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Abstract

Designs for early phase dose finding clinical trials typically are either

phase I based on toxicity, or phase I-II based on toxicity and efficacy. These

designs rely on the implicit assumption that the dose of an experimental agent

chosen using these short-term outcomes will maximize the agent's long-term

therapeutic success rate. In many clinical settings, this assumption is not true.

A dose selected in an early phase oncology trial may give suboptimal

progression-free survival or overall survival time, often due to a high rate of

relapse following response. To address this problem, a new family of Bayesian

generalized phase I-II designs is proposed. First, a conventional phase I-II design

based on short-term outcomes is used to identify a set of candidate doses, rather

than selecting one dose. Additional patients then are randomized among the

candidates, patients are followed for a predefined longer time period, and a final

dose is selected to maximize the long-term therapeutic success rate, defined in

terms of duration of response. Dose-specific sample sizes in the randomization

are determined adaptively to obtain a desired level of selection reliability. The

design was motivated by a phase I-II trial to find an optimal dose of natural

killer cells as targeted immunotherapy for recurrent or treatment-resistant B-cell

hematologic malignancies. A simulation study shows that, under a range of sce-

narios in the context of this trial, the proposed design has much better perfor-

mance than two conventional phase I-II designs.
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1 | INTRODUCTION

1.1 | Conventional dose-finding designs

Adoptive T-cell therapy uses immune cells engineered to attack a specific disease target. Cell therapy has been used to
treat leukemia and lymphoma,1,2 and diseases such as type 1 diabetes, Parkinson's disease, and Alzheimer's disease.
The dose-finding design proposed in this paper was motivated by an early phase trial of CD70 CAR natural killer
(NK) cells as targeted immunotherapy for recurrent or treatment-resistant B-cell hematologic malignancies following
frontline treatment with chemotherapy or an allogeneic stem cell transplant. The therapeutic aims are to achieve a dis-
ease remission, and reduce the rate of subsequent disease recurrence. Treatment begins with 3 days of chemotherapy to
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debulk the patient's disease, followed by one infusion of NK cells at a selected dose. The primary scientific goal is to
optimize dose among the four values 5:0� 106,107,108,109ð Þ cells.

Initially, a conventional phase I-II design for this trial was based on indicators YR of response at 1month, and YT of
grade 3 or 4 toxicity within 1month of cell infusion. The plan was to treat up to 48 patients in 16 cohorts of size three,
starting at the lowest dose, with the following screening rules. For dose d, and binary toxicity and response indicators
YT and YR, denote πR d,θð Þ = Pr YR¼ 1jd,θð Þ, πT d,θð Þ = Pr YT¼ 1jd,θð Þ, and Dn the data from n patients. Given lower
limit 0.50 on πR d,θð Þ and upper limit 0.30 on πT d,θð Þ, a dose d was considered acceptable if

Pr πR d,θð Þ> :50jDnf g> :10 and Pr πT d,θð Þ< :30jDnf g> :10: ð1Þ

Bayesian dose acceptability criteria of this form have been used in many phase I-II designs.3–5 Subsequently, a more
general design was motivated by concerns about response durability, since a patient's disease may recur soon after a
response is achieved. The investigators planned to follow each patient for up to 6 months to assess whether they were
alive with disease in remission at that time. This led to consideration of how data from this later evaluation might
be used to help choose an optimal dose. The result is the generalized phase I-II design presented here, which we
call Gen I-II.

Most early phase trials determine a dose using either a phase I design based on YT , or a phase I-II design based on
bivariate binary or ordinal YR,YTð Þ. In oncology, examples of binary response include 50% reduction of a solid tumor
or complete remission of acute leukemia. Most of these designs use sequentially outcome-adaptive rules to choose doses
for successive patient cohorts. Fair randomization among doses seldom is used, due to concerns that higher doses may
be unacceptably toxic. Many phase I designs6–9 and phase I-II designs3,10–16 have been proposed. Most of these designs
use binary outcomes, although phase I-II designs have been proposed for ordinal outcomes,17 event times,18,19 or more
than two outcomes.5,20

A practical requirement in dose finding trials is that the outcomes, YT or Y = YR,YTð Þ, must be evaluated over a
time period, 0, t1½ �, short enough to avoid delaying accrual to evaluate previous patients' outcomes to make adaptive
decisions. For designs based on event times, such as the phase I time-to-event continual reassessment method (TITE-
CRM)21 or late-onset efficacy-toxicity phase I-II design,22 follow up intervals must be short enough so that outcome-
adaptive decisions can be made without unduly suspending accrual.

1.2 | A dose-finding trial that failed

A conventional dose finding design may fail if there is a disconnect between short-term response and long-term out-
comes, such as disease progression or overall survival (OS) time. This problem arose in a trial of allogeneic stem cell
transplantation for acute leukemia23 to optimize the dose of vorinostat added to a standard preparative regimen. Six
doses were studied using the TiTE-CRM with target toxicity probability 0.30, followed by an expansion cohort at the
selected dose. Toxicity was defined as graft failure or grade 4 or 5 non-hematologic, non-infectious toxicity, mucositis,
or diarrhea within 1 month. For response defined as the patient being alive and engrafted at 1 month, this definition of
DLT includes non-response, due to death or graft failure within 1 month, so this was a phase I–II trial. Since very few
DLTs were observed, the TiTE-CRM design rapidly escalated and selected the highest dose as the MTD, where
51 patients were treated, most as an expansion cohort. The final sample sizes were (3, 3, 3, 4, 4, 51) at the six doses.
Analysis of the final survival data gave the Kaplan–Meier estimates for doses {1, 2, 3, 4, 5} combined versus dose 6 in
Figure 1, showing that patients treated with the selected dose 6 had worse survival than patients given one of the
five lower doses. While these results are far from confirmatory, they are very troubling. To design a future trial, the
highest dose is undesirable but a lower dose giving superior survival time cannot be determined reliably from the
data. Since this trial is unlikely to be repeated, there is no clear path forward. This trial illustrates a disconnect
between short-term outcomes and dose effects on progression or survival time.

