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Simple Summary: We provide an extensive review of the fundamental principles of statistical
science that are needed to accurately interpret randomized controlled trials (RCTs). We use these
principles to explain how RCTs are motivated by the powerful but strange idea that flipping a coin to
choose each patient’s treatment is the most statistically reliable way to compare treatments. Random
treatment assignment ensures fair comparisons between treatments because it does away with bias
and confounding from variables other than treatment. If the goal is to estimate treatment effects in a
patient population, rather than compare two or more treatments, then random sampling, not random
treatment assignment, is required. However, random sampling is virtually impossible to carry out in a
clinical trial because patients are accrued over time as they arrive in the clinic, subject to a trial’s entry
criteria. Consequently, in practice, a trial provides a nonrepresentative convenience sample. Valid
treatment comparisons provided by RCT data subsequently require additional causal assumptions of
transportability of between-treatment effects from the sample to the patient population of interest.
This may be used as a basis for choosing treatments for future patients. The present paper discusses
what this means for practicing physicians who encounter RCT data in the literature.

Abstract: This article describes rationales and limitations for making inferences based on data from
randomized controlled trials (RCTs). We argue that obtaining a representative random sample from
a patient population is impossible for a clinical trial because patients are accrued sequentially over
time and thus comprise a convenience sample, subject only to protocol entry criteria. Consequently,
the trial’s sample is unlikely to represent a definable patient population. We use causal diagrams
to illustrate the difference between random allocation of interventions within a clinical trial sample
and true simple or stratified random sampling, as executed in surveys. We argue that group-specific
statistics, such as a median survival time estimate for a treatment arm in an RCT, have limited
meaning as estimates of larger patient population parameters. In contrast, random allocation between
interventions facilitates comparative causal inferences about between-treatment effects, such as
hazard ratios or differences between probabilities of response. Comparative inferences also require
the assumption of transportability from a clinical trial’s convenience sample to a targeted patient
population. We focus on the consequences and limitations of randomization procedures in order
to clarify the distinctions between pairs of complementary concepts of fundamental importance to
data science and RCT interpretation. These include internal and external validity, generalizability
and transportability, uncertainty and variability, representativeness and inclusiveness, blocking and
stratification, relevance and robustness, forward and reverse causal inference, intention to treat and
per protocol analyses, and potential outcomes and counterfactuals.
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1. Introduction

The goal of a randomized controlled trial (RCT) is to generate data that can be
used to compare treatments fairly, which in turn may guide patient-centered medical
decisions [1–4]. Worldwide, results of approximately 140 RCTs are published each day,
comprising an immense compendium of data that can be daunting for clinical practitioners
and other stakeholders to digest efficiently [5]. As RCT designs and their data structures
become more complex, the medical research community may be best served by focusing
on the most informative signals, while avoiding noisy statistics and invalid inferences. To
help keep inferences principled and useful, the present article focuses on the most essential
components of RCTs. Medical RCTs are experiments with human subjects that are designed
primarily to yield inferences about comparative causal treatment effects. In this article, we
first describe the fundamental principles of statistical science, which we then use to explain
how the action of random allocation of interventions justifies some, but not all, inferences
and probability calculations.

Modern statistical science has evolved as a collection of models, methods, and compu-
tational algorithms for designing experiments, obtaining representative samples, perform-
ing computer-based simulation studies, constructing graphical displays, and analyzing
a wide array of different data structures to make inferences about parameters of interest.
In medical research, this includes methods for assessing how clinical outcomes, such as
survival time, may be associated with treatments and patient characteristics based on
different types of studies, such as clinical surveys or interventional trials. These methods
can be divided into those related to sampling theory or experimental design [6–8].

2. Sampling Theory and Experimental Design

Sampling methods specify how to obtain a statistical sample, which is a set of objects
from a population that one wishes to learn about, that reliably represents the popula-
tion [6,7]. Inferences about the population are based on sample statistics, which are com-
puted from the sample’s data using well-defined formulas or algorithms. A sample mean,
correlation, or effect of a covariate on an outcome variable is used to estimate corresponding
population parameters, also known as estimands, which are conceptual objects that are
almost never known. This requires a number of implicit or explicit assumptions, such as
the appropriateness of the statistical models for the type of data being analyzed, and the
absence of unknown biases, data recording errors, or selective analysis reporting [9–12].
For simplicity, we will assume throughout this review that these statistical assumptions are
correct unless otherwise stated.

Denote a population parameter by θ an observable random variable by Y, and let
P(Y|θ) denote an assumed probability distribution describing how Y varies in the popula-
tion. A representative sample Y = {Y1, . . ., Yn} may be used to compute a statistical estimator
of θ, and P(Y|θ) may be used to determine the estimator’s probability distribution. For
example, a sample mean may be used to estimate a population mean. The distribution
of the sample mean may be approximated by a normal distribution (bell-shaped curve)
if the sample size is sufficiently large, and a 95% confidence interval (CI) around the ob-
served sample mean may be computed to quantify uncertainty by giving us an idea of
how closely we can estimate θ from the sample. Another example is that, given (X,Y) data
on a numerical outcome variable Y and a covariate X, a regression model P(Y|X, α, β)
with linear conditional mean E(Y|X) = α + βX may be assumed to characterize how Y
varies with X. If Y is a binary (0/1) indicator of response, then a logistic regression model
log{Pr(Y = 1|X)/Pr(Y = 0|X)} = α + βX can be used. In each case, the parameters θ = (α, β)
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may be estimated from a sample of (X,Y) pairs to make inferences about the population
from which the sample was taken, provided that the sample accurately represents the
population. For example, a simple random sample of size n must be obtained in such a way
that all possible sets of n objects from the population are equally likely to be the sample.

In contrast with sampling theory, experimental design involves statistical methods
to plan a set of procedures, such as an RCT, to compare the effect of interventions, such
as treatments, on outcomes of interest. Experimental design was largely pioneered by
the English statistician, biologist, and geneticist Sir Ronald Fisher, who also invented
RCTs, initially to maximize crop yield in agricultural experiments in the 1920s and 1930s.
RCTs were popularized in medical research by the English epidemiologist and statistician
Austin Bradford Hill in the 1940s and 1950s [13–16]. We will argue that, under appropriate
assumptions, if one’s goal is to compare treatments as a basis for medical decision-making,
then data from studies based on experimental designs that include randomization can be
very useful.

3. Bayesian and Frequentist Inference

The results of medical studies can be analyzed using either frequentist or Bayesian
statistical methods (Figure 1) [17]. These are two different statistical philosophies for
constructing a probability model for observable variables and parameters and making
inferences. A frequentist considers parameters θ to be unknown and fixed. A Bayesian
considers parameters to be unknown and random and therefore specifies a prior probability
distribution P(θ) to describe one’s degree of belief or uncertainty about θ before observing
data. Specifying a prior distribution based on pre-existing contextual knowledge may be
a nontrivial task [18]. Prior distributions can be classified as either “noninformative” or
“informative” [19–21]. Noninformative priors are also known variously as “objective”,
“flat”, “weak”, “default”, or “reference” priors, and they yield posterior estimators that
may be close to frequentist estimators. For example, credible intervals (CrIs) under a
Bayesian model may be numerically similar to CIs under a frequentist model, although the
interpretation of CrIs is different from that of CIs. Informative priors, sometimes known as
“subjective” priors, take advantage of historical data or the investigator’s subject matter
knowledge. “Weakly informative” priors encode information on a general class of problems
without taking full advantage of contextual subject matter knowledge [20,21]. Bayesian
analysis is performed by combining the prior information concerning θ [i.e., P(θ)] and
the sample information {Y1, . . ., Yn} into the posterior distribution P(θ|Y1, . . ., Yn) using
Bayes’ theorem. The posterior distribution reflects our updated knowledge about θ owing
to the information contained in the sample {Y1, . . ., Yn}, and quantifies our final beliefs
about θ. Bayesian inferences thus are based on the posterior. For example, if L is the 2.5th
percentile and U is the 97.5th percentile of the posterior, then [L, U] is a 95% posterior CrI for
θ i.e., θ is in the interval [L, U] with a probability of 0.95 based on the posterior, written as
Pr(L < θ < U|data) = 0.95.
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Figure 1. Information processing model of the two major schools of statistical inference. The
unobserved collection of mechanisms in nature generates phenomena known as data-generating
processes. These physical mechanisms generate data, which are then processed by statistical models
that use probability distributions to generate information that can be quantified in binary digits (bits)
of surprisal. Information can be used to make inferences about both the data-generating process and
the unobserved underlying nature.

As a medical example of Bayesian inference, suppose that one is interested in the re-
sponse probability that a new investigational therapy produces in chemotherapy-refractory
renal medullary carcinoma (RMC). RMC is a rare, highly aggressive, molecularly homo-
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geneous kidney cancer that lacks any effective treatment options [22–25]. To calculate a
posterior distribution for Bayesian inferences, we can use the web application “Bayesian Up-
date for a Beta-Binomial Distribution” (https://biostatistics.mdanderson.org/shinyapps/
BU1BB/, accessed on 18 September 2023). This Bayesian model is useful for data consisting
of a random number of responses, R, out of n independently sampled subjects, with the
focus on θ = Pr(response), 0 < θ < 1. Let Y1, . . ., Yn denote n patients’ binary response
indicators, with Yi = 1 if a response is observed from the ith patient and Yi = 0 otherwise.
We then have R = Y1 + . . . + Yn. Assuming conditional independence of n observations
given θ, R follows a binomial distribution with parameters n and θ. A beta(a,b) distribution
over the unit interval (0, 1) is a very tractable prior for θ. The beta(a,b) prior has mean
a/(a + b) and effective sample size (ESS) = a + b, which quantifies the informativeness of the
prior. The beta prior is commonly used because it is conjugate for the binomial likelihood;
the posterior of θ given observed R and n is also a beta distribution, but with updated
parameters, beta(a + R, b + n − R). In the RMC example, we define response as complete
response (CR) or partial response (PR) on imaging at 3 months and assume beta(1,1) prior
distribution, also known as Laplace’s prior. Beta(1,1) is the uniform distribution over the
interval of (0, 1). That is, under beta(1,1), all values in the unit interval between 0 and
1 are equiprobable, and they can be viewed as noninformative (Figure 2A). It also has
ESS = 2 and thus encodes little prior knowledge about θ. Because this cancer is rare and
there is no comparator treatment, it is not feasible to conduct a randomized study. Suppose
that a single-arm pilot study with n = 10 patients is conducted to establish feasibility and
R = 7 responses are observed. This dataset allows us to update the uniform prior to the
beta (1 + 7, 1 + 3) = beta(8,4) posterior, which has ESS = 12, posterior mean 8/12 = 0.67,
and 95% posterior CrI 0.39–0.89 (Figure 2B). The Bayesian posterior estimator 0.67 shrinks
the empirical estimate 7/10 = 0.70 toward the prior mean 0.50, which is characteristic of
Bayesian estimation. Frequentist methods, such as those used in Least Absolute Shrinkage
and Selection Operator (LASSO) or ridge regression, also achieve shrinkage by including
penalty terms, a concept known as penalization [26]. In general, shrinkage and penalization
improve the estimation of unknown parameters and enhance prediction accuracy.

