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SUMMARY

Clinical trials of fatal diseases often focus on one or more non-fatal events, in addition to survival, both to
characterize morbidity and to improve survival estimates. Three statistical complications are that the time to
each non-fatal event and subsequent residual survival may be either positively or negatively associated, the
times to death with or without an antecedent event often have very different distributions, and death may
censor some of the non-fatal event times. Consequently, the overall survival time distribution is a mixture of
the distributions corresponding to the possible antecedent non-fatal events. These conditions violate the
usual assumptions underlying many statistical methods for analysing multivariate time-to-event data. In this
paper, we consider a general parametric model for multiple non-fatal competing risks and death. The model
accounts for positive or negative association between the time of each non-fatal event and subsequent
survival while accommodating covariates and the usual administrative censoring. Each event time distribu-
tion is specified marginally by a three-parameter generalized odds rate model, and the time of each non-fatal
event and subsequent residual survival are combined under a bivariate generalized von Morgenstern
distribution. The approach is illustrated by application to two data sets from clinical trials in colon cancer
and acute leukaemia. ( 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

In clinical trials of treatments for fatal diseases, the times to one or more non-fatal events may be
recorded to characterize morbidity per se and also provide auxiliary information that may
improve estimates of overall and residual survival.1~6 A prototypical example of one non-fatal
event and death is a cancer trial in which remission duration (disease progression, time to relapse)
and survival time are both clinically and scientifically important. Aside from administrative
censoring, patients may either relapse and die, or die without antecedent relapse, that is, suffer
‘regimen-related’ or ‘progression-free’ death. An even more complex data structure arises in trials
of chemotherapeutic regimens for acute leukaemia in which each patient is either brought into
complete remission (CR) or declared resistant and removed from the study so that a different
therapeutic approach may be taken. The times to being declared in CR or resistant are non-fatal
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competing risks, and each is closely associated with subsequent residual survival time. Patients
who achieve CR quickly are likely to survive longer, hence the problem of characterizing negative
association arises. Finally, a patient may die during the complex process of attempted remission
induction, often due to adverse effects of the treatment regimen itself, before either non-fatal event
has occurred.

The scientific goals in such medical settings typically include evaluation of treatment effects
and estimation of morbidity and mortality, both overall and for individual patients or patient
subgroups. These goals in turn require estimation of the distributions of the non-fatal event times,
of residual survival given a particular non-fatal event at a specified time, and of overall survival,
each distribution possibly adjusted for covariate effects. For example, it is very important
prognostically to estimate the residual survival time of a cancer patient given his or her relapse
time.

In this paper, we consider the general setting in which each patient may experience at most one
of several non-fatal events, that is, in which the events are competing risks, while death may occur
before any of the non-fatal events. The three complications motivating our approach are: (i) death
censors all non-fatal events that have not occurred; (ii) the time to a non-fatal event and
subsequent residual survival time may be either positively or negatively associated, and (iii) the
overall survival distribution is a mixture of two or more different distributions corresponding to
death either with or without an antecedent non-fatal event. With these considerations and the
array of statistical inferences previously described in mind, we employ a family of parametric
models sufficiently general to allow broad application but that lends itself readily to interpreta-
tion and explanation to medical colleagues. We use a three-parameter generalized odds rate
model7 for the marginal distributions of the time to each non-fatal event, the residual survival
time after a non-fatal event, and the time to death without any antecedent event. We assume that
the times to the non-fatal events and event-free death are mutually independent.8 For the
bivariate distribution of the time to each non-fatal event and subsequent residual survival, we use
a bivariate generalized von Morgenstern distribution,9 which characterizes the positive or
negative association between these two times by a single parameter. The model accommodates
one or more non-fatal competing risks and death, covariates with effects specific to each marginal
time, and the usual administrative censoring. In the case of one non-fatal event, such as relapse,
the model is a generalization of that proposed by Lagakos,1,2 who addressed the problem of
using the observed time of a non-fatal event as an auxiliary variable to improve estimation of
survival.

