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Bayesian Models and Decision Algorithms
for Complex Early Phase Clinical Trials
Peter F. Thall

Abstract. An early phase clinical trial is the first step in evaluating the
effects in humans of a potential new anti-disease agent or combination of
agents. Usually called “phase I” or “phase I/II” trials, these experiments typ-
ically have the nominal scientific goal of determining an acceptable dose,
most often based on adverse event probabilities. This arose from a tradi-
tion of phase I trials to evaluate cytotoxic agents for treating cancer, al-
though some methods may be applied in other medical settings, such as
treatment of stroke or immunological diseases. Most modern statistical de-
signs for early phase trials include model-based, outcome-adaptive decision
rules that choose doses for successive patient cohorts based on data from
previous patients in the trial. Such designs have seen limited use in clini-
cal practice, however, due to their complexity, the requirement of intensive,
computer-based data monitoring, and the medical community’s resistance to
change. Still, many actual applications of model-based outcome-adaptive de-
signs have been remarkably successful in terms of both patient benefit and
scientific outcome. In this paper I will review several Bayesian early phase
trial designs that were tailored to accommodate specific complexities of the
treatment regime and patient outcomes in particular clinical settings.

Key words and phrases: Adaptive design, Bayesian design, clinical trial,
dose-finding, phase I trial, phase I/II trial.

1. INTRODUCTION

1.1 An Early Phase Trial

Clinical trials are much more complex than typi-
cal statistical designs may indicate. An example is a
phase I stem cell transplantation (SCT) trial in which
the continual reassessment method (CRM, O’Quigley,
Pepe and Fisher, 1990; O’Quigley, 1990) was applied
to optimize the per-administration dose (PAD) of gem-
citabine, dG, when added to an established two-agent
preparative regimen consisting of intravenous busulfan
and melphalan (Andersson et al., 2002). The design
was used for each of two separate, parallel trials, one
for allogeneic transplant (allotx), which uses stem cells
from a matched donor, and one for autologous trans-
plant (autotx), which uses the patient’s own stem cells.
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For each patient, during the period from day −10 to
day −1 preceding the SCT on day 0, each of the three
agents was given on two or more days using a partic-
ular schedule and PAD. Previously, a six-day sched-
ule of additional gemcitabine had been tried, but it was
found to be too toxic, so in this trial each patient’s as-
signed dG was given in a two-day schedule, on each
of days −8 and −3, for total gemcitabine dose 2dG.
“Toxicity” was defined to be any regimen-related grade
4 or 5 adverse event (AE) occurring within 30 days
post transplant and affecting a vital organ, but exclud-
ing AEs that occur routinely in SCT, such as marrow
suppression and, in allotx, graft-versus-host disease
(GVHD). Using the usual CRM criterion, the design’s
nominal goal was to find dG from a predetermined set
of 10 PADs ranging from 225 to 3675 mg/m2 hav-
ing toxicity probability, π(dG, θ), with posterior mean
Eθ {π(dG, θ)|data} closest to the target 0.10, where θ

denotes the model parameters. The principal investi-
gator (PI) specified the conservatively low target 0.10
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in part due to the previous negative experience with
the six-day schedule, and also because 0.10 is consis-
tent with the toxicity rate of the established two-agent
regimen. In each subgroup, gemcitabine doses were to
be chosen for successive cohorts of 3 patients, up to
a maximum of 36 patients, with the safety rules that
no untried dose could be skipped when escalating and
accrual to the subgroup would be stopped if the low-
est dose dG = 255 was unacceptably toxic, formally if
Pr{π(225, θ) > 0.10|data} > 0.80.

Because clinical trials are medical experiments with
human subjects, they often do not play out precisely as
designed. In the course of this trial: (i) when no toxi-
city was seen in the first 24 patients the PI decided to
change the two-day gemcitabine schedule (−8,−3) to
the three-day schedule (−8,−6,−3) while maintain-
ing the same total dose by giving 2

3dG on each day,
(ii) this three-day schedule was quickly found to cause
severe skin toxicity in the first few patients who re-
ceived it and accrual was suspended, and (iii) we re-
designed the trial again by returning to the two-day
schedule, but (iv) at the PI’s request we also expanded
the set of possible dG values. After 28 allotx patients
had been treated and fully evaluated, however, (v) con-
cern about observed grade 3 mucositis and skin toxi-
cities seen at higher dose levels caused the physicians
to expand the definition of “toxicity” to include these
events, which previously had been excluded if they
could be resolved therapeutically within two weeks.
Along with this change, they also decided to change
the CRM target from 0.10 to 0.15. These last changes
had the combined effect of substantially increasing
the numbers of patients with “toxicity” among those
treated at higher dose levels and greatly reducing the
value of dG recommended by the CRM. Per standard
regulatory procedure, it was necessary to obtain insti-
tutional review board approval for each change in the
design. So, this trial actually was designed five times,
it evaluated effects of a combination of three agents
given in overlapping pre-transplant schedules, both the
dose and schedule of gemcitabine were varied adap-
tively during the trial using three different formulations
of the CRM to choose gemcitabine PADs and ad hoc
decisions for changing schedules, there were two si-
multaneous trials involving different SCT modalities,
the dominant effects on toxicity were both dG and the
schedule of gemcitabine, and the definition of toxicity
was changed near the end of the trial to be more inclu-
sive and thus obtain a more protective dose selection
criterion. Overshadowing all of this were the actual
goals, which were not only to control toxicity but also

to reduce the rate and severity of GVHD in the allotx
patients and to improve the rates of engraftment and
100-day survival, compared to the established prepara-
tive regimen.

1.2 Some Generalities

Denote the treatment administered to a given pa-
tient by x. In the designs discussed here, x will be the
dose of an agent, the dose pair of two agents given
together, or a (schedule, dose) combination consist-
ing of a finite sequence of administration times and
corresponding doses. Actual patient outcome in on-
cology trials is very complex, often including numer-
ous different types of toxicity scored on ordinal scales
of severity (grade), disease status scored as a binary
or ordinal variable, with each often recorded at sev-
eral successive evaluations, as well as the times of de-
lay or discontinuation of treatment, drop-out or death.
In sharp contrast, the outcome Y used for statistical
decision-making during the trial usually is defined to
be a single variable or possibly a vector of two vari-
ables. In the examples given here, the designs assume
that Y is, respectively, a single binary toxicity indica-
tor, a vector of two binary indicators of toxicity and
efficacy, a vector of ordinal toxicities or a time-to-
toxicity variable subject to right censoring. The model
consists of a probability density function (p.d.f.) or
mass function (p.m.f.) f (y|x, θ) of Y for a patient who
receives treatment x, and a prior p(θ |ξ), where θ is
the model parameter vector and ξ are fixed hyperpara-
meters. The data observed from the first n patients in
the trial are Dn = {(x(1), Y (1)), . . . , (x(n), Y (n))}, with
likelihood Ln(Dn|θ) = ∏n

i=1 f (Y (i)|x(i), θ) and poste-
rior pn(θ |Dn, ξ) ∝ Ln(Dn|θ)p(θ |ξ).

All of the designs that I will discuss here utilize
Bayesian “learn-as-you-go” decision rules to choose
x from the set of possible treatments, X , based on
the posterior pn(θ |Dn) computed from the most recent
data available when a new patient is enrolled. Such a
sequentially adaptive decision algorithm may be ex-
pressed as a sequence α = {αn} of functions αn : Dn →
X ∪φ, where φ denotes the empty set and αn(Dn) = φ

means “Do not treat with any x ∈ X .” In general, {αn}
may include several adaptive decision rules used to-
gether, such as rules for choosing a dose, a dose pair
or a (schedule, dose) combination, for temporarily sus-
pending accrual to wait for additional data on previ-
ously treated patients, or for stopping the trial early be-
cause no x ∈ X is acceptable. The (n + 1)st iteration
of the Bayesian medical decision-making process may
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be described by the sequence of mappings

Dn
(f,p)−→ pn(θ |Dn, ξ)

αn−→ xn+1
(1)

−→ Yn+1 −→ Dn+1

in which Bayes’ Theorem uses the assumed proba-
bility model (f,p) to map the observed data into a
posterior, the decision rules αn use this to choose the
next treatment xn+1, the patient is treated, the outcome
Yn+1 is observed, and (xn+1, Yn+1) are incorporated
into the data. This process is repeated until the end of
the trial, which may be when either a maximum sample
size Nmax or trial duration Tmax is reached, or because
the trial is stopped early. The process whereby the ex-
panding data set is used by applying Bayes’ Theorem
repeatedly to turn pn(θ |Dn, ξ) into pn+1(θ |Dn+1, ξ)

may be called “iterative Bayesian learning,” in that one
learns about θ as additional data are observed during
the trial. In the sequel, to simplify notation I will sup-
press dependence of the posterior on the prior hyper-
parameters ξ .