In general, Bayes’ Law may be applied repeatedly to a sequence of samples obtained
over time, with the posterior at each stage used as the prior for the next. As a second step in
the example, the beta(8,4) posterior can be used as the prior for analyzing a later single-arm
study of this therapy in 50 new patients with chemotherapy-refractory RMC (Figure 2C).
We assume that the second study also concerns the same θ = Pr(response). Suppose that
20 responses are observed in the second study. Then, the new beta(8,4) prior is further
updated to a beta(8 + 20, 4 + 30) = beta(28,34) posterior. This has a mean 28/(28 + 34) = 0.45,
with a narrower 95% CrI 0.33–0.58, reflecting the much larger ESS = 62 (Figure 2D). Let
patient response indicators be denoted by Y1, . . ., Y10 for the pilot study and Y11, . . ., Y60 for
the second study. Assume also that the subjects of the second study are sampled randomly
from the same population as those of the first pilot study, a strong assumption that will be
further explored in later sections. Furthermore, assume that Y1, . . ., Y60 are conditionally
independent given θ. These assumptions allow the two Bayesian posterior computations
described above to be executed in one step by treating Y1, . . ., Y10, Y11, . . ., Y60 as a single
sample, assuming the first beta(1,1) prior, and directly obtaining the beta(28,34) posterior
for θ in one step. If, instead, the second study were executed without observing the pilot
study results, then it would be appropriate to use a uniform beta(1,1) prior, so 20 responses
in 50 patients would lead to beta(1 + 20, 1 + 30) = beta(21,31) posterior. This has mean
21/(21 + 31) = 0.40 and 95% CrI 0.27–0.54 (Figure 3A,B). This is different from the posterior
in Figure 2D because the two analyses begin with different priors, a beta(1,1) prior to seeing
the pilot study results versus a beta(8,4) prior using the observed pilot study data. However,
if the data from the pilot study are revealed afterward (Figure 3C,D), then the final posterior
distribution will be the same as in Figure 2D. This is an example of the general fact that, if
data are generated from the same distribution over time, then repeated application of Bayes’

https://biostatistics.mdanderson.org/shinyapps/BU1BB/
https://biostatistics.mdanderson.org/shinyapps/BU1BB/
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Law is coherent in that it gives the same posterior that would be obtained if the sequence of
datasets were observed in one study.
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Figure 2. Bayesian updating of response probability to an investigational therapy in patients with
chemotherapy-refractory renal medullary carcinoma (RMC). Prior probability distributions are
colored blue and posterior probability distributions are colored red. (A) Uniform prior, also known
as the Laplace prior, encoding the assumption that all response values in the unit interval of (0, 1)
are equally likely. (B) Posterior probability distribution updated from the uniform prior after 7 out
of 10 patients with RMC treated in a pilot feasibility study showed response. (C) Prior probability
distribution encoding the knowledge obtained from the pilot study before conducting the main study.
(D) Posterior probability distribution updated after 20 out of 50 patients with RMC treated in the
main study showed response.
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Figure 3. Bayesian updating of response probability to an investigational therapy in patients with
chemotherapy-refractory renal medullary carcinoma (RMC). Prior probability distributions are
colored blue and posterior probability distributions are colored red. (A) Uniform prior, also known
as the Laplace prior, encoding the assumption that all response values in the unit interval of (0, 1) are
equally likely. (B) Posterior probability distribution updated from the uniform prior after 20 out of
50 patients with RMC who were treated in the main study showed response. (C) Prior probability
distribution encoding the knowledge obtained from the main study. (D) Posterior probability
distribution updated after incorporating the results of the pilot study wherein 7 out of 10 patients
with RMC showed response.
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4. Confirmations and Refutations

Bayesian posterior estimates may be used as evidence to either confirm or refute
a prior belief or hypothesis. The former may be called “confirmationist” reasoning,
which evaluates the evidence supporting a belief or hypothesis regarding specific val-
ues of a parameter (Figure 4A) [27,28]. For example, say that analysis of an RCT us-
ing the Bayesian survival regression model previously described in [29–31] yields pos-
terior mean HR = 0.71 with 95% CrI 0.57–0.87 for overall survival (OS) time compar-
ing a new treatment E to a control C. This may be interpreted as strong confirmational
statistical evidence supporting the prior assertion that E is superior to C, formally that
HR < 1. In contrast, “refutational” logic seeks evidence against a belief or hypothesis
regarding a parameter value [32–34]. Using refutational logic, if the hypothesis is that E is
inferior to C, formally that HR > 1, then a very small posterior probability Pr(HR > 1|data)
can be interpreted as strong evidence against the belief that E is inferior to C (Figure 4A).
Because Bayesian reasoning is probabilistic, it is different from logical conclusive verifi-
cations or refutations, such as exculpatory evidence that a suspect of a crime has an alibi,
implying that it is certain the suspect could not have committed the crime [27,28]. The
philosopher of science Karl Popper highlighted the asymmetry between confirmationist
and refutational reasoning because evidence can only support (confirm) a theory in relation
to other competing theories, whereas evidence can refute a theory even if we lack a readily
available alternative explanation [33,34]. Therefore, refutational approaches require fewer
assumptions than confirmationist ones.
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Figure 4. Frequentist and Bayesian Inference. (A) In a randomized controlled trial (RCT) testing
a new therapy versus control, the null hypothesis is expressed as θ = 0 for the relative treatment
effect difference between the new therapy and the control. Bayesian models can be used to obtain
posterior probabilities of a treatment effect being correct relative to alternative treatment effect values
(confirmationist inference) or wrong (refutationist inference). (B) Frequentist models do not use prior
distribution but can be used to investigate purely refutational RCT evidence against the embedded
statistical model and the assumption that the test hypothesis (typically the null hypothesis of no
treatment difference) is true. For example, if the null hypothesis and all other model assumptions
are true, the physical act of random treatment assignment would be expected to generate a random
distribution of the data D yielded by repeated replications of the RCT. The amount of divergence of the
observed data from this expected random distribution is a measure of refutational evidence against
the null hypothesis that θ = 0 and all other underlying model assumptions. Similar considerations
can be applied to generate refutational evidence against other tested hypotheses corresponding to
different values of θ.

Since frequentists assume that a parameter is fixed and unknown, for example in a
test of the frequentist hypothesis H0: HR = 1.0 of no treatment difference, no probability
distribution is assumed for the parameter HR. A frequentist test compares the observed
value Tobs of a test statistic T to the distribution of T that would result from an infinite
number of repetitions of the experiment that generates the data, assuming that H0 is true. If
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Tobs are very unlikely to be observed based on the distribution of T under H0, this serves as
refutational evidence against H0 (Figure 4B). This can be quantified by a p-value, which is
defined as 2 × Pr(T > |Tobs) for a two-sided test, under specific model assumptions [35–37].

While p-values are used as refutational evidence against a null hypothesis, they
are often misunderstood by researchers [35,38]. A pervasive problem is that “statistical
significance” is not the same thing as practical significance, which depends on the context
of the study. Furthermore, the arbitrary p-value cutoff of 0.05 is often used to dichotomize
evidence as “significant” or “non-significant”. This is a very crude way to describe the
strength of evidence for refuting H0 [39]. A practical solution for this problem is to
quantify the level of surprise provided by a p-value as refutational evidence against a given
hypothesis in terms of bits of information, which are easy to interpret. This can be executed
by transforming a p-value into an S-value [12,40], defined as S = −log2(p). Bearing in mind
that a p-value is a statistic because it is computed from data, if H0 is true then a p-value is
uniformly distributed between 0 and 1. This implies that under H0, a p-value has a mean
1/2 and, for example, the probability that p < 0.05 is 0.05. The rationale for computing S is
that the probability of observing all tails in S flips of a fair coin equals (1/2)S, so p = (1/2)S

gives S as a simple, intuitive way to quantify how surprising a p-value should be [12,41–44].
S represents the number of coin flips, typically rounded to the nearest integer. Suppose that
an HR of 0.71 is observed and a p-value of 0.0016 is obtained against the null hypothesis of
HR = 1.0. Since −log2(0.0016) = 9.3, rounding this to the nearest integer gives S = 9 bits of
refutational information against the null hypothesis of HR = 1. This may be interpreted as
the degree of surprise that we would have after observing all tails in 9 consecutive flips of a
coin that we believe is fair. A larger S indicates greater surprise, which is stronger evidence
to refute the belief that the coin is fair, which corresponds to the belief that H0 is true. Thus,
the surprise provided by an S-value is refutational for H0. In this case, S = 9 quantifies
the degree of surprise that should result from observing a p-value of 0.0016 if H0 is true.
We provide a simple calculator (Supplementary File S1) that can be used by clinicians to
convert p-values to S-values. Of note, S-values quantify refutational information against
the fairness of the coin tosses, which includes but is not limited to the possibility that the
coin itself is biased towards tails. An unbiased coin can be tossed unfairly to result in all
tails in S flips. For simplicity herein, our assertion that the coin is “fair” encompasses all
these scenarios.

Since S is rounded to the nearest integer, p-values 0.048, 0.052, and 0.06 all supply
approximately 4 bits of refutational information, equivalent to obtaining 4 tails in 4 tosses of
a presumed fair coin. A p-value of 0.25 supplies only 2 bits of refutational information, half
the amount of information yielded by p = 0.06. While p = 0.05 is conventionally considered
“significant” in medical research, it corresponds to only 4 bits of refutational information.
This may explain, in part, why so many nominally significant medical research results
are not borne out by subsequent studies. For comparison, in particle physics, a common
requirement is 22 bits of refutational information (p ≤ 2.87 × 10−7), which corresponds to
obtaining all tails in 22 tosses of a fair coin [45].

Converting p-values to bits of refutational information can also be very helpful for
interpreting RCT results that have large p-values. For example, the phase 3 RCT CALGB
90202 in men with castration-sensitive prostate cancer and bone metastases reported an
HR of 0.97 (95% CI 0–1.17, p = 0.39) for the primary endpoint, time to first skeletal-related
event (SRE), using zoledronic acid versus placebo [46]. It is a common mistake, sometimes
made even by trained statisticians [38], to infer that a large p-value confirms H0, which
is wrong because a null hypothesis can almost never be confirmed. In the example, this
misinterpretation would say that there was no meaningful difference between zoledronic
acid versus control. The correct interpretation is that there was no strong evidence against
the claim of no difference between zoledronic acid versus control in time to the first SRE.
Using the S-value, p = 0.39 supplies approximately 1 bit of information against the null
hypothesis of no difference, which is equivalent to asserting that a coin is fair after tossing
it only once. This is why a very large p-value, by itself, provides very little information [35].
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Conversion to bits of information can also help to interpret a frequentist 95% CI,
which may seem counterintuitive due to its perplexing definition, which says that if the
experiment generating the data were repeated infinitely many times, about 95% of the
experiments would give an (L, U) CI pair containing the true value, assuming the statistical
model assumptions are correct [47]. For example, an estimated HR of 0.71 with a 95%
CI of 0.57–0.87 is obtained for HR in a hypothetical RCT study. A frequentist 95% CI,
corresponding to a p-value threshold of 1 − 0.95 = 0.05, gives an interval of HR values
for which there are no more than approximately 4 bits of refutational information, since
S = −log2(0.05) ≈ 4, assuming that the statistical model assumptions are correct. Thus, the
data from the RCT suggest that HR values within the interval bound 0.57 and 0.87 are at
most as surprising as seeing 4 tails in 4 fair coin tosses. Values lying outside this range
have more than 4 bits of refutational information against them, and the point estimate HR
of 0.71 is the value with the least refutational information against it. Similarly, frequentist
99% CIs correspond to a p-value threshold of 1 − 0.99 = 0.01 and thus contain values
against the null with at most −log2(0.01) ≈ 7 bits of information, which is the same or
less surprising than seeing 7 tails in 7 tosses of a fair coin. A number of recent reviews
provide additional guidance on converting statistical outputs into intuitive information
measures [11,12,36,37,40,48].

Any statistical inferences depend on the probability model assumed for the analysis.
This is important to keep in mind because an assumed model may be wrong. The Cox
model assumes that the HR is constant over time, also known as the proportional hazards
(PH) assumption. Unless otherwise stated, all the RCT examples we will use herein assume
a standard PH model for their primary endpoint analyses. If the data-generating process
is different from this assumption, for example, if the risk of death increases over time at
different rates for two treatments being compared, then there is not one HR, but rather
different HR values over time. For example, it might be the case that the empirical HR
is close to 2.0 for the first six months of follow-up, but then is close to 0.50 thereafter.
Consequently, inferences focusing on one HR parameter as a between-treatment effect
can be very misleading, because that parameter does not exist. To avoid making this type
of mistake, the adequacy of the fit of the assumed model to the data and the plausibility
of the model for inferential purposes should be assessed. Whereas Bayesian inference
focuses more on the coherent updating of beliefs based on observed data (Figures 2 and 3),
frequentist inference places more emphasis on calibration, i.e., that events assigned a given
probability occur with that frequency in the long run. Furthermore, as reviewed in detail
elsewhere [12,49], frequentist outputs, such as p-values, provide refutational evidence
against all model assumptions, not only a hypothesis or parameter value (Figure 4B).
Accordingly, frequentist outputs can be used directly to determine whether the distribution
of the observed data is compatible with the distribution of the data under the assumed
model. Thus, a small p-value implies that either H0 is false or that the assumed model does
not fit the data well. For simplicity, hereafter we will follow the common convention used
in medical RCTs of assuming that the model is adequate, and thus that a small p-value
yields refutational evidence only against the tested hypothesis, which typically is the null
hypothesis of no treatment difference.

5. Inferences and Decisions

Although the term “evidence” does not have a single formal definition in the statistical
literature, various information summaries are routinely used to quantify the strength of
evidence [10,12,35,50]. These include frequentist parameter point estimates, CIs, and p-
values. Estimation is the process of computing a statistic, such as a point estimate, interval
estimate (such as frequentist CIs and Bayesian CrIs), or distributional estimates (such
as Bayesian posterior distributions or frequentist confidence distributions), which aim
to provide plausible values of the unknown parameter based on the data [12,17,51,52].
Statistical inference is a larger, more comprehensive process that involves using data not
only to estimate parameters but also to make predictions and draw conclusions about a
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larger population based on a sample from that population (Figure 1). Causal inferences
focus on estimating the effects of interventions [2,53]. An example of a frequentist causal
inference can be obtained from the KEYNOTE-564 phase 3 RCT of adjuvant pembrolizumab
versus placebo in clear cell renal cell carcinoma (ccRCC). The primary endpoint analyses for
this RCT were based on the standard PH regression model often used in survival analyses
of RCTs in oncology [1,2,54,55]. After a median follow-up of 24.1 months, the estimated
HR for the primary endpoint, disease-free survival (DFS) time, was 0.68 with 95% CI
0.53–0.87 and p = 0.002 [54]. This corresponds to 9 bits of refutational information against
the assumed model and null hypothesis that adjuvant pembrolizumab has the same mean
DFS as placebo. Any HR values in the 95% CI 0.53–0.87 are less surprising than seeing
4 tails in 4 fair coin tosses, while values outside the CI have higher refutational information
against them.

