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Abstract This article reviews phase 2–3 clinical trial designs, including their genesis
and the potential role of such designs in treatment evaluation. The paper begins with a
discussion of the many scientific flaws in the conventional phase 2→phase 3 treatment
evaluation process that motivate phase 2–3 designs. This is followed by descriptions
of some particular phase 2–3 designs that have been proposed, including two-stage
designs to evaluate one experimental treatment, a design that accommodates both
frontline and salvage therapy in oncology, two-stage select-and-test designs that eval-
uate several experimental treatments, dose-ranging designs, and a seamless phase 2–3
design based on both early response-toxicity outcomes and later event times. A gen-
eral conclusion is that, in many circumstances, a properly designed phase 2–3 trial
utilizes resources much more efficiently and provides much more reliable inferences
than conventional methods.

Keywords Adaptive design · Clinical trial · Design · Phase II clinical trial · Phase
III clinical trial · Selection

1 Introduction

When a new treatment for a particular disease is proposed, the key question is whether
the treatment is sufficiently safe and efficacious to be adopted by physicians as part
of their routine clinical practice. Except for diseases that are completely intractable,
addressing this question requires comparison of the new treatment to existing standard
therapies. Inevitably, the evaluation process also involves ethical, logistical, economic
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and regulatory issues. To deal with this complexity, in recent decades the medical and
scientific communities have developed an elaborate infrastructure for conducting clini-
cal trials, which are experiments to evaluate the effects of medical treatments on human
subjects. Since there is a high degree of variability between patients in the effects of
a given treatment, statistical methods are required for clinical trial design, conduct
and analysis. While the simplicity of the conventional “phase 1→phase 2→phase 3”
paradigm for treatment evaluation and drug development is appealing, unfortunately
the validity of this paradigm relies on a number of assumptions that are at odds with
good statistical practice. Moreover, in practice clinical trials are often much more
complex than the structures assumed by conventional designs, due to the heteroge-
neity of different diseases, treatment regimes and processes for evaluating patient
outcomes. Consequently, the conventional three-phase paradigm often is inadequate
or dysfunctional.

Many members of the medical community regard statistics with some degree of
skepticism. The quote, attributed to Benjamin Disraeli, that “There are three kinds
of lies: lies, damned lies, and statistics” is amusing primarily because it reflects the
genuine confusion that many non-statisiticians feel when confronted by statistical
arguments. It also reflects the mistrust caused by the not uncommmon practices of
dishonestly manipulating a complex statistical argument, or of citing statistics that
have no empirical or observational basis, to support a preconceived conclusion. Addi-
tionally, statistics relies on probability, which can be very non-intuitive. Consequently,
statisticians must provide transparent, convincing explanations of their methods to
non-statisticians. Evidently, the latter task has proved to be very difficult in the clini-
cal trial arena, since a large gap remains between the best available statistical methods
and what most physicians are willing to use to design and analyze their trials. This is
especially true of the family of “phase 2–3” trial designs, which combine aspects of
conventional phase 2 and phase 3 trials.

In this paper, I will first review the main ideas that motivate phase 2–3 designs,
including scientific flaws in the conventional phase 2→phase 3 treatment evaluation
process. The remainder of the paper will be devoted to describing some particular
phase 2–3 designs. What follows pertains primarily to oncology trials, since most of
my experience is in this area, and some statements may not true for trials in other
diseases.

2 The conventional three-phase paradigm

To begin, I will discuss settings where there is one experimental treatment, E, to be
evaluated, and later consider the more complex problem of evaluating several new
treatments that are available at the same time. In its simplest form, the three-phase
clinical trial paradigm begins with a phase 1 trial to determine a safe dose of E.
The dose-finding procedure typically is based on adverse treatment effects (“toxic-
ity”) while ignoring anti-disease effect. This is followed by a single-arm phase 2 trial
in which each patient’s outcome is characterized by a binary variable, Y , indicat-
ing whether a desirable response to therapy with E has been achieved. If the observed
response rate is sufficiently high, this is used as the rationale to conduct a confirmatory
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phase 3 trial. Since the topic of this paper is phase 2–3 trials, I will not elaborate on the
many advantages of using efficacy as well as toxicity to determine an optimal dose,
or of optimizing treatment administration schedule rather than choosing it arbitrarily.
The interested reader may refer to Thall and Cook (2004) or Braun et al. (2007), and
the references therein.

Let S denote an established “standard” therapy. Phase 3 trials are considered the
most scientifically reliable tool for confirmatory evaluation of new treatments. In
phase 3, patients are randomized between E and S in order to obtain unbiased com-
parisons, which are based on an outcome, T , that characterizes long-term or permanent
treatment effect. In most phase 3 trials, T is a time-to-event (TTE) variable such as
overall survival (OS) time or disease-free survival (DFS) time. A phase 3 design must
control the overall false positive and false negative rates at suitably small values. Usu-
ally, one or more interim tests are performed during the trial (Jennison and Turnbull
2000) to avoid continuing to randomize patients after it has been determined that one
treatment is superior to the other. Less frequently, the design also includes additional
interim “futility” rules to stop the trial early and accept the null hypothesis that there
is no difference between E and S. Statistical sample size computations to achieve a
given power (probability of correctly detecting a true treatment difference of given
magnitude) under a hypothesis testing framework typically require phase 3 trials to
be large, time-consuming and expensive. This is the main reason that phase 2 trials
are conducted first, in order to reliably screen new treatments before committing the
resources required by phase 3.