A design consists of the trial’s entry criteria, treat-
ments X , set of possible patient outcomes, probability
model (f,p), decision rules α, Nmax or Tmax, and pos-
sibly a cohort size, c. Since αn acts on Dn indirectly
through pn(θ |Dn) in Bayesian adaptive designs, evalu-
ation of a design’s properties must account for the fact
that {pn(θ |Dn)} is a sequence of statistics. The com-
plexity of the process summarized by (1), even for bi-
nary Y and a single dose x, has motivated the routine
use of computer simulation under each of a set of as-
sumed “true” f as a tool to evaluate the frequentist op-
erating characteristics (OCs) of the design for various
α’s. This is used as a basis for choosing decision rules,
calibrating design parameters, and possibly calibrating
the prior. There is nothing “non-Bayesian” about using
frequentist OCs of a Bayesian design to adjust the prior
and design parameters. On the contrary, because simu-
lating a trial that is based on a Bayesian design allows
the physician to better understand the consequences of
particular prior values, simulation provides a tool for
the physician to modify his/her prior so that it more ac-
curately reflects what the physician actually believes.
It also is important to examine the prior’s properties in
the natural parameter domain, such as the probability
of toxicity at dose x, π(x, θ), rather than in terms of
elements of θ that may have no intuitive meaning to a
physician. One should also examine the first few de-
cisions αn for each of several possible configurations
of data, in order to avoid a prior that does not make

sense. This is especially important for evaluating deci-
sions that must be made early in the trial based on very
little data, such as choosing the second cohort’s dose
based on data from the first cohort of three patients.
The prior always has consequences in an early phase
trial, regardless of how “uninformative” it may appear
to be.

If one does not wish to use simulation as a de-
sign tool, the most common alternative approach is
to first specify a formal optimality criterion and solve
for α mathematically (cf. Haines, Perevozskaya and
Rosenberger, 2003; Dette et al., 2008). However, the
simulation-based OCs of a design obtained using a par-
ticular optimality criterion are often surprising, essen-
tially because such a design’s properties are a con-
sequence of the optimality criterion used. One may
maximize information, minimize the variance of a par-
ticular estimated quantity, minimize mean or maxi-
mum sample size, control false positive or other incor-
rect decision probabilities, minimize expected financial
costs, minimize expected trial duration, optimize out-
comes for patients in the trial or for future patients, etc.
Since, unavoidably, such goals often are at odds with
each other, use of the word “optimal” without qualifi-
cation may be very misleading.

1.3 Some Practical Issues

Actual clinical trial logistics can be quite complex.
While the CRM adaptively chooses a new dose from
a continuum for each new patient, Goodman, Zahurak
and Piantadosi (1995) proposed the practical modifica-
tions of choosing doses for successive cohorts of sev-
eral patients and limiting doses to a finite set. In most
of the outcome adaptive dose-finding applications that
I have seen, each newly chosen x is given to a cohort.
Moreover, a “do not skip” safety rule often is imposed
that does not allow an untried dose to be skipped when
escalating. While limiting doses to a finite set of dis-
crete values usually does not allow the exact MTD to
be chosen, the difference between the chosen dose and
the true MTD may be small, provided that the chosen
sizes doses are reasonable. For example, using the dose
set {100, 200, 400, 800, 1600} must miss an actual
MTD of 600 by at least 200, which is larger than the
difference between the first two doses. Moreover, es-
calation from 400 to 800 or from 800 to 1600 may be
unsafe, regardless of whether a do-not-skip rule is im-
posed.

For example, if a cohort size c = 3 is used, then
αn chooses xn+1 = xn+2 = xn+3 and, formally, Yn+1,
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Yn+2 and Yn+3 all must be observed before updat-
ing the data and making the next decision. However,
if Yn+1 has been fully evaluated at the time patient
n + 2 is accrued, then xn+2 may be chosen more re-
liably by applying the decision criterion based on the
updated posterior incorporating the data (xn+1, Yn+1)

from patient n + 1; similarly, if Yn+1 and Yn+2 are
known when patient n + 3 is accrued, their data may
be included to choose xn+3. A simple approach that
works surprisingly well is to use the “look ahead” rule:
If the possible outcomes of treated patients for whom
Y has not yet been fully evaluated will not alter the
chosen x for the next patient, then treat the next pa-
tient with x without delay (Thall et al., 1999). This is
closely related to the general fact that the time window
required to evaluate Y per its definition and the accrual
rate together play critically important roles in trial con-
duct. For example, if Y = I (toxicity within 3 months
from start of therapy) and the accrual rate is 6 patients
per month, then any outcome-adaptive rule based on
Pr(Y = 1|x, θ) is virtually useless, since a large num-
ber of patients will be treated before the rule may be ap-
plied. Some possible ways to implement an outcome-
adaptive design in such settings are as follows: (i) use
c = 1 but enroll only a very small proportion of eli-
gible patients in the trial, (ii) use c = 3 or larger with
accrual suspended between cohorts, but use the look-
ahead rule to improve logistical feasibility, or (iii) rede-
fine the outcome to be time-to-toxicity, but use a safety
rule that may delay accrual interimly to allow the data
from previously treated patients to mature (cf. Bekele
et al., 2008).

At the start of the trial, when n = 0, the first treat-
ment x1 may be chosen by applying the decision rule
α0 based on the prior p(θ |ξ). Methods for choosing
a starting dose have been proposed by Goodman, Za-
hurak and Piantadosi (1995) and Cheung (2005). Most
commonly, x1 is chosen by the physician based on the
nature of x, the definition of Y , the trial’s entry criteria
and clinical experience treating the disease. For exam-
ple, a trial enrolling prostate cancer patients with a life
expectancy of six years is very different from a trial
enrolling brain tumor patients with a life expectancy
of six months. Similarly, depending on the trial’s en-
try criteria and treatment, “toxicity” may be defined as
anything from severe fatigue to regimen-related death.
It thus makes sense, during the prior elicitation process,
to calibrate p(θ) so that α0 agrees with the physician’s
x1, since the motivation for choosing a particular x1 is
based on prior experience.

In this paper I will review several designs that fo-
cus on the problem of reflecting more fully particular
complexities of (x,Y ). Each design addresses some,
but not all, of the issues in the SCT trial described
earlier. These methods were motivated by problems
that I have encountered during the process of design-
ing early phase trials over the past 19 years. Each de-
sign was developed by a collaborative team including
one or more physicians, one or more statisticians and a
computer programmer. Each may be called a “phase I”
design in that dose-finding is based on toxicity, or a
“phase I/II” design in that dose-finding is based on both
efficacy and toxicity, with the exception of the design
described in Section 5 that jointly optimizes schedule
and dose (Braun et al., 2007). While it is tempting to
think that a “one-size-fits-all” design encompassing all
phase I/II possibilities may be constructed, in my ex-
perience clinical research is far too complex to do this,
and each new trial design problem often has unique as-
pects that require a new model or method. The particu-
lar data structure, probability model and decision rules
that should be used to design a clinical trial are best
determined through careful discussion with the physi-
cians planning the trial, and must strike a compromise
between the desire to accurately reflect the medical
process and address scientific goals while accommo-
dating the practical realities of trial conduct.

I will not discuss methods for eliciting and calibrat-
ing priors, since this topic could easily fill an addi-
tional manuscript. I will not explore the ethical aspects
of adaptive decision rules either, since they also are
quite complex (cf. Palmer, 2002). Early phase trial de-
sign and conduct are difficult and complicated in large
part due to the tension between optimizing the benefit
and safety of patients treated in the trial, and learning
about the effects of each x on Y to benefit future pa-
tients, as well as economic constraints and regulatory
requirements. In this regard, a statistician constructing
an adaptive design should be mindful of the ethical is-
sues regarding what happens, for example, to patient
number 7 because (s)he was treated with x6 based on
how α6 acted on p6(θ |D6).