The remainder to the paper is organized as follows. In Section 2 we define formally the general
data structure and model. In Section 3 we consider the case of one non-fatal event and death,
including analysis of the colon cancer data previously analysed by Moertel et al.10 and Lin.11 In
Section 4, we apply the general model to a data set arising from chemotherapy of acute leukaemia,
in which the times to CR or resistance are non-fatal competing risks.

2. DATA STRUCTURE AND MODEL

Let ¹
0

be the time to death without any antecedent non-fatal event, ¹
j,1

the time to the jth
non-fatal event, and ¹

j,2
the subsequent residual survival time, j"1,2, K. The non-fatal events

and event-free death are competing risks in that at most one of ¹
0
, ¹

1,1
,2,¹

K,1
may be observed.

We denote T
j
"(¹

j,1
, ¹

j,2
) and ¹"minM¹

1,1
,2,¹

K,1
N. Aside from right (administrative) cen-

soring, one observes either T
j
if ¹

j,1
"¹(¹

0
, or ¹

0
alone if ¹'¹

0
.
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Figure 1. K non-fatal competing risks and death

Table I. Possible patient outcomes, death and K non-fatal competing risks
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In the first case the patient’s survival time is ¹
j,1

#¹
j,2

, while in the second case it is ¹
0
. As

noted earlier, one motivation for the model proposed here is that the survival times ¹
0

and
¹
j,1

#¹
j,2

, 1"1,2,K may have very different distributions. In particular, overall survival time
is the mixture

¹
D
"¹

0
I[¹

0
(¹]#

K
+
j/1

(¹
j,1

#¹
j,2

)I[¹(¹
0
]I[¹"¹

j,1
] (1)

where I[A] denotes the indicator of the event A. Figure 1 illustrates the set of possible outcomes
for each patient.

To account additionally for non-informative right censoring at time º, we define the following
indicators. For the jth non-fatal event, let d

j
"1 if ¹

j,1
"¹(minM¹

0
, ºN and 0 otherwise. Let

d
0
"1 if the time of death is observed, formally if either ¹

0
(minM¹, ºN or ¹

0
'¹"¹

j,1
and

¹
j,1

#¹
j,2

(º, with d
0
"0 otherwise. We can regard all of these random variables as latent

event times, since each may or may not be observed depending on which ¹
j,1

"¹, whether
¹(¹

0
, and the value of º. Table I gives the four forms that a patient’s observed outcomes may

take.
We assume that ¹

0
, ¹

1,1
,2,¹

K,1
are mutually independent, because the available data do not

allow us to distinguish between this and a model that accounts for dependence among these
competing risks. That is, it is not possible to verify empirically whether the assumption of
independence among competing risks is true. Discussions of this problem and associated
identifiability problems in the context of competing risks are given by Gail,12 Prentice et al.13 and
Kalbfleisch and Prentice.8
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Given this assumption and the above data structure, our modelling strategy is first to specify
parametric distributions for the marginals of ¹

0
and each ¹

j, r
, r"1, 2 and then a bivariate

distribution for each pair (¹
j,1

, ¹
j,2

) having their given marginals. Our criteria for the bivariate
distribution are that it must be a tractable, parsimonious model that allows either positive or
negative association. First, denote the marginal CDF, survivor function, and probability density
function of the kth event time by F

k
, S

k
"1!F

k
, and f

k
"F@

k
, respectively, where the index

k denotes 0 or any of the double indices ( j, 1) or ( j, 2). We use the following parametric bivariate
distribution for each T

j
, apparently first introduced by von Morgenstern.9 For each j"1,2, K,
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!1(a
j
(#1. This distribution is characterized by its marginals F

j,1
and F

j,2
and the

dependence parameter a
j
, with a

j
"0 corresponding to independence between ¹

j,1
and ¹

j,2
. This

model was studied in the case of Weibull marginals by Butkiewicz and Hys,14 and also discussed
by Johnson and Kotz.15 The generalized odds rate and von Morgenstern distributions are not
essential to our approach, however. In general, one may use any tractable marginal and bivariate
distributions with the above properties that are appropriate for a given application.