The same data from KEYNOTE-564 can be analyzed to compare DFS times of adjuvant
pembrolizumab versus placebo in ccRCC using a Bayesian framework. While noninfor-
mative priors that give numerical posterior estimates similar to frequentist estimates in
the absence of multiple looks at the data [56] can be considered, informative priors may
be used to incorporate prior information [21,57]. For example, a prior distribution may be
formulated to account for the exaggeration effect, also known as the “winner’s curse”, often
seen in reported phase 3 RCTs due to publication bias [29–31]. Phase 3 RCTs with negative
results are less likely to be accepted for publication by the editors of medical journals [29],
so the estimated effect sizes in published phase 3 RCTs are biased upward and thus are
likely to overstate actual treatment differences [29,58]. This exaggeration effect due to the
biased publication of studies with positive results is an example of a general phenomenon
known as regression toward the mean, wherein, after observing an effect estimate X in a first
study, upon replication of the experiment, the estimate Y from a second study is likely to be
closer to the population mean [29]. Three recent studies [29–31] empirically analyzed the
results of 23,551 medical RCTs available in the Cochrane Database of Systematic Reviews
(CDSR), which provided an empirical basis for constructing an informative prior distribu-
tion that accounts for the anticipated exaggeration effect in published phase 3 RCTs [30]. If
published pivotal phase 3 RCTs, such as KEYNOTE-564, are of sufficient quality to meet the
criteria for inclusion in the CDSR, it is plausible to use the proposed prior, which may be
called the “winner’s curse prior”, to account for the anticipated exaggeration effect [29,31].

Recalling that the frequentist estimate of the HR for DFS time is 0.68 for the KEYNOTE-
564 trial, the winner’s curse prior and model, described in detail elsewhere [29–31], gives a
posterior mean HR of 0.76 with 95% CrI 0.59–0.96 (Figure 5), a substantial shrinkage of the
frequentist estimate toward 1. This says that, under this prior and assumed statistical model,
Pr(0.59 < HR < 0.96|data) = 0.95 (confirmationist inference), and Pr(HR > 1.0|data) = 0.008
(refutationist inference). A free web application is available (https://vanzwet.shinyapps.
io/shrinkrct/, accessed on 18 September 2023) for clinicians to perform such Bayesian
conversions of reported RCT data.

Decisions may rely on statistical inferences, but they are not the same thing. A decision
may be made by combining information from statistical inferences with subjective cost-
benefit trade-offs to guide actions [10,59,60]. Such trade-offs may be expressed as type I
and II error probabilities in frequentist tests of hypotheses, or by a utility function [1,59,60].
If an RCT were repeated infinitely many times, its type I error upper limit α quantifies the
proportion of times that one would be willing to incorrectly reject a true null hypothesis
of no difference between treatment and control. The type II error upper limit β is the
proportion of times that one would incorrectly conclude that a false null hypothesis is
correct when a particular alternative hypothesis is true. For example, in KEYNOTE-564,
it was decided to set α = 0.025 for a test of the primary endpoint, DFS time. Because
the estimated p-value was below this threshold, it was concluded that the result was
“statistically significant” [54]. This approach is typically used to inform regulatory decisions
by agencies such as the United States Food and Drug Administration (FDA) and the
European Medicines Agency (EMA). Academic journals, by design, focus on publishing

https://vanzwet.shinyapps.io/shrinkrct/
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inferences, but they must make their decisions on which RCTs to publish based on various
cost-benefit trade-offs that can include maintaining the journal’s reputation, as well as
information on type I and type II error control [61]. Whereas estimations and corresponding
inferences are quantitative and typically on a continuous scale, decisions usually are
dichotomous, e.g., whether a statistical test is “significant” or “nonsignificant”, whether or
not to approve a therapy, or whether to accept or reject an article in a journal.
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adjuvant pembrolizumab versus placebo in ccRCC. The informative prior probability distribution
(blue) is designed to account for the winner’s curse based on an empirical analysis of the results of
23,551 medical RCTs of relative treatment efficacy available in the Cochrane Database of Systematic
Reviews. The likelihood (black) is based on the reported frequentist results of KEYNOTE-564,
demonstrating an HR of 0.68 with 95% frequentist confidence intervals of 0.53 to 0.87. The posterior
distribution (red) combines the prior information (blue) and information from the data (black) and
lies in-between. The resulting posterior distribution (red) accounts for the winner’s curse and yields
a Bayesian posterior mean HR of 0.76 with 95% posterior CrI 0.59–0.96. The posterior probability that
the HR is larger than 1.0 is 0.8%.

To illustrate the difference between inferences and decisions, we compare the results
of the METEOR and COSMIC-313 phase 3 RCTs, which used a similar design and the same
decision-theoretic trade-offs of type I error probability α = 0.05 and type II error probability
β = 0.10 to guide tests of hypotheses for the primary endpoint of progression-free survival
(PFS) time [62–64]. METEOR compared salvage therapies cabozantinib versus everolimus
as a control in 375 patients with advanced ccRCC and reported an estimated HR of 0.58 (95%
CI 0.45–0.75, p < 0.001) for the PFS endpoint [62]. COSMIC-313 compared the combination
of cabozantinib + nivolumab + ipilimumab versus placebo + nivolumab + ipilimumab
control as first-line therapies in 550 patients with advanced ccRCC. To date, this trial has an
estimated HR of 0.73 (95% CI 0.57–0.94, p = 0.013) for the PFS endpoint [64]. Both results
were declared “statistically significant” by the trial design because their p-values were
lower than the conventional threshold of 0.05. They both supplied more than 4 bits of
refutational information against the null hypothesis. However, METEOR yielded a far
stronger PFS signal than COSMIC-313, since its reported p-value of <0.001 corresponds
to at least 10 bits of refutational information against the null hypothesis, HR = 1, that
cabozantinib has the same mean PFS outcome as everolimus. METEOR did not provide
the exact p-value, but using established approaches [65], and the calculator provided in
Supplementary File S1, we can back-compute the p-value using the reported 95% CIs to be
approximately 3.5 × 10−5, which corresponds to 15 bits of refutational information against
the null hypothesis. On the other hand, the p-value of 0.013 reported by COSMIC-313
supplied only 6 bits of refutational information against the null hypothesis that the triplet
combination of cabozantinib + nivolumab + ipilimumab yields the same average PFS as
the control arm. Therefore, although both trials were considered to show a “positive” PFS
signal using the same p-value cutoff of 0.05 based on prespecified decision-theoretic criteria,
METEOR yielded more than twice the refutational information against its null hypothesis
compared with COSMIC-313.
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Similar conclusions may be obtained if we examine the two trials using a Bayesian
approach to generate posterior probabilities and CrIs. We assume that both METEOR and
COSMIC-313 meet the criteria to be included in the CDSR and accordingly use the winner’s
curse prior to reducing exaggeration effects [30]. For METEOR, the posterior mean HR = 0.65
with 95% CrI 0.49–0.83 and posterior probability Pr(HR > 1.0|data) = 0.00027, strongly
favoring the cabozantinib arm over the everolimus control arm. Conversely, for COSMIC-313,
the posterior mean HR = 0.81 with 95% CrI 0.63–1.01 and Pr(HR > 1.0|data) = 0.031 the
control arm yielded better PFS than the triplet combination. Thus, when viewed through
either a frequentist or Bayesian lens, the signal of METEOR is far stronger than that of
COSMIC-313, despite both RCTs being reported as positive for their PFS endpoint. This
illustrates the general fact that estimation yields far more information than a dichotomous
“significant” versus “nonsignificant” conclusion from a test of hypotheses. Ultimately,
decisions of which therapies to use in the clinic should incorporate each patient’s goals
and values; account for trade-offs related to additional endpoints, such as OS, adverse
events, quality of life, and financial and logistical costs; and account for individual patient
characteristics [1].

6. Pre Hoc and Post Hoc Power

A concept related to decision-theoretic error control is the power, 1 − β, of an RCT.
Because the type II error probability is a frequency-based computation for a selected
specific value HR* under the alternative hypothesis (i.e., Ha: HR = HR*), it is not used in the
interpretation of a completed RCT. While there is typically only one null hypothesis, that the
HR = 1.0, there are infinitely many potential alternative HR* values. Since a typical power
computation is based on one arbitrary value for the alternative hypothesis and essentially
is a device for computing sample size, most power computations have very little value
and may be misleading after a trial has been completed. For example, the stated power
of the CLEAR phase 3 RCT in metastatic ccRCC was determined based on the selected
alternative value HR* of 0.714 for the primary endpoint of PFS, but upon completion of
the trial, the estimated HR was 0.39 [66]. Post hoc power calculations conducted using the
observed results after RCT completion are simply a re-expression of the observed p-value,
and they provide no additional information [67]. This is the reason why knowing the power
of an RCT is useful during the design stage of the trial, mainly as a rationale for sample
size, but it has no value when analyzing the trial’s data. After the RCT is completed, the
main interest for causal inferences is the uncertainty intervals of comparative parameters
such as HRs or differences between means [35,67]. Due to the arbitrariness of HR*, it may
be argued that a typical power computation is little more than a device to rationalize a
computed sample size and that a plotted curve or table of power figures for a range of HR*
values is much more honest and informative.

7. Variability and Uncertainty

Statistical outputs may include descriptive summaries representing the variability of
the data, such as the standard deviation (SD), range, or interquartile range (IQR) from the
25th to 75th sample percentiles. For example, among the patients treated with adjuvant
pembrolizumab in KEYNOTE-564, the median age was 60 years with a range of 27–81. A
sample range pertains to values observed in the patients enrolled in an RCT but is of limited
use in making inferences about patient populations. Conversely, statistical summaries
of uncertainty, such as a sample standard error (SE, also denoted by σ) or a CI, are used
to make inferences about a parameter, such as the relative treatment efficacy of adjuvant
pembrolizumab versus placebo. Variability is more general than variance [68], σ2, which
is a parameter defined as the expected value of (Y − µ)2 for Y, a random variable of a
population with mean µ. A population variance typically is estimated by a sample variance
s2, which is often used to compute the SE = s/sqrt(n) of a sample mean. As the sample size
increases, the SE decreases, and the CI for the mean becomes narrower [68–70].
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8. Aleatory and Epistemic Probabilities

In frequentist inference, randomization ensures that uncertainty estimates of between-
treatment effects will be unbiased. In Bayesian inference, randomization physically jus-
tifies the derivation of a randomization-based prior probability for the parameter of
interest [71,72]. For example, the prior probability that a fair coin will land as heads
is physically justifiable to be 0.5 [73]. Priors informed by known physical interventions,
such as a fair coin flip, are called “aleatory” probabilities to distinguish them from “epis-
temic” probabilities, which are based on ignorance about the underlying data-generating
process [73]. Aleatory and epistemic probabilities thus may coincide numerically, but they
express very different concepts. For example, we may assign a prior probability of 0.5
for the outcome of a game of chess between two randomly chosen people [73]. This epis-
temic probability is not based on a well-defined underlying physical process but instead
is derived from pure ignorance about the contestants [74]. The outcome of flipping a fair
coin would be assigned a numerically equivalent prior probability of 0.5 but is based on a
very well-understood data-generating process and thus would be expected to remain the
same as we obtain more information. Conversely, epistemic probabilities can be updated
as we gain more information. For example, our prior probability regarding who will win a
game of chess will change if we find out that one of the contestants is a chess grandmaster.
The distinction between epistemic and aleatory probabilities is subtle, but it stands at the
heart of RCT inferences. Traditional frequentist RCT interpretations do not use epistemic
probabilities and accept only aleatory probabilities as valid measures of uncertainty. Such
aleatory probabilities are generated by physical procedures such as random sampling and
random allocation.