2. DOSE-FINDING FOR TWO-AGENT
COMBINATIONS

2.1 Outcomes and Models

Thall et al. (TMML, 2003) proposed a method for
determining one or more acceptable dose pairs x =
(x1, x2) of two cytotoxic agents given together, based
on a binary indicator Y of toxicity. To stabilize the
model numerically, each dose is standardized so that
0 ≤ x1, x2 ≤ 1, for example, by dividing each raw dose
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by some maximum value, so that each x ∈ X = [0,1]2.
The probability model for toxicity is

Pr(Y = 1|x, θ)

≡ π(x, θ)(2)

= α1x
β1
1 + α2x

β2
2 + α3x

β1β3
1 x

β2β3
2

1 + α1x
β1
1 + α2x

β2
2 + α3x

β1β3
1 x

β2β3
2

,

where θ = (α1, β1, α2, β2, α3, β3). All elements of θ

are positive valued, which ensures that π(x, θ) is a
probability and that it is increasing in each entry of x.
Denoting the subvectors θj = (αj , βj ) for j = 1,2,3,

so that θ = (θ1, θ2, θ3), the model (2) contains the sub-
models

π1(x1, θ1) = Pr{Y = 1|x = (x1,0), θ1}
(3)

= α1x
β1
1

1 + α1x
β1
1

,

which is the probability of toxicity when agent 1 is
given alone at dose x1 and, similarly,

π2(x2, θ2) = Pr{Y = 1|x = (0, x2), θ2}
(4)

= α2x
β2
2

1 + α2x
β2
2

for agent 2 given alone at dose x2. Since αjx
βj

j =
exp{log(αj ) + β log(xj )}, (3) and (4) are logistic mod-
els in a log standardized dose. TMML assume that
there is clinical experience with each single agent when
used alone, since this often is a requirement before in-
vestigating a combination in humans. Since θj para-
meterizes πj (xj , θj ) for j = 1,2 and θ3 parameter-
izes interaction between the two agents, a key ele-
ment of TMML’s approach is that the priors p(θ1|ξ1)

and p(θ2|ξ2) are informative while p(θ3|ξ3) is vague.
Assuming gamma priors on the elements of θ for
tractability, TMML provide a detailed algorithm for
eliciting p(θ1|ξ1) and p(θ2|ξ2), although if historical
data are available, the posteriors from preliminary fits
of such data may be used as these priors for trial de-
sign and conduct. Considering π(x, θ) geometrically
as a response surface over the domain [0,1]2, this says
that there is substantial prior knowledge about each of
the two lines {x :x2 = 0} and {x :x1 = 0} on the edges
of the response surface, but otherwise little is known
about the surface, so it is like a sheet tied down at two
edges but otherwise varying freely. In particular, the
meaning of θ1 in the model π(x, θ) = π(x, (θ1, θ2, θ3))

is very different from its meaning in the submodel

π1(x1, θ1). This is underscored by the prior effective
sample sizes computed by Morita, Thall and Mueller
(2008) for the gamma priors given by TMML (2003,
Section 3), which are 547.3 for p1(θ1|ξ1), 756.8 for
p2(θ2|ξ2), 0.01 for p3(θ3|ξ3) and 1.5 for p(θ |ξ). This
says that, with respect to toxicity, a priori a lot is known
about how each agent behaves when used alone, but al-
most nothing is known about how the two agents be-
have together.

2.2 Decision Criteria

The dose-finding method exploits the following geo-
metric structure on X = [0,1]2. For each p ∈ (0,1),
the set Xp(θ) = {x :π(x, θ) = p} is the isocontour
of all dose pairs having toxicity probability p. Sev-
eral isocontours for a particular fixed θ are illustrated
in Figure 1. Since Xp(θ) ∩ Xq(θ) = φ if p 	= q and⋃

0≤p≤1 Xp(θ) = [0,1]2, every pair x falls on a unique

Xp(θ) for some p. The interaction term α3x
β1β3
1 x

β2β3
2

in (2) is used instead of the simpler term α3x1x2 in or-
der to give the model sufficient flexibility to allow “S”
shaped isocontours, as shown in Figure 1.

The design proceeds in two stages. In stage 1, doses
are chosen for successive cohorts from a finite set of
values on the predetermined fixed diagonal line L1,

shown as the straight line at approximately 45◦ in Fig-
ure 1. The design is robust to the particular angle of
L1, as long as it is not too far from 45◦. Since the re-
sponse surface π(x, θ) increases in each argument x1
and x2, π(x, θ) must increase as x moves up L1 from
lower left to upper right. Given target toxicity probabil-
ity π∗, dose-finding in stage 1 proceeds using the CRM

FIG. 1. Isocontours of a dose-toxicity probability surface for two
dimensional dose x = (x1, x2).
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criterion of choosing x for each cohort from the set on
L1 to minimize |E{π(x, θ)|Dn} − π∗|, starting at the
lowest dose in the set, not skipping untried doses when
escalating, and adding additional doses to the set once
the first toxicity is observed. That is, restricting x to L1
in stage 1 reduces dose selection to a one-dimensional
problem, and a conventional CRM algorithm may be
applied. Geometrically, one may think of stage 1 as
walking up and down the toxicity surface, along L1,
looking for dose pairs with toxicity probability close
to π∗.

In stage 2, x is chosen for successive cohorts from
the random isocontour

Xπ∗(Dn) = {
x :E{π(x, θ)|Dn} = π∗}

.(5)

Since Xπ∗(Dn) contains infinitely many x, an addi-
tional criterion is needed to choose one x for each
cohort in stage 2. TMML suggest two criteria, one
based on the clinical criterion of “cancer killing po-
tential” and the other the more usual statistical goal
of maximizing Fisher Information. Denoting the ele-
ments of θ by θ1, . . . , θ6 for convenience, the Fisher
Information matrix I (x, θ) for dose x has (j, k) entry
{∂π(x, θ)/∂θj }{∂π(x, θ)/∂θk}/[π(x, θ){1−π(x, θ)}].
Under the Bayesian model, x is chosen to maximize
the posterior mean log determinant of I (x, θ) given the
current data, E[log{det I (x, θ)}|Dn]. Doses are chosen
for successive cohorts in stage 2 by alternating between
the two subsets of Xπ∗(Dn) to the left and right of
L1. For each subset, the x optimizing cancer killing
is determined, the x maximizing Fisher Information
is determined, the average of these two dose pairs is
computed, and the x ∈ Xπ∗(Dn) closest to this aver-
age is assigned to the cohort. At the end of the trial,
any x ∈ Xπ∗(Dn) is a solution. Thus, for example, one
may choose three final dose pairs on Xπ∗(DN), one on
L1, one to the left of L1 and one to the right of L1,

and randomize patients among these three x pairs in a
subsequent phase II trial.

In their illustrative application, TMML use a cohort
size of 2 with 60 patients divided into N1 = 20 (10 co-
horts) in stage 1 and N2 = 40 (20 cohorts) in stage 2.
Simulations show that using (N1,N2) either (30, 30)
or (40, 20) gives a design with inferior properties com-
pared to (20, 40). Cohort-by-cohort computations show
that the target isocontour Xπ∗(Dn) varies substantially
with each new cohort’s data even after n = 30 or 40
patients, but stabilizes by n = 50 or 60. This is the case
essentially because a binary outcome is a very small
amount of information per patient. For total sample
size N = N1 + N2 = 60, however, the method is quite
reliable in terms of choosing dose pairs that have true
toxicity probability close to π∗.

3. USING BOTH EFFICACY AND TOXICITY

From a clinical perspective, the primary purpose of
treatment is to fight disease, and safety is never a sec-
ondary concern in any medical setting. Thus, both sci-
entifically and medically, both efficacy and toxicity
matter at all stages of clinical investigation. In many
dose-finding trials, the entry criteria specify patients
with such poor prognosis that response is very un-
likely, between 4% and 10%. In such settings, target-
ing even a low response rate πR∗ = 0.10 or 0.20 and
using a phase II type rule to stop accrual if the ob-
served response rate is likely to be below πR∗ at any
acceptable dose may be impractical, since few or no
responses are expected. This is the most common ra-
tionale for conducting phase I based on toxicity alone,
while recording data on biological effects and possible
clinical anti-disease effects. However, actual response
rates vary widely between phase I trials, and many have
complete or partial response rates well over 20% (cf.
Horstmann et al., 2005). Moreover, patients enroll in a
phase I trial motivated by the hope that the new treat-
ment will achieve an anti-disease effect, not simply the
desire that no toxicity will occur.

3.1 Outcomes and Models

These considerations lead to the idea that, when it
is realistic to target a response rate of 10% or larger,
dose-finding should be done using a phase I/II de-
sign based on both E = efficacy and T = toxicity.
Many phase I/II designs have been proposed (Goo-
ley et al., 1994; O’Quigley, Fenton and Hughes, 2001;
Braun, 2002; Ivanova, 2003). The following phase I/II
methodology, “EffTox,” is based on the developments
given by Thall and Russell (1998) and Thall and Cook
(2004). Illustrations are given by Thall, Cook and
Estey (2006) and Whelan et al. (2008). Patient out-
come may be either a three-category or bivariate bi-
nary variable. The former case applies when E and
T are defined in such a way that they are disjoint
but E 	= T c, so that Y takes on values in {E,T ,N}
where N = (E ∪ T )c = {no response and no toxic-
ity}. This is appropriate if, for example, toxicity is irre-
versible organ damage or regimen-related death. When
it is possible for both E and T to occur, the out-
come is bivariate binary, Y = (YE,YT ), where Yk in-
dicates the outcome k = E,T . For either case, denote
the outcome probabilities for a patient given dose x by
π(x, θ) = (πE(x, θ),πT (x, θ)).

