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SUMMARY

In comparative clinical trials, the randomization probabilities may be unbalanced adaptively by utilizing
the interim data available at each patient’s entry time to favour the treatment or treatments having
comparatively superior outcomes. This is ethically appealing because, on average, more patients are
assigned to the more successful treatments. Consequently, physicians are more likely to enrol patients
onto trials where the randomization is outcome-adaptive rather than balanced in the conventional manner.
Outcome-adaptive methods based on a binary variable may be applied by reducing an event time to
the indicator of the event’s occurrence within a predetermined time interval. This results in a loss
of information, however, since it ignores the censoring times of patients who have not experienced
the event but whose evaluation interval is not complete. This paper proposes and compares exact and
approximate Bayesian outcome-adaptive randomization procedures based on time-to-event outcomes.
The procedures account for baseline prognostic covariates, and they may be applied continuously over
the course of the trial. We illustrate these methods by application to a phase II selection trial in acute
leukaemia. A simulation study in the context of this trial is presented. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Randomization is the established statistical method for obtaining unbiased estimates of com-
parative treatment e�ects, and thus is a key component of controlled clinical trials. In practice,
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most randomization methods are balanced, allocating on average an equal number of patients
to each treatment arm. However, many physicians �nd balanced randomization objection-
able because it may force them to use treatments that they believe are unlikely to provide
their patients with the best chance of clinical bene�t [1]. A practical alternative is outcome-
adaptive randomization [2–5] which uses the data from patients treated previously in the
trial to unbalance the randomization probabilities in favour of the treatment or treatments
observed to have comparatively superior outcomes. Outcome-adaptive randomization provides
a compromise between ethical concerns and the scienti�c goal of obtaining unbiased treatment
comparisons. A di�erent type of adaptive randomization, based on treatment assignments but
not patient outcomes, aims to achieve balance within patient subgroups [6–8]. This is not
our focus, and hereafter we use ‘AR’ to refer to outcome-adaptive randomization aimed at
favouring empirically superior treatments.
Although there is a substantial literature on a wide variety of AR methods, until very re-

cently such methods have seen almost no use in practice. Starting in 2001, we began to design
and conduct clinical trials at M.D. Anderson Cancer Center (MDACC) and other medical in-
stitutions using a variety of Bayesian AR procedures [9]. We have found that physicians who
are hesitant to enter patients onto conventionally randomized trials �nd AR more appealing
because, on average, AR assigns more patients to the more successful treatments.
This paper is motivated by a practical problem that has arisen repeatedly when applying

these methods in trials where response is de�ned as a particular event occurring within a
�xed period of time from the start of treatment. This is illustrated in our application, a
randomized trial comparing three treatments for acute myelogenous leukaemia (AML), where
a ‘response’ is de�ned as the event that the patient survives at least 50 days. To implement
an AR procedure, each time a new patient is enrolled the AR probabilities must be updated
using the most recent data. An intrinsic problem when implementing AR based on the above
binary response is that the responses of previous patients who are alive at a new patient’s
accrual time, but who entered the trial less than 50 days earlier, are not known. If the
randomization probabilities are computed using only the data from patients who have been
observed and followed completely, then substantial information will be wasted. Moreover, the
resulting data would be biased since, for example, this approach would ignore the data from
a patient who has survived 45 days, but include one who died at day 45. An alternative is to
randomize cohorts rather than single patients, while requiring that new patients must either be
turned away or made to wait until the outcomes of all patients in the most recent cohort have
been evaluated. This approach is impractical, however, since physicians usually are unwilling
or unable to repeatedly suspend accrual, and the risks associated with delaying treatment or
using an alternative therapy may outweigh the bene�ts of AR. An additional complication
is that patient prognostic covariates may have a substantial e�ect on treatment outcome, and
consequently patient heterogeneity may a�ect how an AR procedure behaves.
Nearly all AR methods in the statistical literature based on a binary outcome ignore the

above problems by assuming that all outcomes are observed immediately. Exceptions include
Eick [10], who considered a two-armed bandit treatment allocation procedure assuming ge-
ometric lifetimes, Louis [11], who considered exponential survival times, and Rosenberger
and Seshaiyer [12], who studied a non-parametric AR method based on the logrank statistic.
These methods assume that patients within a treatment arm are exchangeable, however. In
this paper, we examine two Bayesian AR methods based on time-to-event outcomes with
patient-speci�c baseline covariates in the context of the AML trial. The proposed methods
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monitor the trial continuously and compute each new patient’s randomization probabilities at
the time of accrual without delay, utilizing all currently available data. The two methods di�er
in model formulation. The �rst approach assumes a completely speci�ed Bayesian Weibull
survival time regression model, with the prior distribution based on a preliminary �t to his-
torical AML survival data. In the second approach, the survival time distribution is not fully
speci�ed, except for a stochastic ordering assumption and the constraint that the response
probability is linked to a linear term accounting for treatment and baseline covariate e�ects.
The second method utilizes an approximate posterior obtained by replacing nuisance parame-
ters in a working likelihood with consistent estimates. This method generalizes the results of
Cheung and Thall [13], who address the problem of early stopping in a phase II trial with
exchangeable patients.
The remainder of the article is organized as follows. In Section 2, we describe the AML

trial and present an analysis of the historical data. The exact and approximate Bayesian AR
methods are presented in Sections 3 and 4, respectively. In Section 5, we present a simulation
study of the two methods in the context of the AML trial, with each method implemented
both with and without covariates. We close with some concluding remarks in Section 6.