We may now write down the general form of a single patient’s likelihood, which is the product
of the following four terms corresponding to the rows of Table I. Recall that at most one of the
indicators d

1
,2, d

K
may be non-zero and that d

0
is the indicator that the time of death is

observed, regardless of whether death is preceded by a non-fatal event:
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The full likelihood is obtained as usual by forming the product over patients of the individual
likelihoods L"L

1
L

2
L

3
L

4
.

In theory any marginal distributions for non-negative-valued random variables appropriate
for the particular application may be used for F

0
and each F

j,r
. We employ the three-parameter

generalized odds rate model, characterized by the survival function S (t; j, /, c)"
[1#c(t/j)(]~1@c, j'0, /'0, c'0. This is an especially flexible and tractable family of distri-
butions.7,17 It contains the log-logistic distribution S (t; j, /, 1)"[1#(t/j)(]~1 when c"1,
discussed by Bennett16 and has the Weibull as the limiting case obtained as
S(t; j, /, 0)"

$%&
lim

cB0
S (t; j, /, c)"exp(!t/j)(. Patient covariates Z"(Z

1
,2, Z

p
) may be in-

corporated into the model in terms of the linear component b@Z"b
1
Z

1
#2#b

p
Z

p
by

defining the more general form

S (t; Z, c, /, j, b)"[1#c (t/j)(eb@z]~1@c. (7)
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To interpret covariate effects under this model, consider the two-sample case where Z is the
treatment group indicator and b@Z"bZ. In the case of proportional hazards (c"0), b is the log
relative risk between the two groups. Under the proportional odds case (c"1), b is the log of the
odds ratio of survival beyond a given time. For arbitrary c'0, b is the generalized log odds ratio
log[M(1!S

1
(t)c)/S

1
(t)cN/M(1!S

0
(t)c)/S

0
(t)cN], where S

0
(t)"S(t DZ"0), and S

1
(t)"S (t DZ"1).

Discussions are given by Dabrowska and Doksum,7 Clayton and Cuzick17 and Wingo.18 While
we may use the alternative parameterization [1#c(t/eb@Z)(]~1@c, when /O1 the above inter-
pretation of covariate effects does not apply.

We denote h
k
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k
, /

k
, c

k
, b

k,1
,2, b

k,p
), so that the model is parameterized by a

1
,2 , a

k
and

h"Mh
k
, k"0, (1, 1), (1, 2),2, (K, 1), (K, 2)N. For each application, we obtained maximum likeli-

hood estimates (MLEs) under the constraints that all j
k
, /

k
, c

k
'0 and !1(a

k
(#1 for all

j, k using the method of Gay,19 which in particular does not require specification of any
derivatives of the likelihood. We estimate standard errors of the MLEs and confidence bands for
median residual survival using bootstrapping. While the traditional approach to maximum
likelihood is to use Fisher scoring to obtain MLEs and the information matrix to estimate
standard errors, by relying on the optimization method of Gay and bootstrapping (Efron and
Tibshirani20) we avoid computation of derivatives of the log-likelihood, which can be rather
complicated when K*2. Our simulation results, not presented here, indicate that bootstrap
samples of size 200 provide standard error estimates very close to the sample standard errors
obtained from 1000 simulations.

3. ONE NON-FATAL EVENT AND DEATH

3.1. Model

We first consider the case of a single non-fatal event such as disease progression or relapse. Since
K"1 we drop the indices j, k. From (1), the bivariate CDF for (¹

1
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) is
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, the model has ten parameters with (/

j
, j

j
, c

j
) characterizing the marginal
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, j"0, 1, 2 and a the association between ¹

1
and ¹

2
. In this case, the possible forms that each

patient’s outcome data may take, specified generally in Table I, are given in Table II.
The likelihood function given in general by (3)— (6) thus reduces to
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There are two clinical scenarios in which it is desirable to predict survival. At remission the
relevant quantity is overall survival. Since we do not know whether a patient will die with or
without antecedent relapse, this is given by ¹
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Table II. Possible patient outcomes when K"1

Observed data d
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At the time of relapse, the relevant quantity is the residual survivor function