For the trinary outcome case, the three-parameter
model used by Thall and Russell (1998) is moti-
vated by the idea that the three outcomes are or-
dered in the sense that N < E < T , with the idea
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that higher x is more likely to push the patient’s out-
come upward along this scale. The model is given by
πT (x, θ) = g−1(β0 + β2x) and πE(x, θ) = g−1(β0 +
β1 + β2x) − πT (x, θ), where g is a link function,
θ = (β0, β1, β2) and β1, β2 > 0. This model forces
πE(x, θ) to be very nonmonotone in x. A more flex-
ible four-parameter model (Thall and Cook, 2004,
Section 3) is given by Pr(E|T c, x, θ) = g−1(βE,0 +
βE,1x) and πT (x, θ) = g−1(βT,0 + βT,1x), where θ =
(βE,0, βE,1, βT,0, βT,1) and βE,1, βT,1 > 0. Using this
model, πE(x, θ) = Pr(E|T c, x, θ){1 − πT (x, θ)}. For
either model, f (Y |x, θ) = ∏

y=E,N,T {πy(x, θ)}I (Y=y).
For the bivariate binary case, the model must spec-

ify the four elementary outcome probabilities πa,b(x,

θ) = Pr(YE = a,YT = b|x, θ) for a, b ∈ {0,1}. The
p.m.f. of a patient treated at dose x is f (Y |x, θ) =∏1

a=0
∏1

b=0{πa,b(x, θ)}I (YE=a,YT =b). The general ap-
proach used by Thall and Cook (2004) and Thall,
Nguyen and Estey (2008) is to first specify the two
marginal dose-outcome distributions πk(x, θ) =
g−1{ηk(x, θ)}, in terms of link function g and lin-
ear terms ηk(x, θ) for k = E and T , and then define
the joint distribution in terms of the marginals. Tem-
porarily suppressing x and θ , πa,b is determined by
(a, b,πE,πT ,ψ), where ψ is an association parame-
ter. This may be done tractably using a Gumbel distri-
bution,

πa,b = πa
E(1 − πE)1−aπb

T (1 − πT )1−b

+ (−1)a+bπE(1 − πE)(6)

· πT (1 − πT )

(
eψ − 1

eψ + 1

)
,

with ψ real-valued, or a Gaussian copula, C(u, v) =
�ψ(�−1(u),�−1(v)), for 0 ≤ u, v ≤ 1, where �ψ is
the bivariate standard normal c.d.f. with correlation ψ

and � is the univariate N(0,1) c.d.f. Under this copula,
π0,0 = �ψ(�−1(1 − πE),�−1(1 − πT )) with π1,0 =
1−πT −π0,0, and π1,1 = πE +πT +π0,0 −1. If g is the
probit link, πk = �(ηk) and π0,0 = �ψ(−ηE,−ηT ).

A major practical issue is that the ηk(x, θ)’s should
be realistic but the model must be numerically trac-
table, to facilitate the processes of fitting historical
data if available, prior elicitation, and computing pos-
terior decision criteria thousands of times while sim-
ulating the trial during the design process. It often is
important to allow πE(x, θ) to be nonmonotone in x,
which may be appropriate for biological agents, such
as viral vectors expressing cytokines aimed at trig-
gering an immune response to kill tumor cells. This
may be done very effectively by assuming a simple

quadratic ηE(x, θ) = βE,0 + xβE,1 + x2βE,2, although
other functions may be used. While ηT (x, θ) = βT,0 +
xβT,1 with Pr(βT,1 > 0) = 1 is appropriate for cyto-
toxic agents, in other settings a quadratic also may be
used for ηT (x, θ). For example, if “toxicity” includes
infection and an anti-cancer agent also kills bacterial or
fungal infections, then πT (x, θ) may be nonmonotone
and actually decrease with higher x.

Thall and Cook (2004) provide a penalized least
squares method for establishing the prior p(θ |ξ) based
on elicited means μ

(e)
y,j and standard deviations (s.d.’s)

σ
(e)
y,j of πy(xj , θ) for y = E,T and several doses

x1, . . . , xm. Since each prior mean μy,j (ξ) and s.d.
σy,j (ξ) of πy(xj , θ) is a function of the fixed hy-
perparameters ξ characterizing p(θ |ξ), nonlinear least
squares may be used to solve for ξ by minimizing the
objective function

SS(ξ) = ∑
y=E,T

m∑
j=1

[{
μ

(e)
y,j − μy,j (ξ)

}2

+ {
σ

(e)
y,j − σy,j (ξ)

}2]
(7)

+ c
∑

1≤j<k≤m

{σ̃j − σ̃k}2,

where each σ̃k is a prior standard deviation in ξ . The
second sum in (7) is included to limit the variability
among the prior s.d.’s, using a small penalty constant
c > 0.

3.2 Dose Admissibility and Efficacy-Toxicity
Trade-offs

The dose-finding algorithm relies on two different
types of posterior decision criteria to choose x from a
finite set of possibilities, X = {x(1), . . . , x(k)}. The first
criterion determines which doses are acceptable, and
the second chooses the best acceptable dose. Let πE

be a fixed lower limit on πE(x, θ) and πT a fixed up-
per limit on πT (x, θ). The fixed limits are specified by
the physician. Let p∗

E and p∗
T both be fixed upper prob-

ability cut-offs, usually selected from the range 0.80 to
0.95. A dose x is unacceptable if it is likely to have
either unacceptably low efficacy or unacceptably high
toxicity, formally if

Pr{πE(x, θ) < πE|Dn} > p∗
E or

(8)
Pr{πT (x, θ) > πT |Dn} > p∗

T .

A dose x is acceptable if neither inequality in (8) holds.
The set of acceptable doses in X based on Dn is de-
noted by An. These criteria are essentially those used
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by Thall, Simon and Estey (1995) as stopping rules
in phase II trials, and the second criterion in (8) is
used routinely for deciding whether to stop a phase I
trial, for example, when using the CRM, if the lowest
dose is too toxic. For example, when using EffTox, if
p∗

E = p∗
T = 0.90, the rules in (8) are equivalent to say-

ing that x is acceptable if Pr{πE(x, θ) > πE|Dn} >

0.10 and Pr{πT (x, θ) < πT |Dn} > 0.10. While, intu-
itively, these may seem like rather weak requirements,
if one replaces 0.10 by a large cut-off such as 0.80
by setting p∗

E = p∗
T = 0.20 in (8), then the rules are

nearly certain to stop any trial very quickly after a
very small number of patients, due to the large vari-
ability of the posterior probabilities used in (8). This
gets at the important distinction between determining
the acceptability of x for the purpose of dose-finding
with small to moderate sample sizes, and the confir-
matory statement “x is safe and effective” formalized
by inequalities such as Pr{πE(x, θ) > πE|Dn} > 0.95
and Pr{πT (x, θ) < πT |Dn} > 0.95. Such confirmatory
conclusions are inappropriate based on early phase trial
results since they can only be established convincingly
by a large sample size, regardless of what the posterior
probabilities may be.

To describe the second decision criterion, for sim-
plicity, I will focus on the bivariate binary case,
where π(x, θ) ∈ [0,1]2. To compare two acceptable
doses, say, x(1) and x(2), based on the posteriors of
π(x(k), θ) = (πE(x(k), θ),πT (x(k), θ)) for k = 1,2,
some method for reducing each pair π(x(k), θ) to a
one-dimensional criterion is required, as inevitably is
the case when a statistic of dimension ≥ 2 is used for
comparison. The EffTox method does this by formal-
izing the idea that a higher risk of toxicity is a rea-
sonable trade-off for a higher probability of achiev-
ing anti-disease effect. The method first computes
the posterior means μ(n)(x) = (μ

(n)
E (x),μ

(n)
T (x)) =

(E{πE(x, θ)|Dn},E{πT (x, θ)|Dn}) for each x ∈ X .
Each μ(n)(x) is then reduced to a one-dimensional cri-
terion by the following geometric construction, which
begins by eliciting several pairs of fixed probabilities,
p(j) = (p

(j)
E ,p

(j)
T ), j = 1, . . . ,m, that the physician

considers equally desirable. A target curve, C , is fit to
the elicited pairs, treating pT as a monotone increas-
ing function of pE , or, equivalently, reversing the roles
of pT and pE . This should be done using a graphical
representation of C to provide a means for the physi-
cian to adaptively modify his/her target pairs. Given
p ∈ [0,1]2, let pC denote the point where the straight
line segment in [0,1]2 passing through p and the ideal

point (1, 0) intersects C . The desirability of p may be
defined as

δ(p) = exp
{
− ‖p − (1,0)‖

‖pC − (1,0)‖
}
,(9)

where ‖ · ‖ denotes Euclidean distance. This has max-
imum δ(1,0) = 1, with δ(p) decreasing as p moves
away from (1, 0) along any straight line in [0,1]2. Sev-
eral other definitions of δ(p) may be used, although (9)
is reasonable and tractable. The contour of all p having
desirability u is Cu = {p ∈ [0,1]2 : δ(p) = u}, so that
C = Ce−1 . Denote the set of real numbers u such that
Cu 	= φ by RC . Since u 	= v �⇒ Cu ∩ Cv = φ, the fam-
ily {Cu, u ∈ RC } partitions [0,1]2. This construction is
used to quantify the desirability of a dose x by eval-
uating (9) at p = μ(n)(x). To compare doses x(1) and
x(2), we compute μ(n)(x(1)) and μ(n)(x(2)), illustrated
by the two round dots in Figure 2a, and then compute
their desirabilities δ(μ(n)(x(1))) and δ(μ(n)(x(2))), as
shown in Figure 2b. The elicited pairs are represented
by the symbol “×” in Figure 2b, which also shows C
and several Cu along with their numerical u values.
During the trial, if no dose is acceptable, formally if
An = φ, then accrual is stopped with no dose selected;
otherwise each cohort is given the dose x maximiz-
ing δ(μ(n)(x)) among all x ∈ An. This methodology
has been used for dose-finding trials in acute stroke,
treatment for GVHD in SCT, chemotherapy of acute
leukemia, and anergized cells given post-transplant to
accelerate immune reconstitution following allotx.