9. Random Sampling and Random Allocation

Random sampling and random allocation, also known as randomization, are both
random procedures in which the experimenter introduces randomness to achieve a scientific
goal. This is different from the randomness that an observable variable Y appears to have
due to the uncertainty about what value it will take. The use of random procedures as an
integral part of frequentist statistical inference to generate aleatory uncertainty estimates
was pioneered by Ronald Fisher during the first half of the 20th century [75,76]. His insight
can be represented explicitly by causal diagrams, as shown in Figure 6. We refer readers
to comprehensive overviews for details on causal diagrams, which are used to represent
assumptions about the processes that generate the observed data [2,77–79]. Figure 6
uses a type of causal-directed acyclic graph (DAG) known as a selection diagram, which
includes a selection node, S, that represents selection bias when sampling from a patient
population [2,80–83]. Selection DAGs can help to distinguish between the effects of random
allocation (Figure 6B) and random sampling (Figure 6C). In RCTs, the focus is on the
comparative causal effect, also known as the relative treatment effect, of a new treatment
under investigation versus a standard control treatment. Each patient can only be assigned
to one treatment, denoted by “Treatment assignment” in Figure 6. In nonrandomized
studies, because physicians use patient covariates such as age, disease burden, or possibly
biomarkers to choose a treatment assignment, this effect is denoted by the solid arrow from
“Baseline patient covariates” to “Treatment assignment” in Figure 6A. The solid arrow
from “Baseline patient covariates” to “Outcome” in Figure 6A denotes that these covariates
may also influence the outcome and thus are confounders that can create a false estimated
association between treatment assignment and outcome [2,77–79]. Random treatment
allocation removes the causal arrow from any covariate, whether it is observed or not, to
treatment and thus removes confounding (Figure 6B). Whether a study is randomized
or observational, baseline patient covariates may directly influence the outcome, e.g., OS
time, thus acting as prognostic factors. Because RCTs typically test the null hypothesis of
no influence between treatment assignment and outcome, Figure 6 denotes this putative
causal effect with a gray arrow.
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Figure 6. Selection diagrams distinguishing the causal effects of the two major types of random
procedures used in research. (A) In a nonrandomized trial, the baseline covariates of patients can
confound the estimation of the relative treatment effect because they can influence both treatment
assignment and the outcome of interest. The selection node S indicates that sampling biases influence
the enrichment of these baseline patient covariates in the study. (B) In an RCT, the treatment
assignment of each patient or other study unit is only influenced by the random allocation procedure.
Therefore, the baseline patient covariates can no longer be systematic confounders of the relative
treatment effect but still influence the outcome, thus serving as prognostic factors. The physical
act of randomization justifies the estimation of uncertainty measures as random errors for the
relative treatment effect parameter comparing the enrolled groups (comparative inference). (C) In
survey studies, the random sampling of patients from the population of interest removes systematic
sampling biases and provide a physically justifiable distribution for the probability that the enrolled
sample estimates for each sampled group are generalizable to the broader population. (D) In pure
randomization inference, random allocation and random sampling remove systemic confounding
and sampling bias thus allowing the physically justifiable estimation of uncertainty estimates for
both the relative treatment effect and sample generalizability.

If a trial is designed to balance treatment assignments within subsets determined
by known patient covariates, but it does not randomize, then other known or unknown
covariates still may influence both the treatment assignment and the outcome, as shown
in Figure 6A. Fisher’s insight was that all confounding effects can be removed and the
uncertainty of the relative between-treatment effect can be estimated reliably by allowing
only a random allocation procedure to influence treatment assignments, as shown in
Figure 6B. Random procedures are denoted by circles in Figure 6. Figure 6B represents the
data-generating process in RCTs defined by random treatment allocation. In the traditional
frequentist approach, random allocation licenses the use of measures of uncertainty such as
SEs and CIs for comparative causal estimates, such as the relative treatment effect shown in
Figure 6B. Measures of relative, also known as comparative, treatment effects for survival
outcomes include estimands such as HRs, differences in median or mean survival, or risk
reduction at specified milestone time points (Table 1) [1].
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Table 1. Results typically presented in medical RCTs.

RCT Measure Examples Role in RCT Interpretation Additional Comments

Uncertainty estimates for
the outcome differences

between groups

CIs for HR, RR, OR, mean
survival difference, or 1-year

risk reduction

The major goal of RCTs is to
generate valid uncertainty

estimates for the differences
between groups (comparative

inference). This is achieved
via random allocation.

Point estimates can be
extrapolated from uncertainty

intervals

Point estimates for the
outcome differences

between groups

HR, OR, RR, mean survival
difference, or 1-year risk

reduction

The differences between
groups are the focus of RCTs

Point estimates alone without
uncertainty estimates can be

misleading

p values for the outcome
differences between

groups

p value for the null hypothesis
of HR = 1.0

Refutational signals for tested
hypotheses (usually the null

hypothesis) and the
background assumptions of

the embedded statistical
models

Can be converted into bits of
refutational information

(S values)

Group-specific measures

Median or mean survival,
objective response rate, 1-year

survival probability for
each group

Descriptive measures
providing information on the

characteristics of the
enrolled patients

Uncertainty measures such as SEs
and CIs are valid in RCTs where
random sampling has also been

performed. Otherwise, measures
of variability such as standard

deviation or interquartile range
are more appropriate.

CIs, confidence intervals; HRs, hazard ratios; ORs, odds ratios; RCT, randomized controlled trial; RRs, risk ratios;
SEs, standard errors.

A random sampling method aims to remove selection bias by obtaining a representa-
tive random subset of a patient population (Figure 6C), whereas random allocation uses
a method, such as flipping a coin, to randomly assign treatments to patients in a sample
(Figure 6B). We distinguish here “selection bias”, attributable to selective inclusion in the
data pool due to sampling biases, from “confounding by indication” due to selective choice
of treatment, which can be addressed by random treatment assignment [84–86].

The conventional statistical paradigm relies on the assumption that a sample accurately
represents the population. For example, a simple random sample (SRS) of size 200 is
obtained in such a way that all possible sets of 200 objects from the population are equally
likely to comprise the sample. As a simple toy example, the 6 possible subsets of size 2 from
a population of 4 objects {a, b, c, d} are {a, b}, {a, c}, {a, d}, {b, c}, {b, d} and {c, d}, so an SRS
of size 2 is one of these 6 pairs, each with a probability of 1/6. Random sampling is used
in sampling theory, whereas random allocation is used in the design of experiments such
as RCTs [6–8]. They are connected by the causal principle that random procedures yield
specific physical independencies; random allocation removes all other arrows towards
treatment assignment (Figure 6B), while random sampling removes the arrow toward the
selection node, S (Figure 6C) [44]. Accordingly, random allocation connects inferential
statistics with causal parameters expressed as comparative estimands, such as between-
treatment effects measured by ratios or differences in parameters (Table 1). Conversely,
random sampling allows us to apply statistical inferences based on the sample to the entire
population [87].

There exist some scenarios outside of medicine whereby both random sampling and
random allocation are feasible (Figure 6D). One such example in the social sciences is
to randomly sample a voter list from a population of interest and then randomly assign
each voter to receive or not receive voter turnout encouragement mail. However, random
sampling from the patient population for whom an approved treatment will be medically
indicated is impossible in a clinical trial. A trial includes only subjects who meet enrollment
criteria and enroll in the trial. Thus, they comprise a convenience sample, as denoted by the
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arrow toward the selection node, S, in Figure 6A,B, subject to a protocol’s entry criteria as
well as other considerations such as access to the trial and willingness to consent to trial
entry. Furthermore, patients are accrued sequentially over time in a trial. Due to newly
diagnosed patients entering and treating patients leaving a population as they are cured
or die, as well as changes in available treatments, any patient population itself constantly
changes over time. Consequently, a trial’s sample is very unlikely to be a random sample
that represents any definable future patient population. Even when inferences based on
a trial’s data are reasonable, they may not be valid for a population because they only
represent the trial’s convenience sample and not a well-defined patient population that will
exist after the trial’s completion. Despite these caveats, data from an RCT can be very useful
as a guide for future medical decision-making if a treatment difference is transportable
from an RCT to a population-based on causal considerations, as extensively reviewed
elsewhere [2].

10. Comparative and Group-Specific Inferences

Because each treatment group in most RCTs is a subsample of a convenience sam-
ple, one cannot reliably estimate valid SEs, CIs, p-values, or other measures of uncer-
tainty for the outcomes within each treatment group, individual patient, or other sub-
group. For such outcomes, only measures of variability such as the SD and IQR are
useful [87–89]. However, this fact often goes unrecognized in contemporary RCTs, and
within-arm statistics are reported that are of little inferential use for an identifiable patient
population because they do not represent the population. For example, KEYNOTE-564
appropriately reported treatment comparisons in terms of the point estimate of HR, CIs,
and a p-value for the DFS endpoint, but also provided the 95% CI for the proportion of
patients who remained alive and recurrence-free at 24 months within each of the pem-
brolizumab and control groups [54]. Similarly, the CheckMate-214 phase 3 RCT of the new
immunotherapy regimen nivolumab + ipilimumab versus the control therapy sunitinib
in patients with metastatic ccRCC reported the 95% CI for the median OS outcomes of
each treatment group. Nevertheless, it is important to note that these treatment-specific
estimates cannot be reliably used to infer the treatment-specific OS outcomes of patient
populations [90,91].

Figure 7 shows the value of generating survival plots that properly focus on compara-
tive inferences between treatment groups in RCTs. The survival plots were generated using
the survplotp function from the rms package in R version 4.1.2 [92]. This function allows
users to produce such plots in an interactive format that provides a real-time display of
information, such as the number of patients censored and the number at risk per group
at any time within the plot [93]. Furthermore, it allows one to visualize the time points
where the p-value for the differences between groups is <0.05, denoted by the shaded gray
area not crossing the survival curves. This shaded gray area represents the cumulative
event curve difference. When it intersects with the survival curves, the p-value is >0.05.
Narrow-shaded gray areas indicate less uncertainty, whereas wide-shaded gray areas rep-
resent high uncertainty in estimating the differences between groups. Figure 7A shows an
example of an RCT with a consistent signal of an average survival difference between the
treatment and control groups throughout the study, as also evidenced by the corresponding
HR estimate of 0.62 with 95% CI 0.49–0.79 and p-value of 8.4 × 10−5, yielding 14 bits of
refutational information against the null hypothesis. Figure 7B,C shows two RCTs with
large p-values for the relative treatment effect measured by the HR estimate. However, the
RCT in Figure 7B shows a consistent signal of no meaningful effect size difference between
the treatment and control groups, as can be determined by looking at the consistently
narrow cumulative event curve difference represented by the shaded gray area. The RCTs
in Figure 7A,B yielded informative signals as evidenced by the narrow cumulative event
curve difference. Conversely, Figure 7C shows the results of an uninformative RCT. This
low signal is evident by the wide cumulative event curve difference throughout the survival
plot and is consistent with the wide 95% CIs of 0.54–1.30 for the HR estimate. Therefore, no
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inferences can be made at any time point for the survival curves presented in Figure 7C.
Readers inspecting the noisy data in Figure 7C may mistakenly conclude that there exists
a signal of a survival difference favoring the treatment over the control group at the tail
end of the curve from approximately 40 months onward. However, the wide cumulative
event curve difference shows that the estimated curves from that time point onward are
based almost exclusively on noise. This important visual information would be missed in
survival plots that do not show the comparative uncertainty estimates for the differences
between the RCT groups. In general, any Kaplan–Meier estimate becomes progressively
less precise over time as the numbers at risk decrease, and at the tail end of the curve, it
provides a much less reliable estimate due to the low numbers of patients followed at those
time points. Indeed, only 21/159 = 13.2% of patients in the RCT shown in Figure 7C were
in the risk set at 40 months. It has been proposed, accordingly, to refrain from presenting
survival plots after the time point where only around 10% to 20% of patients remain at risk
of the failure event [94]. A key point is that if we are to make decisions regarding a test
hypothesis, such as the null hypothesis, then the binary decision to either reject or accept is
inadequate because it cannot distinguish between the two very different scenarios shown
in Figure 7B,C. Instead, we can more appropriately use the trinary of “reject” (Figure 7A),
“accept” (Figure 7B), or “inconclusive” (Figure 7C).
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Figure 7. Example Kaplan–Meier survival plots from three hypothetical RCTs. The shaded gray area
represents the midpoint of the treatment and control group survival estimates plus or minus the
half-width of the 95% CI for the difference of each group’s Kaplan–Meier probability estimates. This
gray polygon is centered at the midpoint between the two groups so that if it crosses one survival
curve, it will also cross the other. It thus indicates that p > 0.05 (not multiplicity adjusted) for the null
hypothesis of no treatment group difference in that time point, at time points where the gray polygon
crosses the survival curves. HRs and their CIs and p-values were estimated using a univariable Cox
proportional hazards model. (A) Example RCT with consistent signal of survival difference between
the treatment and control (p < 0.05, corresponding to at least 4 bits of information against the null
hypothesis). The corresponding Cox regression model yielded 14 bits of refutational information
against the null hypothesis of no difference under the assumption that all other background model
assumptions are correct. (B) Example RCT with no strong survival difference signal between the
treatment and control groups, as indicated by the gray area consistently crossing the survival curves.
The consistently narrow width of the gray polygon indicates that the trial results are compatible at
the 0.05 level with no clinically meaningful difference between the treatment and control groups
throughout the study. This is supported by the corresponding Cox model, which wielded only 2 bits
of refutational information against the null hypothesis, as well as a 95% CI compatible with HR effect
sizes ranging from 0.74, favoring the treatment group, to 1.1, favoring the control group. (C) This
example RCT also has no strong survival difference signal between the treatment and control groups.
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The consistently wide gray area indicates that the signal is very low at all time points. Therefore,
no inferences can be made on whether or not there is a treatment difference based on these survival
curves. Accordingly, the corresponding Cox model yielded very low refutational information against
the null hypothesis and a very wide 95% CI compatible with HR effect sizes as low as 0.54, strongly
favoring the treatment group, and as high as 1.30, strongly favoring the control group.

