m=1πm.xi/=1: Section B.3 of the on-line supplementary
material provides the likelihood contribution for POC severity.

4.3. Progression-free survival and mixture model
Our trial uses a piecewise constant hazard formulation for PFS (e.g. Ibrahim et al. (2001), sec-
tion 3.1). This model facilitates between-modality comparisons under the typical proportional
hazards assumptions that are robust to the actual shape of the underlying baseline hazard.
Given the frailty Ui, we assume that the hazard for PFS is piecewise constant over the time axis
partition .0, s1], .s1, s2], : : : , .sG−1, sG], .sG, ∞/, where 0 < s1 < s2 <: : : < sG <∞: For [Yi|Ui] in
the interval .sg−1, sg], g=1, : : : , G, the constant baseline hazard is ξg.xi, Ui/=Uiγg exp.−xiδ

ξ/,
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where γg > 0, and we denote γ = .γ1, : : : ,γG/: This model can approximate any underlying
smooth baseline hazard function, providing a robust relative comparison between modalities.
We selected the set of hazard discontinuities, .s1, : : : , sG/, adaptively using the interim data to
obtain a time axis partition that is Akaike information criterion optimal among all sets of
equidistant quantiles so that each interval contains at least 10 observed events. Positive val-
ues of δξ correspond to longer median PFS for PBT versus IMRT. Section B.4 of the on-line
supplementary material provides the likelihood contribution for PFS. Additionally, multiplying
each interval hazard γg exp.−xiδ

ξ/ by the frailty Ui provides subject-specific perturbations of
the baseline hazard function inducing positive or negative correlation with surgery or toxicity
respectively.

Collecting terms, the ith patient’s observable outcome vector is Di = .Ni, Si, Zi, Yi, Ci/, i =
1, : : : , n, and the overall joint likelihood contribution is obtained by averaging the product of
conditional likelihoods of the observables over the frailty distribution. Since these are assumed
to be conditionally independent given Ui, this is

Li.θ|Di/=LZi

∫ ∞

u=0
LNi .u/LSi.u/LYi.u/dΓ−1

(
u | 1

φ
+2,

1
φ

+1
)

: .4/

The model parameter vector is θ= .λ, λ̃, π, γ,φ, δψ, δ̃, δξ/, and we denote the data for n patients
by D=∪n

i=1Di.

4.4. Mean total toxicity burden
Having specified a model for the multivariate patient outcome, we can now derive the ex-
pectation of equation (2) as well as the intermodality difference in mean TTB, Δ.θ, w/ =
E{B.1/|IMRT} − E{B.1/|PBT}, which provides the basis for comparing safety in our trial.
The marginal expected toxicity burden of Nk.t/ for a patient who is assigned to treatment x is

μREC
k .t, x, θ/= tψk.x/wÅ

k , k =1, : : : , 7: .5/

The expected severity from POCs over the follow-up period [0, t/ for a patient who is assigned to
treatment x is a tractable function of π.x/, the surgery intensity λ̃ and frailty varianceφ, given by

μPOC.t, x, θ/= w̃′π.x/

[
1−

{
φtλ̃ exp.xδ̃/

φ+1
+1

}−.1=φ+2/]
: .6/

Details of the derivation are provided in Appendix A. In the absence of frailty dispersion (φ=0),
the mean TTB from POCs would be the multinomial mean μPOC.t, x, θ/= w̃′π.x/: Equation (6)
shows that the frailties reduce w̃′π.x/ by a multiplicative factor that depends on .φ, λ̃, δ̃, x/ and
takes values between 0 and 1. As the frailty dispersion increases, there is a decrease in the prob-
ability of undergoing surgery after experiencing recurrent toxicity, thereby attenuating the influ-
ence of POCs. The multiplicative term approaches the lower limit 1−{tλ̃ exp.xδ̃/+1}−2, asφ→
∞, which is the largest multiplicative amount by which frailty dispersion may reduce w̃′ π.x/:

The μs given by equations (5) and (6) quantify risk–severity trade-offs, and their sum,

μ.t, x, θ/=
7∑

r=1
μREC

r .t, x, θ/+μPOC.t, x, θ/, .7/

is the mean TTB for a patient who is assigned to modality x at follow-up time t. Recalling that
x=−0:5 for IMRT and x=0:5 for PBT, the design uses the 52-week (t =1) mean difference as the
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basis for IMRT versus PBT safety comparison, denoted by Δ.θ, w/=μ.1, −0:5, θ/−μ.1, 0:5, θ/:

Positive values of Δ.θ, w/ correspond to superior safety for PBT compared with IMRT.

4.5. Establishing priors
To specify priors, we selected distributions to satisfy model constraints or to exploit analytical
properties of conditional conjugacy. Let δ = .δψ, δ̃, δξ/ characterize the respective modality
differences for recurrent toxicity, surgery and PFS. The remaining model parameters θ − δ
characterize baseline features of the recurrent toxicity severity or surgery processes, severity
probabilities from POCs or the frailty dispersion.