It is important to consider the consequences of how
one sets goals in the bivariate binary outcome case.
Recall that πa,b = Pr(YE = a,YT = b) with πE =
π1,1 +π1,0 and πT = π1,1 +π0,1. Several authors have
proposed choosing x to maximize π1,0, the probability
of the best possible outcome, efficacy and no toxicity,
or the conditional probability πE|T c = π1,0/(1 − πT ).
Unfortunately, most new treatments simply don’t work
that way. A new therapy that is either more ag-
gressive, for example, a higher dose, or highly ac-
tive biologically is likely to decrease π0,0 and in-
crease some combination of π1,0, π0,1 and π1,1. Treat-
ing π = (π0,0, π1,0, π0,1, π1,1) as fixed for simplicity,
suppose that standard treatment gives outcome prob-
ability vector π(0) = (0.50,0.10,0.30,0.10), which
has marginals (πE,πT ) = (0.20,0.40). Suppose that
experimental treatment x(1) has π(1) = π(x(1)) =
(0.30,0.20,0.30,0.20), which has marginals (π

(1)
E ,

π
(1)
T ) = (0.40,0.50), a doubling of π

(0)
E from 0.20 to

0.40 and a 25% increase in π
(0)
T from 0.40 to 0.50. Sup-

pose that a competing experimental treatment x(2) has
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(a) (b)

FIG. 2. Example of posterior means μ(n)(x(j)) = (E{πE(x(j), θ)|datan}, E{πT (x(j), θ)|datan}) for two dose pairs x(1) and x(2) (denoted
by round dots), given alone in the left-hand graph (Figure 2a), and with the addition of the target contour C constructed from elicited target
points (denoted by ×) and several resulting desirability contours (Figure 2b).

π(2) = π(x(2)) = (0.30,0.20,0.45,0.05), which has
marginals (π

(2)
E ,π

(2)
T ) = (0.25,0.50), a slight increase

in π
(0)
E from 0.20 to 0.25 with the same increase in π

(0)
T

as given by x(1). Since π1,0(x
(1)) = π1,0(x

(2)) = 0.20
and πE|T c(x(1)) = πE|T c(x(2)) = 0.40, a method based
on either π1,0 or πE|T c would consider x(1) and x(2) to
be equivalent. In contrast, the trade-off based method
would consider x(1) superior to x(2).

4. FINDING PATIENT-SPECIFIC DOSES

Thall, Nguyen and Estey (2008) generalized EffTox
to account for patient heterogeneity by using the pa-
tient’s vector Z = (Z1, . . . ,Zq) of covariates observed
at enrollment. The method requires historical data, H,
to obtain an informative distribution on covariate ef-
fect parameters for use in trial design and conduct. The
model and method account for dose effects, covariate
effects and possible dose-covariate interactive effects
on πE and πT . The design assigns each patient a dose
that is individualized based on the patient’s Z vector.
This is very different from conventional early phase
trial designs, since (i) patients with different covari-
ates may receive different doses at the same point in
the trial, (ii) the entry criteria may change adaptively,
with the possibility that enrollment may be shut down
for some patients but continued for others, and (iii) at

the end of the trial a computer-based rule is provided
for assigning each future patient’s x based on his/her
Z vector, rather than choosing a single dose for all pa-
tients.

For designs with individualized treatment assign-
ment rules utilizing Z (cf. Ratain et al., 1996; Babb and
Rogatko, 2001), the ith patient’s data are (x(i),Z(i),

Y (i)), the probability model is elaborated by defining
f (y|Z,x, θ) for a patient with covariates Z who re-
ceives treatment x, and αn is a function of (Z, Dn). To
accommodate Z and historical data in the design de-
scribed here, let τ denote either a dose x in the trial
or historical treatment from the set {τ1, . . . , τm}. The
probability model given earlier is extended by defining
the marginal probabilities, πk(τ,Z, θ) = g−1{ηk(τ,Z,

θ)}, k = E,T , for a patient with covariates Z given
dose x, assuming linear terms of the general form

ηk(τ,Z, θ) = βkZ +
m∑

j=1

(μk,j + ξk,jZ)I (τ = τj )

(10)
+ {ωk(x,αk) + γkZ}I (τ = x)

for k = E,T , where βkZ = βk,1Z1 + · · · + βk,qZq ac-
count for covariate main effects, γkZ = γk,1Z1 + · · · +
γk,qZq account for dose-covariate interactions, μk =
(μk,1, . . . ,μk,m) are historical main treatment effects,
ξk,jZ = ξk,j,1Z1 + · · · + ξk,j,qZq account for covari-
ate interactions with the j th historical treatment, and
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ωE(x,αE) and ωT (x,αT ) are the usual dose-outcome
functions characterizing main dose effects, and ωE and
ωT may be quadratic or linear functions of x, as given
earlier. For fitting the historical data, (10) takes the
form

ηk(τj ,Z, θ) = μk,j + βkZ + ξk,jZ
(11)

for j = 1, . . . ,m and k = E,T .

For fitting the data obtained during the trial, (10) is

ηk(x,Z, θ) = ωk(x,αk) + βkZ + xγkZ
(12)

for k = E,T .

A much more parsimonious model that accounts
for dose-covariate interactions is obtained by replac-
ing xγkZ in (12) with either γk{ωk(x,αk) × βkZ} or
γk{x × βkZ} where each γk is now a single parameter
rather than a q-dimensional vector. This model requires
only 2 dose-covariate interaction parameters instead of
2q. This is motivated by the idea that γk{ωk(x,αk) ×
βkZ} is similar to the one-degree of freedom interac-
tion term in the model for a two-way layout with one
observation per cell given by Tukey (1949). Unfortu-
nately, in practice, this parsimonious model is a com-
plete disaster since, using either ωk(x,αk) or x, it gives
a very poor fit to the trial data when dose-covariate in-
teractions of any complexity are present. So this more
parsimonious model is a cute idea that simply doesn’t
work.

Generalizing the EffTox design to accommodate Z

requires much more than writing down a model. The
set An(Z) of acceptable doses for a patient with co-
variates Z is defined to be all x ∈ X satisfying the con-
straints

Pr{πE(x,Z, θ) < πE(Z)|Dn ∪ H} < p∗
E and

(13)
Pr{πT (x,Z, θ) > πT (Z)|Dn ∪ H} < p∗

T ,

where πE(Z) and πT (Z) are acceptability bounding
functions, constructed as follows. First, a representa-
tive set of covariate vectors, {Z(1), . . . ,Z(K)}, is de-
termined. For each Z(j), the physician specifies the
smallest probability of efficacy, π

(j)
E , and the largest

probability of toxicity, π
(j)
T , that are acceptable for a

patient having those covariates. For k = E,T , denote
ζk(Z) = E(βkZ|H), the historical posterior mean of
the covariate main effect linear combination. To con-
struct the bounding function πE(Z) for πE(x,Z, θ),
the K pairs (ζE(Z(1)), π

(1)
E ), . . . , (ζE(Z(K)),π

(K)
E ) of

estimated linear terms and elicited lower bounds on

πE are used as regression data to fit a simple linear
or quadratic curve by least squares, using ζE(Z(j)) as
the predictor and π

(j)
E as the outcome variable. De-

noting the estimated outcome under the fitted regres-
sion model by π̂E(ζE(Z)), the efficacy lower bounding
function is πE(Z) = π̂E ◦ ζE(Z). The toxicity upper
bounding function πT (Z) = π̂T ◦ ζT (Z) is computed
similarly from (ζT (Z(1)), π

(1)
T ), . . . , (ζT (Z(K)),π

(K)
E ).

When constructing these functions, it is important to
plot the scattergrams of the constructed regression data
sets along with the fitted curves, which the physician
may use to guide adjustment of some π

(j)
E or π

(j)
T

values, if desired, to obtain acceptability bounding
functions πE(Z) and πT (Z) that make sense clini-
cally. These constructions map each patient’s Z vec-
tor into the probability bounds used in (13) to deter-
mine whether each x ∈ X is acceptable for that patient.
To define a covariate-specific dose desirability index,
we evaluate δ(p) given by (9) at p = μ(n)(x,Z) =
(E{πE(x,Z, θ)|Dn},E{πT (x,Z, θ)|Dn}), and denote
this by δn(x,Z). For two patients with different co-
variates Z1 	= Z2, it may be the case that An(Z1) 	=
An(Z2), including the possibility that An(Z) = φ

for one patient but not the other. Even if An(Z1) =
An(Z2), the x that maximizes δn(x,Z1) may not be
the same as that maximizing δn(x,Z2).