The phase 2 outcome, Y, should characterize treatment benefit for the particular
disease in a convincing manner. Examples include achieving >50% shrinkage of a
solid tumor; complete remission (CR) of leukemia in terms of the levels of platelets,
blastic (immature) blood cells and white blood cells; and reperfusion of blood flow to
the site of an acute stroke. From a logistical standpoint, Y must be an “early outcome,”
observed much sooner than T . In the above examples, solid tumor shrinkage and CR
each is scored after a 4–6 week period of therapy, whereas reperfusion after a stroke
often is evaluated within 24–48 h. The idea is that, compared to phase 3, a phase 2 trial
should be much smaller and completed much more quickly, in order to provide a fea-
sible means to screen E. This is based on the implicit assumption that there is a strong
connection between Y and T , although this is formally ignored by most phase 2 and
phase 3 designs. I will return to this important point below. The confirmatory phase 3
outcome should be tailored to the particular disease and treatment goals. For exam-
ple, whereas OS or DFS is appropriate for most phase 3 oncology trials, in evaluating
effects of rapid treatment of stroke the phase 3 outcome may be a stroke severity score
quantifying long-term neurological or motor function.

A typical phase 2 trial is based on a single parameter, θE = Pr(response with E) =
Pr(Y = 1|E). Sometimes the stated goal is simply to estimate θE with a given reli-
ability, and sometimes θE is compared to θS = Pr(response with S) = Pr(Y = 1|S).
A common frequentist approach is to assume a fixed null value of θS , base phase 2
on a one-sided test of H0 : θE = θS vs. H1 : θS < θE with given size and given
power at a targeted alternative θS + δ, usually with δ = .10 to .20, and proceed to
phase 3 if the test rejects H0. The design usually includes one or more interim futility
tests that stop the trial early if H0 is accepted (Fleming 1982; Simon 1989). Bayesian
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phase 2 designs (Thall and Simon 1994) usually begin with a non-informative prior
on θE , an informative prior on θS obtained by elicitation or from historical data, and
base decisions on posterior probabilities of the form Pr(θS + δ < θE |data). Frequ-
entist operating characteristics of Bayesian designs, including false positive and false
negative rates and sample size distributions, typically are established by computer
simulation. More generally, Y may be multinomial in order to include toxicity as
well as response, and more complex decision rules that include early stopping due to
excessive toxicity may be employed (Bryant and Day 1995; Thall et al. 1995). In any
case, the data on Y from the trial of E are used to decide whether E is sufficiently
promising, compared to S, to justify proceeding with a phase 3 trial.

3 Problems with conventional methods

The genesis of phase 2–3 designs comes from recognition of several severe problems
with the conventional paradigm, all arising from violation of basic statistical princi-
ples and practice. Claims to the contrary notwithstanding, phase 2 trials are inherently
comparative (Simon et al. 1985; Thall and Simon 1994). If the goal is to determine
whether E has any anti-disease activity at all (Gehan 1961) then θE is compared to 0.
If an established standard therapy exists, then θE is compared to θS. If the goal is
to rank and select among different treatments, E1, . . . , Ek, then θE,1, . . . , θE,k are
compared among each other. In any case, one or more comparisons are made whether
or not a formal test of hypotheses is done.

It is well-known that a statistical comparison between E and S based on data from
a single-arm trial of E and historical data on S confounds the E-versus-S treatment
effect θE − θS with between-trial effects. Trial effects may be due to differences in
entry criteria, supportive care, the definition of response, dose modification proce-
dures, compliance patterns, or a myriad of unknown (“latent”) variables (Estey and
Thall 2003; Spiegelhalter et al. 2003). If an estimator θ̂E based on a single-arm trial of
E and an estimator θ̂S based on historical data on S are used to compute θ̂E − θ̂S , this
statistic does not estimate the actual treatment effect θE − θS . Rather, it estimates the
combined effects of E-versus-S and whatever between-trial effects may be at play.

Ignoring variability by treating a statistic as if it were a constant is also a pervasive
problem. This is implicit in test-based phase 2 designs. In practice, the assumed fixed
value of θS used to define a null hypothesis for a one sample test of θE is actually a
statistical estimator, θ̂S, based on historical data (c.f. Thall and Simon 1990). Conse-
quently, since the test statistic is based on a comparison of θ̂E to θ̂S while assuming
that var(θ̂S) = 0, the variance of the test statistic is under-estimated and thus both the
false positive and false negative rates of the test are larger than their nominal values.

An additional source of variability and bias is patient heterogeneity, which generally
is substantial in any clinical setting. For many diseases, the combined effects of prog-
nostic covariates such as disease severity, age, performance status, etc., are much larger
than any treatment effect. This explains the commonly seen statistical phenomenon that
occurs if one computes the sumXn of a sampleY1, . . . , Yn of binary outcomes, assumes
these variables are iid with common probability p, and uses Y = Xn/n to estimate p.
In such settings, the common statistical estimate

∑n
i=1(Yi − Y )2/n(n − 1) of var(Y )
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is often much larger than the binomial model-based variance estimate Y (1 − Y )/n,
a phenomenon sometimes called “extra-binomial variation.” In a clinical trial set-
ting where the response rate Pr(Y = 1) is well-known to vary with patient covariates,
extra-binomial variation is due to nothing more than the failure to account for covariate
effects by fitting an appropriate binary outcome regression model, such as the logistic,
to the available data. The common practice of comparing the observed response rate
from an uncontrolled trial of E to an historical rate with S without accounting for
patient covariates thus produces an estimate of θE − θS , or a test of θE = θS , that is
likely to depend more on covariate imbalances between trials than any real treatment
effect. This problem is manifested if physicians, consciously or unconsciously, choose
patients having better prognosis for a single-arm trial of E in order to increase the
chance of showing that E is promising compared to S, so-called “cherry picking.”
Physicians who engage in this practice often do so with the altruistic intention, based
on an optimistic prior belief about the efficacy of E, that E should be given the best
possible chance to show how well it works, so that it may benefit future patients. The
simple model that, on average, [clinical effect] = [treatment effect] + [patient covariate
effects] shows the flaw in this reasoning.