Given that one modality effectuates a safer plan, we expect reductions in the event rates of
each of the radiation-induced toxicities that are monitored in the trial. Under this assumption,
parameters that characterize the corresponding ‘group level’ treatment effects should be pos-
itively associated. To effectuate this, we used a hierarchical prior to induce shrinkage among
exchangeable treatment effects: δψk ∼ N.δψ,ω2/, k = 1, : : : , 7: A non-informative prior was as-
sumed for the hierarchical mean, δψ ∼ N.0, 100/: Following the recommendations of Gelman
(2006), the hierarchical standard deviation ω was assumed to be uniform over .0, 10]: For the
treatment effects for surgery, δ̃, and PFS, δξ , we assumed N.0, 100/ priors. We assumed weakly
informative priors for the non-treatment effect parameters, including conditionally conjugate
gamma distributions for the λs, and for the piecewise constant PFS hazard parameters γ and
Dirichlet priors for the POC severity probabilities π.x/: In the absence of prior knowledge
about the extent of interdependence between the observables, we assumed a weakly informative
uniform prior distribution over the interval .0, 10] for the frailty variance.

Prior hyperparameters for baseline means were estimated from historical data and/or elicited
from the team of oncologists. Each hazard component for PFS was centred at the estimated
hazard rate derived from a parametric exponential fit to a cohort of 246 patients with stage II–III
oesophageal cancer who underwent the trimodality regime at the MD Anderson Cancer Center
with IMRT. Table 3 summarizes elicited information characterizing the non-occurrence rate
and severity level probability for each toxicity. Prior means of baseline event rates for recurrent
toxicities were derived by combining event rates and severity probabilities among toxicity grades
having identical severity weights, assuming independence. For example, the occurrence of an
atrial fibrillation or a pleural effusion requiring medical intervention both have severity weight
wÅ

3 = 30: The corresponding elicited baseline event rate was obtained by mapping the induced
probability that both toxicities are absent after 52 weeks of follow-up onto the domain of λ:

The prior mean baseline event rate for surgery followed similarly from the expectation that
65% of patients would undergo surgery. For each treatment arm, the mean probability of each
POC severity level, which is depicted in Fig. 2, was calibrated by using the elicited POC-specific
severity probabilities in Table 3 under the assumption of independence.

Prior variances for toxicity severity and surgery were specified by using the prior effective
sample size ESS (Morita et al., 2008, 2012) to characterize prior informativeness relative to the
amount of information that is contributed by the likelihood on the basis of the trial’s maximum
sample size of N = 180: The concentration hyperparameters for the probability of aggregate
POC severity were scaled to sum to 1, inducing a Dirichlet prior with ESS = 1. We set the
gamma rate hyperparameter for each conjugate time homogeneous Poisson process to 5. Thus,
conditionally on the frailty, the induced prior distribution for each baseline intensity contained
information equivalent to five patients.

Given the frailty variance, priors for the unconditional intensities, UλkÅs and U−1λ̃, are
proportional to an intractable mixture of Meijer G-functions (Springer and Thompson, 1970).
Therefore, unconditional prior ESS-values were derived by using least squares gamma approx-
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Table 3. Elicited prior information based on experience in treating patients with photon radiation therapy†

Toxicity 52-week absence probability

Recurrent toxicity event processes
Pericardial effusion 0.96
Pleural effusion 0.95
Radiation pneumonitis 0.90
Pneumonia 0.85
Atrial fibrillation 0.75
Myocardial infarction 0.95

Severity level Severity probability given occurrence

Recurrent ordinal toxicity severities
Pericardial effusion Non-symptomatic 0.50

Medical intervention 0.30
Surgical intervention 0.20

Pleural effusion Non-symptomatic 0.60
Medical intervention 0.20
Surgical intervention 0.20

Radiation pneumonitis Grade 1–2 0.80
Grade 3 0.10
Grade 4 0.10

Severity level Severity occurrence probability

POCs
Anastomotic leak Absence 0.87

Radiographic only 0.08
Medical intervention 0.03
Surgical intervention 0.02

Acute respiratory distress syndrome Absence 0.97
Pulmonary embolism Absence 0.97
Reintubation Absence 0.95
Stroke Absence 0.98

†For each recurrent toxicity, the probability that a patient will not experience the toxicity over 52 weeks was
elicited. Binomial or multinomial severity probabilities were elicited for POCs and recurrent toxicities with ordinal
severities. Elicited values for toxicities with identical severity weights were combined to establish prior distributions
for baseline model parameters.

imations. Among the recurrent toxicity severities, the resulting ESS-values ranged from a min-
imum of 0.68 for severity weight wÅ2 = 20 (radiation pneumonitis of grade less than 3) to a
maximum of 1.8 for wÅ7 = 90 (surgical pericardial effusion or radiation pneumonitis of grade
4). The unconditional intensity for surgery had prior ESS = 0.74.