S
T2

D¹
1
(t
2
D t

1
)"Pr[¹

2
't

2
D¹

0
'¹

1
"t

1
]"P

=

t2

f
12

(t
1
, u)

f
1
(t
1
)

du (11)

which, in particular, does not depend on S
0
due to the assumed independence of ¹

0
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the bivariate model (8), the residual survival function becomes S
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which depends explicitly on the association parameter a. This expectation may not exist, however,
depending on F

1,2
. A referee has suggested estimation of median rather than mean residual

survival, since the former always exists and is robust. Median [¹
2
D¹
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"t(¹
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] is given by the
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2
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2
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3.2. The Colon Cancer Study

We now apply the model to data from a colon cancer trial. Patients with resected stages B and
C colorectal carcinoma were randomized to placebo, adjuvant levamisole (lev) or adjuvant
levamisole plus fluorouracil (lev#5-FU) for one year post-surgery. A major goal of the trial was
to evaluate the ability of levamisole, either alone or in combination with 5-FU, to prolong the
time to relapse and hence survival, based on immunological effects of levamisole in animal models
and earlier human trials. A detailed analysis is given by Moertel et al.,10 and these data also are
analysed by Lin11 to illustrate the marginal approach to multivariate time-to-event data. For
purposes of illustration here, we restrict attention to the 315 patients on the placebo arm and 304
patients on the lev#5-FU (treatment) arm and include as covariates a treatment indicator
Z

1
and Z

2
"log (number of nodes involved). Table III summarizes fits of the parametric

competing risks model both with and without the two covariates. We obtained standard
deviations by bootstrapping. For each of 200 bootstrap samples, we computed the parameter
estimates hK , and a number of other functions depending on hK , such as median residual survival,
and then computed the empirical standard deviations of these values.

Figure 2 provides a graphical comparison of the overall survival curves in the two treatment
groups, obtained by substituting the parameter estimates into formula (7) and setting log (number
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Table III. Competing risks model parameter estimates for colon cancer data

Death without relapse, ¹
0

Relapse, ¹
1

Residual survival, ¹
2

¼ithout covariates aL "0)990 (0)063)
/K 1)196 (0)261) 2)233 (0)290) 1)415 (0)113)
jK 55)626 (33.636) 1)027 (0)148) 1)549 (0)143)
cL 0)000 (23)980) 9)199 (1)598) 0)760 (0)265)

Including covariates aL "0)863 (0)098)
/K 1)215 (0)246) 2)225 (0)399) 1)467 (0)118)
jK 68)823 (58)000) 3)252 (1)044) 3)399 (0)651)
cL 0)000 (26)455) 7)843 (1)945) 0)719 (0)254)
bK
1

(lev#5-FU) !0)079 (0)420) !1)131 (0)420) 0)460 (0)188)
bK
2

(log number of nodes) 0)296 (0)379) 1)929 (0)341) 0)708 (0)171)

Figure 2. Estimated overall survival curves based on mixture model

of nodes) equal to its mean value 1)33. In terms of overall survival, the superiority of lev#5-FU
over placebo based on our fitted model agrees with the results of Moertel et al.10 and Lin,11
obtained using different methods.

The fits of the no-covariate model may be assessed graphically by comparing both the
estimated overall survival curve and the estimated relapse-free survival curve from the parametric
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Figure 3. Colon cancer data: overall survival

model to the corresponding Kaplan—Meier curve (Figures 3 and 4). Figures 3 and 4 indicate that
the parametric model provides an excellent fit to the data.

Next, we consider the fits of the components of the model, specifically the three marginal
distributions and the association parameter. Whereas the treatment effect b

1
on ¹

0
, the time

to relapse-free death, is insignificant, the lev#5-FU group has a significantly longer time to
relapse, ¹

1
, but significantly shorter post-relapse survival, ¹

2
. Specifically, bK

1
"!1)131

for ¹
1
, but bK

1
"0)460 for ¹

2
. It thus appears that, among those patients who relapse, the

lev#5-FU group has longer time to relapse but shorter residual survival thereafter. To see
how this yields greater overall survival in the lev#5-FU group, we note that the estimated
median of ¹

1
is 7)4 years in the lev#5-FU group and 4)6 years in the placebo group, while

the corresponding estimated medians of ¹
2

are 1)2 and 1)7 years, respectively. Thus, since on
average ¹

1
is much larger than ¹

2
in either treatment group, the superiority of lev#5-FU over

placebo in terms of its effect on ¹
1
overwhelms its inferiority in terms of the much shorter residual

survival ¹
2
.

