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a b s t r a c t

The problem of comparing several experimental treatments to a standard arises

frequently in medical research. Various multi-stage randomized phase II/III designs

have been proposed that select one or more promising experimental treatments and

compare them to the standard while controlling overall Type I and Type II error rates.

This paper addresses phase II/III settings where the joint goals are to increase the

average time to treatment failure and control the probability of toxicity while

accounting for patient heterogeneity. We are motivated by the desire to construct a

feasible design for a trial of four chemotherapy combinations for treating a family

of rare pediatric brain tumors. We present a hybrid two-stage design based on

two-dimensional treatment effect parameters. A targeted parameter set is constructed

from elicited parameter pairs considered to be equally desirable. Bayesian regression

models for failure time and the probability of toxicity as functions of treatment and

prognostic covariates are used to define two-dimensional covariate-adjusted treatment

effect parameter sets. Decisions at each stage of the trial are based on the ratio of

posterior probabilities of the alternative and null covariate-adjusted parameter sets.

Design parameters are chosen to minimize expected sample size subject to frequentist

error constraints. The design is illustrated by application to the brain tumor trial.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The problem of comparing several experimental treatments, E1, . . . ,EJ , to a standard treatment, S, is common in clinical
trials. Reviews are given by Simon et al. (1994), Rubinstein et al. (2004), Bretz et al. (2006), Jennison and Turnbull (2006),
and Thall (2008). For a one-dimensional outcome, the focus is on Jþ1 parameters, ~h ¼ ðy0,y1, . . . ,yJÞ, where y0 corresponds
to S and yj corresponds to Ej for j¼ 1, . . . ,J. For example, each entry of ~h may be a probability of tumor response, or median
survival time.

In this setting, Thall, Simon and Ellenberg (TSE) (1988) proposed a 2-stage phase II/III design for binary outcomes
combining ideas from selection (cf. Bechhofer et al., 1995) and group sequential testing (Pocock, 1977; O’Brien and
Fleming, 1979; Lan and DeMets, 1983; Wang and Tsiatis, 1978; Jennison and Turnbull, 2006). The TSE design randomizes
patients among E1, . . . ,EJ and S in stage 1, and proceeds to stage 2 only if the empirically best experimental treatment in
stage 1, En, is promising compared to S. In stage 2, patients are randomized between En and S and a final test is conducted
ll rights reserved.
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to decide whether En provides an improvement over S. Design parameters are chosen to minimize expected sample size
subject to constraints on overall Type I and Type II error. Schaid et al. (1990) proposed a similar 2-stage design for time-
to-event outcomes that allows more than one Ej to move forward to stage 2, allows termination of the trial in stage 1 for
either futility or superiority, and does pairwise comparisons with the possibility of concluding that more than one Ej

provides an improvement over S. Many extensions of these designs have been proposed, including designs with more than
two stages (Stallard and Todd, 2003; Stallard and Friede, 2008), a design that continues accrual between stages and uses
the stage 1 data to determine the stage 2 sample size adaptively (Liu and Pledger, 2005), and an algorithm for computing
decision boundaries (Cheung, 2008).

We address the problem of selecting among E1, . . . ,EJ and comparing the selected treatment to S based on ðT,YÞ, where T

is survival or event-free survival (EFS) time and Y indicates a nonfatal severe adverse event (SAE). Thus, death is accounted
for by T and not by Y . Our motivation was the desire to provide a feasible design for a trial of four chemotherapy
combinations for treating pediatric patients with choroid plexus tumors (CPTs). CPTs include three histological subtypes:
choroid plexus carcinoma (CPC), atypical plexus papilloma (APP) and choroid plexus papilloma (CPP). A typical CPT patient
is a very young child, with 61% less than three years of age. Because these tumors are too rare for standard protocol
designs, to date no clinical trial specific for CPTs has been completed (Wolff et al., 2002). In the planned trial, the standard
treatment is S¼carboplatinþcyclophosphamideþetoposideþvincristine, and the three experimental treatments are
E1¼doxorubicinþcisplatinumþactinomycinþetoposide, E2¼high dose methotrexate and E3¼temozolomideþ irinotecan.
The outcomes are T¼EFS time, with an event defined as disease progression or death, and Y¼ I(severe toxicity). The
baseline covariates are Age and indicators of metastatic disease, whether surgery achieved a complete resection (CR), and
the unfavorable CPC histology. The goal is to increase T on average while controlling the probability of toxicity, compared
to standard therapy, while also accounting for patient heterogeneity.

We propose a hybrid two-stage select-and-test design based on (T,Y) and baseline covariates. The logic of our design
mimics that of the TSE design, with design parameters chosen to minimize expected sample size subject to overall Type I
and Type II error constraints. The main differences between our procedure and the TSE design are that (i) we account for
patient heterogeneity, (ii) we base the tests on two-dimensional covariate-adjusted treatment effect parameters, and
(iii) we take a Bayesian geometric approach in which test statistics are constructed from posterior probabilities of
two-dimensional parameter sets, rather than using conventional Z-scores.

2. Overview of the methodology

2.1. The basic idea

To establish the ideas underlying the geometric construction, for simplicity we temporarily consider the special case of
two treatments, with j¼0 and 1 for S and E, and we ignore covariates. The parameters yY ,j and yT ,j represent average
behavior of two different outcomes. In the CPT trial, the physician decided to use yY ,j¼the probability of toxicity and
yT ,j ¼ PrðT424 monthsÞ with treatment j as the parameters, where T is the time to treatment failure, defined as disease
progression or death. Alternatively, the physician might use the mean of median of T as yT,j. Thinking of hj ¼ ðyY ,j,yT ,jÞ as a
two-dimensional parameter that describes the average behavior of the outcomes (Y,T) with treatment j, the problem of
comparing E to S becomes that of comparing h1 to h0.

In such settings, there are many methods for dimension reduction to obtain a one-dimensional decision criterion. Our
approach exploits a Bayesian formulation and subjective goals of the physician, using the following construction. Let
l0 ¼ ðmY ,0,mT ,0Þ be the prior mean of h0 based on experience with S. We elicit a set of fixed target pairs, fhe,1, . . . ,he,m

g, for hE

that the physician considers equally desirable improvements over l0. We then form the polygonal line L connecting the
elicited values, and define the target parameter set, YL, of all h pairs at least as desirable as a pair on L. The test is based on
the posterior probability of YL compared to the posterior probability of the null set Y0 where yY ZmY ,0 and yT rmT ,0.
Accounting for covariate effects requires the additional steps of fitting regression models, obtaining covariate-adjusted
treatment effects, and transforming Y0 and YL. This adds technical complications to the construction, but the essential
idea is still to base tests on posterior probabilities of two-dimensional parameter sets. For the CPT trial, the target line and
target parameter set in terms of ðyY ,j,yT,jÞ are given in Fig. 1. In other settings with two outcomes, this construction may be
carried out in the same way, but using different parameters. For example, in a phase I/II dose-finding trial based on
indicators of toxicity and response, yT ,j would be replaced by the response probability.