2. HISTORICAL DATA FOR AN AML TRIAL

We consider a randomized phase II trial in acute myelogenous leukaemia (AML) aimed
at selecting the most promising among three regimens: idarubicin+cytosine arabinoside (IA),
IA+clofarabine (IAC), and IA+troxacitabine (IAT). Since AML is a rapidly fatal disease and
chemotherapy carries the risk of early regimen-related mortality, treatment success
(‘response’) is de�ned as survival beyond day 50. We will use the rate of this event as
the basis for comparing the three regimens.
In order to establish a Bayesian model that will be the basis for trial design and conduct,

we �rst analysed historical data collected from 1146 AML patients treated at the MDACC
between 1996 and 2001. A large variety of chemotherapy combinations were given to these
historical patients. Most regimens contained cytosine arabinoside (A), combined with either
idarubicin (I) or troxacitabine (T). As there is no evidence from the historical data that the
novel combinations IAC or IAT were either superior or inferior to the IA regimen, our goal
is not to obtain information about the treatment e�ects from this data set. Rather, we hope
to use the historical data to identify covariates that are predictive of survival so that we can
incorporate them into the design of the proposed trial.
Let X denote survival time, and let T be a �xed time such that the patient’s treatment is

considered a success if X ¿T . In this example, T =50 days. Based on preliminary maximum
likelihood �ts of several models, we determined that a Weibull distribution gave a good �t to
the historical data. This is illustrated by Figure 1, which gives a plot of log[− log{ŜKM(t)}]
as a function of log(t); where ŜKM(t) is the Kaplan–Meier estimate of S(t)=Pr(X ¿t), and
the straight line log(�̂) + �̂ log(t) is determined by the maximum likelihood estimates of �
and � under the Weibull model S(t)= exp(−�t�).
For a Bayesian analysis, we included three baseline covariates that are well known to be

prognostic of survival [14]: Z1 = age, Z2 = the indicator of the ‘−5=−7’ cytogenetic abnormality
wherein portions of the 5th or 7th chromosomes are missing, and Z3 = the indicator of a poor
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Figure 1. Plot of log[− log{ŜKM(t)}] as a function of log(t) for the AML historical
data. The dotted line is log(�̂)+ �̂ log(t) based on the maximum likelihood �t of the

Weibull model ignoring covariates.

performance status (PS) wherein the patient is bedridden more than 50 per cent of the time.
For a patient with prognostic covariates Z=(Z1; Z2; Z3)′, denote the survivor function of X
by S(x|Z; X)=Pr(X ¿x|Z; X); where X denotes the vector of model parameters. Denoting

R′Z=�1 Age + �2 1{−5=−7 abnormality}+ �3 1{PS=Poor}
the model including these covariates is given by

log[− log{S(x|Z; X)}]= log(�) + � log(x) + R′Z

with X=(�; R; �), �¿ 0 and �¿ 0. We assumed non-informative independent normal priors
on (log �; �1; �2; �3; log�), each with mean 0 and variance 10.
The maximum likelihood estimates (MLEs) and Bayesian posterior values of the Weibull

model parameters for the historical data are given in Table I. Posteriors were computed
using the approximation given by Lindley and Smith [15]. The negative sign of the estimates
of log(�) shows that the hazard of death decreases over time. This corresponds to the well
known fact that chemotherapy of AML carries a high risk of early death due to infection,
toxicity, or the disease itself, and for patients who survive their induction therapy the risk
of death continues to decrease. A corresponding Cox regression analysis (not shown) yielded
virtually identical estimates of the three covariate parameters and variance estimates.
As expected, older age, the −5=−7 cytogenetic abnormality, and poor PS were all negative

risk factors, since �j ¿ 0 is associated with a smaller value of X under the Weibull model.
The column under ‘Historical Data’ in Table II gives the posterior median and 95 per cent
credible interval (ci) of the 50-day survival probability, Pr(X ¿T |Z; X), for each of the four
prognostic subgroups determined by 1{−5=− 7 abnormality} and 1{PS=Poor}, for a 60-year-
old patient. This illustrates the e�ects of these covariates on early survival in AML, as well
as the variability inherent in the historical data.
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Table I. Maximum likelihood estimates and Bayesian �t of the Weibull model with survivor function
S(x|Z; X)= exp{−�x� exp(R′Z)} for the historical data.

