
This article was published in the above mentioned Springer issue.
The material, including all portions thereof, is protected by copyright;
all rights are held exclusively by Springer Science + Business Media.

The material is for personal use only;
commercial use is not permitted.

Unauthorized reproduction, transfer and/or use
may be a violation of criminal as well as civil law.

ISSN 1867-1764, Volume 2, Number 1



Stat Biosci (2010) 2: 1–17
DOI 10.1007/s12561-010-9018-x

Evaluating the Impact of Prior Assumptions
in Bayesian Biostatistics

Satoshi Morita · Peter F. Thall · Peter Müller

Received: 12 September 2009 / Accepted: 5 March 2010 / Published online: 24 March 2010
© International Chinese Statistical Association 2010

Abstract A common concern in Bayesian data analysis is that an inappropriately in-
formative prior may unduly influence posterior inferences. In the context of Bayesian
clinical trial design, well chosen priors are important to ensure that posterior-based
decision rules have good frequentist properties. However, it is difficult to quantify
prior information in all but the most stylized models. This issue may be addressed by
quantifying the prior information in terms of a number of hypothetical patients, i.e., a
prior effective sample size (ESS). Prior ESS provides a useful tool for understanding
the impact of prior assumptions. For example, the prior ESS may be used to guide
calibration of prior variances and other hyperprior parameters. In this paper, we dis-
cuss such prior sensitivity analyses by using a recently proposed method to compute
a prior ESS. We apply this in several typical settings of Bayesian biomedical data
analysis and clinical trial design. The data analyses include cross-tabulated counts,
multiple correlated diagnostic tests, and ordinal outcomes using a proportional-odds
model. The study designs include a phase I trial with late-onset toxicities, a phase II
trial that monitors event times, and a phase I/II trial with dose-finding based on effi-
cacy and toxicity.
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1 Introduction

Understanding the strength of prior assumptions relative to the likelihood is a funda-
mental issue when applying Bayesian methods. The processes of formulating a puta-
tively non-informative prior or eliciting a prior from an expert area typically require
one to make many arbitrary choices, including the choice of particular distributional
forms and numerical hyperparameter values. In practice, these choices are often dic-
tated by technical convenience. A common criticism of Bayesian analysis is that an
inappropriately informative prior may unduly influence posterior inferences and de-
cisions. However, it is difficult to quantify and critique prior information in all but
the most stylized models. These concerns may be addressed by quantifying the prior
information in terms of an equivalent number of hypothetical patients, i.e., a prior
effective sample size (ESS). Such a summary allows one to judge the relative contri-
butions of the prior and the data to the final conclusions. A useful property of prior
ESS is that it is readily interpretable by any scientifically literate reviewer without re-
quiring expert mathematical training. This is important, for example, for consumers
of clinical trial results.

The purpose of this paper is to discuss prior sensitivity analyses in Bayesian bio-
statistics by computing the prior ESS for six case studies chosen from the recent lit-
erature. We apply an ESS method proposed by Morita, Thall and Müller (MTM) [7].
Some of our case studies require prior ESS values for a subvector θ1 of the parame-
ter vector θθθ = (θ1, θ2). The general definition allows the ESS to be specified for a
subvector θ1 of θθθ = (θ1, θ2). However, ESS(θ1) + ESS(θ2) typically does not equal
ESS(θ1, θ2), because θ1 in its marginal distribution often has a very different meaning
than θ1 in the joint distribution of (θ1, θ2).

The case studies consist of three Bayesian data analyses and three study designs.
The data analysis examples include small-sample cross-tabulated counts from an ani-
mal experiment to evaluate mechanical ventilator devices, bivariate normal modeling
of paired data from multiple correlated diagnostic serologic tests, and proportional-
odds modeling of ordinal outcomes arising from a study of viral effects in chick em-
bryos. The study design examples include a phase I trial with dose-finding using the
time-to-event continual reassessment method (TITE-CRM) [2], a phase II trial with a
stopping rule for monitoring event times, and a phase I/II clinical trial in which doses
were assigned based on both efficacy and toxicity.

Section 2 provides a motivating example. In Sect. 3, we briefly summarize MTM.
We discuss prior sensitivity in the real examples of Bayesian data analyses and study
designs in Sect. 4. We close with a brief discussion in Sect. 5.

2 A Motivating Example

The following example illustrates how the prior ESS may be used as an index of
prior informativeness in a Bayesian sensitivity analysis and as a tool for critiquing a
Bayesian data analysis when interpreting or formally reviewing the analysis.
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Carlin [1] analyzed small-sample contingency table data from an experiment car-
ried out to examine the effects of mechanical ventilator devices on lung damage in
rabbits. In the experiment, the lungs of newborn rabbits were altered to simulate lung
defects seen in human infants with underdeveloped lungs due to premature birth. The
aim was to learn about the joint effects of different frequency and amplitude set-
tings of the ventilators on lung damage. Six groups of six to eight animals each were
compared using a factorial design with three frequency values crossed with two am-
plitudes. For amplitude g (= 1, 2 for 20 and 60, respectively) and frequency h (= 1,
2, 3 for 5, 10, and 15 Hz, respectively), let Yg,h denote the number of animals with
lung damage out of ng,h studied and let πg,h denote the probability of lung damage in
a cell (g,h). The data are shown in Table 1. Each cell reports the empirical frequency
Yg,h/ng,h. Carlin [1] assumed the following logistic regression model:

πg,h(θθθ) = logit−1(μ + αg + βh + γhI(g=2)),

where I(g=2) indicates g = 2. Note that αg and βh are main effects for amplitude
and frequency, while γh is the interaction effect at frequency h and amplitude g = 2.
Hence, the model parameter is θθθ = (μ,α1, α2, β1, β2, β3, γ1, γ2, γ3), with dimension
d = 9. Carlin [1] assumed independent normal priors for μ, {αg}, {βh}, and {γh}:

μ ∼ N
(
0,10002), αg ∼ N

(
0, σ̃ 2

α

)
, βh ∼ N

(
0, σ̃ 2

β

)
, γh ∼ N

(
0, σ̃ 2

γ

)
.