1.3 | A flawed assumption

Phase I and I-II designs assume that, if d is optimal based on a criterion defined using early outcomes, then d also maxi-
mizes the therapeutic success rate over a long-term follow-up period 0, t2½ �, for t2 > t1. To account for this in the Gen I-
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II design, given fixed t1 and t2, we define duration of response (DOR), Z, among responders as the time from t1 to
relapse or death. The long-term treatment success criterion is the probability

ξ d,θð Þ¼defPr Z> t2� t1jd,θð Þ, ð2Þ

where θ denotes the model parameter vector. Expression (2) is the probability that a patient who is alive with disease in
remission at t1 is alive without progressive disease (PD) at t2:

The Gen I-II design addresses the common problem in oncology that an early response may not be durable, in that
a patient who responds by t1 may relapse before t2. Consequently, a dose optimizing ϕ d,θð Þ may not optimize ξ d,θð Þ:
Response durability has been discussed for radiation oncology,24 donor lymphocyte infusion following relapse after allo-
geneic bone marrow transplantation,25 and many other areas of oncology. The Gen I-II design is practical in settings
where investigators planning a phase I-II trial intend to follow each patient for a longer time t2, to obtain data to esti-
mate response durability. Thus, no additional follow-up is required beyond what already is planned. A dose chosen in
an early phase trial may be suboptimal because the distribution of YR,YTð Þ provides little information about the time to
progression or death as a function of dose. This problem is more severe with phase I designs. Since phase I designs have
severe flaws compared to phase I-II designs,12,26,27 we will not consider phase I designs further.

A Gen I-II design uses the distributions of ordinal YR and YT evaluated over 0, t1½ � and Z evaluated over t1, t2½ �
among responders to optimize d. Let ϕ d,θð Þ be an objective function, defined in terms of the early outcome distribution
p Yjd,θð Þ, used to optimize d in phase I-II. Examples of ϕ d,θð Þ will be given below. Denote the experimental agent by
X , and let X dð Þ denote X administered at d, to account for the possibility that effects of X dð Þ and X d0ð Þ on Y or Z may
be different for d≠ d0. While we use the long-term success criterion ξ d,θð Þ = Pr Z> t2� t1jd,θð Þ, the mean E Zjd,θð Þ
may be used. The implicit assumption underlying phase I-II trials is that, if a selected dose dsel,ϕ maximizes an estimate
of ϕ d,θð Þ at the end of phase I-II, then dsel,ϕ also maximizes ξ d,θð Þ. The validity of this assumption depends on how
p Yjd,θð Þ and p Zjd,θð Þ vary with d, and associations between Z and Y: Conventionally, using ϕ d,θð Þ rather than ξ d,θð Þ
to optimize d is motivated primarily by the desire for logistical convenience when conducting a dose-finding trial.

It is easy to show by example that, for assumed true values ϕtrue d,θð Þ and ξtrue d,θð Þ, the optimal doses dopt,ϕ and
dopt,ξ under the two criteria may differ. Several scenarios reflecting this possibility are included in the simulations given
below in Section 5. Even if Z depends on Y, an optimal phase I-II dose dsel,ϕ based on ϕ d,θð Þ may be suboptimal in
terms of ξ d,θð Þ: A causal explanation with targeted agents or cellular therapies is that there may be direct biological
effects of X dð Þ on Z not mediated by YR. This is a version of the general problem when dealing with relationships
between short-term and long-term outcomes in treatment evaluation, which has been discussed extensively, often with
regard to using an early outcome as a surrogate for a long-term outcome. Common examples are response and PFS
time, and the times to PD and death.28–31

FIGURE 1 Kaplan–Meier plot of overall survival (OS) for the acute leukemia phase I trial by dose group, defined as low (doses 1–5
combined) or high (dose 6).
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Due to random variation, a selected dose dsel,ϕ based on Y ,dð Þ data may not maximize ϕ d,θð Þ or, similarly, a
selected dose dsel,ξ based on Z,dð Þ data may not maximize ξ d,θð Þ: Our proposed design addresses both of these issues
since it utilizes both ϕ and ξ and, through interim sample size determination using computer simulations, addresses
the statistical issue of selection reliability. When ϕ d,θð Þ and ξ d,θð Þ give different selected doses, this may have the fol-
lowing undesirable consequences. If the selected phase I-II dose dsel,ϕ differs from the dose dopt,ξ that maximizes ξ d,θð Þ,
then dsel,ϕ may give much smaller Z than dopt,ξ for future patients. If dopt,ξ ≠ dsel,ϕ, it will never be determined that the
late outcome criterion would give a better dose because the dose optimizing the long-term success rate is unknown and
has been discarded. In this case, a future randomized trial of X dsel,ϕ

� �
is studying a suboptimal version of X: This

reduces the probability that the trial will yield a positive result, compared with what would have been obtained if
X dsel,ξ
� �

had been used. Another possibility is that, after dose-finding by a conventional early phase trial, a later phase
III trial may conclude that X dsel,ϕ

� �
is superior to a control, C: But if X dsel,ϕ

� �
is inferior to X dopt,ξ

� �
, then future

patients treated with X dsel,ϕ
� �

based on the phase III trial's results will have smaller Z than they would have had if
dopt,ξ had been chosen.

Section 2 presents the general Gen I-II design paradigm. Dose-outcome models are given in Section 3. Section 4
describes a utility-based version of the Gen I-II design. A simulation study of the Gen I-II design and two conventional
phase I-II designs is presented in Section 5. We close with a discussion in Section 6.