Figure 3 illustrates how the dose-efficacy and dose-
toxicity probability curves in x also may change
with Z. The curves are given for a particular fixed
θ true in which the interactive effects of x and Z are
substantial, taken from the acute leukemia application
discussed by Thall, Nguyen and Estey (2008) where
Z = (AGE, cytogenetic abnormality), with the sec-
ond covariate coded as a three-category variable hav-
ing possible values {Good, Intermediate, Poor} de-
fined in terms of prognostic level. The rows in Fig-
ure 3 correspond to three different Z values. In the
left column, the probabilities πE(x, θ) are represented
by circles and πT (x, θ) by triangles, with an open
(filled) circle or triangle representing an unaccept-
able (acceptable) dose. The corresponding desirabili-
ties are given in the right column, obtained by eval-
uating δ(πE(x,Z, θ true),πT (x,Z, θ true)). The figure
shows that the dose-outcome functions πE(x, θ) and
πT (x, θ) may change dramatically with Z, that the ef-
fect of prognosis may be as large as or larger than that
of dose, and that interactions between x and Z may
be quite important. Figure 3 also illustrates how the
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FIG. 3. Marginal outcome probabilities πE(x, θ), given as circles, and πT (x, θ), given as triangles (left column) and corresponding de-
sirabilities (right column) for each of three different patient prognostic vectors, under a fixed θ . Solid (open) points correspond to acceptable
(unacceptable) doses.

desirability function δ reduces each two-dimensional
(pE,pT ) to a one-dimensional value that may be used
to compare doses for each Z.

To apply this methodology, the first step is to ana-
lyze H under several models, choose the model pro-
viding the best fit, compute p(β,ψ |H), and determine
noninformative priors on α and γ . During the trial,
when a patient with covariates Z is enrolled, An(Z)

is computed. If An(Z) = φ, the patient is not treated
on protocol. If An(Z) 	= φ, the patient is treated with
the dose x maximizing δn(x,Z). If An(Z

(j)) = φ for
all representative covariates, then the trial is stopped.
After the trial, given final data DN , the decision rules

based on p(θ |H ∪ DN) are used to select doses for fu-
ture patients.

Our computer simulation studies of this new method-
ology have produced some disquieting messages. The
first is that ignoring established prognostic covariates
may lead to either very unsafe or very ineffective dose
assignments for many patients both during and after a
phase I or phase I/II trial. The second message is that, if
dose-covariate interactions are present, ignoring them
by using an additive model for the effects of x and Z

also may lead to very poor dose assignments. That is,
the common practice of ignoring known patient het-
erogeneity in early phase trials may lead to bad science
and bad clinical practice.
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5. ACCOUNTING FOR MULTIPLE TOXICITIES

5.1 Outcomes and Model

Bekele and Thall (BT, 2004) proposed a dose-finding
method based on a vector Y = (Y1, . . . , YJ ) of several
qualitatively different types of toxicity, with Yj an or-
dinal variable recording the j th toxicity’s severity. The
method was motivated by a phase I trial to choose a
dose of gemcitabine, in mg/m2, from {100, . . . ,1000}
when combined with a fixed dose of 50 cGy external
beam radiation, both given prior to surgery, for patients
with soft tissue sarcoma. The design was developed
working with a team of three oncologists who had ex-
tensive experience treating sarcomas. The point of de-
parture from conventional methods is that the design
distinguishes between different types of toxicity, and it
also accounts for the severity levels of each.

Denote the mj +1 severity levels of Yj by {yj,0, yj,1,

. . . , yj,mj
}. For example, in the sarcoma trial the 4 lev-

els of liver toxicity were yj,0 = {grade 0 or 1}, yj,1 =
{grade 2}, yj,2 = {grade 3} and yj,3 = {grade 4}.
Binary Yj corresponds to mj = 1. Using standard-
ized doses x = log{(raw dose)/1000}, so that X =
{−2.30,−1.61, . . . ,0}, the distribution of Y |x was
modeled using the method of Albert and Chib (1993),
in terms of the J -vector of Gaussian latent vari-
ables ζ = (ζ1, . . . , ζJ ) with E(ζj |x) = βj,0 + xβj,1,
var(ζj ) = 1 and correlation matrix �, by defining Yj =
yj,k if γj,k ≤ ζj < γj,k+1 for k = 0,1, . . . ,mj and
j = 1, . . . , J for cut-off parameters γj = (γj,1, . . . ,

γj,mj
) satisfying −∞ = γj,0 < γj,1 < · · · < γj,mj

<

γj,mj+1 = +∞, with γj,1 ≡ 0 to ensure identifi-
ability. This formulation greatly facilitates MCMC
computations used to obtain posterior quantities. De-
noting the 2J -vector of regression parameters β =
(β1,0, β1,1, . . . , βJ,0, βJ,1), the vector γ = (γ1, . . . , γJ )

having m+ = m1 +· · ·+mj entries, and the J (J −1)/2
off-diagonal elements of � by ρ = (ρ1,2, ρ1,3, . . . ,

ρJ−1,J ), the model parameter vector is θ = (β, γ, ρ).

The marginal distribution of Yj |x is given by

πj,k(x, θ) = Pr(Yj = yj,k|x, θ)

= �(γj,k+1 − βj,0 − βj,1x)(14)

− �(γj,k − βj,0 − βj,1x).

To obtain an expression for the joint distribution, de-
note the p.d.f. of a multivariate normal random vector
W with mean vector μ and variance–covariance matrix
� by φW(·|μ,�). In matrix notation, E(ζ |x) = Xβ ′,
where X is the J × 2J block diagonal matrix with J

identical blocks (1 x ). Denote the intervals Gj,k =

(γj,k, γj,k+1]. For observed vector k = (k1, . . . , kJ ) of
toxicity severity levels, the outcome is Y = y(k) =
(y1,k1, . . . , yJ,kJ

), which corresponds to latent ζ val-
ues in the J -dimensional set G(k, γ ) = G1,k1 × · · · ×
GJ,kJ

. A single patient’s likelihood contribution is

L(Y |x, θ)

=
m1∏

k1=0

· · ·
mJ∏

kJ =0

{∫
G(k,γ )

φZ(z|Xβ ′,(15)

�)dz

}I [Y=y(k)]
.

For priors, BT assume β ∼ N(μ,�), subject to
Pr(βj,1 > 0) = 1 for all j = 1, . . . , J, so that β is
2J -variate normal with all slope coefficients truncated
below at 0, but μ and � correspond to the untrun-
cated 2J -variate normal. This ensures that Pr(Yj >

yj,k|x,β) = 1 − �{γj,k − βj,0 − βj,1x} increases with
x for each j and k > 1. For each j with mj ≥ 2 (3
or more levels), {γj,2, . . . , γj,mj

} follow independent,
uninformative priors on the domain [0,10], with each
p(γj,k) ∝ 1, subject to the constraint 0 < γj,2 < γj,3 <

· · · < γj,Cj
, where the upper limit 10 on the support of

each p(γj,k) was chosen for numerical convenience.
The ρj,k’s are assumed to be i.i.d. N(0,1000), trun-
cated to have support [−1,+1], with � positive defi-
nite.

5.2 Total Toxicity Burden and Trial Conduct

The dose-finding method is based on toxicity sever-
ity weights, elicited as follows. The oncologists are
first asked to specify the J toxicities to be moni-
tored, including the severity levels of each. They are
then asked to specify a numerical severity weight
for each level of each toxicity within a positive-
valued numerical range with which they are com-
fortable, such as 0 to 10, or 0 to 100. The sever-
ity weights are denoted by w = (w1, . . . ,wJ ), where
wj = (wj,0,wj,1, . . . ,wj,mj

) are the severity weights
of the possible values (yj,0, yj,1, . . . , yj,mj

) of Yj , with
the obvious requirement wj,0 < wj,1 < · · · < wj,mj

;
otherwise, if wj,k = wj,k+1, then levels k and k + 1 of
Yj should be combined. The elicited severity weights
used in the sarcoma trial are illustrated in Figure 4. An
interesting practical point arose while assigning sever-
ity weights to myelosuppression, which is defined in
terms of low blood cell counts and is caused by effects
of chemotherapy on the bone marrow. At first, no dis-
tinction was made between myelosuppression occur-
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FIG. 4. The elicited toxicity severity weights used in the soft tissue sarcoma trial.

ring either with or without fever. During the process
of establishing w, however, the oncologists explained
that myelosuppression is much more severe when it
occurs with fever, since it is then life-threatening and
may be an impediment to further chemotherapy. This
led us to redefine myelosuppression occurring without
or with fever as two different types of toxicity. Figure 4
shows the severity weights 1 and 1.5 for grade 3 and 4
myelosuppression without fever, compared to weights
5 and 6 for grade 3 and 4 myelosuppression with fever.
Thus, in general, Y and w are elicited together, and this
process is not unlikely to involve iteration.