2.2. Model and parameters

We define the distribution of T conditional on Y to allow the possibility that toxicity may affect the event time. Let n

denote the vector of model parameters. For a patient with baseline covariates Z ¼ ðZ1, . . . ,ZqÞ given treatment j¼ 0;1, . . . ,J,
denote the probability of toxicity by yY ,jðZ,nÞ ¼ PrðY ¼ 19j,Z,nÞ and the conditional probability density function and survivor
function of T given Z and Y by f jðt9Z,Y ,nÞ and F jðt9Z,Y ,nÞ ¼ PrðT4t9j,Z,Y ,nÞ. Denoting the time to the event or independent
right censoring by To and E¼ IðTo

¼ TÞ, the likelihood function of the observed outcome ðTo,E,YÞ given Z and j is

LðTo,E,Y9j,Z,nÞ ¼ f jðT
o9Z,Y ,nÞEF jðT

o9Z,Y ,nÞ1�EyY ,jðZ,nÞY f1�yY ,jðZ,nÞg1�Y : ð1Þ
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Fig. 1. Historical mean pair lh,0 ¼ ð0:47,0:11Þ, elicited targets pairs fhe,1 , . . . ,he,5
g, target line L, and target set HL in the natural parameter domain, with

h¼ hðZÞ evaluated at the reference covariate vector, corresponding to a 2-year-old patient with non-metastatic disease, complete resection and CPC

histology.
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Let yT,jðZ,Y ,nÞ be a parametric function quantifying the effect of treatment j on T given Y and Z. This may be a mean, a
median, or F jðt

n9Z,Y ,nÞ for fixed time tn. Thus, hjðZ,Y ,nÞ ¼ ðyT ,jðZ,Y ,nÞ,yY ,jðZ,nÞÞ is a two-dimensional parametric function.
The treatment effect parameters that are basis of the test are defined as follows. Let ZY and ZT be vectors of variables
obtained from Z, of dimensions qY and qT . We assume parametric regression models under which yT,jðZ,Y ,nÞ is a function of
the linear term

ZT ,jðZT ,Y ,nÞ ¼ gT ,jþbT ,1ZT ,1þ � � � þbT ,qT
ZT ,qT
þbT ,qT þ1Y ¼ gT ,jþbT ZTþbT ,qT þ1Y , ð2Þ

and yY ,jðZ,nÞ is a function of the linear term

ZY ,jðZY ,nÞ ¼ gY ,jþbY ,1ZY ,1þ � � � þbY ,qY
ZY ,qY

¼ gY ,jþbY ZY , ð3Þ

where bY and bT are covariate effects. Expression (2) specifies the conditional distribution of ½T9j,Y ,Z�, with bT,qT þ1 the
effect of toxicity on the distribution of T. Expression (3) specifies the marginal distribution of ½Y9j,Z�. The parameter gT ,j is
the effect of treatment j on T after adjusting for Y and Z, and gY ,j is the effect of treatment j on Y after adjusting for Z. Thus,
the parameter vector ~c ¼ ðc0,c1, . . . ,cJÞ may be considered a 2ðJþ1Þ-dimensional, covariate-adjusted generalization of the
(Jþ1)-dimensional parameter vector ~h ¼ ðy0,y1, . . . ,yJÞ given earlier in the univariate setting. For each Ej, we define the
two-dimensional Ej-versus-S treatment effect dj ¼ cj�c0 ¼ ðgT,j�gT ,0,gY ,j�gY ,0Þ ¼ ðdT ,j,dY ,jÞ, so that larger dT ,j and smaller dY ,j

are more desirable. The test statistics will be defined in terms of 2J-dimensional parameter vector ~d ¼ ðd1, . . . ,dJÞ.

2.3. Steps of the construction

We first list the steps required to construct the test statistics. Additional details are given in Sections 3 and 4. Let H
denote the set of all possible values taken on by the hjðZ,Y ,nÞ pairs, and denote the set of all possible dj’s by D. Since
yT,jðZ,Y ,nÞ is defined conditional on the toxicity outcome Y, in the following construction targets are elicited for each value
yn ¼ 0;1 of Y and averaged to obtain a set of targets that do not depend on Y.

1. Ask the physician to specify a reference covariate vector zn. For each value yn
¼0, 1 of Y , denote the prior mean of

h0ðzn,yn,nÞ by lh,0ðy
nÞ ¼ ðmh,T,0ðy

nÞ,mh,Y ,0Þ. For a fixed toxicity probability yn

Y , denote mh,T ,0 ¼ mh,T,0ð1Þy
n

Yþmh,T ,0ð0Þð1�y
n

Y Þ and
lh,0 ¼ ðmh,T,0,mh,Y ,0Þ.

2. For each yn
¼0 or 1, elicit a set of target h pairs fhðe,1Þ

ðynÞ, . . . ,hðe,mÞ
ðynÞg in H from the physician that correspond to

equally desirable improvements over lh,0ðy
nÞ. The two sets should be elicited so that hðe,rÞ

ð1Þ corresponds to hðe,rÞ
ð0Þ for each

r¼ 1, . . . ,m. Obtain a single set of mean target pairs by forming the weighted averages hðe,rÞ
¼ hðe,rÞ

ð1Þyn

Yþhðe,rÞ
ð0Þð1�yn

Y Þ, for
r¼ 1, . . . ,m. Construct the polygonal target line, L that connects the mean elicited target pairs ~h

e
¼ ðhðe,1Þ, . . . ,hðe,mÞ

Þ.
3. The target set HL ¼

S
0
h2Lfh 2H : yT Zy0T and yY ry0Y g consists of all h pairs at least as desirable as a pair on L. Fig. 1

illustrates lh,0,L, and HL for the CPT trial.
4. In D, denote the line obtained from L by DL, the two-dimensional alternative treatment effect parameter set obtained

from HL by DL, and the null set of all d¼ ðdT ,dY Þ in D with dT r0 and dY Z0 by D0. Fig. 2 illustrates DL,D0, and DL for the
CPT trial.

5. The test statistics used in each stage of the trial are the posterior probability ratios

RjðdataÞ ¼
Prðdj 2 DL9dataÞ

Prðdj 2 D09dataÞ
, j¼ 1, . . . ,J: ð4Þ

Under the construction, larger Rj(data) corresponds to greater superiority of Ej over S.
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Fig. 2. Transformed elicited targets, target line and target set in the D domain of comparative, covariate-adjusted treatment effects. Values in this figure

were obtained from those in Fig. 1 by applying the transformation h�!d¼ tðhÞ�lc,0. The null set is D0 ¼ fd : dT r0,dY Z0g.