(1)
Since the numbers of animals studied were very small, Carlin [1] explored the effect
of a range of non-informative prior distributions in the analysis.

We use prior ESS to investigate sensitivity of the inferences to hyperparameter
values by considering ten alternative choices that cover a range of reasonably non-
informative settings. The ten hyperparameter choices, labeled N1 to N10, are shown
in Table 2. We add the four priors, N1 to N4, which would have smaller ESS values
than those considered by Carlin [1] for priors N5 to N10. We apply MTM’s method
to compute an overall ESS for p(θθθ | θ̃θθ), and also ESSμ, ESSα , ESSβ , and ESSγ for
the marginal priors on the subvectors μ, ααα = (α1, α2), βββ = (β1, β2, β3), and γγγ =
(γ1, γ2, γ3) of θθθ .

The prior N10 with σ̃α = σ̃β = σ̃γ = 0.5 has ESS = 36.6, so that its impact is
roughly equal to that of the data (sample size n = 38) on the posterior inference.
Thus, based on its ESS, the prior N10 may be criticized as being overly informative.
Moreover, this prior has ESSγ = 96.1, thus it assumes very high prior information
for the interaction effects. Because the prior means of the interactions are 0, this prior
has the effect of shrinking the posterior estimates of the interaction parameters exces-
sively toward 0. This illustrates two important points. First, a seemingly reasonable
choice of (σ̃α, σ̃β, σ̃γ ) may give an excessively informative prior. Second, it is im-
portant to evaluate not only the overall ESS, but also the ESS values of subvectors of
θθθ of particular interest. Such ESS computations help readers to interpret the reported
posterior results, such as the estimates between the frequency groups displayed in
Carlin (Fig. 5.1) [1]. We will revisit this example below in Sect. 4.
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Table 1 Lung damage data
from Carlin [1]. Each cell
contains the number of animals
with lung damage over the
number studied at the
(amplitude, frequency)
combination

Amplitude Frequency (Hz)

5 10 15

20 1/6 0/6 0/6

60 4/6 0/6 4/8

Table 2 Summary of priors (standard error parameters) and computed ESSs of the example for cross-
tabulated counts in Carlin [1]

σ̃α σ̃β σ̃γ ESS ESSμ ESSα ESSβ ESSγ

N1 2.0 2.0 2.0 2.3 <0.001 2.0 3.0 6.0

N2 1.5 2.0 2.0 3.7 <0.001 3.6 3.0 6.0

N3 2.0 1.5 2.0 3.0 <0.001 2.0 5.3 6.0

N4 2.0 2.0 1.5 3.0 <0.001 2.0 3.0 10.6

N5 1.5 1.5 1.5 4.1 <0.001 3.6 5.3 10.6

N6 1.5 1.5 1.0 6.0 <0.001 3.6 5.3 23.9

N7 1.5 1.5 0.5 16.3 <0.001 3.6 5.3 96.1

N8 0.5 0.5 1.5 24.4 <0.001 32.0 48.0 10.6

N9 0.5 0.5 1.0 26.3 <0.001 32.0 48.0 24.0

N10 0.5 0.5 0.5 36.6 <0.001 32.0 48.0 96.1

3 Prior Effective Sample Size

We briefly summarize the definition of ESS proposed by MTM [7]. While the discus-
sion following this section does not require these details, we include this brief review
for completeness.

Let f (Y | θθθ) be the sampling model for a random vector Y indexed by parameter
vector θθθ = (θ1, . . . , θd). We use f (Y | θθθ) generically to denote either a probability
density function (pdf) or a probability mass function (pmf). The ESS is defined for
a given prior p(θθθ | θ̃θθ) on θθθ, having hyperparameters θ̃θθ, with respect to the sampling
model f (Y | θθθ). The approach of MTM is constructive. First, an ε-information prior
q0(θθθ | θ̃θθ0) is defined that is similar to p(θθθ | θ̃θθ) but is very vague in a suitable sense.
The ESS is then defined to be the sample size m of outcomes Ym = (Y1, . . . , Ym) that,
starting with q0(θθθ | θ̃θθ0), yields a posterior qm(θθθ | Ym) very close to p(θθθ | θ̃θθ). While
the ESS can be obtained analytically in some cases, in most applications numerical
methods must be used.

This constructive definition may be understood in terms of the simple example
where p(θθθ | θ̃θθ) is a beta distribution, Be(α̃, β̃), for which the ESS is commonly con-
sidered to be α̃ + β̃. In this case, the ε-information prior q0(θθθ | θ̃θθ0) is specified as
Be(α̃/c, β̃/c) using an arbitrarily large value c > 0, so that the ESS (α̃ + β̃)/c = ε

of q0 is very small while the mean α̃/(α̃ + β̃) is the same as that of p(θθθ | θ̃θθ). If
m = α̃ + β̃ observations are obtained with α̃ successes and β̃ failures then, starting
with the ε-information prior q0(θθθ | θ̃θθ0), the posterior would be Be(α̃+ α̃/c, β̃ + β̃/c),
which has ESS = m + ε