2 | A GENERALIZED PHASE I-II DESIGN PARADIGM

2.1 | Overview of the design

A Gen I-II design begins with a conventional phase I-II design based on ordinal, possibly binary YR and YT , to screen
out unsafe or ineffective doses, and identify a set C of acceptable candidate doses for later evaluation, rather than
selecting one final dose. Additional patients are randomized among the doses in C and followed to evaluate the times to
progression or death, with a final dose selected to maximize ξ d,θð Þ for d� C: The number of additional patients enrolled
after the initial phase I-II portion of the trial is determined adaptively, based on C and the numbers of patients treated
at its doses, to obtain a high probability of correctly selecting a dose to maximize ξ d,θð Þ for d� C: The additional
patients may be thought of as a generalized expansion cohort, but randomized among the doses in C, rather than being
treated at one dose that may turn out to be suboptimal. The Gen I-II design is a modular paradigm in that any phase I-
II design based on bivariate ordinal Y may be used, provided that it includes a dose optimality criterion ϕ d,θð Þ.

A Gen I-II design has three stages. Stages 1 and 2 together comprise the nominally “phase I-II” portion of the trial.
In stage 1, a conventional phase I-II design is based on Y evaluated over 0, t1½ �: Any phase I-II design with an objective
function ϕ d,θð Þ characterizing dose desirability may be used. In stage 2, doses are chosen using adaptive randomization
(AR) with probabilities defined in terms of ϕ d,θð Þ: At the end of stage 2, a set C of candidate doses with estimated
ϕ d,θð Þ close to the maximum estimate is determined. In stage 3, additional patients are randomized among the doses in
C, and all patients are followed for a longer period 0, t2½ � to obtain data on d,Zð Þ. At the end of stage 3, the candidate
dose maximizing the posterior mean of ξ d,θð Þ is selected.

2.2 | Design construction and trial conduct

A Gen I-II design may be constructed in numerous ways, depending on how Y and ϕ d,θð Þ are defined and the probabil-
ity models p Yjd,θð Þ and p Zjd,θð Þ: To make things concrete for the Gen I-II design that we will use to illustrate the
methodology, we define the early outcomes, evaluated over the interval 0, t1½ �, to be a binary indicator variable YT of
toxicity and a three-level ordinal response variable Y 0

R taking on the possible values Y 0
R = 2 for response (RES), Y 0

R = 1
for stable disease (SD), and Y 0

R = 0 for progressive disease or death (PD). Denoting the indicator of the event A by I A½ �,
we define the binary response indicator YR ¼ I Y 0

R ¼ 2
� �

. We include the third event SD = RES[PDð Þc = Y 0
R ¼ 1

� �
to

accommodate settings where RES and PD are not complementary, that is, a patient may not have a response but this
was not due to early PD. Other early outcomes may be used, including ordinal toxicity with three or more levels of
severity, or Y 0

R with more than three levels, with appropriate modifications of the Gen I-II design parameters. When
either YR or YT has three or more ordinal levels, a binary version of each must be defined in order to specify the dose
admissibility criteria (1).
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Denote the Gen I-II stage s sample size by ns for s¼ 1,2,3, and overall sample size N ¼ n1þn2þn3: Values of n1

and n2 are specified at the start of the trial, but n3 is determined adaptively at the end of stage 2 to obtain a desired level
of final dose selection reliability, as described below. Examples of ϕ d,θð Þ based on bivariate binary Y = YR,YTð Þ include
the response probability πR d,θð Þ,32 the odds ratio defined in terms of πR d,θð Þ and πT d,θð Þ, and the trade-off function
f πR d,θð Þ,πT d,θð Þf g used by the EffTox design.3,33 If numerical outcome utilities, U Yð Þ, are elicited, then the optimality
criterion may be the mean utility ϕ d,θð Þ¼E U Yð Þjd,θf g.5,14–17,34,35 In our construction of a Gen I-II design, below, we
take a utility based approach with Y = Y 0

R,YT
� �

:

For the ith patient enrolled in a Gen I-II trial, denote the assigned dose by d i½ � and let Vi be the independent right
censoring time of Zi starting from the time t1 when Y 0

i,R is evaluated, conditional on Y 0
i,R >0. The observed time to fail-

ure or censoring following t1 is thus Zo
i = min Zi,Vif g. Let δi = 1 if Zo

i ¼Zi and δi = 0 if Zo
i ¼Vi <Zi, so the dataset

from the first n patients enrolled in the trial is

Dn ¼ Y 0
i,R,Yi,T ,Z

o
i ,δi,d i½ �

� �
: i¼ 1, � � �,n� �

: ð3Þ

Stages 1 and 2 of the Gen I-II design include dose acceptability criteria of the form given in equation (1), with fixed
lower limit πR for response probability and upper limit πT for toxicity probability. Denote the set of acceptable doses sat-
isfying (1) by An: During stages 1 and 2, no patient is treated with an unacceptable dose, and if it is determined that no
dose is acceptable, the trial is stopped, stage 3 is not conducted, and no dose is selected.

Denote n1,2 ¼n1þn2: For each dose dj, j¼ 1, � � �,J and n¼ 1, � � �,n1,2, denote bϕj,n ¼E ϕ dj,θ
� �jDn

� �
: In stage 1, doses

are chosen to maximize bϕj,n for n1 patients. In stage 2, doses are chosen for n2 patients using AR. Given a fixed shrink-

age parameter 0≤ ζ≤ 1, AR probabilities may be defined to be proportional to bϕj,n

� 	ζ
. A formula for the AR probabili-

ties is given in the Supplement. Compared to maximizing bϕj,n, AR distributes patients more evenly among acceptable

doses during stage 2, which gives a more even distribution of patients among the candidate doses. While using AR is
not a requirement of the Gen I-II design, our simulations will show that AR improves final correct selection probabili-
ties and reduces additional stage 3 per-dose sample sizes.

At the end of stage 2, given fixed 0< ρ<1, the candidate dose set is defined to be all dj �An1,2 with posterior mean
desirability close to the maximum value,

C¼ dj �An1,2 :
bϕj,n1,2 ≥ ρ max

dl � An1,2

bϕl,n1,2

( )
: ð4Þ

The parameter ρ determines how close the estimated optimality criterion of a dose must be to the maximum for it
to be included in C: The value of ρ should be determined by preliminary simulations examining several numerical
values, such as ρ = 0.60, 0.70, and 0.80, to obtain a design with good OCs. This is how the value ρ = 0.70 was chosen for
the CAR NK cell Gen I-II trial design.