In addition to the practice of ignoring covariates, other valuable information often
is wasted when making the decision of whether to proceed with phase 3. While the
relationship between Y and T is essential to the rationale that a phase 2 trial based
on Y should be the basis for deciding whether to conduct a phase 3 trial based on
T , this assumption is almost never made explicitly. As I will show in Sect. 6, below,
accounting for (Y, T ) as a multivariate outcome using a simple mixture model greatly
increases the reliability of both phase 2 and phase 3, and leads very naturally to a
phase 2–3 design. The other side of this coin sometimes is seen in settings where no
observable Y that is related to T is available. In such cases, investigators may use an
early outcome, say Y ∗, simply because it is available, despite the fact that no relation-
ship between Y ∗ and T has been established. This is often motivated by the belief that
a phase 2 trial based on a such an early outcome is better than no phase 2 trial at all. A
common example of this practice is that in which Y ∗ indicates the presence of a partic-
ular biomarker, derived from laboratory experiments showing cancer cell killing in cell
cultures or anti-tumor effects in rats, but Y ∗ is of no value whatsoever in predicting T

in humans. The difficult step of validating Y ∗ by showing that it predicts T in humans
is frequently ignored in so-called “translational” or “bench-to-bedside” research, due
to the problem that it often is not practical to validate Y ∗ prior to phase III. It is a tru-
ism in modern clinical oncology research, however, that so-called “targeted” therapies
very often have biological effects, Y ∗, that are later found to be statistically unrelated
to either tumor shrinkage or to T . Some examples are given by Thall et al. (Sect. 5.1,
2007). The point is not that new treatments motivated by laboratory-based research are
not potentially useful, but rather that there are important distinctions between effects
seen in cells, effects seen in animals, pre-clinical effects in humans, and actual clinical
improvement in humans.

Consider the harder problem of evaluating several different treatments, E1, . . . , Ek,

simultaneously in phase 2, either in one randomized trial or in separate single-arm tri-
als. If the treatment E[k] having the largest observed response rate among the estimates
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θ̂E,1, . . . , θ̂E,k is selected for phase 3 evaluation, the subsequent phase 3 test suf-
fers from selection bias that inflates the false positive rate. In the null case where
θE,1 = · · · = θE,k = θE , that is, where the k treatments are equivalent to each other,
all θ̂E,j have mean θE but the maximum θ̂E,[k] has mean > θE, and moreover θ̂E,[k]
increases stochastically with k. Intuitively, since one must observe all of the θ̂E,j ’s
before [k] can be identified, [k] is a statistic that depends on the data from all k treat-
ments. A phase 3 trial of E[k] vs. S that ignores this fact will have a false positive rate
larger than its nominal value.

Selection bias also may arise in other, more subtle ways. In the process of developing
a single new agent, E, it is a common practice for a pharmaceutical company to con-
duct phase 2 trials of E in several indications (disease areas), select the indication
where E performs best, and then conduct a phase 3 trial in the selected indication.
This preliminary selection among indications inflates the risk of a false positive deci-
sion. To see this, consider a simple model where the response probability with S in
the j th indication is θS,j for j = 1, . . . , k. Suppose that, for each j , the phase 2 trial
conducted in the j th indication yields estimate θ̂E,j of θE,j . Suppose that the best
indication, having index denoted by [k], is defined as that maximizing θ̂E,j − θS,j ,

and the company’s strategy is to conduct a phase 3 trial of E in the indication [k]. If
in fact E is completely equivalent to S in all indications, formally if θE,j = θS,j for
all j , then each θ̂E,j − θS,j has expected value 0. However, the maximum of these k

differences has expected value >0. Moreover, θ̂E,[k] − θS,[k] increases stochastically
with k, so that the more indications that are tested the more likely it is that the phase 2
selection procedure will produce a false positive result.

Selection bias aside, a small trial can at best produce treatment effect estimators
having limited reliability. The common practice of designing phase 2 trials to be as
small as possible in order to get to phase 3 as quickly as possible suffers from two
severe flaws. The first is that it ignores the simplest statistical principle of all, that the
reliability of any valid statistical inference increases with sample size. The second flaw
is the optimistic prior assumption, which is wrong much more often than it is right, that
E will certainly provide a substantive clinical improvement over S. Such optimism
often is given as a rationale for not using early stopping rules in phase 2, since such
rules would risk depriving patients of the putative greater benefit of E. Of course, taken
to its logical conclusion, one could use prior optimism about E rather than a phase 2
trial as a basis for proceeding to phase 3, then likewise do away with phase 3 since it
would be unethical to randomize patients to S, and simply treat all future patients with
E. As ridiculous as this may sound from a scientific viewpoint, replacing empirical
treatment evaluation with prior optimism is actually a very common practice.