.= m.
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For the general construction, denote Ym = (Y1, . . . , Ym), with Yi ∼ f (Yi | θθθ) an
i.i.d. sample, so the likelihood is fm(Ym | θθθ) = ∏m

i=1 f (Yi | θθθ). An ε-information
prior, q0(θθθ | θ̃θθ0), is defined by requiring matching means, Eq0(θθθ) = Ep(θθθ), and cor-
relations, Corrq0(θj, θj′) = Corrp(θj, θj′), j �= j ′, while inflating the variances of the
elements of θθθ on the domain where the variance under q0, Varq0(θj), must exist for
each j = 1, . . . , d . The subscripts p and q0 indicate that the moments are obtained
under p(θθθ | θ̃θθ) and q0(θθθ | θ̃θθ0), respectively. Given a sample Ym, possibly a predictor
Xm = (X1, . . . ,Xm), and an ε-information prior q0(θθθ | θ̃θθ0), the posterior is

qm(θθθ | θ̃θθ0,Ym,Xm) ∝ q0(θθθ | θ̃θθ0)fm(Ym | Xm,θθθ).

The ESS is the interpolated value of m minimizing the prior-to-posterior distance δ

between qm(θθθ | θ̃θθ0,Ym) and p(θθθ | θ̃θθ).
MTM define the prior-to-posterior distance as the difference between the traces

of the information matrix of p(θθθ | θ̃θθ) and the expected information matrix of qm(θθθ |
θ̃θθ0,Ym,Xm), where the expectation is with respect to the prior predictive distribution
fm(Ym | θ̃θθ, ξ̃ξξ). Here, θ̄θθ = Ep(θθθ) denotes the prior mean. To compute the distance
between p(θθθ | θ̃θθ) and qm(θθθ | Ym), MTM define

δ(m,θ̄θθ,p, q0) =
∣∣
∣∣∣

d∑

j=1

Dp,j (θ̄θθ) −
d∑

j=1

∫
Dq,j (m,θ̄θθ,Ym)dfm(Ym | θ̃θθ)

∣∣
∣∣∣
, (2)

where Dp,j and Dq,j are the curvatures of the original prior and the posterior un-
der the ε-information prior, Dp,j (θθθ) = −∂2/∂θ2

j logp(θθθ | θ̃θθ) and Dq,j (m,θθθ,Ym) =
−∂2/∂θ2

j logqm(θθθ | θ̃θθ0,Ym).

If interest is focused on a subvector θθθr of θθθ , the ESS can be determined sim-
ilarly in terms of the marginal prior p(θθθr | θ̃θθ). When the expectation cannot be
obtained analytically, a simulation-based numerical approximation is used. For re-
gression models of Ym as a function of a predictor Xm, the likelihood is fm(Ym |
θθθ,Xm) = ∏m

i=1 f (Yi | θθθ,Xi). In such settings, MTM augment the model by assum-
ing a sampling model gm(Xm | ξξξ) and prior r(ξξξ | ξ̃ξξ), and define

fm(Ym | θ̃θθ, ξ̃ξξ) =
∫

fm(Ym | Xm,θθθ)gm(Xm | ξξξ)p(θθθ | θ̃θθ) r(ξξξ | ξ̃ξξ)dθθθ dξξξ .

4 Case Studies of Data Analysis and Study Design

The following examples show how prior sensitivity may be evaluated using ESS in
data analysis and clinical trial design settings. The first three, Examples 1 to 3, are
data analyses and the latter three, Examples 4 to 6, are clinical trial designs. In each
example, we explain how the prior ESS can be used as a tool to calibrate prior hy-
perparameters. Following Gelman et al. [6], we write Unif(α,β), Be(α,β), Bin(n, θ ),
Ga(α,β), IG(α,β), Exp(θ ), N(μ,σ 2), and MVN(μ,Σ), for the uniform, beta, bino-
mial, gamma, exponential, normal, and multivariate normal distributions.
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4.1 Cross-tabulated Counts from Small Samples—Example 1

This example was described earlier, in Sect. 2. The goal of Carlin’s analysis was
to examine the effects of mechanical ventilator devices on lung damage in rabbits.
Because of the very small numbers of studied animals, as shown in Table 1, the
effect of a range of non-informative priors was explored. Recall that πg,h was the
probability of lung damage in cell (g,h) for amplitude g (= 1, 2) and frequency h (=
1, 2, 3), and πg,h(θθθ) = logit−1(μ + αg + βh + γhI(g=2)), where the model parameter
θθθ = (μ,α1, α2, β1, β2, β3, γ1, γ2, γ3).

Assuming a binomial model, Yg,h | θθθ ∼ Bin(ng,h,πg,h(θθθ)), the likelihood is

f (Ym | θθθ) ∝
2∏

g=1

3∏

h=1

πg,h(θθθ)Yg,h
{
1 − πg,h(θθθ)

}ng,h−Yg,h .

Using MTM’s method, we compute an overall ESS, and also ESSμ, ESSα , ESSβ ,
and ESSγ of the subvectors, which characterize the overall mean, the main effects
for amplitude and frequency, and their interaction effects, respectively. The ESS val-
ues obtained for the ten alternative choices for the independent normal priors are
summarized in Table 2. As discussed in Sect. 2, since the sample size is 38, the prior
N10 having the ESS = 36.6 may be criticized as being excessively informative. The
priors N7 and N10 both assume very high prior information for the interaction ef-
fects. Both priors have ESSγ = 96.1. In this example, the ESSγ computation shows
that the value σ̃γ = 0.5 is far too small.