Table 1
Historical population percent and elicited prior event-free survival (EFS) time probabilities for each of 16 patient

prognostic subgroups defined in terms of age, whether the tumor was metastatic at first diagnosis (MET), whether

surgery achieved a complete resection (CR), and the unfavorable histology choroid plexus carcinoma (CPC).

AgeZ3 MET CR CPC Popn. percent Elicited prior PrðEFS4t years)

t¼0.5 t¼1.0 t¼2.0 t¼3.0

No No Yes Yes 18.9 0.68 0.58 0.50 0.45

No No Yes No 0 0.89 0.85 0.83 0.81

No No No Yes 26.2 0.47 0.23 0.18 0.15

No No No No 1.7 0.68 0.66 0.60 0.50

No Yes Yes Yes 3.9 0.65 0.42 0.32 0.25

No Yes Yes No 2.4 0.86 0.65 0.54 0.50

No Yes No Yes 6.3 0.44 0.12 0.08 0.04

No Yes No No 1.2 0.65 0.45 0.41 0.38

Yes No Yes Yes 20.1 0.87 0.82 0.79 0.70

Yes No Yes No 0 0.94 0.91 0.89 0.82

Yes No No Yes 9.9 0.73 0.65 0.50 0.43

Yes No No No 2.2 0.77 0.69 0.56 0.50

Yes Yes Yes Yes 0.5 0.84 0.53 0.50 0.46

Yes Yes Yes No 2.2 0.90 0.70 0.60 0.55

Yes Yes No Yes 3.9 0.70 0.48 0.35 0.28

Yes Yes No No 0.7 0.74 0.62 0.36 0.29
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2.4. Model and parameters for the CPT trial

The CPT trial design initially was motivated by the physician’s desire to use (Y,T) as the outcome, and to study several
experimental regimens. The physician chose to use the probability of toxicity and PrðT424 monthsÞ as the reference
parameters, and considered T to be independent of Y, so the formulation was simpler than that given above. Specifically,
bT,qT þ1 � 0 in (2), and only one set of target pairs was elicited in step 2 of the construction. The covariates used in the CPT trial,
given in Table 1, are well-known to be related to event-free survival time for this disease and were specified by the physician.
Denoting I7 ðAÞ ¼ þ1 if event A occurs and –1 if not, to obtain ZT ,jðZT ,Y ,nÞ and thus gT ,j, we defined the four binary covariates
ZT,1 ¼ I7 ðAgeZ3Þ,ZT,2 ¼ I7 (metastatic disease), ZT ,3 ¼ I7 (surgery achieved a CR), and ZT ,4 ¼ I7 (histology¼CPC). Using these,
the physician specified the reference patient to be 2 years old, with non-metastatic disease, surgical CR, and CPC histology,
denoted by zn ¼ ð�1,�1,þ1,þ1Þ. In contrast, the probability of toxicity only varied with Age, and was modeled using the
logistic fractional polynomial function ZY ,j ¼ logitfyY ,jðAge,nÞg ¼ gY ,jþbY ,1 Age1=2

þbY ,2 logðAgeÞ. Details of how this function
was determined from elicited values are provided in Section 6.

While eliciting the target pairs for the CPT trial from the physician, we used a graphical representation of preliminary
versions of Fig. 1, and modified the figure adaptively as he adjusted some values based on the figure. The process for
obtaining the h target pairs thus was straightforward. Initially, the shape of L was surprising. When we questioned this,
the physician explained that this L very accurately reflects his strong belief that a very high risk of toxicity is an acceptable
trade-off for a high probability of achieving a longer event-free survival time in CPT patients.
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In general, T is not reduced to the binary indicator of the event ðT4tnÞ, and all right-censored event time data ðTo,EÞ are
included in the likelihood and used to compute the posteriors that determine the test statistic. In the CPT trial, while
yT,jðZ,Y ,nÞ ¼ F jðt

n9Z,Y ,nÞ for reference time tn¼24 months is used as the basis for defining targets and hypotheses
(described below in Section 3), T is not reduced to the binary indicator of the event ðT424Þ.

3. A geometry for comparing treatments

In this section, we provide details of the method for constructing two-dimensional parameter sets that provide a
geometric basis for treatment comparison. Given null pair lh,0, a set of elicited target pairs ~h

e
and target set YL are

admissible if (i) lh,0=2YL and (ii) yY is a strictly increasing function of yT for h 2 L. We require these admissibility conditions
to avoid cases that do not make sense. These conditions can be ensured easily during the target pair elicitation process by
showing the physician a plot of lh,0 and the elicited targets. The sample size, Type I error, and generalized power of the
test, defined below in Section 5, depend on the shape of L and the distance between lh,0 and L. Similar to a conventional
test of a one-dimensional parameter, in the present setting the sample size required to achieve given Type I error and
generalized power would be larger for L closer to lh,0. Condition (ii) rules out the possibility that some portions of L may
be either horizontal or vertical line segments. For example, if L were allowed to contain a horizontal line segment, then
there would be parameter pairs, h and h0, both on that horizontal segment such that yT oy0T but yY ¼ y0Y . This would say
that, despite the fact that h0 has greater efficacy than h and the two pairs have identical toxicity, they are considered
equally desirable, which is nonsense. In particular, ‘‘staircase’’ shaped L are inadmissible.

This construction is illustrated for the CPT trial by Fig. 1. While we assume that T may depend on Y , it may be argued
either that toxicity (Y¼1) decreases the mean EFS time since CPT patients who experience toxicity may have their
chemotherapy dose reduced or, instead, that toxicity increases mean EFS time due to a positive association between
toxicity and cancer cell killing by the chemotherapy. For the CPT trial, it was not necessary to average two sets of targets,
described earlier, since the physician considered T to be independent of Y. The historical mean was lh,0 ¼ ð0:47,0:11Þ, and
the five target pairs were he,1

¼ ð0:65,0:01Þ, he,2
¼ ð0:70,0:05Þ, he,3

¼ ð0:80,0:20Þ, he,4
¼ ð0:90,0:40Þ, he,5

¼ ð0:99,0:99Þ,
considered equally desirable improvements over (0.47, 0.11). Fig. 1 shows the targets, polygonal target line L, target set
YL and null pair lh,0. The trade-off between EFS and toxicity allows Pr(toxicity 9zn) to increase substantially over the
historical mean 0.11 provided that PrðT424 months9znÞ is sufficiently large compared to the null value 0.47. The extreme
case he,5

¼ ð0:99,0:99Þ was considered to be as desirable as he,2
¼ ð0:70,0:05Þ where PrðT424 monthsÞ has an improvement

from 0.47 to 0.70 and Pr(toxicity 9zn) drops from 0.11 to 0.05. This was due to the great importance placed on improving
EFS time, and the fact that death is accounted for by T and not included in the definition of toxicity.