5. Simulation study

5.1. Simulation design
We used simulation as a tool to calibrate the boundary function parameters to obtain a design
with desirable operating characteristics, including acceptable overall frequentist size and power.
Proper evaluation of the design’s frequentist properties required simulation of observables under
a reasonable set of true distributions. To ensure robustness, these must include distributions that
are substantially different from those in the model that is used to construct the design. We thus
simulated the toxicities by using a saturated multivariate marked point process with toxicity-
specific parameters for event intensities and severities. Baseline model parameters for PFS were
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Fig. 3. PFS for a cohort of 246 patients with stage II–III oesophageal cancer who underwent the trimodality
regime with IMRT: Kaplan–Meier curve (- - - - - -) and fitted piecewise exponential curve ( ) with 95%
pointwise confidence intervals

fixed at estimates derived from analysis of a cohort of 246 historical patients treated with IMRT
by the participating oncologists. Posterior inference used the model and approach for selecting
the time axis partition that was described in Section 4.3, which resulted in an Akaike information
criterion optimal partition with two intervals [0, 83] and .83, ∞/ and a median of 81.6 weeks. Fig.
3 provides the Kaplan–Meier curve, with 95% log-transformed (Klein and Moeschberger, 2003)
pointwise confidence intervals, and fitted survival curve derived from the piecewise exponential
analysis (in blue). The corresponding piecewise constant baseline hazard parameters were used
to generate random PFS-durations in the simulations.

Surgery event times were generated by using the hazard function that we expect to observe
in the trial, which is well approximated by a step function. For example, it is expected that 65%
of enrolled patients will undergo surgery following RT, with none undergoing surgery within
4 weeks following RT (therefore within the first 9 weeks of follow-up). For most patients who
do undergo surgery it is expected to take place before week 15. Specifically, times to surgery
were generated by using a piecewise constant baseline hazard with cumulative distribution
probabilities 0:065, 0:49, 0:55 and 0.65 at follow-up durations 10:33, 14:67, 19 and 52 respectively.
Both the time axis partition and the cumulative event probabilities were elicited from the surgeon
performing the procedure in the trial. The baseline POC severity probability vector was fixed at
the elicited prior mean that was used for analysis (Fig. 2). After exploring a range of numerical
values, the frailty variance was set equal to 0.20 in the simulations to induce moderate correlation
between counts of recurrent events, surgery and PFS.

Table 4 provides the baseline mean burden for each toxicity separately, and their sum or mean
TTB. The participating oncologists expect that a typical patient in the trial will experience a
TTB score of 33.67, and they believe that atrial fibrillation will contribute the largest component
of TTB, followed by pneumonia and anastomotic leak.

A total of 19 scenarios, which are given in Table 5, were simulated to evaluate the design’s
operating characteristics. Modality effects were induced by adjusting the relative baseline toxicity
event rates, recurrent and POC severity probabilities, and difference in PFS hazards. For each
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Table 4. Simulation scenarios: baseline mean burden for individual toxicities, and for TTB, obtained from
the elicited values in Tables 1 and 3†

Mean burden for recurrent toxicities Mean burden for POCs Total

PEF PLE RP PNA AFIB MI AL ARDS PEM RI ST

μ 1.67 1.23 3.27 6.5 8.63 3.59 4.88 1.17 0.78 1.37 0.59 33.67

†PEF, pericardial effusion; PLE, pleural effusion; RP, radiation pneumonitis; PNA, pneumonia; AFIB, atrial
fibrillation; MI, myocardial infarction; AL, anastomotic leak; ARDS, acute respiratory distress syndrome; PEM,
pulmonary embolism; RI, reintubation; ST, stroke.

Table 5. Simulation scenarios combining effects for mean TTB and PFS hazard ratio

Scenario % reduction in mean toxicity burden for PBT versus IMRT by toxicity PFS
HR

PEF PLE RP PNA AFIB MI AL ARDS PEM RI ST Total

0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 75 50 87 4 34 76 26 70 70 34 3 50 1
2 69 56 32 81 34 8 4 22 70 81 82 50 1
3 67 81 29 7 81 19 6 32 3 67 52 50 1
4 70 48 83 11 14 69 62 71 15 78 50 50 1
5 45 63 7 72 13 71 73 14 17 35 38 50 1
6 56 52 83 64 13 69 40 23 9 1 79 50 1
7 57 50 78 55 14 2 75 74 70 28 58 50 1
8 63 85 57 52 9 79 26 5 79 78 74 50 1
9 59 71 79 39 6 53 75 69 71 6 44 50 1

10 65 24 29 17 64 83 22 25 26 74 70 50 1
11 62 73 75 7 78 45 0 0 0 0 0 50 1
12 60 59 60 41 78 32 0 0 0 0 0 50 1
13 0 0 0 0 0 0 0 0 0 0 0 0 1.35
14 0 0 0 0 0 0 0 0 0 0 0 0 1.6
15 0 0 0 0 0 0 0 0 0 0 0 0 1.8
16 0 0 0 0 0 0 0 0 0 0 0 0 2
17 56 52 83 64 13 69 40 23 9 1 79 50 2
18 56 52 83 64 13 69 40 23 9 1 79 50 0.5