ML �t Bayesian �t

Correlation with

Parameter Estimate∗ SD Mean SD �1 �2 �3 log(�)

log(�) −6.52 0.226 −6.49 0.225 −0.743 −0.203 −0.135 −0.703
�1 0.021 0.0026 0.021 0.0026 −0.0547 −0.0099 0.0918
�2 0.78 0.076 0.78 0.076 0.0035 0.203
�3 1.13 0.112 1.13 0.112 0.139
log(�) −0.20 0.023 −0.20 0.023

∗All P-values associated with the estimates under the ML �t were less than 0.0001.

Table II. Probabilities of 50-day survival by prognostic subgroup for a 60-year-old patient. Posterior
medians are based on the �t of the Weibull model to the historical data, and prior medians are based
on the prior used in the AR procedure in Section 3. Each median is followed by a 95 per cent credible

interval, given in parentheses.

Historical data Prior used for trial conduct

PS −5=−7 Median (95 per cent ci) Median (95 per cent ci)

Good No 0:88 (0:86; 0:89) 0:88 (0:30; 0:99)
Good Yes† 0:75 (0:71; 0:78) 0:75 (0:06; 0:97)
Poor∗ No 0:67 (0:60; 0:73) 0:67 (0:02; 0:96)
Poor Yes 0:41 (0:33; 0:50) 0:41 (0:00; 0:92)

∗‘Poor PS’ means that the patient was bedridden more than 50 per cent of the time.
†−5=−7=‘Yes’ indicates presence of the cytogenetic abnormality in which portions of chromosomes 5 or 7 are
missing.

3. MODEL-BASED ADAPTIVE RANDOMIZATION

3.1. Allocation criterion

Based on our �t of the historical data, we will assume the Weibull model in our development
of the AR methodology. We extend the previous notation by introducing the treatment index
k=1; : : : ; K , and denote the survivor function for treatment k by Sk(x|Z; X). Our AR criterion
will be based on the fact that treatment k is superior to treatment k ′ if Sk(T |Z; X)¿Sk′(T |Z; X).
Let Ht denote the data accumulated from patients in the trial up to study time t. If patient i
with covariates Zi enters the trial at study time ti, we de�ne the AR criterion

�i(k|Zi)=Pr[Sk(T |Zi ; X)= max
16j6K

{Sj(T |Zi ; X)}|Hti ] (1)

This is the posterior probability that treatment k is superior to all others, in terms of the prob-
ability of surviving beyond T given the covariate vector Zi of the patient accrued at ti. Since∑K

k=1 �i(k|Zi)=1 when the survival time distributions are continuous, �i(1|Zi); : : : ; �i(K |Zi)
may be used as the AR probabilities. This is similar to the AR criterion used by Thall
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et al. [9], in a rather di�erent setting, who adaptively randomize relapsed leukaemia patients
among �ve di�erent donor lymphocyte infusion times. For K =2 and no covariate, (1) is
similar to the randomization probability proposed by Thompson [16], who considered two
independent binomial samples with probabilities following beta priors.
In this section, the AR procedure is based on the assumption that, in treatment group k,

X follows a Weibull distribution such that log[− log{Sk(x|Z; X)}]= log(�k) +� log(x) + R′Z,
where �k is the baseline rate parameter. Under this model, the AR criterion (1) is

�i(k)=Pr[�k = min{�1; : : : ; �K}|Hti ] (2)

which in particular does not depend on Z or the time window T . Randomizing a patient to
treatment k with probability �i(k) makes sense since a smaller �k is associated with better
survival under the Weibull model. Assuming a common shape � and covariate e�ects R across
treatments, the criteria (1) and (2) are equivalent to probabilistically favouring the arms with
longer median survival times. In other words, pre-speci�cation of a time interval T is not
necessary for this method.
As an alternative to AR, one may view �i(k) as an allocation index and give a new patient

the treatment having the largest �i(k). This approach is similar to the idea of using a dynamic
allocation index in a multi-armed bandit problem [17], although the latter is de�ned to maxi-
mize an expected reward speci�cally under a geometric discount sequence [18]. Operationally,
such index-based strategies may be ‘frozen’ by an unbroken series of desirable outcomes in
the most current patients. For example, with a binary treatment outcome, labelled ‘Success’
or ‘Failure’, a success in the most current patient will generate assignment of the next patient
to the same treatment. In this sense, the index-based strategies imitate the deterministic play-
the-winner (PTW) rule [19]. While Berry [20] shows that PTW is optimal in maximizing the
number of successes under a model with independent beta priors with no covariates and delay,
its deterministic feature has been criticized because it can prejudice the selection of patients
admitted to the trial; see Reference [21] for example. Thus, outcome-adaptive randomization,
as a control of selection bias in modern clinical research, provides a more practical solution
than its deterministic counterpart.
The introduction of randomization into an outcome-adaptive design is not a novel concept.