Fig. 2 shows the structure obtained from that in Fig. 1 by mapping each h to a corresponding pair d in the covariate-
adjusted Ej-versus-S effect domain. The null pair lh,0 ¼ ð0:47,0:11Þ,L, and HL in the H domain in Fig. 1 are mapped to
0¼ ð0;0Þ,D, and DL, respectively, in the D domain in Fig. 2. While the vertical line from de,1 to ðde,1

T ,�1Þ and the horizontal
line from de,5 to ðþ1,de,5

Y Þ in Fig. 2 both are portions of the boundary of the transformed target set DL, these lines are not

portions of the transformed target line D¼ tðLÞ�lc,0. In D, all pairs d on the transformed target boundary D are equally
desirable. However, pairs on either the vertical or horizontal lines on the boundary of DL are not considered to be as
desirable as pairs on D, since this would not make sense.

4. A hybrid select-and-test design

4.1. Priors

Our formulation utilizes available information on covariate effect parameters, obtained by elicitation or from historical
data. In contrast, we assume non-informative iid priors on the treatment effect pairs c0,c1, . . . ,cJ because comparative
Ej-versus-S decisions will be based on the posteriors of d1, . . . ,dJ . While it may be argued that the prior on c0 should be
informative to reflect historical experience with S, we do not make this assumption in order to avoid confounding
treatment effects based on the trial data with effects of latent variables that may differ in distribution between the trial
and historical data. Under the assumption of no treatment–covariate interactions, any differences in the covariate effects
ðbT ,bY Þ between prior experience and the trial would be manifested approximately additively in the linear terms (3) and
(2) for all j¼ 0;1, . . . ,J. Hence such differences would introduce additional variability but each dj will be approximately
unbiased. Our formulation ensures that the treatment comparisons will be dominated by the data from the trial, with at
most numerically trivial effects due to the non-informative priors on the cj’s.

4.2. Hypotheses and trial design

Fig. 2 shows that the null set D0 is the upper left quadrant of R2, and that D0 and DL are disjoint. The global null

hypothesis is H0 : d1, . . . ,dJ 2 D0. Since larger gT ,j and smaller gY ,j are more desirable, under H0 no Ej is better than S since
gT,jrgT,0 and gY ,jZgY ,0. For each j¼ 1, . . . ,J, we define the jth alternative hypothesis Ha,j : dj 2 DL. While Ha,j says that Ej

provides an improvement over S, it does not say anything about dj0 for any j0aj, and in particular Ha,1, . . . ,Ha,J are not
disjoint. The global alternative hypothesis that at least one Ej provides an improvement over S is Ha ¼

SJ
j ¼ 1 Ha,j.
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During the trial, each patient’s Z vector is recorded at enrollment, and a treatment j is randomly chosen using the
Pocock-Simon method (1975) to balance on Z. The treatment is administered and the patient’s outcome ðY ,To,EÞ is
observed. In stage 1, let data1 denote the data available when the decision is made and denote the index of the empirically
best experimental treatment at the end of stage 1 by n¼ argmaxfj¼ 1, . . . ,J : Rjðdata1Þg. Let M1 be the number of events
observed and r1 the decision cut-off for the test statistic Rnðdata1Þ. When the decision is made in stage 2, denote the data
from all patients in arms En and S from both stages by data2, let M2 denote the total number of events observed from both
treatment arms En and S, and let r2 denote the decision cut-off for the test statistic Rnðdata2Þ. Given ðM1,M2,r1,r2Þ, the trial
is conducted as follows:

Stage 1. Randomize patients among E1, . . . ,EJ and S until M1 events have been observed. The stage 1 decision is made
when Y has been evaluated for all stage 1 patients enrolled up to time t1. If Rnðdata1Þ4r1 then continue to stage 2;
otherwise, terminate the trial and accept H0.

Stage 2. Randomize patients between En and S until M2 additional events from patients in these two arms have been
observed. The final decision is made when Y has been evaluated for all patients. If Rnðdata2Þ4r2 then accept Ha,n; otherwise
accept H0.

Since at most one Ej may be selected in stage 1, the design allows the Jþ1 possible conclusions Ha,1, . . . ,Ha,J , that of the
Ej’s is sufficiently promising for stage 2 evaluation, or H0, that no Ej is promising and the trial should be stopped. If the trial
continues to stage 2, the data from patients enrolled in stage 1 are utilized when computing the stage 2 statistic Rnðdata2Þ

for the final decision. In particular, some of the M2 additional events observed in stage 2 may come from patients enrolled
in arms En or S in stage 1. Let tnY be the length of the time period from the start of therapy during which toxicity is
monitored, which is 4 months for the CPT trial. Because Y is a binary variable based on a 4-month observation period, Y¼1
may be scored at any time toxicity occurs up to tnY but Y¼0 may be scored only after the patient has been observed for a
period of length tnY without toxicity. The design makes decisions only after Y has been evaluated for all patients in each
stage to avoid over-estimating the yY ,j’s. The waiting period needed to evaluate Y for all patients may be of length up to tnY ,
with the stage 1 decisions made at trial time t1þtnY . Let t1 denote the time, from the start of the trial, when the Mst

1 event is
observed in stage 1. Ideally, patient enrollment should be suspended at trial time t1 in stage 1 in order to evaluate Y for the
last patient accrued, since it may be considered ethically undesirable to continue giving patients experimental treatments
that soon may be considered inferior to S. If it is not feasible to suspend accrual between stages, accrual is continued and
additional failures To

¼T in that period may cause the planned M1 to be overrun slightly by the time data1 is used to make
the stage 1 decision. This effect should be negligible in most settings, and it may be accounted for when computing the
design’s operating characteristics and deriving design parameters, which was done with the CPT trial. Computational
details are provided below, in Section 4.5. For the stage 2 decision, the values of ðTo,EÞ for stage 1 patients in arms En or S

for whom E¼ 0 at the stage 1 decision are updated at the final decision time to be either the patient’s extended follow up
time To if the event still has not occurred ðE¼ 0Þ or the patient’s observed event time if To

¼ T ðE¼ 1Þ.