In terms of aL , the association between ¹
1

and ¹
2

is positive and quite strong. That is, on
average, patients who take longer to relapse also have longer subsequent residual survival. Note
that the degree and sign of association between ¹

1
and ¹

2
is a separate issue from the magnitudes

and signs of the respective treatment effects on these times.
All three times decreased, on average, with the number of nodes, although this effect was

significant only for ¹
1

and ¹
2
. The addition of the two covariates to the model had little effect on

either the /K
j
’s or cL

j
’s, but caused the jK

j
’s to increase and aL to decrease slightly. The fitted models

indicate that the distribution of ¹
0

clearly is Weibull (c"0) and the values (/K
0
!1)/s(/K

0
)"0)75

and 0)86 under the two fits indicate further that ¹
0

follows an exponential distribution. In
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Figure 4. Colon cancer data: relapse-free survival

contrast, the distributions of ¹
1

and ¹
2

are neither Weibull nor log-logistic, that is, neither c
1

nor
c
2

equals 0 or 1. This illustrates the practical utility of using the three-parameter model for each
marginal distribution, and the inadequacy of the two-parameter Weibull or log-logistic distribu-
tions. The likelihood ratio statistic for comparing the two models in Table II is 124)11 on
6 d.f., p(0)0001, indicating that overall the covariates have a significant effect on the model fit.
More specifically, under the second model the 3 d.f. test of b

0,1
"b

1,1
"b

2,1
"0, that is, that

there is no overall treatment effect, has LR"20)8 on 3 d.f., p"0)00012. Our result for treatment
effect on relapse (¹

1
) agrees qualitatively with those reported by Lin11 based on a fit of the

marginal model with outcomes ¹
1

and ¹
D
, in our notation. Since covariate effects under our

model correspond to each of ¹
0
, ¹

1
and ¹

2
we do not have a single ‘treatment effect’ parameter

corresponding to ¹
D
.

Finally, we consider estimation of median residual life given relapse, as a function of relapse
time and the covariates. We computed median residual life given relapse for all observed values of
¹
1
by substituting the generalized odds rate model (7) of F

1
and F

2
in expression (12), evaluated at

the MLE’s hK , and solving for the median. Figure 5 presents plots of median residual survival given
time of relapse, for each of the four patient subgroups determined by the two treatment groups,
Z

1
"0 and 1, and the 25th and 75th percentiles of the number of nodes, Z

2
"log (2) and log (5).

Figure 5 illustrates the negative effects of both lev#5-FU and the number of nodes on residual
survival after relapse. Outcomes for individual patients with given covariates may be predicted
in the usual way by computing bootstrap confidence intervals. For example, for placebo
patients with 2 nodes the estimated median residual survival given relapse at t"2 years is
1)8 years with 95 per cent bootstrap confidence interval 1)3 to 3)3 years; the corresponding
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Figure 5. Colon cancer data: median residual survival after relapse

values for lev#5-FU patients with 2 nodes are 1)2 years with 95 per cent confidence interval
1)0 to 3)1 years.

4. TWO NON-FATAL COMPETING RISKS AND DEATH

4.1. Model

To accommodate two non-fatal competing risks and death, the general model (1) with K"2 is
required. In this case there are five marginal distributions corresponding to the times
¹
0
, ¹

1,1
, ¹

1,2
, ¹

2,1
, ¹

2,2
. Given the marginals, there are two bivariate distributions, F

1,12
for

the time ¹
1,1

to the first non-fatal competing risk and subsequent survival time ¹
1,2

, and likewise
F
2,12

for (¹
2,1

, ¹
2,2

). Overall survival is

¹
D
"(¹

1,1
#¹

1,2
)[¹

1,1
(minM¹

0
, ¹

2,1
N]#(¹

2,1
#¹

2,2
)[¹

2,1
(minM¹

0
, ¹

1,1
N]