The stage 3 sample size n3 is determined adaptively using the data Dn1,2 and the per-dose subsample sizes
n1,2 dj

� �
: dj � C� �

at the end of stage 2. The n1,2 dj
� �

values are random because doses are chosen adaptively in stages
1 and 2. Denote the stage 3 sample size of dose dj � C by n3 dj

� �
, so that n3 =

P
dj � Cn3 dj

� �
and the per-dose sample sizes

from all three stages are N dj
� �

= n1 dj
� �þn2 dj

� �þn3 dj
� �

: To determine n3 dj
� �

adaptively, we choose a fixed overall per
dose sample size N dð Þ = N dj

� �
for all j that ensures a desired level of reliability for selecting an optimal dose from C at

the end of the trial. Since C is a random set, the value of N dð Þ may be chosen from several feasible values, such as N dð Þ
= 10, 15, or 20. This is done based on simulations of the trial, for given n1, n2, ρ, and assumed true values of the long
term success probabilities, ξtrue = ξtrue d1ð Þ, � � �,ξtrue dJð Þð Þ, and short term success probabilities, ϕtrue =

ϕtrue d1ð Þ, � � �,ϕtrue dJð Þð Þ: Each n3 dj
� �

= N dj
� ��n1,2 dj

� �
depends on C and the values of n1,2 dj

� �
for the candidate doses

dj � C. For example, if J ¼ 4, C = d3,d4f g, n1,2 d3ð Þ = 12, and n1,2 d4ð Þ = 6, then N dð Þ = 20 requires n3 d3ð Þ = 8 and n3 d4ð Þ
= 14. Thus, in stage 3 a total of 22 additional patients would be randomized between d3 and d4, restricted to obtain
overall per-dose sample sizes of 20.

To illustrate the per-dose sample size determination process between stages 2 and 3, we use scenario 3 of our simu-
lation study, which is given in detail in Table S1. We consider three different combinations of the total sample size n2
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used in stage 2 and total sample N dð Þ at d, specifically n2,N dð Þð Þ = (39, 9), (33, 15), and (27, 21). Simulations of the
Gen I-II design under scenario 3 using each of these sample size configurations show that n2,N dð Þð Þ = (39, 9) gives very
slightly worse results than (33, 15) in terms of both the optimal dose selection percentages (70.0% vs. 70.5%) and average
total sample sizes (53.2 vs. 52.7). The combination (27, 21) gives the highest optimal dose selection percentage of
74:9%, but larger average total sample size 65.2. The sample size setting n2,N dð Þð Þ = (33, 15) was chosen by considering
the tradeoff between correct true optimal dose selection percentage and sample size. In this setting, if the investigators
were willing to treat an expected total of about 65–48= 17 more patients in stage 3, rather than 53–48= 5 more, as the
price to obtain an improvement from 70:5% to 74:9% in optimal dose selection percentage, then the third pair
n2,N dð Þð Þ = (27, 21) could be used.

For the final dose selection, we require each d� C to satisfy the additional long-term success probability acceptabil-
ity requirement

Pr ξ d,θð Þ> ξjDN
� �

> :10, ð5Þ

where ξ is a fixed lower limit for ξ dj,θ
� �

. Denote the final set of acceptable doses in C by Aξ
N : The futility requirement

(5) reduces the chance of selecting a dose from a set of candidates that all are unlikely to have a long-term success rate
at least ξ. In practice, ξ may be the historical mean of ξ with standard therapy. The final selected optimal dose in the
acceptable dose set Aξ

N is defined to maximize the posterior mean long-term success probability,

dsel,ξN ¼ argmax
dj � Aξ

N

E ξ dj,θ
� �jDNÞ

� �
: ð6Þ

Figure 2 provides a schematic for Gen I-II design conduct. The design parameters include values required to specify
the phase I-II design and objective function ϕ d,θð Þ used in stages 1 and 2, including t1, n1, n2, cohort size c,

FIGURE 2 Schematic for the Gen I-II design.
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acceptability limits πE and πT , and the exponent ζ used to define the AR probabilities. For stage 3, one must specify the
long-term follow up time t2, ρ, ξ, and the overall per-dose sample size N dð Þ required for each dj � C:.

We assume a Bayesian model to take advantage of the Bayesian paradigm's ability to fully account for uncertainty
and provide shrinkage toward the model's prior when specifying posterior criteria used for making decisions in the
design. For the Bayesian model, one must specify hyperparameters eθ1 of the noninformative prior p θ1jeθ1� 	

in the
model for p Yjd,θ1ð Þ, and hyperparameters eθ2 of the noninformative prior p θ2jeθ2� 	

in the conditional failure time dis-
tribution p Z j d,Y,θ2ð Þ:

3 | DOSE OUTCOME MODELS

We assume the following Bayesian multinomial-Dirichlet model for the early outcome Y = Y 0
R,YT

� �
: More elaborate

models may be used, but we found that this model gives a design with good properties while avoiding possibly restric-
tive assumptions. For each dose d1, � � �,dJ , and outcome indices a¼ 0,1,2 for Y 0

R and b¼ 0,1 for YT , denote the joint
probability pa,b dj

� �¼Pr Y 0
R ¼ a,YT ¼ bjdj

� �
, with p dj

� �
= p0,1 dj

� �
, � � �,p1,2 dj

� �� �
: Thus, the model parameter vector is θ1

= p d1ð Þ, � � �,p dJð Þð Þ. For each dose dj and interim sample size n, we assume that the six-dimensional outcome count
vector

Xn dj
� �¼Xn

i¼1

I Y¼ 0,0ð Þð �, � � �, I Y¼ 2,1ð Þ½ �½ Þ I d i½ � ¼ dj
� ��

is multinomial with parameters n dj
� �

and p dj
� �

, and that p dj
� �

follows a Dirichlet prior with parameter 1/6 in each
cell. While this model does not borrow strength between doses, it is robust since it makes no assumptions about dose–
response curves, and facilitates posterior computation because p dj

� � jXn dj
� �

is Dirichlet with parameters (1/6, …,1/6) +
Xn dj

� �
for each dj: The early outcome objective function is the mean utility

ϕ dj,θ1
� �¼U dj,θ1

� �¼X2
a¼0

X1
b¼0

U a,bð Þpa,b dj
� �

for j¼ 1, � � �,J: ð7Þ

This Multinomial-Dirichlet model and definition of ϕ dj,θ1
� �

may be extended easily to accommodate any discrete
bivariate ordinal YT ,Y 0

R

� �
.