While each of the hyperparameters σ̃α , σ̃β , σ̃γ can have an important impact on
posterior inferences, they may be difficult to elicit or calibrate. We demonstrate here
how one can use prior ESS graphically to assist in choosing these parameters. The
idea is to compute the ESS for different combinations of the hyperparameters θ̃θθ ,
similarly to Table 2. The ESS values are then plotted as a function of θ̃θθ . A practical
problem is that one must first reduce the dimension of θ̃θθ to d = 2 to allow one to
construct a contour plot of ESS as a function of two hyperparameter values. As a
general strategy, we suggest the use of simple restrictions on elements of θ̃θθ . In this
example, we will use σ̃α = σ̃β ≡ σ̃ , allowing us to plot ESS contours as a function of
the two remaining hyperparameters (σ̃ , σ̃γ ). Figure 1 shows the contours for ESS =
0.1,0.2,0.5,1.0, 2.0 and 5.0. From Fig. 1 one might, for example, decide to set
σ̃α = σ̃β = 2.6 and σ̃γ = 4.7 to obtain ESS = 1.0.

4.2 Bivariate Normal Model for Multiple Correlated Diagnostic Tests—Example 2

Choi et al. [3] used a bivariate normal model to analyze multiple correlated diagnostic
tests. They considered the problem of comparing two serologic tests, both enzyme-
linked immunosorbent assays (ELISA) for detection of antibodies to Johne’s disease
in dairy cattle. Data from n1 = 88 diseased animals and n0 = 393 disease-free an-
imals were reported. The two tests have continuous outcomes, which we denote by
Y1iD and Y2iD for the ith diseased animal, and by Y1i′D̄ and Y2i′D̄ for the i′th disease-
free animal. Provided that the same prior and likelihood pair are used for the two in-
dependent data sets, they will have the same ESS value. Therefore, hereafter we will
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Fig. 1 Contour plots of ESS
values for σ̃α = σ̃β (x-axis) and
σ̃γ (y-axis), obtained in
Example 1 ([1]). Dotted,
dashed, dashed-dotted, longer
dashed, solid, longer
dashed-dotted lines show the
plots of ESS = 0.1, 0.2, 0.5, 1.0,
2.0, and 5.0, respectively

consider the sampling model and prior distributions for one of the two groups, and
we drop the subscripts for disease status.

A bivariate normal distribution is assumed for the test scores, (Y1i , Y2i ), from the
ith animal. Let μμμ = (μ1,μ2) denote the means and let Σ = Σ(τ1, τ2, ρ) denote a
2 × 2 covariance matrix with marginal variances (τ−1

1 , τ−1
2 ) and correlation ρ. Choi

et al. [3] assume

(Yi1, Yi2) ∼ N(μμμ,Σ), (3)

so that θθθ = (μ1,μ2, τ1, τ2, ρ) and d = 5. To complete the model, Choi et al. [3]
assume independent prior distributions

μj ∼ N
(
μ̃j , τ̃

−1
j

)
and τj ∼ Ga(ãj , b̃j ), j = 1,2, (4)

with μ̃j = 0, τ̃j = 0.001, ãj = b̃j = 0.001, j = 1,2, and ρ ∼ Unif(−1,1). The in-
tention is to formalize vague prior information. In anticipation of the upcoming dis-
cussion, we use instead a more general scaled Beta prior, ρ ∼ rBe(α̃, β̃). The scaled
Beta model x ∼ rBe(a, b) for L < x < U is defined as (x − L)/(U − L) ∼ Be(a, b),
i.e., ρ ∼ Unif(−1,1) for α̃ = β̃ = 1. We apply MTM’s method to compute an over-
all ESS for θθθ = (μ1,μ2, τ1, τ2, ρ), and the two additional values, ESSμ and ESSΣ ,
for the subvectors θθθμμμ = (μ1,μ2) and θθθΣ = (τ1, τ2, ρ). The computation yields
ESS < 0.001, ESSμ = 0.001, and ESSΣ < 0.001. We interpret these ESSs as evi-
dence of very vague priors, as intended.

To show how ESS may be applied as a tool for prior elicitation in this setting,
we consider the four alternative priors shown in Table 3. This serves as an informal
sensitivity analysis. Also, similarly to the discussion in Sect. 4.1, we plot ESS as a
function of the hyperparameters. We compute the ESS for τ̃1 = τ̃2 and ã1 = ã2 =
b̃1 = b̃2 each ranging from 0.001 to 10, keeping α̃ = β̃ = 1 fixed. Figure 2 gives
plots of the resulting ESS values. For example, the prior ESS for τ̃1 = τ̃2 = 10, ã1 =
ã2 = b̃1 = b̃2 = 10, α̃ = β̃ = 1 is 9.5. This may be criticized as unacceptably high,
considering the sample size of n = 88 diseased animals. In contrast, priors with all
hyperparameters less than 1 correspond to reasonably small prior ESS.

 Author's personal copy 



8 Stat Biosci (2010) 2: 1–17

Table 3 Computed ESSs for
the correlated diagnostic tests in
Choi et al. [3]

τ̃1 = τ̃2 ã1 = b̃1 = ã2 = b̃2 α̃, β̃ ESS ESSμ ESSΣ

0.001 0.001 1, 1 <0.001 0.001 <0.001

1 1 1, 1 0.25 1.0 0.14

10 10 1, 1 9.5 10.0 9.1

1 1 5, 5 0.54 1.0 0.53

10 10 5, 5 11.3 10.0 12.4

Fig. 2 ESS surface computed for τ̃1 = τ̃2 and ã1 = ã2 = b̃1 = b̃2 ranging from 0.001 to 10, keeping
α̃ = β̃ = 1, in Example 2 (Choi et al. [3])

4.3 Proportional-Odds Model for Ordinal Outcomes—Example 3

Congdon [4] (Sect. 10.3.2) reports a data analysis based on a proportional-odds model
for ordinal response data, as shown in Table 4. The data report deformity or mortality
in chick embryos as a result of arbovirus injection. Two virus groups, Facey’s Pad-
dock (g = 1) and Tinaroo (g = 2), and a control group (g = 0) were investigated.
The control group received no virus. The two virus groups and the control group
contained n1 = 75, n2 = 72, and n0 = 18 embryos, respectively. Each embryo in the
Facey’s Paddock group received one of the four doses, {3, 18, 30, 90}, denoted by
{d1,1, d1,2, d1,3, d1,4}. For the Tinaroo group, the doses were {3, 20, 2400, 88000},
denoted by {d2,1, d2,2, d2,3, d2,4}. The response Yg,i for embryo i in group g was or-
dinal with three possible values: survival without deformity (Y = 0), survival with
deformity (Y = 1), and death (Y = 2).