For any combination of these reasons, treatments found to be promising in phase 2
very often perform less well in phase 3, and most phase 3 trials yield negative results.
This has resulted in an immense waste of resources, including time, money, drugs
and patients. The designs that I will describe below are attempts, in some particular
settings, to improve the scientific reliability and efficiency of the clinical evaluation
process.
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4 Phase 2–3 designs for one experimental treatment

Ellenberg and Eisenberger (1985) pointed out that a small, uncontrolled trial of E

provides an estimate of θE that has very limited reliability, and also noted the common
problem that treatments considered promising based on such studies often perform
less well in subsequent phase 3 trials. They proposed a two-stage phase 2–3 design,
based on binary outcomes, using a futility early stopping rule after stage 1. In stage 1,
2n patients are randomized between E and S. Denoting the numbers of responses in
the two arms by XE,n = ∑n

i=1 YE,i and XS,n = ∑n
i=1 YS,i , the trial is terminated

early and E is rejected if XE,n ≤ XS,n, and otherwise it continues to a second stage.
The value of n is chosen to control the stage 1 early stopping probability, equivalently
the false negative rate in stage 1, at a suitably small value under a given alternative
θE = θS + δ. If the trial is not stopped early, then a conventional comparative test
based on a randomized trial of E vs. S is done in stage 2. One may regard this as a
phase 2–3 trial with stage 1 the “phase 2” portion, and stage 2 the “phase 3” portion. A
major departure from conventional phase 2 practice is that stage 1 includes a control
arm, with patients randomized between E and S. While only the binary outcome case
was presented, the general idea of randomizing in phase 2 and using a futility stopping
rule could be applied more generally, e.g. in trials with TTE outcomes.

A formal version of this design that controls overall size and power and optimizes
expected overall sample size was given by Thall et al. (1988a). To test the hypotheses
H0 : θE = θS vs. H1 : θE > θS , in stage 1, 2n1 patients are randomized between E

and S, with H0 accepted and the trial terminated early if an approximately normal test
statistic Z1 based on the two binomial samples from stage 1 is≤ y1. If Z1 > y1 then
2n2 additional patients are randomized in stage 2. A final test statistic Z2 based on the
pooled data on Nmax = 2n1 + 2n2 patients from both stages is computed at the end of
stage 2, with H0 accepted if Z2 ≤ y2 and rejected if Z2 > y2. Given overall type I and
type II error probabilities, the sample sizes n1, n2 and test cut-offs y1, y2 are chosen to
minimize the expected overall sample size E(N) = 2n1 + 2n2 Pr(Z1 > y1), with this
expectation computed as an equally weighted average 1

2E0(N) + 1
2E1(N) under H0

and under H1 at θE = θS +δ. For size .05 and power .80 to detect δ = .15, the optimal
designs require maximum samples sizes Nmax = 202–292, with E(N) = 128–183
under H0 and 191–276 under H1. For δ = .20 these values are much smaller, with
Nmax = 104–164. In either case, the design has early stopping probability .60 to .64,
and if the trial is stopped early this results in a sample size 2n1 anywhere from 42 to
122. This design may be regarded as a randomized version of the widely used Simon
(1989) single-arm phase 2 design. For example, an optimal Simon two-stage design to
test H0 : θE = .20 with size .05 and power .80 to detect θE = .40 requires n1 = 13
patients in stage 1, n2 = 30 in stage 2, with null early stopping probability .75. In
comparison, the optimal randomized design requires 2n1 = 56 patients in stage 1,
2n2 = 80 in stage 2, and stops early with probability .62. The much larger investment
of patients with the randomized trial (Nmax = 136 vs. 43) is the price paid for doing
away with trial effects and selection bias, accounting for variability in the estimate of
θS , and thus obtaining unbiased comparisons between E and S. A limitation of the
two-stage randomized design is that Y is used as the outcome in both stages, rather
than using T in stage 2.
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A related design for single-arm phase 2 trials with binary outcomes was given by
Chang et al. (1987), who optimized the Fleming (1982) group sequential design using a
sequential probability ratio test. To test the same one-sided hypotheses as given above,
at each of up to k stages their design allows early stopping with either acceptance or
rejection of H0. Given overall size, power, k and the sample sizes n1, . . . , nk at all
stages, they determined interim test cut-offs that minimize the overall expected sample
size, equally weighted between H0 and H1 as above. They recommended application
with k = 2 or 3, and small maximum sample sizes in the range 20–60. Under the
same set of assumptions, Therneau et al. (1990) used an elegant geometric approach
to improve this design. They provided a computational algorithm to ensure that the
optimal design is admissible in the sense that it minimizes a linear combination of the
type I error, type II error, and expected sample size. While these designs provide a
formal way to choose the parameters of a Fleming design, they suffer from the lim-
itations, noted above, of any single-arm design for which a fixed null value of θS is
assumed.

5 Evaluating several experimental treatments

Suppose that several experimental treatments, E1, . . . , Ek, are available simulta-
neously for evaluation. Although in oncology each treatment often is a combination
with a very specific schedule of administration involving successive courses, and treat-
ments in other disease areas also may have multi-stage structures, since this can be
quite complex I will ignore it here in order to focus on phase 2–3 issues. Thus, for now I
will assume that outcome is one-dimensional and characterize the k average outcomes
by the one-dimensional parameters θ1, . . . , θk . These may be response probabilities,
median event times, or some other parameter of primary interest. Let θ0 denote a fixed
null value that is considered “not promising,” corresponding to S. Several different but
related goals may be addressed in this setting. The first is to identify the best among the
Ej ’s, that is, identify the largest θj . A more difficult goal is to determine whether any
Ej provides at least a given δ improvement over θ0, while controlling both the false
positive rate and false negative rate of the decision scheme. A much more difficult
goal is to identify the specific set of all Ej ’s that provide a δ improvement. The simple
but extreme approach of conducting a k + 1 arm randomized trial of E1, . . . , Ek and
S and performing all k pairwise comparisons of Ej v. S while controlling the overall
false positive rate is prohibitively expensive in most cases. This consideration has
motivated several phase 2–3 strategies that first select among E1, . . . , Ek, and then
compare the selected treatment(s) to S.