The number needed to treat (NNT), defined as the reciprocal of the estimated risk
difference at a specified milestone time point, is a controversial comparative statistic
originally proposed by clinicians to quantify differences between treatment groups in
RCTs [95]. However, NNT is highly problematic statistically because values from the same
RCT can vary widely for each milestone time point and follow-up time. Therefore, no single
NNT can be used to comprehensively describe the results of an RCT. Additionally, NNTs
are typically presented as point estimates without uncertainty measures such as CIs, thus
creating the false impression that they represent fixed single numerical summaries [96–99].
Standard metrics, such as one-year risk reduction and its corresponding CI, are typically
more reliable and interpretable summaries of RCTs. When NNTs are presented, their
uncertainty intervals and the assumptions behind estimating this measure should be noted.

11. Blocking and Stratification

Due to the play of chance, random sampling and random allocation both generate
random imbalances in the distributions of patient characteristics between treatment arms.
These imbalances are a natural consequence of random procedures, and uncertainty mea-
sures such as CIs account for such imbalances [8]. Complete randomization cannot perfectly
balance baseline covariates between the treatment groups enrolled in an RCT [8,89,100,101].
The convention of summarizing covariate distributions by treatment arm and testing for
between-arm differences, often presented in Table 1 of RCT reports, reflects nothing more
than sample variability in baseline covariates between the groups, and has been called the
“Table 1 fallacy” [63,102].

To mitigate potential covariate imbalances in survey studies used in sampling theory,
the target population of patients can be partitioned into subgroups known as “strata”,
based on specific covariates such as age, sex, race, or ethnicity, known as “stratification
variables” [17]. By design, this sampling procedure induces a known selection bias for the
stratification variables, which are sampled according to a specifically selected proportion,
typically the population proportion, without deviations due to randomness [17,85,103].
The final sample then is formed by randomly sampling patients from each stratum,
thus ensuring that there is no systematic selection bias for the non-stratified covariates
(Figure 8A). For example, if a patient population has a 60% poor prognosis and 40% good
prognosis, then a stratified sample of size 200 would consist of a random sample of size
120 from the poor prognosis subpopulation and a random sample of size 80 from the good
prognosis subpopulation. There are numerous ways to obtain such representative samples,
depending on the structure of the population of interest, particularly for unconscious units,
such as sampling to ensure the quality of drug products in the market.

In experimental studies such as RCTs, covariates can be used adaptively during a trial
to allocate treatment in a way that minimizes imbalances (Figure 8B) [104]. “Minimiza-
tion” is the most commonly used of these covariate-adaptive randomization schemes [105].
Treatment allocation in such trials is largely nonrandom because it is directly influenced by
the characteristics of earlier patients, along with the baseline covariates of the newly en-
rolled patients (Figure 8B) [101,106,107]. Thus, it is critical to choose appropriate statistical
methods to validly analyze trials that use covariate-adaptive randomization methods [107].
Permutation tests can be used as the primary statistical analysis of the comparative treat-
ment effect in RCTs that use covariate-adaptive randomization instead of conventional
random treatment allocation [108]. While the balance achieved by covariate-adaptive
randomization can potentially increase power compared with conventional RCTs, knowl-
edge of the characteristics of earlier patients can allow trialists and other stakeholders
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to predict the next allocation, which increases the vulnerability of the trial to potential
manipulation [101,108].
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Figure 8. Selection diagrams distinguishing the causal effects of stratification, covariate-adaptive
randomization, and blocking. (A) Surveys can obtain samples from explicitly specified stratification
variables, which divide the population into smaller subgroups called “strata”. This induces a selection
bias specifically for the stratification variables. Patients are then selected randomly from each stratum
to form the final sample. (B) Clinical trials can ensure balance of specific baseline patient covariates
by choosing the treatment assignment of each patient after adaptively accounting for their baseline
patient covariates and for the treatment assignment of previously enrolled patients. Minimization
is the most commonly used covariate-adaptive randomization method used in clinical trials. This
covariate-adaptive “randomization” is actually a largely nonrandom treatment allocation method
because it is influenced by the characteristics of earlier patients along with the baseline covariates
of the current patient. (C) RCTs can limit the random allocation of treatments in such a way that
each treatment group is balanced with respect to explicitly specified blocking variables, reducing the
heterogeneity of the outcome. An additional non-mutually exclusive strategy would be to covariate
adjust in the statistical model for the effect of the blocking variables on the outcome.

To avoid problems caused by the adaptive use of covariates to achieve balance during
an RCT, imbalances can be prevented by a procedure known as “blocking” that deliberately
restricts random allocation so that each treatment group is balanced with respect to prespec-
ified “blocking variables” (Figure 8C). For example, in the KEYNOTE-564 phase 3 RCT, the
primary outcome of disease recurrence or death was less likely in patients with stage M0
disease, defined as no history of radiologically visible metastasis, compared with patients
who previously had such metastasis, classified as stage M1 with no evidence of disease
(M1 NED) [54]. Therefore, to balance this variable between the group of patients random-
ized to adjuvant pembrolizumab and those randomized to placebo control, blocking was
performed according to metastatic status (M0 vs. M1 NED). Within the subpopulation of
patients with M0 disease, it was deemed that Eastern Cooperative Oncology Group (ECOG)
performance status score and geographic location (United States vs. outside the United
States) were baseline covariates that could meaningfully influence the survival endpoints.
Accordingly, randomization was further blocked within the M0 subpopulation to balance
the ECOG performance status and geographic location of patients randomized to adjuvant
pembrolizumab or placebo control [54].

Medical RCTs often interchangeably use terms such as “blocking” and “stratifica-
tion” [109]. However, stratification is a procedure used during sampling in a survey,
whereas blocking is used during treatment allocation in an experiment. Conceptually, there
is an isomorphism between random sampling, random allocation, and their respective
theories and methods in the sense that they are logically equivalent, and thus one can be
translated into the other [36,87,110]. Thus, random sampling can be viewed as a random al-
location of patients to be included or excluded from a sample. Similarly, random allocation
can be viewed as random sampling from the set of patients enrolled in either treatment
group. To facilitate conceptual clarity, it may be preferable to keep the terminologies of sam-
pling theory and experimental design distinct, given that each focuses on different physical
operations and study designs (Table 2). Medical RCTs that do use the term “stratification”
typically allude to the procedure whereby the prognostic variables (blocking variables) of
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interest are used to define “strata”, followed by blocking to achieve balance within each
stratum [8,109].

Table 2. Differences between random sampling and random allocation.

Goal Approach Used in
Random Sampling

Approach Used in
Random Allocation Additional Comments

Study design Sampling theory Experimental design

Random allocation may refer to random
treatment assignment in RCTs, natural

genetic variation in Mendelian
randomization, or other natural random

allocation processes used as
instrumental variables

Describe the population of
enrolled patients Sample Cohort

Cohorts of patients are not randomly
sampled. They are randomly allocated to
different exposures such as a treatment

or control.

Use of uncertainty
measures

Justified for
group-specific

parameters

Justified for comparative
parameters representing

differences between
groups

Measures of variability such as interquartile
range and standard deviation are preferred
for group-specific parameters in the absence

of random sampling

External validity
Generalizability from

sample to broader
population

Transportability from
cohort to target population

Refers to the extension of knowledge
between one population (sample or cohort)

to another

Study underserved
populations or minorities

Representative
sampling

Representative causal
mechanisms

Ethical oversight is warranted to ensure
inclusiveness of RCTs with the goal to reduce

healthcare disparities

Mitigate imbalances
induced by the random

procedure
Stratification Blocking Covariate adjustment can also account for

random imbalances in RCTs

RCT, randomized controlled trial.

Including blocking for metastatic status, ECOG performance status, and geographic
location in the design of the KEYNOTE-564 RCT ensures that these variables will be
balanced between the adjuvant pembrolizumab and placebo control groups. However,
it is more efficient to also inform the statistical analysis model that one is interested in
“apples-to-apples” comparisons between patients balanced for these blocking variables. To
achieve this, the statistical model should adjust for these blocking variables [89,101,111].
This yields “adjusted” HRs that prioritize the comparison of patients randomized to
adjuvant pembrolizumab with those randomized to placebo that had the same metastatic
status, performance status, and geographic location [112]. Indeed, the statistical analysis
models of KEYNOTE-564 adjusted for these blocking variables [54]. Of note, while blocked
randomization and adjustment can prevent random imbalances of the blocking variables,
they do not guarantee the balance of unblocked variables [113].

12. Forward and Reverse Causal Inference

Suppose that a patient with uncontrolled hypertension starts taking an investigational
therapy, and two weeks later her blood pressure is measured and found to be within the
normal range. This observed outcome under the investigational treatment is referred to as
the “factual” outcome [114]. One may imagine the two-week outcome that would have
been observed if the patient had received standard therapy instead. This may be called the
“counterfactual” outcome since it was not observed [9,115,116]. Before a patient’s treatment
is chosen and administered, the factual and counterfactual outcomes are called “potential”
outcomes because both are possible, but they only become factual and counterfactual
once a treatment is given. This structure provides a basis for a “reverse” causal inference
task that aims to answer the question, “Did the intervention cause the observed outcome
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for this particular patient?” [9,115,117]. One may want to transport this knowledge to
make predictions about the potential outcomes of using the investigational or standard
therapy on other patients belonging to the same or different populations [2,118]. Such
predictions require more assumptions than the reverse causal inference of RCTs, including
causal assumptions about the transportability of the previously estimated relative treatment
effects [2,80,81,119]. These “forward” causal inference models study the effects of causes to
answer the question, “What would be the outcome of the intervention?”

To think about the forward causal effect of treatment X on an outcome Y, such as an
indicator of response or survival time, one may perform the following thought experiment.
To compare two treatments, denoted by 0 and 1, make two physical copies of a patient,
treat one with X = 0 and the other with X = 1, and observe the two potential outcomes, Y(0)
and Y(1). The difference Y(1) − Y(0) is called the causal effect of X on Y for the patient.
Since this experiment is impossible, one cannot observe both potential outcomes. This is
the central problem of causal inference [115]. Under reasonable assumptions, however, it
can be proven that, if one randomizes actual patients between X = 0 and X = 1, producing
sample means as estimators of the population mean treatment effects µ0 and µ1, then the
difference between the sample means is an unbiased estimator of the between-treatment
effect ∆ = µ1 − µ0 for the population to which the sample corresponds. For example, if Y
indicates response, then the sample average treatment effect is the difference between the
two treatments’ estimated response probabilities, and the difference between the sample
response probabilities follows a probability distribution with mean ∆; that is, it is unbiased.
Assume that h1 is the hazard function (event rate) for the treatment group and h0 is the
hazard function for the control group as previously described [1,2]. For HR = h1/h0, the
relative treatment effect may be written as ∆ = log(HR) = log(h1) − log(h0), and the sample
log(HR) provides an unbiased estimator of ∆. The key assumptions to ensure this is that
(1) whichever treatment, X = 0 or 1, is given to a patient, the observed outcome must
equal the potential outcome, Y = Y(X); (2) given any patient covariates, treatment choice
is conditionally independent of the future potential outcomes (that is, one cannot see into
the future); and (3) both treatments must be possible for the patient. In terms of a DAG,
(Figure 6B) [87], randomization removes any arrows from observed or unknown variables
to treatment X, so the causal effect of X on Y cannot be confounded with the effects of
any other variables. In particular, randomization removes the treatment decision from the
physician or the patient, who would otherwise use the patient’s covariates or preferences
to choose treatments (Figure 6A). An additional statistical tool is the central limit theorem
(CLT), which says that, for a sufficiently large sample size, the distribution of the sample
estimator is approximately normal with mean ∆ and specified variance. This may be used
to test hypotheses and compute uncertainty measures such as confidence intervals and
p-values [120].

13. Generalizability and Transportability of Causal Effects

The term “generalizability” refers to the extension of inferences from an RCT to a
patient population that coincides with, or is a subset of, a trial-eligible patient popula-
tion [121–123]. The practical question is how a practicing physician may use inferences
based on trial data to make treatment decisions for patients whom the physician sees in a
clinic. Generalizability is the primary focus of sampling theory, as discussed above, and
random sampling allows one to make inferences about broader populations. However, ran-
dom sampling often is not practically feasible in trials, and clinical trial samples therefore
are not representative. Thus, other sampling mechanisms have been proposed to facilitate
generalizability, including the purposive selection of representative patients, pragmatic
trials, and stratified sampling based on patient covariates [121].