4.3. Operating characteristics

While the design uses Bayesian decision criteria, in practice it must have good frequentist properties. To define overall
Type I and Type II error, we generalize the approach taken by TSE in the simpler case of one-dimensional parameters
y0,y1, . . . ,yJ 2 R1, without covariates. As a frame of reference for what follows, we first briefly review the TSE formulation.
The Ej-versus-S effects are dj ¼ yj�y0 for j¼ 1, . . . ,J, the null set is D0 ¼ ð�1, 0� and the alternative set is Da ¼ ½d

n, þ1Þ for
fixed dn40. The global null hypothesis is H0 : d1 ¼ � � � ¼ dJ ¼ 0, the jth alternative is Ha,j : dj 2 Da, and the global alternative
is Ha¼

SJ
j ¼ 1 Ha,j. The Type I error is the probability of concluding Ha when H0 is true. The generalized power (GP) is the

probability that, for some j such that Ha,j is true, one correctly concludes Ha,j. TSE show that, subject to the requirements (i)
d1, . . . dJ 2 D0 [ Da and (ii) at least one dj 2 Da, a parameter set fd1, . . . ,dJg minimizing the GP has exactly one dj ¼ dn and
dj0 ¼ 0 for all j0aj. This is called a least favorable configuration (LFC), and it may occur in J ways, one for each Ej. The
requirement (i) is imposed because no statistical procedure can reliably distinguish between fixed parameter values that
are arbitrarily close. Since the indexing of the J experimental treatments is arbitrary, by symmetry the GP is the probability
of concluding Ha,J under the LFC where d1 ¼ � � � ¼ dJ�1 ¼ 0 and dJ ¼ dn. The formulation given by TSE is slightly more
general in that they consider two improvement values, a clinically insignificant value dn

140 and a clinically significant
value dn

24dn

1. The above account simplifies the formulation by setting dn

1 ¼ 0 and writing dn

2 ¼ dn.
We define Type I error and GP similarly, but now the hypotheses refer to the parameter sets D0 and DL in R2. For each

j¼ 1, . . . ,J, the event that the design concludes Ha,j is

Aj ¼ fnðdata1Þ ¼ j, Rjðdata1Þ4r1 and Rjðdata2Þ4r2g, ð5Þ

and the event that the global alternative Ha is accepted is A¼
SJ

j ¼ 1 Aj ¼ fRnðdata1Þ4r1 and Rnðdata2Þ4r2g. The event that
the design accepts H0 is

A0 ¼ fRnðdata1Þrr1g [ fRnðdata1Þ4r1 and Rnðdata2Þrr2g: ð6Þ

Denote a 2J-vector of J fixed treatment effect pairs by ~d
n

¼ ðdn

1, . . . ,dn

J Þ. We make a strong distinction between such fixed

parameter vectors, which will be used to evaluate the design’s properties, and the random parameter vector ~d under the
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Bayesian model. In our setting, the GP is the probability fð~d
n

Þ of correctly concluding Ha,j for a true parameter vector ~d
n

for

which dn

j 2 DL. In order to define practical criteria for making decisions and deriving design parameters the following

theorem is needed, which may be considered a two-dimensional version of the theorem in (TSE) (1988). Similar to the one-

dimensional case, we impose the requirement that all dn

j must be in either DL or D0 since no statistical procedure can

reliably distinguish between parameters that are arbitrarily close.

Theorem. If (i) dn

1, . . . dn

J 2 DL [ D0 and (ii) at least one dn

j 2 DL, then the GP is minimized if there is exactly one j such that

dn

j 2 D and dn

j0 ¼ 0 for all j0aj.

A heuristic proof is given in the Appendix.

The theorem does not specify the location of dn

j on D since this depends on the particular geometry of D, which is

determined by lh,0 and ~h
e
. Since the indices of E1, . . . ,EJ are arbitrary, let EJ be the treatment providing the improvement,

so that ð0, . . . ,0,dn
Þ is the vector of J fixed parameter pairs with dn

J ¼ dn and all other pairs 0. The GP can be no smaller than

mindn
2D fð0, . . . ,0,dn

Þ, and we will call such a vector that minimizes the GP a LFC. Similarly, the Type I error is the

maximum over dn
2 D0 of the probability of rejecting H0, given by an ¼

PJ
j ¼ 1 PrðAj9~d

n

¼~0Þ ¼ J � PrðAJ9~d
n

¼~0Þ, where ~0 is

the 2J-vector with all entries 0. Let a be the design’s largest allowed probability of a Type I error and f the smallest

allowed probability of making a correct decision under Ha. Let zð~d
n

Þ ¼ PrfRnðdata1Þrr19~d
n

g denote the probability of early

termination after stage 1, and let z be the maximum allowed value of z under an LFC. In order to feasibly obtain an optimal

design, f and z are evaluated at the m transformed target pairs fde,1, . . . ,de,m
g that determine D. The design requires the

Type I error constraint anr a, the incorrect early stopping probability constraint

zn ¼ def max
r ¼ 1,...,m

fzð0, . . . ,0,de,r
Þgrz ð7Þ

and the GP constraint

fn
¼ def min

r ¼ 1,...,m
ffð0, . . . ,0,de,r

Þ,r¼ 1, . . . ,mgZf: ð8Þ

The design parameters are thus fa,f,z,M1,M2,r1,r2g.

4.4. Deriving optimal design parameters

While fa,f,zg are predetermined, fM1,M2,r1,r2g must be derived. As with any group sequential design based on event
times where decisions are made when specified numbers of events are observed, the sample sizes N1 and N2 in stages 1
and 2 are random quantities determined by the design’s required event counts, M1 and M2, and the underlying accrual and

event rates. The total sample size, N, is either N1 or N1þN2, with mean EðNÞ ¼ EðN1Þþð1�zÞEðN2Þ, which may be computed

under the null ~d
n

¼ 0 or at an LFC. Subject to the constraints fn
Zf, anra and znrz, we derive the fM1,M2,r1,r2g values

that minimize the equally weighted mean overall sample size EðNÞ ¼ 1
2 EH0
ðNÞþ 1

2 ELFCðNÞ, with the second expectation

computed under the fixed parameter vector ð0, . . . ,0,dn
Þ that minimizes the GP.

4.5. Numerical methods

For each fixed dn, we obtained the optimal fM1,M2,r1,r2g for the CPT trial by searching in three nested loops, with M1 in the
outer loop, M2 nested within M1, and ðr1,r2Þ nested within M2. For each fM1,M2,r1,r2g examined, given the assumed true value
~d

n

, we computed fn, zn, an and the objective function EðNÞ by generating 2000 data sets from the likelihood with parameters
corresponding to ð0, . . . ,0,dn

Þ. During the search, a design was considered possible if it satisfied the three error constraints.
Initially, a small number of ðM1,M2Þ pairs were considered. For each ðM1,M2Þ pair, a local grid search was done in ðr1,r2Þ

starting with a coarse grid having increments 0.10 to identify possible solutions, then picking the possible ðr1,r2Þ pair giving the
smallest value of EðNÞ, then localizing the grid around that pair and refining the grid increments to 0.01. This was repeated with
the grid of ðr1,r2Þ values refined to increments of 0.001. For each evaluation of ðfn,zn,an,EðNÞÞ at a pair of ðM1,M2Þ values, if
there were no ðr1,r2Þ pairs giving a possible solution, M2 was incremented to M2þ1, with this limited to at most 20 steps.
Similarly, given M1, if no M2 yielding a possible solution was found then M1 was incremented to M1þ1, with this repeated until
a possible solution was found. Once a set of possible designs were obtained, the ðM1,M2Þ grid was localized at the pair ðM1,M2Þ

o

minimizing EðNÞ and an exhaustive search was done in a contiguous set of pairs around ðM1,M2Þ
o.