In this example, a nonzero probability of death was assumed for zero dose. This
accounts for a possible background mortality effect. In fact, one death was observed
among the controls. The response in the control group Y0,i is assumed to be binary
(0 or 2) rather than trinary, with Pr(Y0,i = 2 | α) = α, and Pr(Yg,i = h) is assumed to
be a mixture

πg,i,h = Pr(Yg,i = h) = α + (1 − α)Pg,i,h, (5)

 Author's personal copy 



Stat Biosci (2010) 2: 1–17 9

Table 4 Arbovirus injection data (three outcomes: survival without deformity, survival with deformity,
and death) reported in Congdon [4]

Virus group Dose level Survival Survival Death Total

without deformity with deformity

Control 0 17 0 1 18

Facey’s Paddock 3 13 1 3 17

18 14 1 4 19

30 9 2 8 19

90 2 1 17 20

Tinaroo 3 18 0 1 19

20 17 0 2 19

2400 2 9 4 15

88000 0 10 9 19

with Pg,i,2 = γg,i,2, Pg,i,1 = γg,i,1 − γg,i,2, Pg,i,0 = 1 − γg,i,1, and

γg,i,h = logit−1(κg,i + βgXg,i) (6)

for h = 1,2 with γg,i,0 ≡ 1.0. The covariates are log doses, Xg,(z) = log10{dg,(z)},
for z = 1,2,3,4. In this example, θθθ = (α,β1, β2, κ1,1, κ1,2, κ2,1, κ2,2) and d = 7. We
consider the two subvectors, θ1 = (α) and θθθ2 = (β1, β2, κ1,1, κ1,2, κ2,1, κ2,2), which
characterize the background mortality effect and the dose–response model, respec-
tively. Using dummy indicators Zg,i,h = 1 if Ygi = h and 0 otherwise, the likelihood
for m0,m1 and m2 embryos in the control group, group 1 and group 2 is

f (Zm | θθθ)

∝
m0∏

i0=1

(1 − α)Z0,i0,0αZ0,i0,2

m1∏

i1=1

π
Z1,i1,0

1,i1,0
π

Z1,i1,1

1,i1,1
π

Z1,i1,2

1,i1,2

m2∏

i2=1

π
Z2,i2,0

2,i2,0
π

Z2,i2,1

2,i2,1
π

Z2,i2,2

2,i2,2
.

Congdon [4] assumes independent prior distributions:

α ∼ Be(φ̃, φ̃), βj ∼ N
(
μ̃β, σ̃ 2

β

)
, and κj,h ∼ N

(
μ̃κ , σ̃ 2

κ

)
,

j = 1,2, h = 1,2,

with φ̃ = 1, μ̃β = 0 and σ̃ 2
β = 10, μ̃κ = 0 and σ̃ 2

κ = 100.
We evaluate the overall ESS for θθθ , and subvector-specific ESS values ESSBG

for θ1, and ESSDR for θθθ2. The computations yield ESS = 3.3, ESSBG = 3.6, and
ESSDR = 0.85. Compared to the sample size of n = 165, the prior distributions used
in this example appear appropriately non-informative. Figure 3 shows an ESSDR sur-
face computed for σ̃ 2

β and σ̃ 2
κ ranging from 5 to 100, fixing φ̃ = 1. The ESS surface

suggests that σ̃ 2
β and σ̃ 2

κ both over 50 provide a dose–response model with sufficiently
vague priors.
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Fig. 3 ESS surface obtained for the priors of the parameters modeling the dose–response relationships,
for σ̃ 2

β = σ̃ 2
κ ranging from 5 to 100, fixing φ̃ = 1, in Example 3 (Congdon [4])

4.4 Time-to-Event Continual Reassessment Method—Example 4

The continual reassessment method (CRM) [9] is used for dose-finding in phase I
clinical trials based on a binary indicator of toxicity. The CRM requires complete
follow-up of the current patient (or cohort) before enrolling a new patient or cohort.
Depending on how long it takes to evaluate toxicity, this may lead to an unduly long
study duration that make the method impractical. Cheung and Chappell [2] proposed
an extension, the time-to-event (TITE) CRM, that uses time to toxicity or right cen-
soring as the outcome.