The primary focus of experimental design is internal validity, which provides a sci-
entific basis for making causal inferences about the effects of experimental interventions
by controlling for bias and random variation [8,112,121,124]. The tight internal control
exercised by experimental designs, such as RCTs, may make it difficult to use sampling
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theory to identify a population that the enrolled patient sample represents. The approach
typically used to move causal inferences from an RCT to a population of patients, such
as those seen in clinical practice, is called “transportability” [2,80,81,125]. Transportability
relies on the assumption that the patients enrolled in a RCT and the target populations of
interest share key biological or other causal mechanisms that influence the treatment effect.
The key transportability assumption is that, while the individual treatment effects µ0 and
µ1, such as mean survival times, may differ between the sample’s actual population and the
target population, the between-treatment effect ∆ = µ1 − µ0 is the same for the two popula-
tions. Transportability from experimental subjects to future patients seen in the clinic who
share relevant mechanistic causal properties is a standard scientific assumption [2,80–82].
For example, inferences from an RCT comparing therapies that target human epidermal
growth factor receptor 2 (HER2) signaling in breast cancer may be transported if a patient
seen in the clinic has breast cancer driven by HER2 signaling, despite the fact that the clinic
population is otherwise completely separate in space and time from the sample enrolled in
the RCT [2,82].

External validity is the ability to extend inferences from a sample to a population,
and thus it encompasses both generalizability and transportability [8,112,121,124]. In
studies based on sampling theory, such as health surveys, external validity is mainly
based on generalizability, i.e., whether the sample in the study is representative of the
broader population of interest. In experimental studies, such as RCTs, external validity
is predominantly based on transportability, i.e., whether the RCT investigated causal
mechanisms that are shared with the populations of interest. Internal validity, however,
is the more fundamental consideration in both sampling theory and experimental design.
External validity is meaningless for studies without internal validity.

14. Representativeness and Inclusiveness

Because experimental design focuses on making internally valid causal inferences,
it has been argued in both the statistical and epidemiological literature that sampling
representativeness is incongruous with the goal of experiments such as RCTs [8,126–129].
For example, when we evaluate a new cancer therapy preclinically in mice, we do not
randomly select a representative sample of mice to be included in the study. Instead, we
choose a homogeneous group of mice that closely recapitulates the biological mechanisms
we wish to study. This aspect of experimental design is independent of whether the
treatment is randomly allocated among the mice, and it corresponds to controlling for the
effects of “Baseline patient covariates” on “Outcome” in Figure 6. To precisely estimate
a between-treatment effect in an RCT, the effects of baseline patient covariates on the
outcome may be controlled by balancing on them in the randomization, e.g., by stratification
and blocking [8,82]. For example, in an RCT comparing two therapies that target HER2
signaling in breast cancer, it may be more efficient to restrict enrollment to a sample of
HER2-positive patients [2]. In contrast, if there is a reasonable possibility of treatment
effects not mediated by HER2 signaling, HER2-negative patients may also be enrolled,
with randomization that balances within the HER2-positive and -negative subgroups. The
statistical model of analyses, prespecified in the experimental design, can then allow for
different between-treatment effects in the two HER2 subgroups. Similarly, when there
is a mechanistic rationale for investigating interactions between treatment and certain
baseline patient covariates, such as sex or race, statistical inferences should be based on
a prespecified regression model that includes such interactions [2,8,130]. For example,
inferences may consider different between-treatment effects for male and female patients.
A potential major issue is that investigating causal interactions between baseline patient
covariates or subgroups and treatments requires a larger overall sample size to make
reliable inferences [8,57,131].

The fact that representativeness is not necessary to make comparative inferences
in RCTs does not invalidate ethical and societal considerations for inclusiveness, which
is distinct from representativeness. Inclusiveness is the goal of increasing the partic-
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ipation of minority and/or underserved populations in RCTs to reduce healthcare
disparities [132–134]. This is different from the scientific goal of representativeness used in
sampling theory studies, such as health surveys [135,136]. An important scientific issue
that may motivate inclusiveness is the question of whether the magnitude of a causal
between-treatment effect may differ between minority subgroups defined, for example, by
race or gender. If such a treatment-subgroup interaction is suggested mechanistically by
biological knowledge or statistically by historical data, and if the difference in magnitude
is large enough to change inferences regarding the comparative treatment effect, then not
including a sufficient number of minority patients in an RCT serves society poorly.

15. Relevance and Robustness

A major goal of RCTs is to generate knowledge that can inform physicians in making
inferences and decisions for the patients seen in their clinic [1,2]. For example, suppose
the goal is to use the results of the KEYNOTE-564 phase 3 RCT, which compared adjuvant
pembrolizumab to placebo (surveillance) in patients with ccRCC in terms of survival, to
make a treatment choice for a patient with ccRCC seen in the clinic [2,54,137]. This requires
accounting for how treatment and a patient’s baseline covariates affect their survival
(Figure 6). Patient relevance refers to how well a statistical regression model accounts for
attributes of a specific patient seen in the clinic, to generate tailored estimates of survival or
other clinical outcomes [68,138]. An ideal scenario is for an RCT to perform an “apples-to-
apples” comparison of the effect of adjuvant pembrolizumab versus placebo between RCT
patients with baseline covariates identical to those of a patient in the clinic. Perfect patient
relevance would require a statistical model to account for every aspect of a patient’s biology,
environment, and other covariates that can influence the outcome of interest. However,
this is an unrealistic goal, and the relevance of a statistical model must be balanced with
robustness and practicality [3,4,68,138,139].

Robustness implies that inferences will be valid for a wide range of different patient
covariates. The higher the robustness of RCT results, the more applicable they are for
making inferences across a heterogeneous patient population [68,138,140]. Robustness
generally describes the extent to which results can be reproduced after altering experimental
conditions. For example, during preclinical assessment of an investigational cancer therapy,
the robustness of causal inferences is increased if they can be replicated qualitatively with
a different cell line or animal model. Reproducibility is a distinct concept that describes
whether the results of an experiment can be obtained, possibly with small random variation,
after repeating the experiment under identical conditions [140].

16. Intention to Treat and Per Protocol

While inanimate units, such as plots of land in agricultural experiments, will always
follow the allocated intervention in an experiment, experimental design and analysis of
RCTs in medicine are more complex because patients may not always follow the randomly
assigned treatment (Figure 9A) [141–143]. “Intention-to-treat” (ITT) analyses estimate the
relative treatment effect for patients based on their treatment assignment, regardless of
whether they actually received the assigned therapy. Uncertainty measures for the relative
treatment effect generated by ITT analyses of RCT data are justifiable by the random
allocation procedure (Figure 9A). However, because the actual treatment received is the
source of biological efficacy, clinicians are typically interested in predicting the potential
outcomes if their patient actually receives a particular therapy. Corresponding causal RCT
parameters for such inferences are derived from “per-protocol” (PP) analyses that estimate
the relative treatment effect for the therapies that patients actually received [143]. However,
as shown in Figure 9A, random treatment assignment removes all systematic confounding
influences on the assigned treatment but does not prevent the potential influence of patient
covariates on whether the treatment was actually received. This means that PP analysis
models should account for possible confounding biases to reliably estimate the relative
treatment effect of the treatment received on the outcome of interest. This can be facilitated
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by recognizing that “Treatment assignment” in Figure 9A is an instrumental variable
for the relative treatment effect of the treatment received on the outcome. Instrumental
variable methodologies developed in econometrics and epidemiology can be used to
account for the systematic confounding influence of the treatments received in RCTs [142].
A complementary strategy is to enforce RCT internal validity by carefully designing,
implementing, and monitoring the trial so that the treatment received corresponds to the
treatment assignment as much as possible and is not influenced by patient covariates.
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susceptible to confounding biases from covariates that may have influenced treatment receipt and
treatment use.

In a recent RCT, patients were randomly allocated to receive an invitation to undergo
a single screening colonoscopy or to receive no invitation or screening [144]. The ITT analy-
sis, termed “intention-to-screen” by the study, found that the risk of colorectal cancer at
10 years was reduced in the invited group compared with the group randomly allocated
to no invitation (the usual-care group) with risk ratio (RR) = 0.82, 95% CI 0.70–0.93, and
p ≈ 0.006, corresponding to 7 bits of refutational information against the null hypothesis of
no difference in colorectal cancer risk at 10 years. However, only 42% of invited patients
actually underwent colonoscopy [144]. Thus, the estimate yielded by the ITT analysis is
more relevant for forward causal inferences related to implementing a health policy of
screening colonoscopy invitation. On the other hand, the estimate of higher interest to
clinicians and patients is how much an actual screening colonoscopy can modify the risk
of colorectal cancer at 10 years. This was provided by the adjusted PP analysis, which re-
ported RR = 0.69, 95% CI 0.55–0.83, and p ≈ 0.0005, corresponding to 11 bits of refutational
information against the null hypothesis. The caveat is that, although the PP analysis is
more relevant to direct patient care, its estimates rely on additional assumptions, reviewed
elsewhere [143,145], and are less physically justifiable from the random allocation than
those from the ITT analysis. For simplicity, we have assumed here that what the authors
used in their ITT analysis fully corresponded to the random allocation. However, some
patients allocated to each group actually were excluded, died, or were diagnosed with
colorectal cancer before being included in the study and were thus excluded from the ITT
analysis [144].

An additional distinction, often used in RCTs of medical devices, separates the PP
analysis of those who received the treatment from the “as-treated” (AT) analysis of those
who actually used their assigned treatment (Figure 9B). In these scenarios, the AT relative
treatment effect estimate is the most relevant for clinical inferences but again requires careful
modeling of potential systematic confounders (Figure 9B). In the colonoscopy RCT [144],
ITT would analyze patients as per their assigned screening intervention regardless of
whether the assigned screening invitation was actually sent to the patients, PP would
analyze patients based on whether or not they received the assigned invitation, regardless
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of whether they actually underwent colonoscopy, and AT would analyze patients based on
whether they actually underwent colonoscopy, regardless of whether they were originally
randomly assigned to the colonoscopy or whether they received an invitation to undergo
colonoscopy.

17. Prognostic and Predictive Effects

In addition to the effect of the assigned treatment on the outcomes observed in RCTs,
baseline patient covariates, also known as moderator variables, may affect the magnitude
and direction of the treatment effect [2,146]. These moderator effects can be distinguished
based on the two underlying data-generating processes represented in Figure 10. The first
type (Figure 10A) has been described in the literature using various terms such as “risk
magnification”, “risk modeling”, “effect measure modification”, “additive effect”, “main
effect”, “heterogeneity of effect”, or “prognostic effect” [1,2,112,146–148]. The second type
(Figure 10B) has been described as “biologic interaction”, “effect modeling”, “treatment
interaction”, “multiplicative effect”, “biological treatment effect modification”, or “pre-
dictive effect” [1,2,112,146–148]. For simplicity, we will adopt the terms “prognostic” and
“predictive”, often used in medical RCTs, to distinguish between the two moderator effect
types.
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Figure 10. Selection diagrams representing the data-generating processes of prognostic and predictive
effects in RCTs. (A) Prognostic biomarkers are baseline patient variables that directly influence the
outcome and not the relative treatment effect. Thus, relative treatment effect parameters such as
HRs and odds ratios (ORs) are assumed to be stable for all patients in the RCT cohort. (B) Predictive
biomarkers are baseline patient variables that influence the relative treatment effect via their effect
on the mediator pathway that transmits the effect of treatment assignment on the RCT outcome.
HRs, ORs, and other relative treatment effect parameters can change depending on the values of the
predictive biomarker. (C) In patients with breast cancer, HER2 amplification status acts as both a
prognostic and predictive biomarker.

In an RCT, prognostic variables may directly affect the outcome of interest but do not
interact with any treatment. Consequently, they do not affect the comparative treatment
effect parameter, such as an HR, which remains stable across patients (Figure 10A). In con-
trast, a variable that is predictive for a particular treatment changes the relative treatment
effect in RCTs by acting on pathways that mediate the effect of the assigned treatment on the
outcome (Figure 10B). Thus, the HR for survival in an RCT may differ between subgroups
of patients harboring distinct values of a predictive biomarker. Predictive biomarkers often
have direct prognostic effects as well. For example, patients with breast cancer harboring
amplifications of the HER2 gene, found in 25% to 30% of breast cancers [149,150], have
different prognoses than patients without such HER2 amplifications [151], regardless of
what treatment is given. The targeted agent trastuzumab was developed to specifically
target the oncogenic HER2 signaling that drives the growth of HER2-amplified breast
cancers [152]. Therefore, in an RCT comparing the use of trastuzumab versus placebo,
HER2 amplification status acts as both a prognostic biomarker that directly influences
patient survival and a predictive biomarker that influences the relative treatment effect for
trastuzumab (Figure 10C). Patients without HER2 amplification in their tumors would be
expected to derive no benefit from trastuzumab [2,152].
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Nuisance variables are defined as variables that are not of primary interest in a
study but still must be accounted for because they may influence the heterogeneity of the
outcome of interest. Prognostic variables may act as nuisance variables in RCTs [8,99].
Variables expected to have the strongest prognostic effects on the outcome of interest
should be used as blocking variables in RCTs (Figure 8C). The primary endpoint analyses of
randomized block designs will model the prognostic effects but rarely the predictive effects
of blocking variables [8,89]. This is because the predictive effects of patient covariates on
the relative treatment effect require large enough replicates (hence, large sample sizes) to be
estimated reliably in RCTs [8,57,131]. For this reason, predictive biomarkers typically are
first identified in exploratory analyses and characterized in preclinical laboratory studies,
with subsequent biologically informed RCTs specifically enriching for patients with these
biomarkers [2,82,153,154]. Modern RCT designs may also attempt to adaptively enrich
such biomarkers during trial conduct based on interim analyses of treatment response and
survival times [154,155].