For the distribution of Z, due to limited sample size a flexible but parsimonious model is needed. We thus assume
that Z follows a Weibull distribution with pdf

f Z zjYT ,dj,θ2
� �¼ α

λ

z
λ

� 	α�1
exp � z=λð Þαf g, z>0,

where α>0 is the shape parameter and the rate parameter λ is given by

λ YT ,dj,θ2
� �¼ exp β0þβT YT þ γj

� 	
, ð8Þ

with γ1 ¼ 0: We denote θ2 = α,β0,βT ,γ2, � � �,γJð Þ and θ = θ1,θ2ð Þ. Because the Weibull is an accelerated failure
time model, the parameters in (8) are effects on Z, with βT for toxicity, and γj is the dj versus d1 effect, for j≥ 2: There is
no YR effect since Z is defined only if YR ¼ 1. A different distribution may be used, provided that it is parsimonious and
includes regression parameters for YT and dj. Non-informative N 0,102ð Þ priors for elements of θ2 and a
Gamma 0:01,0:01ð Þ prior for α are assumed. The joint likelihood for data Dn from n patients is given in Data S1.
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4 | A UTILITY BASED GEN I-II DESIGN

Because patients in the CAR-NK cell trial have active disease at enrollment, to define Y 0
R for the 1-month evaluation,

PD is defined as worsening of disease compared to its baseline severity, and RES as complete remission. To establish a
utility, we first fixed U 1,0ð Þ¼ 0 for the worst and U 0,2ð Þ¼ 100 for the best possible outcome, and then determined the
four remaining intermediate values, subject to the admissibility constraints U a,0ð Þ≤U a,1ð Þ≤U a,2ð Þ for a¼ 0,1, and
U 1,bð Þ≤U 0,bð Þ for b = 0, 1, or 2. This formalizes the idea that either better disease status or absence of toxicity is more
desirable. Table 1 gives the utility function used for the simulations. The short term outcome objective function is the
mean utility (7). During stages 1 and 2, given interim data Dn, the posterior mean utility is u dj,Dn

� �
= E U dj,θ

� �jDn
� �

:

Stage 1 of the Gen I-II design is conducted as follows.

4.1 | Steps for Stage 1

Step 1. Treat the first cohort of patients at the lowest dose d1:
Step 2. For each new cohort, update the posterior distribution and compute the admissible dose set An and

u dj,Dn
� �

for each j¼ 1,2,3,4.
Step 3. If An is empty, stop the trial and select no dose.
Step 4. If An is not empty, treat the next cohort of patients at the dose in An maximizing u dj,Dn

� �
, subject to the

constraint that an untried dose may not be skipped when escalating.
Step 5. If An is not empty and the current dose dj is the highest untried dose and satisfies

Pr πT dj,θ
� �

< πT jDn
� �

> :10, escalate one dose level. This requirement supersedes Step 4.
6. Repeat steps 1–5 until n1=c cohorts have been treated and their values of Y evaluated.

We include Step 5 because, due to simplicity of the assumed model, p dj
� �

cannot be estimated for untried dj. Step 5
reduces the chance of getting stuck at a locally optimal but globally suboptimal dose, because it provides a way to
explore untried doses.

4.2 | Stage 2

Adaptively randomize up to n2=c additional cohorts of patients among the doses in An1,2 : The admissible dose set An is
updated after each cohort's outcomes Y have been evaluated. In the trial, c = 3, n1 = 15, and n2 = 33, so stage 1 includes
up to five cohorts, stage 2 includes up to 11 cohorts, and ζ¼ 0:5 is used to define the AR probabilities.

4.3 | Stage 3

Fairly randomize an additional n3 =
P

dj � Cn3 dj
� �

patients among the doses in C: The per-dose stage 3 sample sizes are
chosen adaptively to ensure that a three-stage total of n1,2 dj

� �þn3 dj
� �

= N dj
� �

patients are treated at each dj � C. Thus,
the stage 3 sample sizes n3 dj

� �
= N dj

� ��n1,2 dj
� �

are random. Long term treatment success is the event Z> t2� t1½ � that
a patient is alive with disease in remission at t2, and ξ dj,θ

� �
= SZ t2� t1jY 0

R >0,dj,θ
� �

. Denoting final overall sample size
by N , a dose dopt,ξ is chosen at the end of stage 3 to maximize E ξ dj,θ

� �jDN
� �

: We defined C using ρ¼ 0:70 based on
preliminary simulations, the value N dj

� �
= 15 was chosen adaptively, and the long-term success event was Z>5½ �. We

used JAGS to run Markov chain Monte Carlo to generate posterior samples.

TABLE 1 Numerical utilities for the early outcomes Y = YT ,Y 0
R

� �
.

Y
0
R

2 = RES 1 = SD 0 = PD

YT 0 = No DLT 100 50 20

1 = DLT 60 30 0
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For the different long-term goal of choosing a dose to maximize expected PFS time over 0, t2½ �, a simpler approach
would be to randomize a predetermined sample of patients among the doses, follow all patients until treatment failure
(progression or death) up to time t2, and use the right-censored PFS time data to choose an optimal dose. To protect
patient safety, an additional monitoring rule to shut down excessively toxic doses would be required. A Gen I-II design
thus provides a practical approach, based on both Y and Z, that may be considered intermediate between a conven-
tional phase I-II design based on Y evaluated over 0, t1½ �, and the simpler approach of randomizing and evaluating PFS
time over 0, t2½ �.