Elkind et al. [5] applied the TITE-CRM to determine the maximum tolerated dose
(MTD) of short-term high-dose lovastatin in stroke patients treated within 24 hours
of symptom onset. Each patient received one of five initial doses 1, 3, 6, 8, 10 mg/kg,
on days 1–3 post onset and received 20 mg/day for the next 27 days. Toxicity was
assessed up to day 30, that is, the observation window was Tup = 30 days. Denote the
time-to-toxicity in patient i by ui , and the toxicity indicator Yi = 1 if ui ≤ Tup, 0 if
not, so that ui is right-censored at Tup. The dose–toxicity model

Pr(Yi = 1 | d[i], β) = F(d[i], β) = d
exp(β)

[i]

was assumed, where d[i] is the standardized dose level assigned to patient i. An N(0,
1.34) distribution was assumed for the prior of β . The five standardized doses d =
(d1, d2, d3, d4, d5) in the model were assumed to be (0.02, 0.06, 0.10, 0.18, 0.30). In
general, the TITE-CRM is implemented using the weighted working likelihood for
m patients given by

fm(Ym,um | dm, β) =
m∏

i=1

F(d[i], β)Yi
{
1 − wiF(d[i], β)

}1−Yi , (7)

 Author's personal copy 



Stat Biosci (2010) 2: 1–17 11

Table 5 Toxicity scenarios for
a dose–toxicity relationship
(TITE-CRM example)

Scenario 1 mg/kg 3 mg/kg 6 mg/kg 8 mg/kg 10 mg/kg

(1) 0.02 0.06 0.10 0.18 0.30

(2) 0.10 0.20 0.35 0.55 0.70

(3) 0.30 0.35 0.50 0.70 0.80

(4) 0.10 0.50 0.80 0.90 0.90

(5) 0.40 0.70 0.85 0.90 0.90

where wi is a suitable weight function. For the lovastatin trial, wi = ui/Tup was used,
and patients were assumed to arrive according to a Poisson process. This is equivalent
to assuming that the inter-arrival times are i.i.d. Exp(λ). In the trial, λ = 2 patients
per month was assumed.

In Table 5, we assume five dose–toxicity scenarios in order to assess effects of
the prior ESS. Scenario (1) corresponds to toxicity probabilities equal to the stan-
dardized doses. Scenarios (2)–(5) were constructed by starting with Scenario (1) and
increasing the toxicity probabilities. In Scenarios (2) and (3), the toxicity probabili-
ties increase linearly with dose, with all doses too toxic in Scenario (3). In Scenario
(4), only d1 is safe, with toxicity increasing rapidly from d2 onward. In Scenario (5),
all doses are very toxic.

As Cheung and Chappell [2] do, we assume three models for the patients’ times
to toxicity, including a conditionally uniform model, a Weibull model (with a fixed
shape parameter 4), and a log-logistic model (with a fixed shape parameter 1). The
cumulative distribution function (CDF) of the Weibull model with a scale parameter α

is F(u,α) = 1 − exp{−(u/α)4} and the CDF of the log-logistic model with a scale
parameter α is F(u,α) = (1 + exp[−{log(u) − log(α)}])−1.

We compute the ESS values under each model. Figure 4 gives plots of the ESS
values as a function of σ̃ 2 under the five toxicity scenarios, assuming the condition-
ally uniform model for time-to-toxicity and with the prior mean of β fixed at μ̃ = 0.
Since the ESS computed at σ̃ 2 = 1.34 is less than 2 under Scenario (1), the infor-
mation from the likelihood will dominate the prior after enrolling 3 patients, hence
the prior specified in the lovastatin trial seems quite reasonable. The prior also makes
sense under Scenarios (2) and (3). The plot of ESS under Scenarios (4) and (5) in-
dicates that the prior may be problematic, however. Under Scenario (5), it appears
that σ̃ 2 > 2.5 may be needed to ensure an ESS < 2. The findings are similar under
the Weibull and log-logistic models. This example illustrates that prior ESS compu-
tations can be a useful device to help calibrate the prior to improve the behavior of
the TITE-CRM.

4.5 Trial Monitoring for Time-to-Event Outcomes—Example 5

Thall et al. [11] present a series of study designs for monitoring time-to-event out-
comes in early phase clinical trials. We focus on one of the study designs, which was
applied to a single-arm phase II trial for advanced kidney cancer. In the trial, the plan
was to enroll up to 84 patients, with each patient’s disease status evaluated up to 12
months. In this example, we focus on the mean time-to-event, μ. For patient i, let Ti
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Fig. 4 Plots of ESS values
against σ̃ 2 under the five
toxicity scenarios given in
Table 5, in Example 4 (Cheung
and Chappell [2]). The vertical
line at σ̃ 2 = 1.34 indicates the
hyperparameter value that was
actually used in the lovastatin
trial

denote the time to disease progression (failure), let T o
i be the observed value of Ti or

the administrative right-censoring time, and let Yi = I (T o
i = Ti). We assume the ti ’s

are i.i.d. Exp(μ), exponential with mean μ, which has pdf f (t | μ) = μ−1 exp(−t/μ)

and survivor function F(t | μ) = Pr(T > t | μ) = exp(−t/μ). The likelihood for m

patients is

fm

(
Ym,To

m | μ) = μ−∑m
i=1 Yi exp

(

−
m∑

i=1

T o
i /μ

)

. (8)

Using the relationship μ = mean(T ) = median(T )/ log(2), Thall et al. [11] es-
tablished the prior of μS corresponding to the historical standard treatment from
elicited mean values and a 95% credible interval of median(T ). This gave an in-
verse gamma IG(α̃, β̃) with (α̃, β̃) = (53.477,301.61) as the prior p(μS | μ̃μμS). Here,
IG(α̃, β̃) denotes an inverse gamma distribution with mean β̃/(α̃ − 1) and variance
β̃2/{(α̃ − 1)2(α̃ − 2)}, which requires α̃ > 2. The prior of μE in the experimental
treatment p(μE | μ̃μμE) was calibrated to have the same mean but inflated variance to
reflect much greater prior uncertainty about the experimental treatment. This yielded
μE ∼ IG(5.348,30.161). The time scale of the event time and its corresponding pa-
rameter μ are in months.