An example is the randomized PTW rule [2], whose characteristics can be established using
an urn model. Our proposed method shares some of the philosophy of the randomized PTW
rule, in that randomization is included in the adaptive treatment assignment to avoid the
problem of selection bias. While implementation of our proposed method is considerably more
complicated than randomized PTW, our method has the advantages that it accommodates
censored data and adjusts for patient heterogeneity via explicit modelling. Moreover, since
each treatment assignment decision is based on Bayesian posterior probability of an event
(1), it is easily understood by non-statisticians. Explicit Bayesian modelling also facilitates
prior elicitation.

3.2. Prior speci�cation

To apply the AR procedure to the AML trial and compute (2), we must �rst specify a prior for
X=(�1; �2; �3; �1; �2; �3; �). When using Bayesian methods to develop a clinical trial design,
only one prior for X may be speci�ed. An important point in this regard is that the prior
used for trial conduct need not be the only prior used to analyse the data at the end of the
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trial. Indeed, it is conventional to carry out a Bayesian data analysis repeatedly using several
priors, with each prior representing a di�erent viewpoint by quantifying varying degrees of
skepticism regarding treatment e�ects. This being said, a prior that is the basis for a Bayesian
trial design must be fair in that it is not biased in favour of one treatment over the others,
and also su�ciently vague so that arti�cial information is not introduced. However, the prior
variances also must be calibrated so that the successive numerical computations of posteriors
are su�ciently stable to allow the adaptive decision making criteria to be readily computed.
To achieve these requirements for the AML trial, the prior parameter means were set equal to
the historical posterior means, and the variances were speci�ed by in�ating the variances based
on the historical data (Table I). Speci�cally, we set the variances of the �j’s equal to 10 times
the historical variances, var{log(�j)}=1, which is roughly 20 times the historical variances
of 0.051, and var{log(�)}=0:0008, which is roughly 1.5 times the historical variance of
0.00053. The in�ation factor used to obtain var{log(�)} was smaller since we found that
the posterior computations were very sensitive to the distribution of log(�) and larger values
of var{log(�)} destabilized the computations. This prior thus re�ects average values in the
historical data, but is su�ciently non-informative so that probability mass is assigned widely
over the (0; 1) support. Table II gives the median and 95 per cent credible interval for each
of the four prognostic groups de�ned by cytogenetics and PS, based on the prior used for trial
conduct, and the corresponding prior distributions of Pr(X ¿ 50) are given in Figure 2. We
assumed that all seven parameters were independent normals a priori. Although some of the
historical correlations between log(�) and other parameters are large (Table I), the historical
treatments are di�erent from those studied in the trial. For this reason, and to ensure that the
MCMC algorithm for computing posteriors during the trial converges, we set all correlations
equal to 0 in the prior used for trial design and conduct.

3.3. Likelihood and posterior computation

For study time t, let Ci(t)= max(t− ti; 0) denote the ith patient’s time from entry to the trial.
If Xi ¿Ci(t), then the event time Xi has not been observed by t, hence Ci(t) is its current
administrative censoring time. Let Yi(t)= 1{Xi ¿Ci(t)} and �i be the ith patient’s treatment.
The likelihood at study time t is

L(Ht |X)=
K∏

k=1
Lk(Ht |X)=

K∏

k=1

N (t)∏

i=1
[{fk(xi|Zi ; X)}1−Yi(t){Sk(Ci(t)|Zi ; X)}Yi(t)]1{�i=k} (3)

where fk(xi|Zi ; X)= − dSk(xi|Zi ; X)=dx is the density of Xi under treatment k and N (t) is the
number of patients who have been enrolled up to the study time t. Consequently, the joint
posterior at study time t is

p(�1; : : : ; �K ; �; R|Ht)∝p(�; R)
∏

k
p(�k)Lk(Ht |�k ; �; R)

where Lk(Ht |�k ; �; R) is the kth component of the likelihood given by (3). The priors p(�; R)
and p(�k) denote the normal densities described above.
We generated the posterior of (�1; �2; �3; �; R) using Gibbs sampling by simulating from

the full conditionals with adaptive rejection sampling [22]. The subvector \ was subsequently
used to compute the randomization probabilities �i(k)’s. To calibrate the computations, we
chose various combinations of number of chains, burn-in and chain length, and simulated
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Figure 2. Distributions of the response probability, Pr(X ¿ 50), for a 60-year-old
patient, based on the prior used for trial conduct.

500 trials from each combination. The results indicated that three chains with a burn-in of
1000 followed by an additional 5000 samples gave adequate convergence. We assumed the
chains had converged once the potential scale reduction was less than 1.1 as recommended
by Gelman [22, pp. 131–143].

3.4. Ignoring prognostic covariates

To assess the value of including covariates in the AR criteria, we also considered an analogous
model-based AR method that ignores covariates. Using this method, the survival times of
all patients are assumed to follow the Weibull distribution given by Sk(x)= exp(−�∗

k x
�∗
).