In this setting, Simon et al. (1985) proposed that patients should be randomized
fairly among the k treatments in phase 2, using conventional phase 2 sample sizes, and
that the treatment arm E[k] having the largest observed response rate should be selected
for phase 3 evaluation. In addition to randomizing to avoid bias, they proposed the use
of ranking and selection rather than hypothesis testing. Randomized phase 2 trials are
sometimes criticized on the grounds that they are underpowered phase 3 trials. The
goals of the two types of trials are very different, however. The goal of a random-
ized phase 2 trial is simply to select the best treatment, E[k], among E1, . . . , Ek, in
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a way that avoids the bias inherent in unrandomized comparisons. This is much less
demanding than the goal of demonstrating that the best treatment is better than the
other treatments, or better than S, by a predetermined amount δ while also controlling
the false positive probability. While one may compute the probability of correct selec-
tion (PCS) of Ek in the simple case where θ1 = · · · = θk−1 = θ0 and θk = θ0 + δ, the
aim of a phase 2 selection trial is not to achieve this with a conventional power figure
and small type I error. For example, if k = 2 and θ1 = θ2, then each treatment has
a 50% chance of being selected. Because a simple randomized selection trial design
does not attempt to control type I error, its conclusion is not that E[k] is substantively
better than the other treatments, but rather that, empirically and based on unbiased
comparisons, E[k] is the best. That is, the purpose of a randomized phase 2 trial is
screening, not confirmatory evaluation.

As noted earlier, if one wishes to follow a randomized phase 2 selection trial by a
phase 3 trial of the selected treatment E[k] vs. S, the phase 2 selection process may
introduce bias into the subsequent phase 3 comparative test. In the k treatment setting
with binary outcomes, Whitehead (1986) addressed the problem of determining how
many patients should be treated in each of phase 2 and phase 3, if the total sample size
N is predetermined. Denoting the number of patients per arm in phase 2 by n, a total
of N1 = kn are randomized among E1, . . . , Ek in phase 2, and N2 = N −N1 are ran-
domized between E[k] and S in phase 3. Assuming that θ1, . . . , θk are drawn randomly
from a beta distribution, by averaging over the conditional power in phase 3 given θ[k]
Whitehead derived the probability that the phase 3 test would reject the null, and used
these computations to obtain values of N2 for given N and k that maximize the prob-
ability of rejecting in phase 3. For example, under a beta(2,8) prior with θ0 = 0.20,
k = 5 and total sample size N = 200, 300 or 500 the corresponding optimal phase 3
sample sizes are 140, 210, and 345. The design strategy proposed by Whitehead did
not include the data from stage 1 in the final two-sample test statistic, however.

Thall et al. (1988b) proposed the following two-stage phase 2–3 design, which
includes both a k-treatment selection in stage 1 and a two-arm comparison in stage 2
based on the pooled data from both stages while controlling the overall false positive
and false negative error probabilities. In stage 1, (k + 1)n1 patients are randomized
fairly among E1, . . . , Ek and S. If the approximately normal two-sample stage 1 test
statistic Z1 based on θ̂[k] and θ̂S is ≤ y1, the stage 1 cut-off, then the trial is terminated
and the global null hypothesis H0 : θ1 = · · · = θk = θ0 is accepted. If Z1 > y1
then an additional 2n2 patients are randomized between E[k] and S in stage 2, a test
statistic Z2 based on the pooled E[k] and S data from both stages is computed, and
a final test is performed with the conclusions that θ[k] > θ0 if Z2 > y2 and H0 if
Z2 ≤ y2. Importantly, Z1 depends on the data from all k + 1 samples in stage 1, and
Z2 depends on all of the data from both stages. To utilize ranking and selection theory
(Bechhofer et al. 1995), Thall et al. (1988b) specified fixed δ1 > 0 to be a marginal
or uninteresting improvement and δ2 > 0 a larger value such that θ0 + δ2 would be a
clinically meaningful improvement over θ0. To account for the hybrid nature of this
design, they extended the usual definition of power, as follows. Assume without loss
of generality that θ1 ≤ θ2 ≤ · · · ≤ θk . Suppose that (i) at least one θj ≥ θ0 + δ2
and (ii) no θj falls between θ0 + δ1 and θ0 + δ2, since it is not possible to reliably
distinguish statistically between arbitrarily close parameter values. Let β(θθθ) denote
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the probability of not concluding θj > θ0 for any j , where θθθ = (θ0, θ1, . . . , θk). It
can be proved that, under (i) and (ii), the false negative probability β(θθθ) is maximized
for θ1 = · · · = θk−1 = θ0 + δ1 and θk = θ0 + δ2, the least favorable configuration
(LFC), denoted by θθθ∗. The generalized power is defined as 1−β(θθθ∗). Given this struc-
ture, they chose the four design parameters n1, n2, y1, y2 to minimize the expected
sample size E(N) = (k + 1)n1 + 2n2 Pr(Z1 > y1), with this expectation the equally
weighted average between H0 and the LFC. Note that this design generalizes the sim-
pler two-treatment design of Thall et al. (1988a) described earlier by accommodating
k experimental treatments, rather than one. Depending on θ0, δ1, and δ2, for k = 2, 3, or
4 the optimal design has Nmax varying from 178 to 458, and E(N) between 140 and
415. For example, for θ0 = .40, δ1 = .05, and δ2 = .20 and k = 3, and generalized
power .75, 4 × 47 = 188 patients are required for stage 1, and 2 × 63 = 126 for stage
2, so that Nmax = 314, and E(N) = 281.

Thall et al. (1989) derived another version of this design that does not include an S

arm in stage 1, instead using a fixed stage 1 cut-off λ with stage 2 conducted only if
θ̂[k] > λ. While this design produces an apparent saving in sample size compared to
the design that does include S in stage 1, because stage 1 has no control arm it suffers
from the fact that stage 1 does not provide an unbiased comparison of the Ej ’s to S

based on actual data, hence there is a built-in trial effect. Moreover, no stage 1 data
are incorporated into the stage 2 test statistic.