To simulate each data set when applying the above algorithm, each patient’s Z was sampled from the historical
covariate distribution (‘‘Popn. Percent’’ in Table 1) and a treatment j was then randomly chosen based on Z using the

Pocock–Simon method (1975). The toxicity indicator Y was simulated first using the probability yY ,jðZ,nÞ, substituting the

prior means of gY ,0 and the covariate effects bY . The specified dn

Y ,j determined the fixed intercept as gnY ,j ¼ dn

Y ,jþEðgY ,0Þ. The

event time ½T9Z,Y � then was simulated under the lognormal model using the prior means of gT,0,bT ,bT,qT þ1 and s2
T , with
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gnT ,j ¼ dn

T,jþEðgT ,0Þ. For each simulated data set, the stage 1 posterior probability ratios R1ðdata1Þ, . . . ,RJðdata1Þ were

computed, the best stage 1 treatment index nðdata1Þ was identified, the stage 2 test statistic Rnðdata2Þ was computed,
and the decision rules were then evaluated. Our construction involves a large number of nuisance parameters. While
misspecifying these values may result in error inflation, we have used prior means, since these were the best available
numerical values.

The values of Rjðdata1Þ and Rjðdata2Þ were computed numerically using Markov chain Monte Carlo with Gibbs sampling

(Robert and Cassella, 1999). For prior pðnÞ, each generated chain fnð1Þ, . . . ,nðKÞg had K ¼ 10;000 samples distributed in

proportion to the posterior integrand, Likðdata,nÞ � pðnÞ. The first sample vector nð1Þ in each chain was set equal to the
mode of the integrand, found using the Nelder–Mead algorithm (1965).
5. Establishing priors for the CPT trial

Since clinical experience with CPT (Wrede et al., 2005, 2007) indicates that the hazard function for EFS is certainly non-
constant and very likely non-monotone, we assumed that ½T9Z,j� is lognormally distributed with EflogðTÞ9Z,jg ¼ gT ,jþbT ZT

and varflogðTÞ9Z,jg ¼ s2
T . The parameter subvector for the distribution of T is thus nT ¼ ðgT ,0,gT ,1,gT ,2,gT ,3,bT ,sT Þ.

To determine numerical values of the hyperparameters ~nT of the prior pðnT9 ~nT Þ, we proceeded as follows. Denote a
normal distribution with mean m and variance s2 by Nðm,s2Þ. Non-informative iid N(0,100) priors were assumed for the
eight treatment effect parameters ðgT ,j, gY ,jÞ for j¼0,1,2,3, and for the effect bT ,5 of Y on T. To obtain an informative prior on
bT , values of the EFS probabilities F ðt9ZT ,nÞ were elicited for each of the 16 configurations of ðZT ,1, . . . ,ZT ,4Þ and t¼0.50, 1.0,
2.0 and 3.0 years, with fixed znT,5 ¼ yn ¼ 0. The elicited values are given in Table 1. We assumed that bT ,1, . . . ,bT ,4 are
normally distributed with common variance, and that logðsT Þ is normal. Indexing the elicitation times by r¼ 1;2,3;4 and
the covariate vectors by l¼ 1, . . . ,16, and regarding each prior mean EFS probability

~F r,lð
~nT Þ ¼ EfF ðtr ,Zl9nT Þ9 ~nTg ¼

Z
F ðtr ,Zl9nT ÞpðnT9 ~nT Þ dnT ð9Þ

as a function of ~nT , a generalization of the method of Thall and Cook (2004) was used to solve for ~nT . This was done by

treating the elicited probabilities F
ðeÞ
ðtr9ZlÞ as observations with means ~F r,lð

~nT Þ in a nonlinear regression model

parameterized by ~nT and solving for the values of ~nT that minimized
P

r,lfF
ðeÞ
ðtr9ZlÞ�

~F r,lð
~nT Þg

2. The resulting normal

priors of the covariate parameters have means EðbT ,1, bT,2, bT ,3, bT ,4Þ ¼ ð0:44,�0:41,0:56,�0:53Þ with common variance

0:152, and the prior on s2
T is given by logðsT Þ �Nð�0:08,0:142

Þ. These were used as the priors for the model parameters

when deriving the optimal designs.
For toxicity, based on clinical experience in treating CPTs only ZT,1 ¼ Age was used as a covariate in the definition of yY ,j.

Toxicity data taking the specific form of Y were not available, however. Consequently, to establish a model for
yY ,jðZT ,1,gY ,0,bY Þ and an informative prior on bY , toxicity probabilities for each of nine patient ages were elicited
independently from each of three oncologists with extensive experience treating patients with CPTs. The sets of elicited
toxicity probabilities, shown in Fig. 1, were remarkably consistent in that all three physicians gave values that described
the same non-monotone function of Age in which the probability of toxicity is high for infants, very low for patients 3–50
years of age, and moderately higher for older patients. While most CPT patients are very young, the age domain used in the
elicitation is appropriate for the trial because its eligibility is not restricted to children, and CPT patients can be as old as 80
years. Denoting the elicited probability at the rth age from the lth physician by yðeÞY ,l,r , these values were fit as a function of
Age by considering mixed models with fractional polynomial linear terms (Royston and Altman, 1994) taking the general
form logitfyðeÞY ,l,rg ¼ gY ,0þbY ,1 Agep1þbY ,2 Agep2þrðjÞ þEl,r where gY ,0,bY ,1,bY ,2 are fixed parameters, rð1Þ,rð2Þ,rð3Þ are iid
Nð0,s2

rÞ physician effects, and the El,r ’s are iid Nð0,s2
E Þ residuals. One best fitting model to use as a basis for constructing

a design was determined following the approach recommended by Sauerbrei and Royston (1999). This was done by
varying the exponents p1 and p2 exhaustively over the set f�2,�1,�0:5,0,0:5,1;2,3g, where the exponent ‘‘0’’ corresponds
to logðAgeÞ. The 28 models of the above form with p1ap2, and the eight models not including the term bY ,2 Agep2 , were
considered. Each of these 36 models was fit both with and without physician effects, for a total of 72 models. The Bayesian
Information Criterion (BIC, Schwarz, 1978) values ranged from 85.5 to 140.2 for the 72 models, with the best fitting model
given by the linear term including Age1=2 and logðAgeÞ. Fig. 3 gives the plots of these three sets of elicited toxicity
probabilities, along with the posterior mean fitted curve under the best fitting fractional polynomial model. To obtain the
informative distributions on bY ,1 and bY ,2 needed for the trial design, a Bayesian version of this model was fit, dropping the
physician effects, with gY ,0,bY ,1,bY ,2 following N(0,100) priors and s2

r following an inverse gamma prior with mean 1 and
variance 1000. The estimated linear term of the fitted model obtained by replacing each parameter with its posterior
mean, each subscripted with its standard deviation, is

logitfŷY ðAge,gY ,0,bY ,1,bY ,2Þg ¼�2:260:46þ0:780:19 Age1=2
�1:330:27 logðAgeÞ:

The posteriors bY ,1 �Nð0:78,0:192
Þ and bY ,2 �Nð�1:33,0:272

Þ obtained from this fit were used as their priors in formulating
the trial design. The fitted models from the elicited data for Y and T gave prior means lh,0 ¼ ð0:47,0:11Þ. That is, the mean
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Fig. 3. Elicited values of Pr(toxicity) as a function of age, with the posterior mean of the fitted curve under the Bayesian fractional polynomial model.
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probability that T424 months for the reference patient zn was 0.47, and based on the elicited age-dependent toxicity
probabilities the mean probability that a 2-year-old patient would suffer toxicity was 0.11.

6. Design parameters for the CPT trial

6.1. Optimal designs

The optimal designs with a ¼ 0:05, f ¼ 0:80 and z ¼ 0:05 were derived for J¼1,2, and 3. The case J¼1 is a two-arm,
two-stage design that uses the same geometric construction but only compares one E¼E1 to S based on d¼ d1. In this case,
the null hypothesis is H0 : d 2 D0 and there is one alternative, Ha,1 ¼Ha : d 2 DL. This case was included as a basis for
comparison to assess the effects of having to perform a selection in stage 1.

The optimal designs are given in Table 2. It is important to bear in mind that the test cutoffs r1 and r2 pertain to the
posterior probability ratios Rðdata1Þ and Rðdata2Þ, and not to conventional Z-scores. The numbers of events required to
make decisions in each stage, M1 and M2, increase substantially with J due to the facts that, with larger J, more treatments
are evaluated and the stage 1 decision includes selection among the Ej’s as well as comparison to S. This produces increases
in overall expected sample size and trial duration with J, although these values also vary greatly with the case under which
they were computed. The GP, fn, follows a U-shaped pattern as the true hn moves along L, as illustrated by Fig. 2, with fn

smallest at he,2
¼ ð0:70,0:05Þ and the GP values of he,2, with he,3 very close to each other in each case. This makes intuitive

sense in terms of the centered targets de,j
¼ he,j

�ð0:47,0:11Þ, shown in Fig. 2, since de,2 is closest to (0,0).
In addition to the GP values fn at the null and the five target pairs, Fig. 2 also shows values of fn for d pairs on lines

connecting (0,0) to three of the targets, and for also values of d in the interior of DL. Considered together, the numerical
values of fn in Fig. 2 illustrate that fn

ðdÞ increases monotonically as d moves away from the null pair (0,0) toward any
target pair. The response surface determined by fn as a function of d may be considered a generalization of a conventional
power curve based on a single parameter.

6.2. Robustness

To examine robustness of the method to the assumed lognormal distribution for T, we evaluated the design’s behavior
with T contaminated by multiplicative noise. For the design with J¼3, in each case of true hn in Table 2 we simulated
samples of the event times with each Ti replaced by GiTi, where the Gi’s were independent gamma random variables with
mean 1 and variance s2

G. This had the effects of both changing the distribution of Ti and increasing its variability. Denoting
EðGiÞ ¼ mG and EðTiÞ ¼ mT , since

varðGiTiÞ ¼ s2
Ts

2
Gþs

2
Tm

2
Gþs

2
Gm

2
T ¼ s

2
T ðs

2
Gþm

2
Gþs

2
Gm

2
T=s

2
T Þ,

the effect of multiplying Ti by Gi is to increase the standard deviation sT by the multiplicative factor
sGT=sT ¼ ðs2

Gþm2
Gþs2

Gm2
T=s2

T Þ
1=2. This factor depends not only on the variances s2

T and s2
G but also the values of m2

G and
m2

T . Table 3 gives the values of fn, PET, and E(N) for sG ¼ 0, corresponding to the assumed lognormal distribution, and
sG ¼ 0:2, 0.4, and 0.6, corresponding to successively larger amounts of contamination. As shown in Table 3, for sG ¼ 0:4 or
0.6 the value of sGT=sT may be quite large, and it varies substantially depending on the value of the true target pair hn

where the design is evaluated. The Type I error and GP hold up quite well even when there is substantial contamination,
with fn decreasing substantially only at Targets 2, 3, or 4 for large values sGT=sT Z1:39. Thus, the method appears to be
robust to all but extreme departures from the lognormal assumption.



Table 3
Robustness of the optimal design for J¼3 experimental treatments to multiplicative contamination of T by a

gamma noise variable G with mean 1 and standard deviation (sd) sG. The observed event time is GT, and the ratio

sGT=sT ¼sGT=0:93 is the multiplicative factor by which the sd of T is increased by G.

Case sG sGT=sT fn PET E(N)

Null 0 1.00 0.04 0.31 134.7

mT ¼ 0:62 0.2 1.03 0.05 0.31 134.0

0.4 1.11 0.05 0.28 136.3

0.6 1.23 0.06 0.29 132.5

Target 1 0 1.00 0.94 0.02 172.1

mT ¼ 1:052 0.2 1.04 0.93 0.02 171.3

0.4 1.17 0.92 0.03 168.7

0.6 1.35 0.90 0.03 165.4

Target 2 0 1.00 0.80 0.05 134.7

mT ¼ 1:181 0.2 1.05 0.79 0.05 134.0

0.4 1.19 0.75 0.06 136.3

0.6 1.39 0.73 0.07 132.5

Target 3 0 1.00 0.80 0.05 176.8

mT ¼ 1:476 0.2 1.07 0.79 0.04 176.5

0.4 1.25 0.73 0.07 170.4

0.6 1.51 0.65 0.08 166.1

Target 4 0 1.00 0.95 0.01 189.1

mT ¼ 1:885 0.2 1.10 0.95 0.05 188.0

0.4 1.35 0.94 0.02 185.1

0.6 1.68 0.89 0.03 179.2

Target 5 0 1.00 40:99 o0:01 210.0

mT ¼ 2:857 0.2 1.19 40:99 o0:01 208.9

0.4 1.63 40:99 o0:01 205.9

0.6 2.18 0.99 o0:01 201.0

Table 2

The optimal design parameters ðM1 ,M2 ,r1 ,r2Þ minimize EðNÞ subject to anr0:05, znr0:05 and fn
ð~d

n

ÞZ0:80 for

all ~d
n

2 D. Each target has true ~h
n

¼ ðhn

0 ,hn

1 , . . . ,hn

J Þ with hn

J ¼ hn and hn

j ¼ hn

0 ¼ ð0:47,0:11Þ for all jo J. PET¼Pr(Early

termination after stage 1) and E(Dur)¼expected trial duration, in years, assuming 30 patients per year accrual.