A patient’s total toxicity burden (TTB) is defined to
be

TTB =
J∑

j=1

mj∑
k=1

wj,kI (Yj = yj,k).(16)

For example, from Figure 4, a patient with grade 3 fa-
tigue, grade 3 nausea/vomiting and grade 4 myelosup-
pression without fever would have TTB = 0.5 + 1.5 +
1.5 = 3.5, whereas a patient with grade 4 myelosup-
pression with fever would have TTB = 6.0. Using the
conventional approach of defining a single binary out-
come Y indicating at least one grade 3 or 4 toxicity,
these two patients would be scored identically, with
both having Y = 1.

The posterior expected TTB of dose x is

τ(x, Dn) = E
(
TTB|x, Dn

)
(17)

=
J∑

j=1

mj∑
k=1

wj,kE{πj,k(x, θ)|Dn}.

The trial is conducted by establishing a targeted total
toxicity burden, TTB∗, and choosing each cohort’s x

to minimize |τ(x, Dn) − TTB∗|. This is analogous to
choosing a dose, based on a binary Y with π(x, θ) =
Pr(Y = 1|x, θ), using the CRM criterion to minimize
|E{π(x, θ)|Dn}−π∗| for given target probability π∗. It
is easy to show that, since wj,k−1 < wj,k and βj,1 > 0
for all j and k, τ (x, Dn) is increasing in x, so x

may be determined by a monotone search. The process
proposed by BT for establishing the target TTB∗ is
straightforward, albeit somewhat elaborate. The physi-
cians are first asked to specify a set of hypothetical pa-
tient cohorts and toxicity outcomes for each patient in
each cohort, with the cohorts defined so that the toxi-
city severities vary substantially between cohorts. BT
provide a detailed description of this process, and in
the sarcoma trial there were 16 hypothetical cohorts
of 4 patients each with the mean TTB of each co-
hort varying from TTB = 1.25 to 5.62. For each hy-
pothetical cohort, the oncologists are asked whether
observing its toxicity outcomes would lead them to
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escalate, repeat the current dose, or de-escalate for
the next cohort. The target TTB∗ is then defined as
the mean of the TTB values for which the decision
would be to repeat the current dose. For the sarcoma
trial, this yielded TTB∗ = 3.04. Computer simulations
of this methodology provided by BT show that it has
remarkably attractive OCs and makes decisions very
differently from conventional phase I designs. A co-
hort of four patients all with myelosuppression grade
4 without fever, patients #1, # 2 and # 3 with grade 3
fatigue, and patient #4 with grade 3 nausea/vomiting
would have TTB = {(1.5 + 0.5) + (1.5 + 0.5) + (1.5 +
0.5) + (1.5 + 1.5)}/4 = 2.25. The three oncologists all
agreed that the appropriate decision based on these out-
comes would be to escalate, whereas any conventional
method based on one binary toxicity indicator would
score this as 4 “toxicities” in 4 patients and certainly
would de-escalate.

6. OPTIMIZING DOSE AND SCHEDULE

6.1 A New Paradigm for Phase I Trials

Braun et al. (BTND, 2007) proposed a new para-
digm for phase I trials that jointly optimizes schedule
of administration and per-administration dose (PAD)
based on time-to-toxicity. This extends Braun, Yuan
and Thall (2005), who optimized schedule while as-
suming a fixed PAD. Although the model used by
BTND is very different from that underlying the TiTE
CRM (Cheung and Chappell, 2000) for dose-finding
based on time-to-toxicity, the BTND method is a prac-
tical extension in that it allows schedule as well dose
to be varied. The treatment regime is x = (s, ds),
where s = (s1, . . . , sk) are successive administration
times and ds = (d(s1), . . . , d(sk)) are the doses given
at those times. BTND address the problem of evalu-
ating a K × J matrix of K nested schedules, s(1) ⊂
s(2) ⊂ · · · ⊂ s(K), where the kth schedule is s(k) =
(s1, s2, . . . , sm(k)), so that m(1) < m(2) < · · · < m(K),
and J PADs, d(1) < d(2) < · · · < d(J ). The treatment
set evaluated by the design is X = {(s(k), d(j)) :k =
1, . . . ,K, j = 1, . . . , J }, and the total amount of the
agent given to the patient increases with both dose and
schedule. For example, a patient assigned PAD d(3)

under schedule s(2) = (s1, s2, . . . , sm(2) ) receives total
dose d(3)m(2) of the agent in m(2) successive adminis-
trations of d(3) each, unless therapy is terminated early
due to toxicity, so the planned ds(2) in x = (s(2), ds(2))

is the m(2)-vector with all entries d(3).
For this regime, it is helpful to distinguish between

two time scales, study time and patient time. Start-
ing at study time 0 when the trial begins, let e be a

given patient’s entry time, so that the patient’s assigned
schedule s is administered at study times e + s =
(e + s1, . . . , e + sk). Denote a patient’s time from en-
try at e to toxicity by T , so that at study time t the
patient’s observed time to toxicity or last follow-up is
T o(t) = T if e + T ≤ t and T o(t) = t − e if e + T > t .
Defining δ(t) = I (e + T ≤ t), the patient’s outcome
data at study time t are Y(t) = (T o(t), δ(t)). The prob-
ability model is constructed from the patient’s haz-
ard of toxicity, h(u|d, θ), associated with a single ad-
ministration of dose d given u days previously, and
we denote H(x|d, θ) = ∫ x

0 h(u|d, θ) du. Under the as-
sumption that effects of successive administrations of
the agent are additive, the overall hazard of toxicity at
study time t for a patient entering at e and treated with
x = (s, ds) is

λ(t |e, (s, ds), θ) =
k∑

j=1

h
(
t − e − sj |d(sj ), θ

)
,(18)

where h(u|d, θ) = 0 for all u < 0. The patient’s cumu-
lative hazard of toxicity at study time t is thus

�(t |e, (s, ds), θ) =
k∑

j=1

H
(
t − e− sj |d(sj ), θ

)
,(19)

and the probability that the patient has not had toxi-
city by study time t is Pr(e + T > t |e, (s, ds), θ) =
exp{−�(t |e, (s, ds), θ}. Thus, h and H are expressed
in terms of patient time, whereas λ and � are expressed
in terms of study time. The probability distribution of
T is determined by the particular form of the single
administration hazard function h.

The model allows each patient’s actual x = (s, ds)

received to fall outside the set of KJ treatment config-
urations in X , provided that each dose in ds is an ele-
ment of {d(1), . . . , d(K)}. In particular, the elements of
ds need not be identical. This accommodates the possi-
bility that a patient’s treatment does not go as planned,
for example, due to interim dose reductions follow-
ing moderate toxicity or deviations from the planned
schedule. It also allows the possibility that the patient’s
planned x may be changed before the schedule is com-
pleted, based on other patients’ data observed during
the patient’s therapy.

At study time t , let xi(t) denote the portion of the
ith patient’s treatment regime xi that has been adminis-
tered by that time and let Dt = {(T o

i (t), δi(t), ei, xi(t)),

i = 1, . . . , n(t)} denote the current data. The likelihood
at study time t is

L(Dt |θ) =
n(t)∏
i=1

{λ(T o
i (t)|ei, xi(t), θ)}δi(t)

(20) · exp{−�(T o
i (t)|ei, xi(t), θ)}.
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BTND assume that, for each j = 1, . . . , J, the
single-administration hazard function associated with
dose d(j) is a triangle, formally

h
(
u|d(j), θj

) = 2αju

(βj + γj )βj

I (0 ≤ u ≤ βj )

+ 2αj (βj + γj − u)

(βj + γj )γj

(21)

· I (βj < u ≤ βj + γj ),

where θj = (αj , βj , γj ), so that θ = (θ1, . . . , θJ ) has
3J elements. The j th triangle has base of length βj +
γj , area αj , and maximum height h(βj |d(j), θj ) =
2αj/(βj + γj ). Thus, for u ≥ βj + γj , the cumulative
single-administration hazard is Hj(u|d(j), θj ) = αj .
Under this model, since any schedule (s1, . . . , sk) is
finite, given θ and k-vector of PADs ds = (d(j), . . . ,

d(j)), the cumulative hazard �(t |(s, ds), θ) has the fi-
nite maximum value kαj . Consequently, given θ, the
probability that the patient never experiences toxicity
is F̄ (t |(s, ds), θ) = exp(−kαj ) for all t > sk +βj +γj ,

with the obvious elaboration of the upper limit on
F̄ (t |(s, ds), θ) if the elements of ds are not identical.