†PEF, pericardial effusion; PLE, pleural effusion; RP, radiation pneumonitis; PNA, pneumonia; AFIB, atrial
fibrillation; MI, myocardial infarction; AL, anastomotic leak; ARDS, acute respiratory distress syndrome; PEM,
pulmonary embolism; RI, reintubation; ST, stroke. Each scenario is characterized by percentage reductions in
mean TTB as well as the HR of PFS, for IMRT versus PBT. Scenarios 1–12 were obtained by randomly perturbing
toxicity incidences and severity probabilities to give a 50% reduction in mean TTB for PBT, while fixing HR=1.
Scenarios 13–16 were obtained by increasing the IMRT versus PBT HR for PFS, while fixing the mean TTB
difference to be 0. Scenario 17 combines scenarios 6 and 16 to yield a ‘win–win’ scenario for PBT, with a 50%
reduction in mean TTB for PBT and a twofold increase in PFS hazard for IMRT. Scenario 18 combines scenario
6 with a twofold decrease in IMRT versus PBT HR for PFS, to yield a ‘win–lose’ scenario for PBT.

scenario, Table 5 provides the percentage change from baseline in mean toxicity burden for
each toxicity, and the IMRT versus PBT hazard ratio HR for PFS. Scenario 0 is the global null
hypothesis, where the modalities have identical mean TTB and the PFS HR =1. Scenarios 1–12
characterize alternatives chosen randomly to yield a 50% reduction in mean TTB for PBT versus
IMRT, with PFS HR ≡ 1. For example, scenario 12 achieves a 50% reduction in the mean TTB
for PBT by adjusting the relative event occurrence rates and severity probabilities for recurrent



Bayesian Group Sequential Clinical Trial Design 289

toxicities only to induce 60% reduction for PBT versus IMRT in mean toxicity burden for
pericardial effusion and 59% reduction for pleural effusion, as well as 60%, 41%, 78% and 32%
reductions for radiation pneumonitis, pneumonia, atrial fibrillation and myocardial infarction
respectively, in combination with no difference in mean toxicity burden contributed by POCs
and equivalent PFS hazard.

For PFS, we evaluated the sensitivity to four different time invariant hazard ratios, while
constraining the mean TTB difference Δ.θ, w/≡0 in scenarios 13–16. Two additional scenarios
were used to evaluate the design’s sensitivity to detecting modality effects for both end points.
Scenario 17 combines scenarios 6 and 16 to yield a ‘win–win’ scenario consisting of a 50%
reduction in mean TTB for PBT and a twofold increase in PFS hazard for IMRT. Scenario 18
combines scenario 6 with a twofold decrease in PFS hazard for IMRT, yielding a ‘win–lose’
scenario for PBT. Posterior probabilities for the TTB and PFS modality comparisons were cal-
culated by using Markov chain Monte Carlo sampling, details of which are given in section C
of the on-line supplementary material.

As a comparator, we used a conventional frequentist bivariate group sequential design based
on PFS and a binary indicator YT of any toxicity at any level of severity by 52 weeks (t = 1).
For each patient, YT was scored as 1 at the time of toxicity, or as 0 at t = 1 if no toxicity
occurred. A group sequential log-rank test (see for example Klein and Moeschberger (2003))
was used for PFS, and a normal approximation for a two-sample binomial test for toxicity,
both implemented with O’Brien–Fleming monitoring boundaries (O’Brien and Fleming, 1979;
Jennison and Turnbull, 2000). Although the information times for the binomial data were not
identical to the ITTB.τ / that was used for TTB, we formulated the monitoring schedule for
toxicity in the conventional design to be as close as possible to that of TTB in the Bayesian
design. Additionally, the conventional design was calibrated so that its familywise type I error
rate was 0.07 to match that of the Bayesian design. Appendix B describes the process for selecting
optimal monitoring boundaries for our design, and it presents the corresponding optimal group
sequential critical values that were used to implement the conventional design.

5.2. Operating characteristics
In this section we present operating characteristics for the RT trial when implemented by using
our group sequential design based on TTB and PFS, and for the conventional design. Table
6 presents the marginal decision probabilities for scenarios that characterize true treatment
effects for only one end point. Corresponding values for the conventional design are given
in parentheses. In scenarios 1–12, all of which have true PFS HR = 1, our design provides
probability 0.83–0.95 of detecting a 50% reduction in mean TTB, while controlling the false
positive rate for TTB at 0.02 or lower. The TTB design has early stopping probabilities 0.56–
0.72, resulting in a trial with mean sample size 140–153 in these scenarios. In contrast, the
conventional design provides probability 0.50–0.81, and in each scenario it is far less likely than
the Bayesian design to conclude correctly that PBT is the safer modality and far less likely to
stop early, yielding a larger mean sample size. These large differences may be attributed, in large
part, to the conventional practice of combining many toxicities into one binary variable and
ignoring their severities.