#¹
0
[¹

0
(minM¹

1,1
, ¹

2,1
N] (13)
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Table IV. Possible patient outcomes, death and two non-fatal competing risks

Observed data d
0

d
1

d
2

¹
1,1

, ¹
1,2

, I[¹"¹
1,1

(¹
0
, ¹

1,1
#¹

1,2
(º] 1 1 0

¹
1,1

, º, I[¹"¹
1,1

(¹
0
, ¹

1,1
(º(¹

1,1
#¹

1,2
] 0 1 0

¹
2,1

, ¹
2,2

, I[¹"¹
2,1

(¹
0
, ¹

2,1
#¹

2,2
(º] 1 0 1

¹
2,1

, º, I[¹"¹
2,1

(¹
0
, ¹

2,1
(º(¹

2,1
#¹

2,2
] 0 0 1

¹
0
, I[¹

0
(minM¹

1,1
, ¹

2,1
, ºN] 1 0 0

º, I[º(minM¹
1,1

, ¹
2,1

, ¹
0
N] 0 0 0

and the overall survivor function is

S
D
(t)"P

=

t1/0
P

=

t2/.!9Mt!t
1
, 0N

[ f
1,12

(t
1
, t

2
)S

2,1
(t
1
)#f

2,12
(t
1
, t

2
)S

1,1
(t
1
)]S

0
(t
1
)dt

2
dt

1

#P
=

t

f
0
(t
0
)S

1,1
(t
0
)S

2,1
(t
0
)dt

0
. (14)

Due to the assumed independence of ¹
0
, ¹

1,1
, and ¹

2,1
the residual survivor functions are still

quite simple, with

S
¹
1,2

D¹
1,1

(t
2
D t

1
)"Pr[¹

1,2
't

2
DminM¹

2,1
, ¹

0
N'¹

1,1
"t

1
]"P

=

t2

f
1,12

(t
1
, u)

f
1,1

(t
1
)

du (15)

and S
¹

2,2
D¹

2,1
(t
2
D t

1
) defined analogously. Under right censoring there are six possible configura-

tions of patient outcomes, as shown in Table IV. Thus, the model is parameterized by the two
dependence parameters a

1
, a

2
and (j

k
, /

k
, c

k
, b

k
) for k"0, (1, 1), (1, 2), (2, 1), (2, 2).

4.2. Leukaemia Chemotherapy Data

We illustrate this model by application to a data set provided by E. Estey, M.D. Between 1980
and 1995, 1512 patients with acute myelogenous leukaemia or myelodysplastic syndrome were
treated at M.D. Anderson Cancer Center with chemotherapy regimens consisting of cytosine
arabinoside alone or in combination with a variety of topo-isomerase II reactive drugs or
fludarabine, possibly including either of the growth factors G-CSF or GM-CSF. In chemother-
apy of acute leukaemia, the first clinical goal is to bring the patient into complete remission (CR),
defined as (5 per cent circulating blasts, *105 platelets/ml blood, and *103 neutrophils/ml
blood. Some patients achieve CR after one course of chemotherapy, some after two courses, and
so on. When the physician determines that the patient cannot be brought into CR with
a particular chemotherapy regimen, that is, that the patient is resistant, the regimen is discontin-
ued in favour of a new treatment, which typically is either a different chemotherapy combination
or a bone marrow transplant. Patients who fail to achieve CR are thought to have a substantially
decreased chance of long-term survival. Consequently, throughout the course of treatment the
physician’s primary focus is to achieve and subsequently to maintain CR in the patient. Declaring
a patient resistant is essentially a judgement call by the physician, and depends on whether the
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Table V. Competing risks model parameter estimates for leukaemia chemotherapy data

Death without CR Complete remission Resistance
or resistance, ¹

0
¹
1,1

¹
1,2

¹
2,1

¹
2,2

aL !0)705 (0)097) 0)344 (0)174)
/K 1)228 (0)086) 17)991 (1)544) 1)543 (0)099) 3)486 (0)362) 1)124 (0)119)
jK 0)276 (0)041) 0)070 (0)001) 1)062 (0)065) 0)264 (0)018) 0)361 (0)064)
cL 1)798 (0)690) 14)646 (1)500) 2)271 (0)254) 1)321 (0)471) 0)845 (0)336)

physician believes that further treatment with the given regimen is likely to produce a CR. Under
our model, ¹