Due to their powerful direct effects on patient outcomes, prognostic biomarkers
should always be considered when making patient-specific clinical inferences and
decisions [1,148]. On the other hand, identifying predictive effects during an RCT car-
ries the risk of misleading inferences and thus should be performed very rigorously [156].
For example, an exploratory analysis of the COSMIC-313 RCT investigated whether the In-
ternational Metastatic Renal Cell Carcinoma Database Consortium (IMDC) risk score [157]
can be used as a predictive covariate for the relative treatment effect of the cabozantinib +
nivolumab + ipilimumab triplet therapy versus placebo + nivolumab + ipilimumab con-
trol [64]. Similar to the example shown in Figure 7A, the Kaplan–Meier survival curves
for the IMDC intermediate-risk subgroup showed a clear signal of relative treatment effect
difference for PFS favoring the triplet therapy over the control based on a total of 182 PFS
events. The HR for PFS was 0.63 with 95% CI 0.47–0.85 and p ≈ 0.002, corresponding to
approximately 9 bits of information against the null hypothesis. However, in the IMDC
poor-risk subgroup there were only a total of 67 PFS events, yielding very noisy survival
curves, similar to the example shown in Figure 7C. The HR estimate for PFS in the IMDC
poor-risk subgroup was 1.04 with 95% CI 0.65–1.69 and p ≈ 0.88, corresponding to 0 bits of
information against the null hypothesis. Thus, no inferences can be made regarding the
predictive effect of the IMDC intermediate- versus poor-risk subgroups in COSMIC-313 be-
cause only the intermediate-risk subgroup yielded precise estimates, whereas the poor-risk
subgroup estimates were unreliable due to their imprecision. However, because the sur-
vival curves did not present the wide uncertainty intervals for the comparative difference
between treatment groups as was executed in Figure 7C, it was incorrectly concluded that
the RCT showed no difference in relative treatment effect for the IMDC poor-risk subgroup
and thus that the triplet therapy should be favored only in the IMDC intermediate-risk
subgroup. Such mistaken inferences from noisy results are very frequent when looking
at outcomes within each risk subgroup [156]. To obtain clinically actionable signals, it
is preferable instead to look for either prognostic or predictive effects in the full dataset
of all patients enrolled in the RCT. Indeed, if we assume IMDC risk to be a prognostic
biomarker in the full dataset, as indicated by the fact that COSMIC-313 used it as a blocking
variable in its primary endpoint analysis, then patients with IMDC poor-risk disease will
derive more absolute PFS benefit in terms of risk reduction at milestone time points than
patients with IMDC intermediate-risk disease [1,63]. This is an example in which ignoring
prognostic effects while hunting for predictive biomarkers, a type of data dredging, can
lead to erroneous clinical inferences and decisions.

Predictive effects are analyzed by including treatment–covariate interaction terms in
the statistical regression model used to analyze the RCT dataset [2,19]. However, uncer-
tainty measures such as p-values and CIs for these interaction effects are only physically
justifiable in RCTs where both random sampling and random allocation are performed
(Figure 6D). The vast majority of RCTs perform only random allocation, and therefore the
uncertainty measures of treatment–covariate interaction terms are not linked to a physical
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randomization process, since patients were not randomized to their predictive covariates
(Figure 6B). For this reason, modeling these interactions to look for predictive effects in RCT
datasets is typically considered exploratory at best, and some journal guidelines specifically
recommend against the presentation of p-values for predictive effects due to the substantial
risk of misinterpretation [158]. However, the same journals also allow the presentation
of a cruder visual tool called “forest plots” to perform graphical subgroup comparisons
for predictive effects in RCTs [1,156,159]. Forest plots rely on the use of CIs for patient
subgroups determined by their presumably predictive covariates (Figure 11). Neither these
inferences nor p-values for interaction are physically justifiable due to the lack of random
sampling in typical RCT designs. The use of forest plots in this way can easily lead to
spurious inferences and may be considered data dredging.
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Figure 11. Example forest plot from a hypothetical RCT of an investigational treatment versus control.
The forest plot is used to look for predictive effects expressed as differences in HR estimates in
different subgroups compared with the overall RCT cohort. The dotted vertical line highlights the
relative treatment effect point estimate for the overall cohort, also known as the main effect. The size
of the black squares corresponds to the sample size of each subgroup. The white square represents the
overall RCT cohort. The horizontal lines represent the 95% Cis. The shaded gray area represents the
indifference zone for the HR estimate in the overall cohort, assuming that relative treatment effects
between 80% and 125% of the 95% CI for the overall cohort do not represent clinically meaningful
differences between each subgroup and the overall cohort. In this example, the 95% CI for the HR
in the overall cohort is 0.36–0.73, corresponding to an indifference zone of 0.29–0.91. Therefore,
treatment effect homogeneity is suggested for all subgroups with the 95% CI that are only compatible
with values within the indifference zone (gray area). Treatment effect heterogeneity is suggested in
subgroups with 95% CI that do not overlap with the dotted vertical line. All other subgroups are
inconclusive.

Even when the Cis used in forest plots for subgroup comparisons are valid, the ma-
jority of these graphs do not provide clinicians with meaningful indications of patient
heterogeneity in practical terms. Empirically, most subgroup analyses of RCTs for pre-
dictive effects using forest plots presented at the 2020 and 2021 Annual Meetings of the
American Society of Clinical Oncology (ASCO) were found to be inconclusive, yielding no
informative signals to either refute (treatment effect heterogeneity) or support (treatment
effect homogeneity) the assumption that relative treatment effect parameters such as HRs
are stable across subgroups [156]. All of these forest plots were based on results from a
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frequentist model, and only 24.2% included one or more subgroups suggestive of treatment
effect heterogeneity [156]. Because clinicians often seek to determine evidence of treatment
effect homogeneity from forest plots, a practical approach has been developed to estimate
an “indifference zone” of no clinically meaningful difference for the relative treatment
effect estimate between the overall RCT cohort and each subgroup visualized by a forest
plot [156]. The assumptions and formulas to estimate the indifference zone are detailed
by Hahn et al. [156], and a simple spreadsheet (Supplementary File S2) that can be used
by clinicians to make these estimations is provided here. The indifference zone shown in
Figure 11 uses the 80% to 125% bioequivalence limits commonly used by the World Health
Organization and the FDA, and they correspond to the clinically non-inferior HR effect size
interval of 0.80 to 1.25 typically used in RCTs [160]. Even after using this approach to maxi-
mize the information yielded by forest plots, 57.2% of subgroup comparisons presented in
forest plots at the 2020 and 2021 annual ASCO meetings were inconclusive, 41.4% showed
evidence of treatment effect homogeneity, and only 1.6% were suggestive of treatment
effect heterogeneity [156].

Given these limitations of forest plots, analyses for identifying treatment effect hetero-
geneity should focus instead on prespecified biologically and clinically plausible predictive
biomarkers. Moreover, forest plots often arbitrarily dichotomize subgroups, e.g., into
patients aged younger or older than 65 years. Such arbitrary cutoffs misleadingly assume
that all patients younger than 65 have the same expected outcome. Rather than arbitrarily
categorizing covariates into subgroups, it is more reasonable to preserve all information
from continuous variables and fully model treatment-covariate interaction while properly
adjusting for other prognostic or predictive effects that can influence outcome hetero-
geneity [1,3,112,161]. For example, age-specific treatment inferences and decisions were
identified via a utility-based decision analysis based on robust Bayesian nonparametric
modeling of the data from the CALGB 40503 phase 3 RCT comparing letrozole alone versus
letrozole + bevacizumab in hormone receptor-positive advanced breast cancer [3,162].

If forest plots of RCT subgroups are presented, then cautious interpretation should
be promoted by journals, professional organizations, and regulatory bodies. Figure 11
provides teaching examples of how to interpret different subgroup patterns in forest plots.
An example of how and why forest plots should be interpreted cautiously is provided by
analyses of the POUT phase 3 RCT, which tested whether adjuvant chemotherapy improved
outcomes compared with surveillance in patients with upper tract urothelial carcinoma
(UTUC) [163]. The results for the primary endpoint of DFS showed an estimated HR of
0.45 favoring adjuvant chemotherapy with 95% CI 0.30–0.68 and p = 0.0001, corresponding
to 13 bits of refutational information against the null hypothesis of no DFS difference be-
tween the two treatment groups. The study’s forest plot illustrating estimated differences in
the HR for DFS among the blocking variables and tumor stage was correctly interpreted as
inconclusive for any evidence of treatment effect heterogeneity [163]. However, a common
mistake when interpreting forest plots is to conclude that the relative treatment effect
estimate is not significant for subgroups with CIs that cross the vertical line corresponding
to the null effect, i.e., 1.0 for ratios such as HRs, ORs, and RRs [1,39,156,164]. Such examples
and their proper interpretation are shown in Subgroups 1, 4, 5, and 7 in Figure 11. The
POUT forest plot included a subgroup comparison by lymph node involvement whereby
N0 represented the patients without lymph node involvement by UTUC, and N+ were
the patients who had lymph node-positive disease. The N0 subgroup, which included
236 patients and 82 events, yielded a clear DFS signal in favor of adjuvant chemotherapy
with HR = 0.40, 95% CI 0.25–0.63, and p ≈ 0.0001, corresponding to 13 bits of refutational
information against the null hypothesis. The relationship of this subgroup to the overall
cohort is similar to that of Subgroup 8 in Figure 11. Conversely, the N+ subgroup, which
included only 24 patients and 13 events, yielded inconclusive results with HR = 0.90, 95%
CI 0.30–2.71, and p = 0.86, corresponding to zero bits of information against the null hy-
pothesis, similar to the wide CIs of Subgroup 7 in Figure 11. The 80% to 125% indifference
zone for the main effect corresponds to HRs between 0.24 and 0.85, so there is evidence of
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treatment effect homogeneity between the N0 subgroup and the overall effect, as expected
since most patients in the POUT trial belonged to the N0 subgroup.

Patients with N+ UTUC have a higher risk of disease recurrence or death at any
time point compared with N0 UTUC patients. Thus, if this blocking variable is analyzed
as prognostic, as was executed in the primary endpoint analysis model of the POUT
trial [163], then adjuvant chemotherapy is more likely to yield higher milestone time point
risk reduction for disease recurrence or death in patients with N+ compared with N0 UTUC.
This is consistent with the clinical intuition that patients with higher stage N+ disease are
more likely to derive benefit from adjuvant chemotherapy than those with lower stage
N0 UTUC. However, clinicians scanning the POUT forest plot for predictive effects may
erroneously conclude that the exact opposite is true; whereas there was a clear signal
favoring adjuvant chemotherapy in the N0 subgroup, the CIs for the N+ subgroup crossed
1.0, which can be misinterpreted as evidence for no effect in the N+ subgroup.

18. Superiority and Noninferiority

The primary goal of RCTs is to investigate how likely it is that a new intervention is
superior to the control by gathering data that can potentially refute the null hypothesis of
no difference. Such superior RCTs may indeed yield precise results with narrow CIs that are
compatible with large or small relative treatment effect sizes (e.g., Figure 7A vs. Figure 7B).
In the latter case, we can conclude that the new intervention is not meaningfully different
from the control. For example, the VALIANT RCT compared valsartan with captopril in
patients with complicated myocardial infarction and reported an HR estimate for the death
of 1.0 with 95% CI 0.91–1.08 and p-value = 0.98, corresponding to zero bits of information
against the null hypothesis [165]. The large p-value indicates that there is little evidence
that one treatment is superior to the other. More importantly, the narrow 95% CI was
compatible at the 0.05 level (≤4 bits of refutational information), with HR = 0.91, favoring
the valsartan group, and HR = 1.08, favoring the captopril group. These HR effect sizes
suggest no clinically meaningful difference, as the standard, commonly accepted thresholds
for clinical equivalence are HRs ranging from 0.8 to 1.25 or, more conservatively, 0.9 to
1.1 [156,166].