The prior ESS in a simple inverse gamma-exponential model with an inverse
gamma prior, μ ∼ IG(α̃, β̃), and the exponential sampling model, T ∼ Exp(μ), is
analytically determined to be α̃ − 2. Thus, the ESS of the IG(5.348,30.161) prior is
3.348 under this model. This prior ESS is obtained under the assumption that T is
observed for all accrued patients; that is, no censoring occurs. Since in general the
ESS is defined as a property of a prior and likelihood pair, a given prior might have
different ESS values for different likelihoods. As mentioned in Sect. 3, our approach
defines the ESS to be the sample size that yields a posterior containing the same
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amount of information as the prior. It is well known that the amount of information
for time-to-event data depends on the number of observed events, not the sample size.
Therefore, when Ti is right-censored for some patients, the prior ESS should be larger
than α̃ − 2. We apply MTM’s method to compute an ESS under the inverse gamma
prior μE ∼ IG(5.348,30.161) with respect to the likelihood (8). The computation
yields ESS = 4.8.

In clinical trials with Bayesian adaptive decision making, it is important to evalu-
ate the impact of the prior on the stopping rule. In the study design of Thall et al. [11],
the trial should be stopped early if, based on the current data,

Pr(μS + 4.3 < μE | data) < 0.015. (9)

This rule stops the trial if it is unlikely that the mean failure time with the experimen-
tal treatment is at least a 4.3 month improvement over the historical mean with the
standard treatment. The 4.3 month improvement in mean failure time corresponds to
a 3.0 month improvement in median failure time, since 4.3 = 3.0/ log(2). In order to
evaluate the impact of the prior of p(μE | μ̃μμE) on the stopping rule, we simulated the
trial under each of a set of priors having different variances, corresponding to prior
ESS values ranging from 1 to 20. We generated exponential patient event times using
fixed (true) parameters μtrue

E = 5.7, 7.2, 8.6, 10.0, which correspond to median failure
times of 4, 5, 6, 7 months. Each case was simulated 2000 times.

Figures 5a, 5b, and 5c illustrate the simulation results in terms of the probability
of early termination (PET), the number of patients, and trial duration, respectively.
Figure 5a shows plots of PET as a function of ESS for four values of μtrue

E . Since
the prior mean of μS under IG(53.477, 301.61) is 5.7, the PET values obtained under
the four μtrue

E values are reasonable for ESS values up to about 10. In contrast, for
ESS > 15, the prior, rather than the data, dominates early stopping decisions. With
respect to the number of patients and trial duration, plots of the 50th percentiles of
their distributions are shown in Figs. 5b and 5c, respectively. The same findings as
with PET are observed; that is, a prior ESS > 15 may be excessively informative.

4.6 A Dose–Response Model for Bivariate Binary Outcomes—Example 6

Thall and Cook [10] use a bivariate binary regression model in a dose-finding
trial where each patient is treated at one of four doses {0.25,0.50,0.75,1.00}
mg/m2. Denoting these by d1, d2, d3, d4, the standardized doses X(z) = log(dz) −
(1/4)

∑4
e=1 log(de) are used in the model. Let Y = (YE,YT ) be indicators of efficacy

and toxicity, and let πa,b(X,θθθ) = Pr(YE = a,YT = b | X,θθθ) for a, b ∈ {0,1}. The
marginal probabilities are modeled as πk(X,θθθk) = logit−1{ηk(X,θθθ k)} for k = E,T ,
with linear predictors ηE(X,θθθE) = μE + XβE,1 + X2βE,2 and ηT (X,θθθ) = μT + XβT .
The joint probabilities πa,b are modeled in terms of these marginal probabilities and
one real-valued association parameter ψ :

πa,b = πa
E(1−πE)1−aπb

T (1−πT )1−b + (−1)a+bπE(1−πE)πT (1−πT )

(
eψ − 1

eψ + 1

)
,

(10)
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Fig. 5 Plots of (a) PET and the
50th percentile points of the
distributions of (b) the number
of patients and (c) trial duration,
under μtrue

E
= 5.7 (circle), 7.2

(square), 8.6 (triangle), and 10.0
(star) against prior ESS
(Example 5: Thall et al. [11])

for a, b ∈ {0,1}. Thus, θθθ = (μE,βE,1, βE,2,μT ,βT ,ψ) and d = 6. The likelihood
for m patients is

f (Ym | Xm,θθθ) =
m∏

i=1

1∏

a=0

1∏

b=0

πa,b(Xi,θθθ)I{Yi=(a,b)}.

The prior p(θθθ | θ̃θθ) was established from elicited mean values of πE(X,θθθ) and
πT (X,θθθ), which yielded normal distributions with hyperparameters (μ̃μE

,σ̃ 2
μE

) =
(−1.496, 1.1132), (μ̃βE,1 ,σ̃ 2

βE,1
) = (1.180, 0.8692), (μ̃βE,2 ,σ̃ 2

βE,2
) = (0.149, 1.1922),

(μ̃μT
,σ̃ 2

μT
) = (−0.619, 0.9412), (μ̃βT

,σ̃ 2
βT

) = (0.587, 1.6592), and (μ̃ψ ,σ̃ 2
ψ) = (0,

10) where σ̃ 2
ψ is modified for this illustration. We apply MTM’s method to compute

the ESS of p(θθθ | θ̃θθ), and ESSE , ESST , and ESSψ for the subvectors of the efficacy
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Fig. 6 (a) Contour plot of ESSE = 2.0, fixing (σ̃μT
, σ̃βT

, σ̃ψ ) = (0.941,1.659,1). (b) Contour plot
of ESST = 2.0, fixing (σ̃μE

, σ̃βE
, σ̃ψ ) = (2.68,2.68,3.16). (c) Plot of ESSψ values against σ̃ψ , fix-

ing σ̃μE
, σ̃βE

, σ̃μT
, σ̃βT

= (2.68,2.68,1.89,1.89). The three plots are obtained in Example 6 (Thall and
Cook [10])

parameters θθθE = (μE,βE,1, βE,2), toxicity parameters θθθT = (μT ,βT ), and the asso-
ciation parameter ψ . The computations yield ESS = 8.9, ESSE = 13.7, ESST = 5.3,
and ESSψ = 9.0.