Under this model, the MLEs for �∗
k and log(�

∗) based on the historical data were −4:52 and
−0:30, respectively. In order to match the priors with those used in the covariate-adjusted
method, we derived a prior for �∗

k and �
∗ based on the covariate-adjusted method for a

‘typical’ patient: aged 60, without the −5= − 7 abnormality, and with good PS. This implies
that log(�∗

k ) +�
∗ log(x)= log(�k) +� log(x) + 60�1, and we thus assumed log(�∗

k ) to follow
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a normal prior with mean −5:23 and variance 0.52 after adjusting for the negative historical
correlation (Table I), and �∗=�∼LogNormal(−0:20; 0:0008). We assumed that �∗

k and �
∗

were independent a priori for computation stability. Posteriors were computed using Gibbs
sampling, as for the method including covariates. The randomization probabilities were de�ned
as in (2) with �k replaced by �∗

k .

4. APPROXIMATE BAYES METHODS

4.1. A semi-parametric model

In the approximate Bayes approach, we do not fully specify a distribution of X , and require
only two mild assumptions. The �rst assumption is that each Sk is stochastically ordered in
Z: for each pair Z1 �= Z2 and �xed X we assume that either Sk(x|Z1; X)¿Sk(x|Z2; X) for all
x, or Sk(x|Z1; X)6Sk(x|Z2; X) for all x. In other words, the survival curves for di�erent Z’s
do not cross. Since T is �xed, for convenience and brevity we denote Sk(T |Z; X) by �k(Z)
and suppress its dependence on X. The second assumption is that

�k(Z)= g−1(�k + R̃
′
Z) (4)

where g is a suitable link function. We will assume the complementary log–log link, g(p)=
log{− log(p)}, which is decreasing in p. This implies that treatment j is superior to treat-
ment j′ if �j6�j′ , and consequently we de�ne the randomization probability for arm k to
be �̃i(k)=Pr[�k =min{�1; : : : ; �K}|Hti ]. Under the Weibull model, R̃= R and �k = log(�k) +
� log(T ), and the AR criterion �̃i(k) is identical to �i(k) de�ned in (2). Even if the Weibull
assumption holds, however, the two AR methods are not identical due to di�erences in model
formulation and methods for computing posteriors.

4.2. Prior speci�cation

To facilitate comparison of the AR methods based on the full and semi-parametric models, we
matched the prior speci�cation for the parameters (�1; �2; �3; R̃) to that used in the model-based
AR method, as follows. First, the prior on R̃ is identical to that assumed for R. In order to
make the prior on the treatment e�ects, �k , be similar to that in the model-based approach,
we sampled �k and � from their priors under the parametric model and calculated the sample
mean and variance of �k = log(�k) + � log(50) which, under the assumption of normality,
yielded �k ∼N(−3:28; 0:88). Note that although � had a lognormal prior in the model-based
method, the simulation results veri�ed that �k thus de�ned was approximately normal because
var{log(�)} was small compared to var{log(�k)}. In order to ensure that the MCMC would
converge under the wide range of data that could occur during the trial, we assumed � and R
were mutually independent.
As with the model-based method, we also examined the AR method based on model (4)

without covariates, i.e. assuming �k = g−1(�∗k ). In this case, while it is convenient to assume
that the response probability �k follows a beta prior, which will lead to a closed form posterior
[13], we speci�ed the prior on �∗k so that it matched the priors of the other methods. We did
this by noting that �∗k = �k+60�1 for a ‘typical’ patient. Based on the priors of �k and �k under
the Weibull model, we obtained �∗k ∼N(−2:04; 0:42) for the prior under the semi-parametric
model.
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4.3. Working likelihood and posterior computation

The approximate Bayes method focuses on �k(Z) and exploits the fact that, given X ¿T , the
particular value of X contributes no additional information about {�1(Z); : : : ; �K(Z)}. Thus,
with the approximate method we will consider information only up to time T for each patient.
Let C̃i(t)= min{Ci(t); T} denote the ith patient’s time on study up to a maximum of T . De�ne
the patient’s observable response status process Aoi (t)= {Xi ¿ C̃i(t)}, and let Ỹ i(t)= 1{Aoi (t)}.
The current status likelihood for arm k at time t can be written as