Case True hn
¼ h1 fn PET E(N1) E(N2) EðNÞ EðNÞ E(Dur)

J¼ 1 : M1 ¼ 14, M2 ¼ 17, r1 ¼ 0:510, r2 ¼ 14:790

Null (0.47, 0.11) 0.05 0.61 57.4 17.2 64.1 – 2.5

Target 1 (0.65, 0.01) 0.94 0.01 62.0 30.2 91.9 78.0 2.9

Target 2 (0.70, 0.05) 0.80 0.05 63.0 30.3 91.7 77.9 2.9

Target 3 (0.80, 0.20) 0.83 0.05 66.5 32.2 97.2 80.6 3.0

Target 4 (0.90, 0.40) 0.99 o0:01 69.5 35.1 104.5 84.3 3.1

Target 5 (0.99, 0.99) 40:99 o0:01 77.1 41.2 118.0 91.2 3.4

Case True hn
¼ h2 fn PET E(N1) E(N2) EðNÞ EðNÞ E(Dur)

J¼ 2 : M1 ¼ 19, M2 ¼ 45, r1 ¼ 0:431, r2 ¼ 16:199

Null (0.47, 0.11) 0.05 0.36 66.1 53.2 99.9 – 3.7

Target 1 (0.65, 0.01) 0.96 0.01 69.4 67.2 135.7 117.8 4.3

Target 2 (0.70, 0.05) 0.82 0.03 70.2 68.0 135.9 117.9 4.3

Target 3 (0.80, 0.20) 0.82 0.05 72.2 70.1 139.0 119.5 4.3

Target 4 (0.90, 0.40) 0.98 0.01 75.2 75.7 149.9 124.9 4.5

Target 5 (0.99, 0.99) 40:99 o0:01 79.3 87.2 166.5 133.2 4.8

Case True hn
¼ h3 fn PET E(N1) E(N2) EðNÞ EðNÞ E(Dur)

J¼ 3 : M1 ¼ 28, M2 ¼ 67, r1 ¼ 0:605, r2 ¼ 17:376

Null (0.47, 0.11) 0.04 0.31 80.5 79.0 134.7 – 4.8

Target 1 (0.65, 0.01) 0.94 0.02 83.5 90.8 172.1 153.4 5.4

Target 2 (0.70, 0.05) 0.80 0.05 84.3 91.8 171.2 153.1 5.4

Target 3 (0.80, 0.20) 0.80 0.05 86.0 95.5 176.8 155.7 5.5

Target 4 (0.90, 0.40) 0.95 0.01 88.4 102.1 189.1 161.9 5.7

Target 5 (0.99, 0.99) 40:99 o0:01 92.2 118.0 210.0 172.4 6.1
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7. Discussion

The proposed design is a hybrid in that Bayesian machinery is used to obtain decision rules, while the design’s
parameters are derived to ensure that it has specified frequentist properties. The methodology requires a substantial effort
to elicit target parameter pairs and priors, and the process of deriving design parameters is computationally intensive.
While these may be considered limitations, the two-dimensional covariate-adjusted target set DL provides a much more
refined goal than the conventional approach of increasing median EFS by a given amount while ignoring toxicity and
patient covariates. From a practical perspective, the result of applying this design is a sample size small enough to allow
the CPT trial to be completed in a realistic timeframe.

There are many other possible approaches to the problem we have addressed here. With regard to controlling error
rates, a referee has pointed out that one may take an alternative approach since, if the hypothesis for treatments excluded
at the interim analysis are retained, one can consider the disjunctive power to reject a false hypothesis and the familywise
error rates to reject a true hypothesis. Aside from the preliminary selection, one might simultaneously use a noninferiority
test for safety and a superiority test for efficacy, or use a positive quadrant test, as given by Jennison and Turnbull (1993).
However, these methods do not account explicitly for the relative importance of disease-free survival time and toxicity,
which was our primary motivation for using the geometric construction, based on elicited target parameter pairs.
Alternatively, one might use a utility score to combine the two outcomes, although this would require dealing with the fact
that T has domain ½0,1Þ. One might also use adaptive combination tests (cf. Bretz et al., 2009), which allow a variety of
interim decision rules, including Bayesian rules. Our proposed methodology controls the Type I error under the global null,
H0, which is a strong requirement since it may be the case that some dj ¼ 0 but others not. In this regard, adaptive
combination tests guarantee control of the Type I error for any configuration of nulls. As a future exercise, it would be
worthwhile to investigate how such alternative approaches compare to that given here.

Our method relies on the strong assumption that there are no treatment–covariate interactions. We assume this in
order to control the number of parameters so that we may obtain a feasible design that can actually be used. The model
might be extended to include treatment–covariate interactions, for example in terms of subgroups r¼ 1, . . . ,K determined
by Z, by replacing the linear terms with the 2ðJþ1ÞK treatment-subgroup effects ZY ,j,rðnÞ and ZT,j,rðnÞ. The number of
parameter pairs would then be KðJþ1Þ, far too large to implement the methodology practically, since the potential
hypotheses and tests would be far more complex. Even with only K¼2 subgroups, with J¼3 there would be a total of eight
treatment-subgroup parameter pairs.

If the trial’s entry criteria are sufficiently restrictive that it is reasonable to assume patients are homogeneous with
respect to the outcome (Y,T), then the parametric functions would take the simpler form hjðY ,nÞ ¼ ðyT,jðY ,nÞ,yY ,jðnÞÞ for all
patients in treatment arm j. In this case, ZY ,jðZ,nÞ ¼ gY ,j and ZT,jðZ,nÞ ¼ gT,jþbY , and the target pairs that determine the
alternative region HL would be elicited without reference to covariates. Finally, if it is realistic to assume that T is
independent of Y , as in the CPT trial, then ZT ,jðZ,nÞ ¼ gT ,j.

Appendix

For outcomes from the likelihood (1) with parameters corresponding to fixed ~d
n

, the posterior of ~d under the Bayesian
model has mean ~d

n

, aside from negligible effects of the non-informative iid priors on the treatment effect pairs cj,0,
j¼ 0;1, . . . ,J, which will be ignored for simplicity. If ~d

n

contains more than one dn

j that is in DL then fð~d
n

Þ can be reduced by
moving each dn

j for which this is the case from DL to D0 until exactly one dn

j 2 DL remains. If this single dn

j is in the interior
of DL or falls on either the vertical or horizontal lines on @DL, then fð~d

n

Þ can be reduced by either decreasing dn

j,1 or
increasing dn

j,2. Consequently, dn

j 2 L. Similar reasoning shows that fð~d
n

Þ is minimized if the other J�1 dn

j0 ’s in D0 all equal to 0.
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