In scenario 16, where the true difference in mean TTB is Δ.θ, w/≡0, both designs result in
an identical probability of 0:89 to detect a twofold increase in PFS hazard, while controlling the
false positive rate for PFS at 4% or lower. However, the Bayesian design is more likely to stop
early and offers smaller mean sample size when compared with the conventional design, i.e. the
Bayesian design detects the difference in PFS with the same reliability but offers a shorter trial,
with mean sample size 139 versus 160 for the conventional design.
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Table 6. Marginal probabilities of final comparative decisions and early stopping†

Scenario Probabilities for the following final decisions for TTB: Early stopping Mean
probability sample size

PBT Indeterminate IMRT

(a) TTB with identical PFS hazard
0 0.01 (0.01) 0.98 (0.98) 0.01 (0.01) 0.04 (0.01) 178 (180)
1 0.83 (0.50) 0.17 (0.50) 0.00 (0.00) 0.56 (0.18) 153 (173)
2 0.89 (0.66) 0.11 (0.34) 0.00 (0.00) 0.66 (0.28) 145 (168)
3 0.93 (0.80) 0.07 (0.20) 0.00 (0.00) 0.70 (0.38) 143 (163)
4 0.85 (0.54) 0.15 (0.46) 0.00 (0.00) 0.58 (0.22) 150 (172)
5 0.89 (0.62) 0.11 (0.38) 0.00 (0.00) 0.64 (0.25) 149 (170)
6 0.90 (0.67) 0.10 (0.33) 0.00 (0.00) 0.68 (0.30) 144 (167)
7 0.87 (0.61) 0.13 (0.39) 0.00 (0.00) 0.60 (0.27) 150 (169)
8 0.86 (0.53) 0.14 (0.47) 0.00 (0.00) 0.59 (0.19) 151 (172)
9 0.87 (0.61) 0.13 (0.39) 0.00 (0.00) 0.61 (0.27) 149 (170)

10 0.90 (0.67) 0.10 (0.33) 0.00 (0.00) 0.65 (0.27) 148 (169)
11 0.93 (0.79) 0.07 (0.21) 0.00 (0.00) 0.71 (0.41) 143 (164)
12 0.95 (0.81) 0.05 (0.19) 0.00 (0.00) 0.72 (0.40) 140 (162)

Probabilities for the following final decisions for PFS:

PBT Indeterminate IMRT

(b) PFS with identical mean TTB
0 0.02 (0.02) 0.96 (0.96) 0.02 (0.02) 0.04 (0.01) 178 (180)

13 0.26 (0.27) 0.74 (0.73) 0.00 (0.00) 0.17 (0.08) 169 (177)
14 0.56 (0.57) 0.44 (0.43) 0.00 (0.00) 0.33 (0.25) 162 (172)
15 0.76 (0.80) 0.24 (0.20) 0.00 (0.00) 0.52 (0.41) 149 (167)
16 0.89 (0.89) 0.11 (0.11) 0.00 (0.00) 0.66 (0.52) 139 (160)

†Part (a) considers decisions for TTB under scenarios 0–12. Part (b) considers decisions for PFS under the null
hypothesis (scenario 0) and scenarios 13–16. Operating characteristics for a conventional bivariate sequential
design using O’Brien–Fleming monitoring boundaries are provided in parentheses.

Table 7 provides the joint probabilities for each of the nine decisions under scenarios 0, 6,
17 and 18. In the null scenario 0, both designs have a familywise false positive rate of 0.07 or
less. Moreover, the four corner decisions have a probability of approximately 0.00, so it is very
unlikely that either design results in a trial that yields a false positive result for both end points.
Recall that scenario 6 corresponds to a 50% reduction in mean TTB with PBT when the PFS HR
=1. The TTB design provides much higher probability for concluding that PBT is superior for
TTB and indeterminate PFS when compared with the conventional design, 0.88 versus 0.66. For
scenario 17, the ‘win–win’ case for PBT, the probability that both of the Bayesian design’s tests,
for TTB and for PFS, correctly conclude that PBT is superior is 0.20. However, since PBT will
be chosen as the superior modality for any of the three decisions 1, 2 or 4 in Table 3, the design
provides probability equal to 0:20+0:42+0:37=0:99 to detect an improvement for at least one
end point. Moreover, the Bayesian design has probability 0.89 of terminating early and mean
sample size 125, when compared with 0.65 and 152 for the conventional design respectively. The
0.01 false negative result probability is confined only to the global null decision. In scenario 18,
the ‘win–lose’ case for PBT, the Bayesian design has probability 0.21 of making the correct ‘win–
lose’ conclusion, probability 0.33 of concluding that PBT is superior for TTB and indeterminate
for PFS, and probability 0.45 of concluding that IMRT is superior for PFS and indeterminate
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Table 7. Joint probabilities of final decisions for TTB and PFS for scenarios 0, 6, 17 and 18 by using three
interim analyses†