5 | SIMULATION STUDY

In this section, we present a simulation study to evaluate OCs of the utility-based Gen I-II design, using the CAR-NK
cell trial to specify design settings. We investigated scenarios with a variety of different patterns for ϕ dj

� �true
, ξ dj

� �true
,

and outcome distributions. Figure 3 shows the assumed true dose-outcome curves πtrueT dj
� �

= Prtrue YT¼ 1jdj
� �

, πtrueR dj
� �

= Prtrue RESjdj
� �

, and ξtrue dj
� �

= Prtrue Z >5ð Þ: As comparators, we used two more conventional utility-based phase I-II
designs, Conv 1 and Conv 2. The Conv 1 design consists of stages 1 and 2 of the Gen I-II design, and selects an optimal
dose to maximize the posterior mean utility u dj,Dn

� �
. While Conv 1 may appear to be a straw man, since the Gen I-II

design is almost certain to outperform it, we include Conv 1 because it is what would be used in practice. The Conv
2 design is nearly identical to Conv 1, with the one difference that more patients are randomized in stage 2 in order to
match the Gen I-II design's sample size, as a more fair comparison. Formulas for distributions used to generate
Y

0
R,YT

� �
and Z in the simulations are given in Data S1. We simulated 5000 trials under each scenario using each

design.
Table 2 summarizes OCs of the Gen I-II, Conv 1, and Conv 2 designs, including dose selection percentages, mean

number of patients treated at each dose, and mean overall sample size. The number tabled under dose 0 is the percent-
age of trials stopped early with no dose selected. A summary statistic to evaluate performance by comparing the selected
optimal dose to the truly optimal dose is R dsel,ξ

� �¼ ξ dsel,ξ
� �

=ξ dopt,ξ
� Þ which has domain [0, 1], with R dsel,ξ

� �
= 1

corresponding to always selecting the dose that maximizes long-term treatment success probability. Using R dopt,ξ
� �

rather than only the empirical probability of selecting dopt,ξ to quantify how well a method behaves is useful in scenar-
ios where two or more doses have ξ dð Þtrue close to ξ dopt,ξ

� �
, so choosing a nearly optimal dose is a good decision.

Scenarios 1 and 2 are null cases where no dose has both acceptably low πtrueT dj
� �

and acceptably high ξ dð Þtrue. In sce-
nario 1, the Gen I-II design terminates the trial early 93.5% of the time compared to 56.2% and 57.7% for Conv 1 and
Conv 2. In scenario 2, the Gen I-II design terminates the trial early 83.8% of the time. Because d1 and d2 both have large
πtrueR dj

� �
and the conventional designs ignore Z, both conventional designs have only about a 3% chance of stopping

early, and a 73% chance of incorrectly selecting d1 as optimal. Scenario 2 illustrates the advantage that the Gen I-II
design includes an admissibility requirement defined in terms of ξ dð Þtrue, while the conventional designs do not, and
consequently they both have a high risk of selecting a dose with a low long term success rate. In scenarios 1 and
2, because no truly optimal dose exists, R is undefined.

In scenarios 3 and 4, multiple doses are nearly optimal in terms of U
true

dj
� �

based on Y, but only one dose is opti-
mal based on the long-term criterion ξtrue dj

� �
: In scenario 3, d3 and d4 have similar mean utilities near 75, while d4 is

truly optimal with highest ξtrue d4ð Þ = 0.70, compared to ξtrue d3ð Þ = 0.50. In scenario 4, d2,d3 and d4 have similar mean
utilities U

true
dj
� �

near 81, but d3 is truly optimal with ξtrue d3ð Þ = 0.65, compared to ξtrue d2ð Þ = 0.45 and ξtrue d4ð Þ = 0.50.
The Gen I-II design has a 69.1% chance of correctly selecting d3 in scenario 3, whereas the Conv 1 and Conv 2 designs
have 31% and 32% chances of selecting d3, and are about as likely to select d2 or d4, because both conventional designs
ignore Z.

In scenarios 5 and 6, the truly optimal dose in terms of ξtrue dj
� �

and the dose with highest mean utility U
true

dj
� �

dif-
fer. In scenario 5, d4 is truly optimal with the highest ξtrue d4ð Þ = 0.65, whereas d3 has the highest mean utility U

true
d3ð Þ

= 82.3. In scenario 6, d2 is truly optimal with the highest ξtrue d2ð Þ = 0.70, whereas d4 has highest mean utility U
true

d4ð Þ
= 77.8. The Conv 1 and Conv 2 designs both have over a 60% chance of incorrectly selecting d3 as optimal in scenario 5,
about a 50% chance of incorrectly selecting d4 as optimal in scenario 6, and both have below 15% and around 25%
chances of correct optimal dose selection in scenarios 5 and 6. In contrast, the Gen I-II design has correct dose selection
rates 59.1% in scenario 5 and 68.4% in scenario 6. In scenarios 7 and 8, the truly optimal dose and the dose with highest
mean utility are identical. The Gen I-II design still outperforms the Conv 1 and Conv 2 designs, with a 25% higher cor-
rect optimal dose selection percentage in scenario 7. In scenario 8, the Gen-II design and the Conv 2 have similar
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correct optimal dose selection percentages of 56.9% and 54.0%, respectively. In scenario 9, πR dð Þtrue is flat and πT dð Þtrue
increases with d, so the mean utility U

true
dj
� �

decreases monotonically with d, but the truly optimal dose in terms of
ξtrue dj

� �
is d3. In this case, the Gen-I-II design outperforms both Conv 1 and Conv 2, with about a 35% higher correct

selection percentage.
In summary, in all scenarios, the Gen I-II design outperforms the conventional phase I-II designs substantially, with

the highest R, that is at least 10% higher in each of scenarios 3–7. The three designs have similar patient allocation dis-
tributions, essentially because all designs allocate patients based on short-term outcomes, while Z is only used in the
final optimal dose selection of the Gen I-II design.