ESS values computed for the subvectors of the parameters, as well as the full
parameter vector, are a useful feedback in the prior elicitation process. We assume
fixed hyperparameters μ̃μE

, μ̃βE,1, μ̃βE,2, μ̃μT
, μ̃βT

, and μ̃ψ , and discuss the choice
of the variance parameters σ̃μE

, σ̃βE1, σ̃βE2, σ̃μT
, σ̃βT

, and σ̃ψ . We demonstrate how
to calibrate the priors in this example. In the design described by Thall and Cook [10],
up to N = 36 patients are treated in cohorts of size = 3. Therefore, it may be desirable
that the overall ESS and the subvector ESSs are at most 2, so that the accumulating
data dominates the posterior inferences after enrolling 3 patients.

Figure 6 shows the contours of ESSE , ESST , and ESSψ . In order to plot a contour
of ESSE for σ̃μE

, σ̃βE1, σ̃βE2 , we constrain σ̃βE1, σ̃βE2 ≡ σ̃βE
and fix {σ̃μT

, σ̃βT
, σ̃ψ } =

{0.941,1.659,3.162}. This allows us to plot ESS as a function of the two: (σ̃μE
, σ̃βE

).
Figure 6a shows the contour for ESSE = 2.0. Inspection of the ESS contours pro-
vides a basis for an informed choice of the hyperparameters (σ̃μE

, σ̃βE
). For example,
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σ̃μE
= σ̃βE,1 = σ̃βE,2 = 2.68 may be chosen, to ensure that ESSE = 2.0. Similarly, we

plot the contour for ESST = 2.0, fixing (σ̃μE
, σ̃βE

, σ̃ψ ) = (2.68,2.68,3.16), shown
in Fig. 6b. Inspecting this curve, one may choose values of σ̃μT

, σ̃βT
, for example,

σ̃μT
= σ̃βT

= 1.89. We next focus on the interaction parameter and compute ESSψ

values for a range of σ̃ψ . The plot is shown in Fig. 6c. One may choose, for example,
σ̃ψ = 5.70, which provides ESSψ = 2.0. The overall ESS value for the hyperparame-
ter values chosen above is 2.0. If desired, one may repeat the procedure, starting with
the choice of (σ̃μE

, σ̃βE
), until a satisfactory overall ESS is obtained. In a last step

one may drop the constraint on σ̃βE1 = σ̃βE2 and allow different values for these two
parameters.

5 Discussion

We have discussed prior sensitivity analyses in Bayesian biostatistics by using prior
ESS, illustrated by examples of data analysis and study design for biomedical studies.
The main advantage of using ESS is practical feasibility. The definition is pragmatic
and allows one to report a meaningful prior ESS summary for most problems. An-
other important feature is ease of communication. A user need not understand the
mathematical underpinnings of the approach to interpret the final report, since the
ESS is a hypothetical sample size, in terms of patients (or animals or experimental
units), which is readily interpretable.

The ESS provides a numerical value for the effective sample size of a given prior.
If one wishes to utilize this methodology to construct a prior having a given ESS, two
important cases may be identified. When designing a small to moderate sized clinical
trial using Bayesian methods, it is desirable that the prior ESS be small enough so
that early decisions are dominated by the data (e.g. the first cohort of 3 patients in
a dose-finding study) rather than the prior. In this case, an ESS in the range 0.5 to
2.0 may be appropriate. On the other hand, if one is eliciting a prior for analysis of a
given data set of n observations, then a desirable ESS may be specified relative to n.
In this case, an ESS of 0.10 ×n or smaller might be appropriate.

Morita, Thall, and Müller (MTM2) [8] develop a variation of the ESS suitable for
conditionally independent hierarchical models (CIHMs). For a two-level CIHM with
K subgroups, in the first level, Yk follows distribution f (Yk | θθθk), the subgroup-
specific parameters θθθ = (θθθ1, . . . ,θθθK) are i.i.d. with prior π1(θθθk | θ̃θθ), and the hyper-
parameter θ̃θθ has a hyperprior π2(θ̃θθ | φφφ) with known φφφ. MTM2 define ESS under a
CIHM in two cases, focusing on either the first level prior or second level prior, in or-
der to address different inferential objectives. In case 1, the target is the marginalized
prior, π12(θθθ | φφφ) = ∫

π1(θθθ | θ̃θθ)π2(θ̃θθ |φφφ)dθ̃θθ , which may be of interest, for example, if
θθθ1, . . . ,θθθK are the treatment effects in K different canine breeds in a dietary study.
In case 2, the target prior is π2(θ̃θθ | φφφ), which would be the focus if the parameter of
primary interest is an overall effect θ̃θθ for canines, obtained by averaging over the K

breeds.
Some important limitations remain. The methodology is based on comparing cur-

vatures of the marginal prior and the posterior distribution under an ε-information
prior. Consequently, when an analytic solution does not exist, a limitation is compu-
tational complexity. While the actual computational effort is negligible, the choice
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of a suitable ε-information prior and the evaluation of the prior–posterior distance
require some problem-specific input from the investigator. That is, it is difficult to
completely automate the ESS evaluation. However, the examples given here are in-
tended to provide a basis for interested readers to compute and utilize prior ESS in
similar problems. A computer program, ESS_RegressionCalculator.R, to calculate
the ESS for a normal linear or logistic regression model is available from the website
http://biostatistics.mdanderson.org/SoftwareDownload.
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