Probabilities for the following TTB decisions:

PBT better Indeterminate IMRT better

Scenario 0: identical mean TTB and PFS hazard (global null)
PFS decision PBT better 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)

Indeterminate 0.01 (0.01) 0.93 (0.93) 0.01 (0.01)
IMRT better 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)

Early stopping probability 0.04 (0.01); mean sample size 178 (180)

Scenario 6: 50% reduction in mean TTB for PBT and PFS HR = 1 (null case)
PFS decision PBT better 0.01 (0.005) 0.01 (0.01) 0.00 (0.00)

Indeterminate 0.88 (0.66) 0.07 (0.31) 0.00 (0.00)
IMRT better 0.01 (0.005) 0.02 (0.01) 0.00 (0.00)

Early stopping probability 0.68 (0.30); mean sample size 144 (167)

Scenario 17: 50% reduction in mean TTB for PBT and PFS HR = 2 (in favour of PBT)
PFS decision PBT better 0.20 (0.16) 0.42 (0.65) 0.00 (0.00)

Indeterminate 0.37 (0.15) 0.01 (0.04) 0.00 (0.00)
IMRT better 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Early stopping probability 0.89 (0.65); mean sample size 125 (152)

Scenario 18: 50% reduction in mean TTB for PBT and PFS HR = 0.5 (in favour of IMRT)
PFS decision PBT better 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Indeterminate 0.33 (0.35) 0.01 (0.02) 0.00 (0.00)
IMRT better 0.21 (0.29) 0.45 (0.34) 0.00 (0.00)

Early stopping probability 0.88 (0.73); mean sample size 126 (147)

†Operating characteristics for a conventional bivariate sequential design using O’Brien–Fleming monitoring
boundaries are provided in parentheses.

for TTB. Again, the 0.01 false negative probability is confined only to the global null decision
and, similarly to scenario 17, the design has probability 0.88 of terminating early.

6. Guidelines for constructing a design with total toxicity burden

When patients are at risk of multiple, qualitatively different toxicities, a Bayesian design based
on TTB and PFS may offer a powerful tool for comparing safety and effectiveness between com-
peting treatments. However, many decisions must be made when choosing the set of toxicities,
features of the Bayesian model and sequential decision rules. These decision are inherently sub-
jective and require close collaboration between the statisticians and physicians. In this section,
we briefly explain the process for constructing a design and evaluating its operating character-
istics.

6.1. Eliciting toxicities and severity weights
The two essential components of the TTB statistic are the toxicities and severity weights. The
toxicities, and when each may occur in the treatment regime, are identified by the physicians. In
essence, there are three fundamental types of toxicities: toxicities that occur at random times

(a) with and
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(b) without the possibility of recurrence and
(c) toxicities that are observed only at prespecified evaluation times, such as POCs following

surgery.

The next step is to ask the physicians to define the ordinal categories of each toxicity that
matter clinically, e.g. in Table 1 the three levels consisting of grade 1–2, 3 and 4–5 for radiation
pneumonitis, or simply whether pneumonia occurs. Once this structure has been established,
the numerical severity weights must be elicited.

Section A of the on-line supplementary material describes the process that we used to elicit
the severity weights in Table 1 and provides the medical rationale put forth by the participat-
ing oncologists to justify the resultant numerical values. Our approach should be considered
informal in the sense that we did not use an established method (e.g. Hunink et al. (2014)),
which would have been preferable. For example, a structured communication technique known
as the ‘Delphi method’ (Dalkey and Helmer, 1963; Dalkey, 1969; Brook et al., 1986) could have
been used to quantify the relative severity of each possible grade of each toxicity. Additional
techniques for elicitation, characterization and use of expert opinion were examined systemati-
cally by Cooke (1991). A few researchers have effectuated implementations of such utility-based
approaches to clinical cancer studies in recent years. Swinburn et al. (2010) conducted detailed
interviews with clinical experts to establish the relative burden of a variety of toxicities that are
commonly encountered from first-line therapies for metastatic renal cell carcinoma when each is
experienced in conjunction with stable versus progressive disease. Wong et al. (2012) conducted
sequential semi-structured interviews with cancer patients to attempt to establish patient pri-
orities for weighing prolonged PFS versus inflated risk of multiple types of toxicities that may
occur from second-line therapy for renal cell carcinoma.

6.2. Modelling decisions
The model should provide a reasonable representation of the process of treatment and out-
come observation, but it must be tractable. One must decide whether the toxicities and other
outcomes are positively associated, negatively associated or independent. We characterized the
incidence of toxicity by using a multivariate Poisson process and formulated a joint model for
the toxicities, surgery and PFS duration by using independently and identically distributed pa-
tient frailties. A simple device is to invert the patient frailty, i.e. to use 1=U, to accommodate
negative association, or to omit it for independence. In the RT trial, radiation-induced toxici-
ties were assumed to be influenced by the RT modality (at the group level) and the anatomic
location of each patient’s tumour (at the patient level). Because the tumour’s location within
the oesophagus influences how a dosimetric plan is formulated and implemented, incidences
of all radiation-induced toxicities were assumed to be positively associated. Because radiation-
induced toxicities may decrease survival, and PFS includes death as an event, the incidence of
toxicity was assumed to be negatively associated with PFS.