Schaid et al. (1990) also proposed a 2-stage phase 2–3 design to screen k experi-
mental treatments E1, . . . , Ek in phase 2, followed by randomized comparison to S in
phase 3. Their design is similar to that of Thall et al. (1988b), with the two important
differences that TTE outcomes are assumed and the design allows more than one of the
Ej ’s to be moved forward to phase 3. Under a proportional hazards assumption, let θj

denote the hazard ratio between Ej and S and T j (u) the log rank statistic comparing
Ej to S at study time u. In stage 1, (k + 1)n1 patients are randomized fairly among
E1, . . . , Ek andS. For decision cut-offsC1 < C2, (i) if max{T 1(t1), . . . , T

k(t1)} < C1
then the trial is terminated with all k experimental treatments declared not promising;
(ii) if any T j (t1) > C2 then the trial is terminated with the conclusion that all such
treatments provide an overwhelming survival advantage over S. Otherwise, all k2 ≤ k

treatments for which C1 ≤ T j (t1) ≤ C2 are moved forward to stage 2, with fair
randomization of (k2 + 1)n2 patients among the selected treatments and S. Accrual in
stage 2 is terminated at ta and a final analysis is performed at t2, where t1 < ta < t2.

In the final comparisons, it is concluded that Ej is superior to S if T j (t2) > C3.

Denote the pairwise comparison false positive probability by α and pairwise power
by 1 − β, the null hazard with S by λ0, and the common hazard ratio under the
global null by θ . The design parameters are the test cut-offs C1, C2, C3, and the per-
arm sample sizes n1, n2. Schaid et al. derived the design parameters to minimize the
null expected total sample size for given α, 1 − β, λ, θ , follow-up duration t2 − ta,

and accrual rate, assuming uniform accrual during [0, ta] and exponential event time
distributions, although they indicated how these assumptions may be relaxed. Given
the goal of allowing all treatments that are promising to move forward for phase 3
evaluation, this design is highly efficient. For example, for hazard ratio of 1.5, k = 2
to 4, approximate overall type I error kα = .05 and pairwise power 1 − β = .80,
and accrual rate/hazard rate = 50, the null expected sample sizes range from 233
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to 448; increasing the hazard ratio to 2.0 gives expected sample size range 109–188.
While allowing more than one experimental treatment to be moved forward to stage 2
requires a larger sample size than restricting stage 2 to allow only one Ej , an impor-
tant advantage of this more flexible approach with TTE outcomes is due to the fact
that survival differences may not be seen until the second stage. Consequently, this
provides protection against false negatives in the initial screening. This design has the
general phase 2–3 advantages that stage 1 data are utilized in the stage 2 tests, it avoids
the bias of uncontrolled pre-test treatment selection, and it controls the overall error
rates.

Schaid et al. (1988) proposed a phase 2–3 design for an oncology setting where k

new agents A1, . . . , Ak are available, along with an experimental treatment E that
previously has been determined to be promising in phase 2 and a standard treat-
ment S. Their design is aimed at newly diagnosed patients who have not yet been
treated. At study entry, for frontline therapy patients are randomized fairly among all
k + 2 treatments. For each patient, at disease progression a patient who received
E or S initially is taken off study, whereas a patient who received one of the k

new agents as frontline is then crossed over by being re-randomized between E and
S as salvage therapy. This design has the advantage that an E-versus-S compari-
son may be made using both frontline and salvage data. To do this, Schaid et al.
first computed the expected number of deaths for patients randomized to E or S as
frontline therapy. The probability that a previously untreated patient randomized to
t = E or S will die by final follow-up time τ is computed as p1t = ∫ a

0 Ft(τ −
u)dG(u) where G is the cdf of the accrual time during the interval [0, a] and
Ft is the cdf of the survival time for a patient initially randomized to t . If Q is
the proportion of all patients who are randomized in phase 3, and P is the pro-
portion of patients in phase 3 who are randomized to E, then E(# deaths in the E

arm in phase 3) =NQPp1E and the corresponding value for the S arm is NQ(1 −
P)p1S. Similar, more complex expressions are given for patients who receive one
of A1, . . . , Ak as frontline and are then re-randomized to E or S, accounting for
the time to progression with the agent Aj given initially. These expressions are
then used to compute a stratified log rank test statistic that accounts for the differ-
ential frontline treatment effects in a final comparison of survival with E and S.
Since this design accounted formally for the two-stage nature of frontline and sal-
vage therapy in cancer, it was a pioneering contribution in the field now known
as “dynamic treatment regimes” (Thall et al. 2000; Murphy 2003, 2005; Lavori
and Dawson 2004; Thall et al. 2007). While space does not permit a review of
this rapidly growing literature, it is closely connected to phase 2–3 designs. A dy-
namic treatment regime is a set of rules for repeatedly treating and evaluating a
patient in a multi-stage fashion, essentially a formalization of what physicians do
routinely. If a design comparing dynamic treatment regimes has among its succes-
sive outcomes an early “phase 2” outcome Y and a subsequent “phase 3” outcome
T , if patients are randomized, and if the design aims to control the overall false
positive rate, then it may be regarded as a phase 2–3 design. The following section
reviews designs for which the primary outcome is the pair (Y, T ), rather than a single
variable.
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6 Accounting for both early and late outcomes

The relationship between Y and T reminds me of the wedding at which one of the
guests discretely asked a member of the bride’s family, “Aren’t the bride and groom
first cousins?” The family member, with equal discretion, replied, “Oh, yes, everybody
knows that. We just don’t talk about it.”