0
"time to death without CR or resistance, ¹

1,1
"time to CR, ¹

1,2
"residual

survival after CR, ¹
2,1

"time to being declared resistant, and ¹
2,2

"residual survival after being
declared resistant. The times to CR or being declared resistant are non-fatal competing risks,
since at most one can occur. Moreover, regimen-related death is a major clinical consideration
due to the potentially severe life threatening effects of anti-leukaemia chemotherapy regimens.
While intuitively it seems that ¹

1,1
and ¹

2,1
are correlated, we assume independence due to the

general fact that association between competing risks is not identifiable, as noted earlier. More
importantly, our proposed methodology applies quite well to the data set considered here since
the estimate of the function Pr[¹

2,1
(¹

1,1
D¹

1,1
?¹

2,1
't] is an increasing function of t, which

reflects the fact that the longer a patient survives without achieving CR the more likely will the
physician declare the patient resistant.

To simplify illustration of the competing risks structure, we fit this model to the leukaemia data
without including covariates. Table V summarizes the fitted model. Figure 6 gives the fitted
overall survival curve and corresponding Kaplan—Meier curve, plotted on the natural log time
scale since most of the deaths occur during the first two years. The estimates of the dependence
parameter indicate a strong negative association between the time to achieve CR and subsequent
residual survival, and a positive association between the time to being declared resistant and
residual survival. Figure 7 graphically illustrates these two phenomena. The median residual
survival curves given either achievement of CR at time t or given the declaration of resistance at
t are plotted as functions of t, along with bootstrap 95 per cent confidence bands. The times of CR
are given along the top of the graph, and the times of declaration of resistance along the bottom.
The figure shows the precipitous decrease of median residual survival post CR during the first
three months of chemotherapy. This illustrates not only the well known fact that CR is the
hallmark of survival in chemotherapy of acute leukaemia, but that achievement of CR as quickly
as possible during this critical three month period may have a profound effect on subsequent
survival.

5. DISCUSSION

We have proposed a class of multivariate parametric models for joint analysis of the times to
multiple non-fatal competing risks and death, possibly accounting for covariate effects. The
general approach is to model each transition time marginally using a flexible parametric
model and then to specify a parsimonious bivariate distribution to characterize the association
between the time to each non-fatal event and subsequent survival. We chose the three-parameter
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Figure 6. Leukaemia chemotherapy data: overall survival

generalized odds rate distribution for the marginals, due to its flexibility and tractability. We used
the von Morgenstern family for each bivariate distribution since it provides a tractable model
that characterizes positive or negative association with one parameter. These particular distribu-
tions are not essential to our approach in general, however, and one may use any tractable
marginal and bivariate distributions with the above properties that are appropriate for a given
application. Our formulation avoids the commonly used Markov assumption that, for example,
the times to relapse and subsequent survival are independent. In general, the overall survival
distribution is a mixture of the survival times corresponding to death without an intervening
event or following each possible antecedent non-fatal event. Whereas this requires a more
complex model for S

D
, our applications suggest that it may be rather unrealistic to ignore the

differences between the distributions of ¹
0

and each ¹
j,1

#¹
j,2

.
In the case of one non-fatal event, our formulation generalizes Lagakos,1,2 who used indepen-

dent exponential distributions for each of ¹
0
, ¹

1
and ¹

2
. Lagakos was among the first to address

the problem of using the observed time of a non-fatal event as an auxiliary variable to improve
estimation of survival. One may regard the Lagakos model as a special case of the semi-Markov
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Figure 7. Median residual survival after CR or resistance

process model of Weiss and Zelen21 or the bivariate exponential model of Freund.22 Finkelstein
and Schoenfeld3 presented distribution-free methods for assessing overall survival based on the
assumption that ¹