To specify prior hyperparameters, a general approach that works well in practice is to use
elicited values to establish means and then to calibrate the variances by using ESS. One should
avoid priors that are either excessively informative or unrealistically dispersed. Taking this
approach, we specified priors that characterized the expected incidence of each toxicity and
marginally contained the amount of information that would be contributed by one or two pa-
tients. One also must decide whether treatment effects that determine the relative incidences
of each toxicity severity are independent or a priori dependent for the therapeutic regimes. We
decided that it was appropriate to assume that the treatment effects for the radiation-induced tox-
icities were exchangeable, and thus we used hyperpriors to induce shrinkage for the oesophageal
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RT trial. Finally, the model requires specification of a prior for the frailty variance in relation to
an assumed degree of association between the end points on the scale of the Poisson intensity
domain. We used a uniform prior with lower bound at 0 (independence) and selected the upper
bound 10 to restrict the prior to an interval that excluded an unrealistically high probability of
toxicity recurrence.

6.3. Design considerations
Several design features must be considered when planning a TTB-based trial. One first must
determine the maximum follow-up duration for which a patient will be monitored for toxicity
following treatment. The design requires a schedule for the group sequential tests, based on
the information statistics that determine the number and ‘timing’ of the interim analyses. The
schedule should be specified in relation to the trial’s expected rate of enrolment and the assumed
event rates. In addition, the investigators must fix " to reflect a difference in mean TTB that should
be considered too small to be clinically relevant.

We next describe the process of using simulation to calibrate tuning parameters to obtain tar-
geted operating characteristics. To construct alternative simulation scenarios from combinations
of the treatment effects δ, one first must ascertain a ‘baseline’ value for mean TTB, hereafter
denoted by μ0 (e.g. Table 4) that reflects the expected TTB for a typical patient receiving the
control therapy. This can be achieved by accounting for or neglecting prior uncertainty for the
model parameters, depending on the investigators’ preference. The former approach requires
Monte Carlo simulation, whereby one generates model parameters from the priors for the base-
line model parameters (treatment effects omitted), obtains a prior distribution for mean TTB
and fixes μ0 at the resulting mean. The latter, more practical approach simply fixes the model
parameters at their respective prior means and uses equation (7) to determine μ0 where δ =0:

When considering simulation scenarios, one uses μ0 to identify targeted ‘effect sizes’ for the
power computations by considering scenarios that induce varying degrees of relative difference in
true mean TTB between treatments. For example, μ0 was determined to be 33.67 for the control
modality, IMRT, in the oesophageal trial. The sample size was selected to target a 50% reduction
in mean TTB for PBT, which we denote by %ΔÅ: Thereafter, one can identify alternative
simulation scenarios (e.g. scenarios 1–12, 17 and 18 in Table 5) through computation by selecting
treatment effect vectors at random, δ = δÅ, that achieve the target %ΔÅ = 100.μÅ=μÅ

0 − 1/,
where μÅ and μÅ

0 denote true values of mean TTB determined by δÅ for treatment and control
respectively. For our model μÅ

0 attains the baseline value μÅ
0 =μ0 when δÅ =0:

After establishing the alternative scenarios, one must simulate trials under each alternative and
the null hypothesis, δÅ =0, storing the resulting posterior probabilities that are obtained for each
sequential interim analysis. After determining the design’s false positive rate, optimal monitoring
boundaries can be selected by using the process that is described in Appendix B. In the presence
of co-primary end points, an objective function characterizing the relative importance of power
for each end point must be defined with respect to at least one alternative scenario before selecting
an optimal design (note that Appendix B uses equal costs). Finally, operating characteristics
can be obtained through post-processing of the replicate trials by using the optimal monitoring
boundaries. The entire simulation process may be repeated multiple times to determine a minimal
sample size that detects %ΔÅ with acceptable power for all alternative scenarios.

7. Discussion

We have proposed a Bayesian design for a randomized clinical trial with group sequential treat-
ment comparisons based on posterior mean TTB and PFS. The complexity of the underlying
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probability model reflects the complexity of the disease and therapeutic outcomes. TTB, con-
structed from subjective severity weights, provides a practical continuous statistic for measuring
the extent to which a patient tolerates a therapeutic intervention. The statistical model and cor-
responding trial design offer powerful tools for sequential safety monitoring in settings wherein
patients are at risk of many types of toxicities that may result from each single treatment or stem
from the combined effects of multiple types of therapy when used concurrently or administered
over a sequence of intervention periods. The trial design reflects the fact that, for many diseases
and therapeutic regimes, it is essential to account for both toxicity and efficacy in treatment
evaluation.