FIGURE 3 Dose-outcome curves for the scenarios in the simulation study. The red, green, and blue curves are πtrueT dj
� �

, πtrueR dj
� �

, and

ξtrue dj
� �¼ Prtrue Z > t2� t1jZ >0,dj

� �
, respectively. The horizontal lines show the fixed upper limit 0.30 for πT dj

� �
and fixed lower limit 0.50

for πR dj
� �

in the dose admissibility rules, and the fixed lower limit 0.40 for ξ dj
� �

for long-term success probability.

THALL ET AL. 701

 15391612, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2301 by T

he U
niversitaet O

f T
exas, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 2 Selection % and mean number of patients treated at each dose level, mean sample size, and R = ξ dsel,ξ
� �

=ξ dopt,ξ
� �

under the

Gen I-II, Conv 1, and Conv 2 designs.

Dose levels
Sample

Designs 0a 1 2 3 4 size R %

Scenario 1

πtrueT dj
� �

0.10 0.20 0.40 0.50

πtrueR dj
� �

0.30 0.40 0.50 0.55

U
true

dj
� �

59.1 62.5 60.9 59.9

ξtrue dj
� �

0.05 0.1 0.15 0.3

Gen I-II Selection % 93.5(0.3) 0 0.50 2.6 3.3 35.6 NA

Patients 9.5 13.5 8.8 3.7

Conv 1 Selection % 56.2(0.7) 6.5 22.6 12.4 2.2 34.9 NA

Patients 9.4 13.2 8.7 3.6

Conv 2 Selection % 57.7(0.7) 5.6 22.1 12.4 2.2 35.4 NA

Patients 9.4 13.4 8.8 3.7

Scenario 2

πtrueT dj
� �

0.05 0.20 0.40 0.50

πtrueR dj
� �

0.60 0.65 0.55 0.40

U
true

dj
� �

76.7 68.0 54.0 40.4

ξtrue dj
� �

0.1 0.15 0.15 0.15

Gen I-II Selection % 83.8(0.5) 2.3 9.6 4.1 0.2 48.2 NA

Patients 21.5 16.4 7.4 2.8

Conv 1 Selection % 3.2(0.2) 73.3 22.4 1.1 0 46.9 NA

Patients 21.2 15.9 7.0 2.8

Conv 2 Selection % 3.1(0.2) 73.2 22.8 0.9 0 48.2 NA

Patients 21.4 16.6 7.3 2.9

Scenario 3

πtrueT dj
� �

0.04 0.06 0.08 0.10

πtrueR dj
� �

0.40 0.50 0.60 0.60

U
true

dj
� �

61.2 67.0 74.2 75.0

ξtrue dj
� �

0.20 0.40 0.50 0.70

Gen I-II Selection % 2.9 0.3 7.0 19.3 70.5(0.6) 52.7 91.0

Patients 10.6 13.0 14.9 14.3

Conv 1 Selection % 2.2 4.6 13.5 39.7 39.9(0.7) 47.4 79.1

Patients 9.6 11.7 13.3 12.7

Conv 2 Selection % 2.2 3.6 13.2 40.2 40.8(0.7) 52.8 79.9

Patients 10.5 13.1 14.9 14.3

Scenario 4

πtrueT dj
� �

0.01 0.03 0.06 0.08

πtrueR dj
� �

0.6 0.7 0.70 0.70

U
true

dj
� �

72.1 80.9 81.3 80.6

ξtrue dj
� �

0.4 0.45 0.65 0.50
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TABLE 2 (Continued)

Dose levels
Sample

Designs 0a 1 2 3 4 size R %

Gen I-II Selection % 0.1 4.3 9.2 69.1(0.7) 17.2 58.1 91.5

Patients 13.9 15.1 14.8 14.4

Conv 1 Selection % 0 8.7 33.0 31.1(0.7) 27.7 48.0 80.1

Patients 11.5 12.7 12.1 11.6

Conv 2 Selection % 0.1 7.0 33.2 32.3(0.7) 27.3 58.1 80.6

Patients 13.8 15.3 14.8 14.1

Scenario 5

πtrueT dj
� �

0.03 0.05 0.1 0.15

πtrueR dj
� �

0.4 0.6 0.75 0.65

U
true

dj
� �

63.1 75.2 82.3 72.7

ξtrue dj
� �

0.3 0.45 0.5 0.65

Gen I-II Selection % 1.2 1.4 14.2 24.1 59.1(0.7) 54.3 89.1

Patients 10.5 14.7 15.8 13.3

Conv 1 Selection % 1.0 2.2 22.8 61.3 12.8(0.5) 47.7 77.1

Patients 9.1 13.0 14.1 11.4

Conv 2 Selection % 1.1 1.6 20.1 64.6 12.6(0.5) 54.3 77.5

Patients 10.2 14.9 16.2 13.1

Scenario 6

πtrueT dj
� �

0.02 0.04 0.07 0.10

πtrueR dj
� �

0.4 0.60 0.65 0.75

U
true

dj
� �

54.4 72.6 72.5 77.8

ξtrue dj
� �

0.45 0.70 0.5 0.45

Gen I-II Selection % 0.6 5.4 68.4(0.7) 15.7 9.8 54.3 90.0

Patients 10.0 14.4 14.7 15.2

Conv 1 Selection % 0.9 1.4 25.1(0.6) 25.3 47.2 47.7 75.2

Patients 8.8 12.9 12.8 13.2

Conv 2 Selection % 1.1 1.0 23.9(0.6) 23.6 50.5 54.2 74.6

Patients 9.9 14.6 14.5 15.1

Scenario 7

πtrueT dj
� �

0.03 0.05 0.1 0.15

πtrueR dj
� �

0.4 0.5 0.6 0.50

U
true

dj
� �

66.1 70.3 73.5 68.6

ξtrue dj
� �

0.3 0.45 0.65 0.4

Gen I-II Selection % 3.3 2.0 15.0 70.9(0.6) 8.8 52.2 90.6

Patients 11.2 13.7 15.1 12.1

Conv 1 Selection % 2.8 11.4 26.2 42.9(0.7) 16.6 47.4 78.9

Patients 10.1 12.5 14.0 10.7

Conv 2 Selection % 2.8 10.2 26.2 44.6(0.7) 16.3 52.2 79.7

Patients 11.1 13.9 15.3 11.8

(Continues)
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We performed additional sensitivity analyses to explore several other aspects of the Gen I-II design. The results are
summarized in Data S1. Table S1 summarizes the effects of including AR in stage 2. The design “with AR” is the Gen I-
II design that allocates n1 ¼ 15 patients for stage 1 and n2 ¼ 33 patients for stage 2 with AR; “without AR” is a modified
Gen I-II design that combines stages 1 and 2, does not include AR, and allocates up to 48 patients with dose-finding
done to maximize u dj,Dn