0
and ¹

1
are independent competing risks and they used a Cox model with

¹
2

as the outcome variable, either with or without ¹
1

as a covariate. When ¹
1

is not included as
a covariate, the model assumes that the risk of death among patients who progress does not
depend on the time to progression, which also underlies the parametric approach of Lagakos1
and the non-parametric tests proposed by Hsieh et al.23 Andersen24 uses a multistate model to
analyse the times to diabetic nephropathy (DN) and death with or without DN in insulin-
dependent diabetics. His approach comes down to separate Cox regressions for each of the three
transition times to DN, death without DN, and death post-DN. As noted by Andersen, however,
this does not provide an overall estimate of survival without assumptions similar to those noted
above, namely that the death rates for patients with or without DN are the same. Hougaard and
Madsen25 used a similar approach to analyse the times to two non-fatal events and death in heart
disease patients who have suffered a myocardial infarction. Gray5 used kernel smoothing
methods to estimate all three marginal distributions while accounting generally for the depend-
ence of ¹

2
on ¹

1
and provided both an estimate and a two-sample test for overall survival. Epstein
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and Munoz6 addressed the problem by modelling the overall survival distribution ¹
D

and the
conditional distribution of ¹

1
I[¹

1
)¹

D
] given ¹

D
, and applied this approach to use presenta-

tion time of Kaposi’s sarcoma as an auxiliary variable to assess survival in AIDS patients.
Kalbfleisch and Lawless26 presented a pseudo-likelihood approach to the general setting of
progression from a healthy state to a diseased state or death. Pepe et al.,27 Pepe28 and Pepe and
Mori29 provided non-parametric estimators of marginal and conditional probabilities of non-
fatal events based on combinations of Kaplan—Meier estimators.

The estimating equation methods of Wei et al.30 and others are aimed primarily at multiple
dependent events within a single patient or event times of different patients or individuals which
are dependent due to membership in a cluster, such as a litter or family. In illustrating this
method, Lin11 analysed the times to relapse and death in the colon cancer data by fitting Cox
models with outcomes ¹

1
and ¹

D
, hence made no distinction between ¹

0
and ¹

1
#¹

2
. When

some patients die without relapse, Lin11 suggested either analysing relapse-free survival time, or,
if the proportion of patients who die without relapse is small, assuming independent censoring by
death. Our approach provides treatment effects specific to each of ¹

0
, ¹

1
and ¹

2
. The main

advantage of the full likelihood approach over partial likelihood-based estimating equation
methods, however, is that a fitted likelihood provides probability estimates. This in turn provides
estimates of conditional distributions, medians etc. based on the usual probability calculus, and
also lends itself to Bayesian analysis. Another important distinction between the two approaches
is that the full likelihood models association parametrically, whereas the estimating equation
method is founded on fitting marginally and then accounting for association via a robust estimate
of covariance. One may regard this distinction as either an advantage or disadvantage of the
likelihood approach.

One alternative to the von Morgenstern distribution for characterizing association between
each pair (¹

j,1
, ¹

j,2
) is a frailty model,31~34 given generally by Pr[¹

j,1
't

1
, ¹

j,2
't

2
]"

E[exp(mMlogS
j,1

(t
1
)#log S

j,2
(t
2
)N)], where the frailty m is an unobserved non-negative-

valued random variable associated with the patient. Although this is reasonably tractable for
Weibull marginals and a variety of distributions on m, it is much less tractable under log odds rate
marginals and allows only positive association. Anderson and Louis35 have proposed frailty
models with negative association, although the tractability of their models in the present context
appears limited.

A setting not accommodated by our regime is that where multiple non-fatal events of different
types may occur, that is, where they are not competing risks. An obvious but impractical
generalization of our approach is to model all transition times marginally, model the joint
distribution of each sequence of transition times using a multivariate von Morgenstern distr-
ibution, and express ¹

D
as the mixture of the times to death corresponding to all possible

paths a patient may take. This leads to a rather unwieldy model, even when K"2. Thus, for such
general multivariate time-to-event outcomes, the marginal approach with robust covariance
estimate is still the method of choice for most applications. If one desires a full likelihood in such
general settings, one needs a parsimonious model that accounts for the important second-order
associations.
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