In this section, I will openly discuss the intimate relationship between Y and T ,
despite the fact that it is nearly ignored in the clinical trial design literature. The ratio-
nale for using a phase 2 trial based on an early response indicator Y to decide whether
to proceed with a phase 3 trial based on T is that the occurrence of response is likely to
increase the value of T , that is, T increases stochastically with Y . This is defined by the
inequality Pr(T > u | Y = 1) = F̄1(u) > F̄0(u) = Pr(T > u | Y = 0) for all u > 0,

where Fy is the cdf of T given Y = y and F̄y = 1−Fy. In words, responders live longer
than non-responders, on average. If this is the case, then it makes perfect sense to use
Y to decide whether E is promising. What does not make sense is to ignore the fact
that the unconditional distribution of T is the mixture f (u) = f1(u)π +f0(u)(1−π),
where π = Pr(Y = 1) and fy = F ′

y is the pdf of [T | Y = y]. The importance of this
simple expression may be seen once treatment effects are considered. For example,
suppose that the probability of surviving 12-months is .40 for non-responders and .60
for responders, a 50% improvement, and that πS = .20 and πE = .40, that is, E

doubles the response probability of S. Then the 12-month survival probability with S

is

F̄0(12)(1 − πS) + F̄1(12)πS = .40 × (1 − .20) + .60 × .20 = .44,

and the 12-month survival probability with E is

F̄0(12)(1 − πE) + F̄1(12)πE = .40 × (1 − .40) + .60 × .40 = .48.

That is, doubling the early response rate only increases the 12-month survival from
.44 to .48, a 9% improvement. A conventional 2-sided group sequential design with
one interim test using O’Brien-Fleming bounds, size .05 and power .80 to detect
this alternative would require up to 2,850 patients. If one repeats these computations
using other numerical values, it quickly becomes apparent that, in order to have any
substantive impact on T , an enormous improvement in response rate is required, or
response must provide an even larger increase in T , that is, F̄1(u)/F̄0(u) must be
much larger than 1.5. Even if response doubles 12-month survival, from .40 to .80,
and E still doubles response rate, repeating the above computation gives 12-month
survival probabilities .48 with S and .56 with E, still only a 17% improvement. In
this very optimistic scenario, the maximum sample size required in phase 3 would
still be over 900. Given these simple computations, and the many scientific problems
with phase 2 trials noted earlier, it is hardly surprising that most phase 3 trials yield
negative results. This was shown empirically by Tori et al. (1992), who performed a
meta-analysis of 13 randomized ovarian cancer trials in which they assumed T to be a
linear function of treatment effect and log {π̂E/(1 − π̂E)} for study-specific estimator
π̂E under a random effects model. Based on their analysis, they concluded that a new
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treatment must produce a very large improvement in response rate in order to achieve
a meaningful improvement in median (T ).

Still, actual applications are generally much more complex. Additional elements
that may come into play include direct effects of treatment on T not mediated through
Y , and effects of patient covariates on both Y and T . The following more general
mixture model accounts for these possibilities, and may be used as the basis for a
phase 2–3 design. Since a binary response indicator may be inadequate, let Y be a
discrete variable taking on c possible values, indexed by y = 1, . . . , c. This accom-
modates important extensions such as that where Y has possible values (response,
no toxicity), (response, toxicity), (no response, no toxicity) and (no response, toxic-
ity). Let Z = (Z1, . . . , Zq) denote a vector of baseline patient covariates, and let τ

denote treatment, which may be {E, S} or more generally {E1, . . . , Ek, S}. Denote
the early outcome probability by πy(τ, Z) = Pr(Y = y | τ, Z). The particular form
of πy(τ, Z) could be, for example, a generalized logistic or a bivariate binary regres-
sion model, provided that it accounts for effects of both τ and Z. The distribution of
[T | τ, Z] may be expressed as the mixture

fT (t | τ, Z) =
∑

y

f (t | Y = y, τ, Z) πy(τ, Z).

This model accounts for direct effects (τ, Z) −→ Y and (τ, Z) −→ T of treatment
and covariates on each outcome, as well as the “phase 2 −→ phase 3” relationship
Y −→ T between the early and late outcomes.

In the numerical examples given earlier, the distribution of T only varied with Y .
Extending that example to allow direct effects of treatment on the phase 3 outcome
gives

F̄ (12 | τ) = F̄0(12 | τ)(1 − πτ ) + F̄1(12 |τ)πτ

for τ = E or S. For example, denoting µτ,y = E(T | τ, Y = y), the overall mean of
T under treatment τ is E(T | τ) = µτ,0(1 − πτ ) + µτ,1πτ , which depends on three
parameters, and thus the difference in overall means,

� = {µE,0(1 − πE) + µE,1πE} − {µS,0(1 − πS) + µS,1πS},

is a function of six parameters. Based on this representation of �, a substantive overall
treatment effect may be achieved if three effects are at work:

1) πE > πS

2) µE,1 > µS,1 and µE,0 > µS,0
3) µE,1 > µE,0 and µS,1 > µS,0.

That is, (1) E increases the response probability compared to S, (2) E increases sur-
vival compared to S among both responders and non-responders, and (3) response
increases survival regardless of which treatment achieved it. This sort of argument
may be extended to more general Y . For example, if toxicity reduces survival, a treat-
ment that reduces the toxicity rate while maintaining the response rate may improve
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survival. Similarly, covariate effects may play a very important role in the above sort
of analysis, especially if there are treatment-covariate interactions in either π or µ.