L̃k(Ht |X)=
N (t)∏

i=1
[{Pk(Aoi (t)|Zi ; X)}Ỹ i(t){1− Pk(Aoi (t)|Zi ; X)}1−Ỹ i(t)]1{�i=k} (5)

where Pk(·|Zi ; X)=Pr(·|Zi ; X; �i= k). This is a partial likelihood for the probability measures
{Pk}Kk=1; which are of in�nite dimension. If all currently enrolled patients have been completely
followed, i.e. C̃i(t)≡T , then (5) reduces to a binomial likelihood in the response probability
�k(Zi). Because the current status likelihood contains nuisance parameters as well as the
probabilities {�1(Zi); : : : ; �K(Zi)} of interest, denoting !ki(t|Zi)=Pk{Aoi (t)|Xi6T;Zi}, we will
exploit the decomposition Pk{Aoi (t)|Zi ; X}= �k(Zi)+!ki(t|Zi){1−�k(Zi)}, which follows from
the fact that Pk{Aoi (t)|Xi ¿T;Zi}=1. Noting that 1 − Pk{Aoi (t)|Zi ; X}= {1 − !ki(t|Zi)}{1 −
�k(Zi)}, we obtain a ‘working’ likelihood for arm k by replacing the !ki with an estimate
!̂ki: L̃

(w)
k (Ht |X)∝

N (t)∏

i=1
[{�k(Zi) + !̂ki(t|Zi)(1− �k(Zi))}Ỹ i(t)({1− !̂ki(t|Zi)}{1− �k(Zi)})1−Ỹ i(t)]1{�i=k}

∝
N (t)∏

i=1
[{�k(Zi) + !̂ki(t|Zi)(1− �k(Zi))}Ỹ i(t) {1− �k(Zi)}1−Ỹ i(t)]1{�i=k}

where the multiplier {1−!̂ki(t|Zi)} does not depend on �, and �k is speci�ed by the parameters
�k and R̃ via the regression model (4). Thus, an approximate posterior based on the working
likelihood at time t is

p̃(�1; : : : ; �K ; R̃|Ht)∝ p̃(R̃)
K∏

k=1
p̃(�k |R̃)L̃(w)

k (Ht |�k ; R̃)

where the priors p̃ are the normal densities described in Section 4.2. The triplets (�1; �2; �3)
can be generated from this approximate posterior using the Gibbs sampler, and these are used
to compute the �̃i(k)’s for implementing the AR.

4.4. Estimating nuisance parameters

A key step in computing the working likelihood is to estimate the nuisance !ki(t|Z) at study
time t. To facilitate exposition, we temporarily suppose that there is only one covariate, Z ,

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:55–70



CONTINUOUS BAYESIAN ADAPTIVE RANDOMIZATION 65

restrict attention to treatment arm k, and assume that, for all x¿ 0,

Sk(x|Z1; X)¿Sk(x|Z2; X) if Z16Z2 (6)

that is, Sk(x|Z; X) is non-increasing in Z . Note that Sk(x|Z; X)=Ek{Ui(x)|Z; X} where Ui(x)=
1(Xi ¿x); and thus Sk(x|Z; X) can be estimated by isotonic regression from the reduced sample
{Ui(x); Zi} for i such that Si= k and C̃i(t)=T ; see Appendix A. As a result, denoting the
isotonic regression estimator by Ŝk(x|Z), the !ki(t|Zi)’s are estimated by

!̂empki (t|Zi)=
Ŝk(C̃i(t)|Zi)− Ŝk(T |Zi)

1− Ŝk(T |Zi)
To avoid highly variable estimators with small samples, we estimated ! using a weighted
average of the empirical component !̂emp and a �xed prior component !̂prior

!̂ki(t|Zi)= mk(t|Zi)
mk(t|Zi) + 1 !̂

emp
ki (t|Zi) +

1
mk(t|Zi) + 1 !̂

prior
ki (t)

where mk(t|Zi)=mk(t){1− Ŝk(T |Zi)} and mk(t) is the number of patients in arm k who have
been completely followed at time t. Using this weighted average, the prior component will
become less in�uential as the sample size grows. For simplicity, we take !̂priorki (t)=1−C̃i(t)=T
(see also Reference [13]).
For the general case with more than one covariate, we apply isotonic regression under the

stochastic ordering conditions (6) with R̃′
Z in place of the single Z . In actual implementation,

we replace R̃ with the most current updated posterior mode R̃0 of R̃, assume stochastic ordering
(6) for R̃′

0Z, and apply this to obtain estimators of the !ki’s as before.

5. APPLICATION TO THE AML TRIAL

5.1. Trial designs

We now apply each of the four AR methods to the AML trial. A total of 96 patients are
randomized to the three treatment arms, with an anticipated accrual rate of 8 patients per
month. Because the AR criteria tend to be somewhat unstable for small amounts of data, the
�rst 30 patients are randomized evenly, with exactly 10 patients assigned to each arm. The AR
procedure is applied thereafter, for the remaining 66 patients, with the AR criterion computed
based on the most recent data available when each new patient arrives. For the approximate
Bayes methods, each patient is followed for at most T =50 days. For the Weibull model-
based method all patients are followed until either X is observed or the study ends. At the
end of the study, de�ned as 50 days after the last patient is randomized, the treatment that
has the largest posterior randomization probability criterion is selected.

5.2. Simulation study design

For the simulation study, each patient’s prognostic covariates were drawn at random from
the historical data. Patients’ survival times were generated under the Weibull model, or a

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:55–70



66 Y. K. CHEUNG ET AL.

Table III. Parameter values, median survival, and 50-day survival probabili-
ties of the models used in the simulations. Only parameters that di�er from

the historical values are given.