The triangular form of h may seem to be an oversim-
plification of a complex phenomenon. In application,
however, it is quite flexible and yields a very robust
trial design. Figure 5 shows the cumulative hazard of
toxicity for a patient treated with a fixed PAD accord-
ing to the 4-administration schedule s = (0,3,10,13).
The shaded area represents H(12), the cumulative haz-
ard of toxicity by day 12. The smoothness of the curve
H(u) for 0 ≤ u ≤ 40 that results from summing four

Time (in days)

H
az

ar
d 

of
 T

ox
ic

ity

0 3 10 13 27 30 37 40

FIG. 5. Illustration of triangular component hazards for admin-
istrations on days 0, 3, 10 and 13, and the resulting cumulative haz-
ard function. The shaded region is the cumulative hazard, H(12),
of toxicity by day 12.

triangles and the fact that the parameters (αj , βj , γj )

characterizing the j th triangle corresponding to d(j)

are estimated from the accumulating data together pro-
vide an intuitive motivation for the model’s flexibil-
ity and robustness. This was borne out by the exten-
sive simulation studies reported by BTND. In the set-
ting where only schedule is varied with PAD fixed, Liu
and Braun (2009) have studied the use of a smooth
component hazard function, a 2-parameter Weibull,
h(u|α,β) = eβαuα−1 exp(−uαeβ) for u > 0, where
α > 0 and β is real-valued. This allows h to be non-
monotone if α ≥ 2 or decreasing if 0 ≤ α < 2.

6.2 Trial Conduct

Given an interval [0, t∗] large enough to reliably
evaluate T under the longest schedule, the physi-
cian specifies a target π∗ = Pr(T ≤ t∗). For brevity,
I will temporarily index a patient’s assigned treatment
(s(k), d(j)) by (k, j), and denote the c.d.f. of T associ-
ated with x = (k, j) by Fk,j (θ) = Pr(T ≤ t∗|(k, j), θ).
Since L(Dt |θ) and hence the posterior p(θ |Dt ) change
continuously with t during the trial, necessarily, x ∈ X
is chosen for each newly enrolled patient, that is,
c = 1. A patient accrued at study time t is assigned
the pair (k, j) ∈ X minimizing the objective function
|E{Fk,j (θ)|Dt }−π∗|, similar to the CRM. Assignment
of x using this criterion is subject to the following two
safety rules. Given a maximum toxicity probability,
Fmax, specified by the physician, the schedule-dose
pair (k, j) is acceptable if Pr(Fk,j (θ) > Fmax|Dt ) <

p∗, where p∗ is a fixed upper cut-off such as 0.80 or
0.90. If no pair in X is acceptable, the trial is stopped.
This is similar to the toxicity portion of the accept-
ability criteria (8) of the EffTox methodology. The
second safety rule is that escalation from (k, j) is re-
stricted in that no untried dose-schedule combination
may be skipped, specifically the next patient may be
treated at x = (k + 1, j), (k, j + 1) or (k + 1, j + 1),
but at no higher pair. There is no such constraint on
de-escalation. While developing this methodology, we
initially tried using the more restrictive constraint that
does not allow diagonal escalation, from (k, j) to un-
tried (k + 1, j + 1), but this yielded a design with very
poor properties. This is the case essentially because
this constraint makes exploration of the 2-dimensional
set of KJ schedule-PAD pairs unfeasible, and, in fact,
it provides no additional measure of safety. While
BTND recommended that the first patient be treated at
the safest pair (k, j) = (1,1), in practice, the physician
might wish to start at (1,2), (2,1) or (2,2).
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It may seem self-evident that this method is greatly
superior to any comparable method that fixes sched-
ule and only varies dose, since an optimal combina-
tion (s(k), d(j)) is simply ignored if the fixed schedule
is not s(k). The simulations reported by BTND clearly
illustrate this point. Currently, however, it still is stan-
dard practice in phase I trials to guess what schedule
might be best, possibly based on animal data, and pro-
ceed in humans by varying only dose. As described
by BTND, this new methodology has been used to
conduct an allotx trial of the post-transplant agent 5-
azacitidine, which is thought to kill leukemia cells by
reactivating tumor suppressor genes while also enhanc-
ing graft-versus-leukemia effect.

7. DISCUSSION

Each of the designs reviewed here includes one or
more more aspects of treatment or outcome in an early
phase trial that are ignored by standard designs. The
price of accommodating such additional complexity is
a much more structured model and method. This of-
ten requires substantially more work for trial design
and conduct, including analysis of historical data, elic-
itation of priors and design parameters, development
of computer software, carrying out simulations to cal-
ibrate design parameters and establish operating char-
acteristics, and the difficult process of real time data
monitoring during trial conduct. In each case, however,
the design provides advantages over standard methods
so large that the comparisons may seem unfair. Evi-
dently, accounting for both anti-disease effect and tox-
icity is a good idea, ignoring covariates is a bad idea,
quantifying the clinical importance of different types
and grades of toxicities is a good idea, and ignoring
schedule effects is a bad idea. For example, the op-
timal treatment pair determined by the design in the
5-azacitidine trial was (40 mg/m2 per administration,
3 cycles), which simply could not have been found
using a conventional dose-finding method that fixes
schedule at 1 cycle. While each of the designs relies
on a model with a nontrivial number of parameters,
which in turn often requires elaborate prior specifica-
tion and sophisticated numerical methods, the amount
of information per patient also is much greater. The
final questions are whether such designs have good
properties, which the computer simulations show they
do, and whether they can be implemented in practice,
which has been the case for all of the designs discussed
here.

For most early phase trials, conventional methods for
determining sample size based on hypothesis testing or

estimation may be of little use. To determine a planned
maximum sample size for a phase I or I/II trial, I ask
the physicians the anticipated accrual rate, which often
is a range of values, the desired maximum trial dura-
tion, and cost or other resource limitations, such as the
amount of a specialized agent that feasibly can be pro-
duced in the laboratory. For each of several feasible
maximum sample sizes, I simulate the trial and also
compute posterior estimates of important parameters
based on illustrative data sets. I then show these re-
sults to the physician and ask him/her to choose a max-
imum sample size on that basis. If the largest feasible
sample size does not yield a reasonably reliable design,
I recommend that the trial not be conducted. Using this
practical approach, in my experience planned phase I
or I/II sample sizes usually range from 24 to 60.

The most severe difficulties in achieving widespread
implementation of outcome-adaptive methods in early
phase clinical trials are computational and sociolog-
ical. The first practical requirement is portable, high
quality computer software for implementation, includ-
ing statistical programs that perform the necessary
computations for specific methods and, ideally, graphi-
cal user interfaces that communicate with established
databases and statistical programs to facilitate real-
time data entry and computation of adaptive decision
criteria during the trial. An “elephant in the living
room” of outcome-adaptive methods for clinical trials
is that constructing and implementing such information
systems in medical environments is often much more
difficult, expensive and time-consuming than develop-
ing a particular statistical method. Moreover, once such
a system is in place, the process of entering the patient
data required by an outcome-adaptive method is time-
consuming and potentially error prone.

A natural question is whether one can construct prac-
tical designs that address the problems that arose in
the SCT trial described in the Introduction. Such de-
signs would optimize multiple schedule-dose combi-
nations of several agents used in combination based on
a vector of appropriately chosen efficacy and toxicity
outcomes, possibly accounting for patient covariates
and schedule-dose-covariate interactive effects on the
outcomes, while adaptively choosing patient-specific
schedule-dose combinations in real time. This also
would require a decision criterion based on multiple
outcomes, possibly using either efficacy-toxicity trade-
offs or numerical utilities (Houede et al., 2010). Cur-
rently, we are working to develop new designs that in-
clude various combinations of these extensions. In my
experience, however, early phase trials are so complex
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that most trials cannot be optimally designed until after
they already have been carried out, and a “one size fits
all” design simply does not exist.

Clinical trials are viewed very differently by the
pharmaceutical companies who produce and supply
new agents, by regulatory agencies, by institutional re-
view boards, by administrators who provide infrastruc-
ture and resources for trial conduct, by the physicians
and nurses who actually treat the patients in a trial, and
by the patients themselves. Individuals with decision-
making authority in all of these different groups must
agree on a trial design before a trial may be conducted.
Many of these people regard the structure and proper-
ties of a particular statistical design as technicalities too
complicated to understand and at most marginally rel-
evant. Most early phase trials are conducted using very
simple conventional methods that do not require com-
puters and are easy to implement. Accounting more
fully for the complexities of both the actual treatment
regimes and the patients’ clinical outcomes is a dou-
ble edged sword, since the greater safety and reliability
that such methods provide is obtained only by work-
ing much harder in both design formulation and trial
conduct. Physicians who understand the advantages
of properly constructed outcome-adaptive designs and
want to use such methods are a minority, although
they often provide the initial motivation for developing
new statistical designs. Their desire to use outcome-
adaptive methods, and the recent shift in the pharma-
ceutical community, at least among statisticians, to em-
brace all things “adaptive” in clinical trials seem to be
harbingers of a different future. How this may actually
translate into practical reality in the coming years re-
mains to be seen.

The website http://biostatistics.mdanderson.org/
SoftwareDownload contains computer programs for
implementing the methods described in Sections 2
(ToxFinder), 3.1 and 3.2 (EffTox) and 5 (Dose Sched-
ule Finder).
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