The problem of handling multiple co-primary end points is quite general and does not pertain
specifically to whether Bayesian or conventional frequentist decision rules are used. There is an
extensive literature on testing for multiple end points. Some useful references are O’Brien (1984),
Cook and Farewell (1996), Wassmer et al. (1999) and Jennison and Turnbull (2000). For our
comparator in the simulation study, we assumed that PFS and the indicator of toxicity were
independent. Alternative approaches that account for association between multiple end points
have been proposed. Pocock et al. (1987) extended the multiple-end-point testing methods of
O’Brien (1984) to address the bivariate problem of combining survival and binary end points
by using linear combinations of asymptotically multivariate normal test statistics. Chang et al.
(1997) considered sequential analysis of paired survival end points by using multivariate count-
ing processes arising from a time-dependent frailty model. Murray (2000) discussed a method
for two-sample sequential monitoring of paired censored survival end points based on weighted
log-rank statistics. The last two methods could have been used as the comparator in our simu-
lation study by replacing the toxicity indicator with a time-to-event end point. Application of
any of the three methods aforementioned may have yielded a more powerful comparator.

An important aspect of our decision rules is that they allow the conclusion that one modality
is superior in terms of TTB but yields shorter PFS. Such scenarios are not unlikely in many
oncology settings, where qualitatively different or more aggressive treatments may improve PFS
or prolong survival, but at the cost of increased severity or incidence of adverse events. The
model and joint decision rule that are used in our sequentially adaptive design provide a formal
method for treatment comparison based on both safety and efficacy.
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Appendix A: Mean total toxicity burden derivation

Here we provide additional details pertaining to the derivation of mean TTB in Section 4.4. Denoting
v=1=u and

c=
{

Γ
(

1
φ

+2
)(

φ

φ+1

)1=φ+2 }−1

,
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by iterated expectation,

μPOC.t, x, θ/= w̃′ π.x/EU [Pr{S.t/> 0|u, x, λ̃, δ̃}|φ]

= w̃′ π.x/

∫ ∞

0
Pr{S.t/> 0|u, x, λ̃, δ̃}dΓ−1

(
u| 1
φ

+2,
1
φ

+1
)

= w̃′ π.x/

∫ ∞

0
[1− exp{−tvλ̃ exp.xδ̃/}]v1=φ+1exp

{
−v.φ+1/

φ

}
dv

= w̃′π.x/

(
1− c

∫ ∞

0
v1=φ+1 exp

[
−v

{
tλ̃exp.xδ̃/+ φ+1

φ

}]
dv

)

= w̃′π.x/

[
1−

{
φtλ̃exp.xδ̃/

φ+1
+1

}−.1=φ+2/]
: .8/

Appendix B: Selecting optimal sequential monitoring boundaries

A set of optimal sequential monitoring boundaries was selected by using the following process. Initially,
we simulated 3000 replications for each of scenarios 0, 6 and 16. For each simulated sequential trial,
g= 1, : : : , 3000, we saved the set of posterior probabilities corresponding to each of the four sequential
analyses τ1, : : : , τ4 :

{ϕPB."TTB, τ1/,ϕIM."TTB, τ1/,χPB."PFS, τ1/,χIM."PFS, τ1/, : : : ,ϕPB."TTB, τ4/,
ϕIM."TTB, τ4/,χPB."PFS, τ4/,χIM."PFS, τ4/}.g/:

Any improvement in mean TTB or PFS was considered clinically relevant by the participating oncologists;
therefore posterior probabilities were computed by using "TTB = "PFS =0:

A gradient optimization method was implemented to select the set of values for the posterior boundary
parameters,αTTB,αPFS,βTTB and βPFS, that yielded maximum total power for scenarios 1 and 16 among all
choices that controlled the familywise type I error at 0:07 or less under scenario 0. We defined the total power
to be the sum of the marginal probability that the sequential procedure concluded that PBT was superior
to IMRT for TTB in scenario 1 plus the marginal probability that the sequential procedure concluded that
PBT was superior to IMRT for PFS in scenario 16. The final design usedαTTB =3:92 and βTTB =0:030, and
αPFS =0:965 and βPFS =0:028, which produced the operating characteristics that are provided in Tables 6
and 7.

In contrast, the conventional design used O’Brien–Fleming boundaries for both group sequential
rules. The operating characteristics in Tables 6 and 7 were computed by using the following critical
values for comparing toxicity rates between modalities using sequential z-tests for a difference in pro-
portions: .3:60563, 3:08866, 2:74145, 2:13505/. The sequential log-rank testing procedure used the fol-
lowing critical values for z-tests for a difference in PFS corresponding to each of the four analyses:
.3:675, 3:217, 2:529, 2:167/. The O’Brien–Fleming group sequential critical values were obtained through
a two-step process that involved generating a set of candidate boundaries by using statistical software
PASS version 11 (Hintze, 2011) using the closest approximation of the actual interim monitoring schedule,
then simulating the TTB design under each candidate boundary and selecting the one that yielded the
largest total power among those that controlled the familywise type I error rate at 0:07 or less.
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