Weibull GOR

Scenario Arm med∗ log �k Prob† 	k Prob†

0 IA 1.00 −6.49 0.88 1070 0.80
IAC 1.00 −6.49 0.88 1070 0.80
IAT 1.00 −6.49 0.88 1070 0.80

1 IA 1.00 −6.49 0.88 1070 0.80
IAC 1.00 −6.49 0.88 1070 0.80
IAT 1.50 −6.82 0.91 1611 0.84

2 IA 1.00 −6.49 0.88 1074 0.80
IAC 1.25 −6.67 0.90 1338 0.82
IAT 1.50 −6.82 0.91 1611 0.84

∗Median survival relative to IA.
†50-day survival probability for a 60-year old patient with good PS and no
−5=−7 abnormality.

generalized odds rate (GOR) model [23] characterized by the survivor function

Sk(x|	k ; �; 
; R;Z; X)= {1 + 
(x=	k)�eR′Z}−1=
 for x¿ 0

where �¿ 0; 
¿ 0 and each 	k ¿ 0. The GOR model is a family that contains the Weibull
distribution (as 
→ 0), but in general does not satisfy the proportional hazards assumption.
Thus, evaluation of the AR methods under the GOR model provides an assessment of robust-
ness.
The trial was simulated under three di�erent scenarios, with the data generated under the

Weibull with �xed parameter values. Under the null case, scenario 0, the �xed parameter
values were set equal to the historical means of X (Table I). For alternative scenario 1, we
calibrated log �3 so that IAT improved upon the historical median survival by 50 per cent.
For alternative scenario 2, log �2 and �3 were calibrated so that IAC and IAT provided 25
and 50 per cent improvements in median survival, respectively.
The three scenarios were also simulated under the GOR model, with 
=2 throughout

and 	k =(−2 log 0:5=3�k)1=0:819 chosen to match the median survival times in the Weibull
scenarios. The covariate coe�cients R and the shape � were the same under the two models,
set equal to the historical means in all scenarios. The simulation scenarios are summarized in
Table III.

5.3. Simulation results

Under the null scenarios, all four methods have the same selection percentages and sample
sizes by symmetry. However, when compared to a non-adaptive, balanced randomization,
where on average each arm will receive 32 patients with a standard deviation (SD) of 4, the
AR methods induce extra variability, with the corresponding SD varying from 11 to 15.
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Table IV. Selection probabilities and average sample sizes for the AML trial. Standard
errors are given as subscripts.

Percent selected Sample sizes

Scenario Model Method Covariates IA IAC IAT IA IAC IAT

1 Weibull Full model Yes 15:50 15:50 70:65 27:16 27:16 42:20
No 15:50 16:52 70:65 26:16 29:18 41:19

Approximate Yes 22:56 22:56 57:70 28:17 29:17 39:19
No 22:56 23:66 56:70 29:16 29:16 38:19

2 Weibull Full model Yes 12:46 30:65 58:70 25:15 32:18 39:20
No 19:55 29:64 52:71 27:18 32:18 37:20

Approximate Yes 18:54 33:66 49:71 27:16 32:18 37:19
No 19:55 32:66 49:71 28:16 32:17 36:19

1 GOR Full model Yes 19:55 22:56 59:70 26:18 31:18 40:19
No 21:58 21:58 58:70 30:18 29:16 37:20

Approximate Yes 20:57 20:57 60:69 28:16 29:16 39:18
No 21:58 22:56 57:70 29:16 29:15 37:18

2 GOR Full model Yes 18:54 36:68 46:70 26:17 32:18 39:21
No 20:58 35:67 45:70 27:15 31:18 38:19

Approximate Yes 20:57 31:65 49:71 28:16 31:17 37:19
No 26:62 30:65 44:70 27:15 32:16 37:17

The simulation results for the alternative scenarios are summarized in Table IV. Under
scenario 1 with Weibull data, where IAT provides a 50 per cent improvement in median
survival compared to the other two arms, the model-based approaches have about a 70
per cent correct selection probability, with 41–42 patients treated on the IAT arm and
26–29 on each of the inferior arms. This is better than the approximate Bayes methods,
which have a 56–57 per cent correct selection rate and allocate about 3 fewer patients to the
superior arm. With balanced, non-adaptive randomization, selection of the best treatment arm
at the end of the trial may still be based on the posterior criterion (2). Under scenario 1, if (2)
is computed based on the full Weibull model, then equal randomization gives selection per-
centages (15,14,71); if (2) is computed based on the approximate posterior, the corresponding
selection percentages are (22,21,57). Thus, despite the larger variability of the sample sizes
with AR, the selection reliability of the AR methods is almost una�ected when compared to
the balanced design. The behaviours of the methods are very similar under scenario 2 for
Weibull data.
When the survival times follow a GOR distribution with shape parameter 2, the AR meth-