Inoue et al. (2002) applied a mixture model to derive a Bayesian phase 2–3 design
in which patients are randomized between E and S throughout, with comparative deci-
sions based on posterior and predictive probabilities defined in terms of the difference
� in mean survival time with E and S, computed under a mixture model, so that in
particular � accounts for all of the effects described above. In their application, a
non-small-cell lung cancer trial, Y indicates local control of the tumor evaluated by
biopsy at five months, T is survival time, one covariate Z indicating stage III disease
is used, and the phase 2–3 goal is improve survival by 25%, assuming direct treatment
effects on both Y and T , as well as improvement in survival if local control is achieved.
The underlying mixture model accounts for the complication that Y is not observed in
patients who die prior to the five-month evaluation. During an interim period in phase 2,
the design makes repeated decisions of whether to stop due to futility, continue phase 2,
or proceed to phase 3. If phase 3 is begun, the trial is expanded by adding more clinical
centers, so the design has the advantage that there is no delay between the two phases.
Superiority-continuation rules are applied at four-month intervals throughout phase 3.
This could be regarded as a phase 3 trial with intensive monitoring, although the use
of a parameter � accounting for the combined average treatment effect under a mix-
ture model is far from conventional. To control overall size at .05 and achieve power
.80, the design requires up to 900 patients. Over a wide array of cases, compared to
conventional methods, on average the Bayesian phase 2–3 design provides a smaller
trial, although the intensive monitoring produces much greater variability in sample
size.

7 Dose ranging trials

Berry et al. (2001) proposed a Bayesian phase 2–3 design for a dose-ranging trial
of a neuroprotective agent for stroke. The agent was administered intravenously as
soon as possible after the stroke, with the trial goal to determine the optimal dose
in terms of the ED95 (smallest dose providing a 95% response rate). Each patient’s
dose was assigned adaptively, based on posterior quantities computed from data on
patients treated previously in the trial. A normal dynamic linear dose-response model
was assumed for each patient’s response profile, which was observed longitudinally,
with response defined as the change in the patient’s stroke score from baseline. In
stage 1, the primary focus was to determine whether there existed a dose sufficiently
efficacious to warrant a second, confirmatory stage in which patients were randomized
between a selected dose and placebo. The possible stage 1 decisions were to stop the
trial due to futility, continue dose-finding, or shift to the confirmatory phase. The basis
for this decision was the predictive probability, given the current data, that the trial
would ultimately show a selected dose to be superior to placebo. A key aspect of the
design was that the switch from stage 1 to stage 2 was done “seamlessly,” without
suspending patient accrual. The duration of stage 1 was allowed to vary depending on
the accumulating data on the dose-response curve.
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Liu and Pledger (2005) took a very different approach to a phase 2–3 dose-finding
trial. They proposed a two-stage design for a placebo controlled trial by generalizing
Thall et al. (1988b) and Schaid et al. (1990), with several doses of a new drug playing
the roles of the different experimental treatments. Like Berry et al. (2001) and Inoue
et al. (2002), their proposed design does not stop accrual between phase 2 and phase 3.
The Liu and Pledger design allows the two stages to overlap, with stage 2 begun while
the stage 1 patients are still being followed for evaluation. The stage 1 sample size
is determined to control the false negative rate in that stage. At an interim analysis,
a futility stopping rule is applied, safety is assessed, and the stage 2 sample size is
chosen to minimize expected total sample size subject to overall type I error and power
constraints. Under the assumption that the test statistics from each stage are normally
distributed, the data from the two stages are pooled for a final test using a trend statistic
computed under a dose-response model in which the probability of efficacy reaches a
plateau as a function of dose.

8 Discussion

Since the number of new treatments becoming available for clinical evaluation is rap-
idly increasing in many disease areas, while resources for evaluating treatments are
limited, the need for efficient trial designs is more pressing than ever. Since it is easy to
show that a properly designed phase 2–3 trial utilizes resources much more efficiently
than conventional alternatives, whenever feasible, phase 2–3 trials should be adopted
as standard practice. While the designs reviewed here provide an array of different
methods that have been proposed, there are many other designs that may be called
“phase 2–3,” or that are closely related. A somewhat broader review than that provided
here is given by Rubinstein et al. (2005).

While I have described some statistical problems with conventional clinical trial
methods, in my experience the difficulties go beyond purely statistical issues. With
regard to what may be gained or lost in a clinical trial, the utilities of physicians,
patients in the trial, future patients, pharmaceutical companies and regulatory agen-
cies can be quite different. While, ideally, a clinical trial design should strike a balance
among these competing utilities, in practice a much less demanding but more realistic
set of goals must be considered.

The relationship between statisticians and physicians plays a critical role in the
clinical trial design process. Patients typically choose physicians, not treatments.
Once a patient has entrusted a physician with his or her life, the patient may rely
on the physician’s expertise and simply hope for the best outcome. In my experience,
physician-investigators choose statisticians in precisely the same way, entrusting the
design of their clinical trials or analysis of their data to a statistician with the hope that
it will produce scientifically valid results.

In practice, each trial has its own particular structure and goals. Constructing a
design to accommodate the trial at hand becomes both more important and more dif-
ficult with more complex trials. This is especially true for trials that have multiple
outcomes, multiple disease subtypes, multiple stages of therapy, multiple stages of
treatment evaluation, or multiple goals. Tailoring a design to fit particular trial is
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time-consuming, often requiring development of new computer software, and the
investigators must sell the design to colleagues in their own clinics, to physicians
in other medical centers considering participating in a multi-institution study, and to
regulatory agencies. Given these difficulties, it is not surprising that many investiga-
tors choose a conventional design that may be constructed quickly and easily using
an existing computer program. The motivation for an investigator to choose a more
complicated but more realistic trial design comes from the belief that there is some-
thing substantive to be gained by its use, and the investigator’s trust in his/her chosen
statistician’s abilities. There is a lot to be gained by the use of carefully constructed
phase 2–3 designs, but this will occur only to the extent that statisticians earn their
physician-collaborators’ trust.
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