� �
for all cohorts. Table S1 shows that compared to the original “with AR” version of Gen I-II,

the “without AR” version has substantially inflated sample sizes, with at most a mild gain of ≤ 5% in true optimal dose
selection percentage. This shows that AR is a very useful component of the Gen I-II design that provides a large savings
in sample size.

Recall that we fixed ρ¼ 0:70 for defining a candidate dose set. Table S2 summarizes the OCs of the Gen I-II design
for values of ρ ranging from 0.60 to 0.90. The results indicate that larger ρ is more favorable under the null scenarios
1 and 2, while smaller ρ is more favorable when a truly optimal dose exists, in scenarios 3–9. In practice, ρ should be
chosen, based on preliminary simulations, to accommodate the application at hand.

Table S3 shows effects of changing patient allocation between stages 2 and 3. Given the values n2,N dð Þð Þ = (33, 15)
used in Table 2, we considered the two alternative pairs, (39, 9) and (27, 21). The results show that the allocation (33,
15) and the alternative (39, 9) give very similar design performances, and that both give better OCs compared to
(27, 21) in terms of the tradeoff between correct true optimal dose selection percentage and sample size.

TABLE 2 (Continued)

Dose levels
Sample

Designs 0a 1 2 3 4 size R %

Scenario 8

πtrueT dj
� �

0.15 0.20 0.25 0.40

πtrueR dj
� �

0.6 0.70 0.6 0.50

U
true

dj
� �

71.8 77.8 68.5 56.4

ξtrue dj
� �

0.45 0.60 0.45 0.40

Gen I-II Selection % 9.1 23.4 56.9(0.7) 9.0 1.6 47.7 90.5

Patients 17.7 14.8 9.9 5.30

Conv 1 Selection % 9.1 29.3 52.9(0.7) 8.2 0.5 44.2 89.5

Patients 16.5 14.1 9.0 4.60

Conv 2 Selection % 9.0 28.3 54.0(0.7) 8.4 0.3 47.7 89.8

Patients 17.4 15.2 10.0 5.10

Scenario 9

πtrueT dj
� �

0.02 0.1 0.2 0.5

πtrueR dj
� �

0.6 0.6 0.6 0.6

U
true

dj
� �

76.3 73.5 70.2 60.4

ξtrue dj
� �

0.4 0.45 0.6 0.65

Gen I-II Selection % 1.3 18.2 22.5 51.2(0.7) 6.8 51.6 88.7

Patients 17.2 15.6 12.8 5.9

Conv 1 Selection % 0.9 50.6 31.0 16.5(0.5) 1.0 47.7 75.2

Patients 16.1 14.4 11.9 5.2

Conv 2 Selection % 1.1 49.6 31.8 16.9(0.5) 0.6 51.5 75.2

Patients 17.2 15.4 13.1 5.7

Note: The true long-term success probability at dj is ξtrue dj
� �

= Prtrue Z >5jY 0
R >0,dj

� �
. Boldface indicates results for the true optimal decision. The numbers in

the brackets indicate the Monte Carlo simulation standard errors.
aThe number under d = 0 is the percentage of trials terminated early with no dose is selected.
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6 | DISCUSSION

By using data on duration of response, the Gen I-II design addresses an important problem with conventional
phase I-II methods. The design is modular, since Y can be any ordinal early outcomes used by a phase I-II design,
and any criterion ϕ d,θð Þ can be used for stages 1 and 2. Thus, a Gen I-II design can be tailored to accommodate the par-
ticular clinical setting at hand. The Gen I-II design is practical in settings where investigators plan to follow patients
long enough to assess response duration, which commonly is done in oncology trials. The main additional requirement
is the sample of patients randomized among candidate doses in stage 3. Our simulations showed that about 15 more
patients per candidate dose gives a reliable design. While we have investigated a utility-based Gen I-II design with a
simple Bayesian model, the large advantages over conventional designs in our simulations suggest that other Gen I-II
designs also will provide a large benefit over conventional designs.

Guo and Yuan36 proposed a dose-ranging approach to optimizing dose (DROID) for oncology drug development.
The Gen I-II design and DROID design share some high-level design strategies, including identifying an admissible
dose set based on short-term endpoints, randomizing patients within the admissible dose set, and using both short-term
and long-term endpoints for logistical convenience and identifying an optimal dose. However, they focus on different
clinical settings. DROID considers binary toxicity and a continuous surrogate efficacy endpoint, for example, pharmaco-
dynamics, whereas Gen I-II considers early phase I-II toxicity and efficacy endpoints and a long-term event time
endpoint. This difference requires very different dose-outcome models. Stages 1 and 2 of a Gen I-II design follow the
phase I-II paradigm,12 while DROID identifies both a minimal active dose (MAD) and MTD. The randomized portion
of the DROID design, used for inference and decision making, does conventional dose-ranging, whereas stage 3 of the
Gen I-II design is similar to a multi-arm randomized trial and identifies the dose with largest response duration.

A caveat is that, in settings using survival time rather than response duration to define long term treatment success, a
Gen I-II design's behavior will depend on relationships between Y and survival time. This is a complex issue involving
persistence of biological treatment effects over time, and effects of salvage therapy given at relapse on subsequent sur-
vival. How the Gen I-II paradigm behaves compared to conventional phase I-II designs in such settings is an important
area for future research. R code for implementing the Gen I-II design is available from https://github.com/
yongzang2020.
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