ods assuming a Weibull model lose about 7–12 per cent in correct selection rate, and have
2–4 fewer patients allocated to the best arm, depending on whether covariates are included.
The approximate Bayes method with covariate adjustment su�ers no loss in e�ciency, de-
spite the fact that the complementary log–log link is incorrect under the GOR model. This
suggests that the approximate method is robust against a misspeci�ed link, if heterogeneity
is properly accounted for. Under the GOR model, the performances of all four AR methods
are similar.
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While it may seem somewhat surprising that ignoring covariates has no apparent e�ect on
the selection percentages and sample sizes, this may be due in part to the increased variation
in estimating additional parameters. However, a closer look reveals potential pathological
behaviours for the unadjusted methods. The Weibull method without covariate adjustment
selects the IA arm with probability 15 per cent under scenario 1, but with a larger probability
of 19 per cent under scenario 2. This is counter-intuitive, since scenario 2 is ‘easier’ in that
there are two better treatment arms than the IA arm, and thus any coherent method should
select the IA arm with less probability in scenario 2 than in scenario 1. This pathology
contributes to the drop in the selection percentage of the best arm, from 58 to 52 per cent.
Similarly, the approximate Bayes method that ignores covariates selects the IA arm with a
higher probability in scenario 2 (26 per cent) than in scenario 1 (21 per cent) under the GOR
model. Therefore, accounting for covariates appears to lessen the likelihood of pathological
behaviour.

6. CONCLUDING REMARKS

We have presented exact and approximate Bayesian outcome-adaptive randomization proce-
dures based on time-to-event outcomes, accounting for baseline prognostic covariates, that are
applied continuously during a clinical trial. Our simulations indicate that, on average, all of
the AR procedures allocate substantially more patients to superior treatment arms. When com-
pared to the non-adaptive design with balanced randomization, the AR procedures have about
the same correct selection rates.Thus, our AR procedures provide an ethically much more
attractive family of clinical trial designs, compared to designs with conventional randomiza-
tion, without sacri�cing correct selection probability. A small price is that patient allocation
is somewhat more variable with AR.
A feature of the AR procedures is that they combine Bayesian data analysis and trial design.

Thus, the �nal data from the trial at the end can be analysed utilizing the same Bayesian
model that is the basis for trial design and conduct. In this �nal data analysis, several priors
may be used in a conventional Bayesian sensitivity analysis. Under the likelihood principle,
the �nal inferences will depend on the AR procedure only via the imbalance in the treatment
arms produced by the AR. The unbalanced allocation may result in an increased variability in
the analysis. This may be regarded as the price paid for the fact that assigning more patients
to the superior treatment arms is ethically more desirable.
Our simulations show that accounting for covariate e�ects reduces the probability that an

AR method will behave pathologically. In particular, the approximate Bayes method with
covariate adjustment appears to be robust to link mis-speci�cation. In this article, we as-
sume that the covariates a�ect survival under each treatment in an identical way. However,
covariate-treatment interaction is an important issue in AR. In theory, an AR criterion sim-
ilar to (1) may be extended to include covariate-treatment interaction. However, the issues
of implementation and interpretation may become quite complex. This is an area for future
investigation.
Finally, in comparing the fully parametric Bayesian approach to the semi-parametric ap-

proximate Bayes method, the latter had substantially lower correct selection probabilities and
produced a slightly smaller imbalance in favour of superior treatment arms.
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APPENDIX A: ESTIMATING Sk(x|Z; X) VIA ISOTONIC REGRESSION Ŝk(x|Z)

De�ne Ck ≡ {j : Sj= k and C̃j(t)=T} as the index set for completely followed patients in
arm k. Re-index the patients in Ck so that Z1¡Z2¡ · · · and let Ml denote the number
of patients in Ck with covariate Zl. The isotonic estimator Ŝk(x|Z) can be obtained by the
pool-adjacent-violators algorithm [24]:

1. If U1(x)¿U2(x)¿ · · ·, then Ŝk(x|z)=Ul(x)=Ml for z ∈ [Zl; Zl+1).
2. If Ul(x)=Ml6Ul+1(x)=Ml+1 for some l, then combine Zl and Zl+1 into one covariate
level by letting Ŝk(x|Zl)= Ŝk(x|Zl+1). Replace the pair {Ul(x); Ul+1(x)} in the sequence
{Ur(x)} by Ul(x) + Ul+1(x); and replace the pair {Ml;Ml+1} in the sequence {Mr}
by Ml +Ml+1. Thus, the two ratios Ul(x)=Ml(x) and Ul+1(x)=Ml+1 are replaced in the
sequence {Ur(x)=Mr} by the single ratio {Ul(x) +Ul+1(x)}={Ml +Ml+1}.

3. Repeat (1) and (2) until an ordered, monotone non-increasing set of ratios is obtained.
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