Superiority RCTs can also yield inconclusive results (Figure 7C). For example, an
RCT testing remdesivir versus placebo for the treatment of severe COVID-19 reported an
HR estimate for time to clinical deterioration of 0.95 with 95% CI 0.55–1.64 and p = 0.86,
corresponding to zero bits of information against the null hypothesis of no difference [167].
In this case, however, the wide 95% CI was compatible with both HR = 0.55, strongly
favoring remdesivir, and HR = 1.64, strongly favoring placebo. Both this and the VALIANT
RCT were interpreted as showing “no statistically significant difference” due to the large
p-values [165,167]. However, the results of the two RCTs were vastly different, as suggested
by the different widths of their 95% CIs, as VALIANT was precise enough (narrow 95% CI)
to demonstrate a lack of clinically meaningful difference, whereas no conclusions could be
drawn from the remdesivir RCT due to the wide 95% CI.

Noninferiority RCTs differ from superiority trials in that the tested hypothesis is not
the null hypothesis of no difference but the hypothesis that the new intervention is worse
than the control by more than a small “noninferiority margin” [168,169]. While both superi-
ority and noninferiority RCTs can be used to demonstrate a lack of clinically meaningful
difference, noninferiority RCTs are far more likely to yield a verdict of noninferiority and
thus are considered a “safe design” likely to result in a “positive” publication [169–171].
The underlying reason is that, whereas the ITT analysis of superiority RCTs penalizes
poor patient adherence to the randomly assigned intervention, the opposite is true for
noninferiority trials [169]. For example, in a superiority RCT aiming to refute the null
hypothesis of no difference between an investigational treatment and placebo, if too many
patients randomly allocated to the new treatment are non-compliant then this reduces the
chances of showing a difference between the groups in the ITT analysis because not enough
patients will have been exposed to the new treatment to yield a clear signal. Conversely, if
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the same thing happens in a noninferiority RCT then this increases the chances of a biased
conclusion of noninferiority between the groups in the ITT analysis [169]. Indeed, the
frequency of reaching a conclusion of noninferiority in noninferiority RCTs has been found
to exceed 80% [170,171]. For this reason, it is recommended to present both the ITT and
PP analyses in noninferiority RCTs [169]. Discrepancies between the two results should
prompt further careful interrogation of the dataset and trial conduct. In particular, close
attention should be paid to patient adherence to the randomly allocated intervention and
other aspects of internal validity, such as complete and rigorous follow-up, before drawing
conclusions about noninferiority.

19. Enthusiastic and Skeptical Priors

As already discussed, the ability to specify a prior distribution that reflects current
knowledge before collecting data from an RCT is a key feature of Bayesian models. Skeptical
priors assume that treatment differences are unlikely. Conversely, enthusiastic priors
assume that the treatment is better than the control in the RCT [172–174]. Skeptical and
enthusiastic priors are particularly useful when considering whether to stop an RCT early
after an interim analysis. The goal is to counterbalance prior opinions of those who
would doubt the observed interim analysis results. In particular, enthusiastic priors can
be used to stop an RCT early for futility. That is, a futility monitoring procedure with an
enthusiastic prior stops a trial if interim data show strong evidence of futility. Otherwise,
the trial is continued. For similar reasons, skeptical priors are appropriate when considering
stopping an RCT early for efficacy [173]. If the trial proceeds to completion, it should have
accumulated enough data to convince all subject matter experts of the presence or absence
of a relative treatment effect, including pessimists using skeptical priors and optimists
using enthusiastic priors.

An RCT that compared immediate venovenous extracorporeal membrane oxygenation
(ECMO) versus conventional control treatment, which included delayed ECMO, in patients
with severe acute respiratory distress syndrome (ARDS) [175] serves as an example in which
a Bayesian analysis might have prevented an unreasonable interim analysis decision. The
trial generated controversy because it was stopped early for futility by the data safety moni-
toring committee. The interim results did not reach the prespecified frequentist significance
level despite yielding an HR estimate of 0.70 for death within 60 days after randomization
with 95% CI 0.47–1.04 and p-value = 0.07, corresponding to 4 bits of refutational information
against the null hypothesis favoring ECMO over the control, which is similar refutational
information to that of the standard p-value threshold of 0.05 [175,176]. Subsequent post hoc
interim analysis of the data with a Bayesian model using a moderately enthusiastic prior
yielded a 99% posterior probability of a 60-day mortality benefit for ECMO compared with
the control. The conclusion based on this posterior inference clearly shows that the trial
should have continued [177]. A model with a noninformative beta (0.5,0.5) prior yielded
a posterior probability of 94.8% that ECMO reduces 60-day mortality compared with the
control [19], which is equivalent to 19 to 1 odds in favor of ECMO. While both frequentist
and Bayesian analyses are consistent with an efficacy signal favoring ECMO, the inferences
from the Bayesian analysis are more intuitive and demonstrate that the decision to stop
the RCT for futility was based on unreasonable frequentist decision-theoretic trade-offs
codified by prespecified type I and II error probabilities.

20. Intermediate Endpoints and Overall Survival

Consideration of the data-generating processes (Figure 12) can help to determine the
most appropriate endpoints and statistical analysis models for a RCT. Clinical endpoints
are defined as outcomes that reflect how patients feel, function, or survive [178]. The
International Council for Harmonization of Technical Requirements for Pharmaceuticals
for Human Use (ICH) E9 recently issued the addendum R1 on “Estimands and Sensi-
tivity Analyses in Clinical Trials”, whereby an estimand is defined as the parameter θ

corresponding to the comparative relative treatment effect of the RCT interventions on
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the clinical endpoint of interest [179,180]. OS time is a clinically meaningful, intuitive, and
objective clinical endpoint to compare the efficacy of a new intervention versus control in
an RCT [181]. Intermediate endpoints are clinical endpoints such as DFS and PFS time,
which themselves directly measure clinical benefit but do not necessarily reflect the end
of a patient’s treatment course [178,181–183]. For example, the outcome represented by
the time to recurrence (TTR) clinical endpoint in oncology RCTs is used to record the
presence or absence of a cure. Those not cured of the cancer will experience the TTR event,
whereas those cured will never experience this event. Conversely, patients not cured may
die from other causes but not from their cancer, and thus improvements in cure rates may
not be directly captured by long-term endpoints such as OS. Thus, the value of each clinical
endpoint will be context dependent and patient-specific.
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Figure 12. Selection diagrams representing the data-generating processes of clinical endpoints in
RCTs. (A) In RCTs where no subsequent options are available, intermediate events such as disease
progression will directly correlate with survival. Thus, the prognostic variables that influence disease
progression will also influence survival directly or indirectly via the disease progression pathway.
Blocking or adjusting for these variables will increase the reliability of disease progression and
survival estimates. (B) In RCTs where subsequent therapies are available, random allocation removes
all other causal influences on the treatment assignment of the first therapy, physically justifying the
use of uncertainty estimates of the direct relative treatment effect on patient survival and the relative
treatment effect for intermediate endpoints such as disease progression. These are the parameters
used for intermediate survival endpoints such as PFS or DFS. However, the effect of the original
treatment assignment on survival will also be mediated indirectly by subsequent therapies and
disease progression events, which can be confounded by patient covariates at the time of subsequent
treatment allocation. (C) Example RCT to evaluate the effect of adjuvant therapy or placebo in
patients with localized ccRCC. Baseline prognostic factors, such as tumor stage, that influence disease
recurrence can be balanced by blocking and adjusting in the statistical model to facilitate estimation
of the DFS endpoint. However, upon disease recurrence, the choice of subsequent therapies will
be influenced by covariates such as the International Metastatic Renal Cell Carcinoma Database
Consortium (IMDC) risk score for metastatic RCC. This confounding influence and mediating effect
of subsequent therapies and disease progression need to be modeled for reliable estimation of the OS
endpoint.

Composite clinical endpoints that include the word “survival” in their name, such as
DFS time, measure time to either the intermediate endpoint or death, whichever comes
first. Those that do not include “survival” measure only the intermediate endpoint as
an event. Thus, TTR only considers disease recurrence as an event, whereas DFS, also
known as recurrence-free survival (RFS), considers either disease recurrence or death as
an event. Similarly, time to progression (TTP) measures only the intermediate endpoint of
disease progression, assuming that death without progression is an independent censoring
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event, whereas PFS accounts for either disease progression or death, whichever comes
first [184]. A problem with endpoints such as TTR and TTP is that a patient’s death is
considered simply as a noninformative censoring event. That is, the occurrence of death is
assumed to be independent of the occurrence of the intermediate endpoint, e.g., disease
progression, which may be untrue on fundamental grounds. On the other hand, a problem
with composite outcomes such as PFS time is that death without recurrence or disease
recurrence prior to death carries the same implication regarding the treatment effect.

Surrogate endpoints are early or intermediate variables used in RCTs to make infer-
ences about the effects of treatment on long-term outcomes, such as PFS or OS time [178]. A
surrogate may be a biomarker, tumor response, or other endpoints that can be measured in
a short timeframe, such as at the end of one cycle of therapy. An example is serum measure-
ments of prostate-specific antigen (PSA) that may, in certain contexts, be used to predict
PFS or OS [185]. Intermediate endpoints, such as PFS, also may be used as surrogates to
predict final endpoints, such as OS. A common problem with any surrogate endpoint is that
it is never perfectly associated with the long-term outcome of interest and may produce
misleading inferences. An example was the use of complete response (CR) evaluated at
90 days post-transplant as a surrogate to the primary endpoint of PFS in a phase 2 RCT
of patients with multiple myeloma randomized to either busulfan + melphalan or mel-
phalan alone as the preparative regimen for autologous hemopoietic cell transplantation
(auto-HCT) [19,186]. In the melphalan monotherapy control arm, 13/32 patients (40.6%)
achieved 90-day CR compared with only 6/44 patients (13.6%) in the busulfan + melphalan
combination arm. However, the combination of busulfan + melphalan yielded a longer
estimated PFS compared with melphalan monotherapy, with HR = 0.53, 95% CI 0.30–0.91,
and p = 0.022, corresponding to 6 bits of refutational information against the null hypothesis
of no PFS difference between the two groups [19,186]. The divergent conclusions can be
attributed to the fact that PFS is a more informative endpoint that takes into account the
time to progression or death, whereas the former only considers a dichotomized outcome,
specifically whether CR occurred within 90 days after the transplant, and it ignores when
disease response occurred.

Of all the clinical endpoints typically used in medical RCTs, OS is the least ambiguous
and least subject to measurement biases. It is considered a highly reliable “gold standard”
outcome, provided that no subsequent salvage therapies are given after disease progression
and the measured OS event of death occurs either without measurable disease progression
or shortly after disease progression. In this case, the statistical estimate for the relative
treatment effect on the OS endpoint is physically justifiable by random allocation to treat-
ment and is strongly associated with PFS time (Figure 12A). If, instead, salvage therapy is
given at or shortly after the time of progression, then the effect of the frontline treatment
on OS time is confounded by the effect of the salvage treatment selection on the time from
progression to death. In this case, randomization between different frontline treatments
cannot provide a fair comparison, because OS time may take one of two forms. It is either
the time of death without progression, which depends on the frontline treatment assigned
by randomization, or it is the sum of the time to progression and the subsequent time
from progression to death, which depends on both the frontline and salvage treatment.
(Figure 12B). Consequently, the distribution of OS time is the distribution of the sum of two
event times, the first depending only on the frontline treatment and the second depending
on the pair (frontline, salvage), where “salvage” refers not only to the second treatment
given but also to the adaptive rule used to choose it based on patient characteristics at
progression, including time to progression. This pair is an example of a dynamic treatment
regime (DTR), and in this case, comparisons should be made between pairs of possible
DTRs, rather than only frontline treatments [187–193].

Estimates for the relative treatment effect of the first intermediate clinical outcome,
such as PFS or DFS, following the initial random allocation, are physically justifiable by
randomization. Prognostic variables influencing these outcomes can be used as blocking
variables to further increase the precision of the intermediate endpoint estimates. However,
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such standard RCT analysis models are insufficient for proper estimation of OS. As illus-
trated in Figure 12B,C, the decision of which subsequent therapies to offer is confounded
by each patient’s covariates at that time point. This systematic confounding is similar to the
confounding that occurs in observational studies [113]. It would therefore be misleading to
analyze OS from such trials using approaches meant for RCTs with completely randomized
treatment allocation.

As an example, contemporary adjuvant therapy RCTs for ccRCC, such as KEYNOTE-
564, can block and adjust for variables prognostic of recurrence risk, such as tumor stage
and yield comparative estimates of DFS difference that are physically justifiable by the
random allocation procedure (Figure 12C) [54]. However, this physical justification applies
to the OS only for those scenarios where patients die without disease recurrence. For the
majority of patients, who may die after experiencing disease recurrence, subsequent salvage
therapies will be administered and the decision between such options will be influenced
by confounders such as the IMDC score at the time of subsequent treatment choice as
recommended by organizations such as the National Comprehensive Cancer Network
(NCCN) [194]. Statistical modeling of OS therefore needs to account for the frontline
therapy, subsequent therapies administered, and confounders such as the IMDC score
that influence the choice of therapy. This will generate the apples-to-apples comparisons
between treatment regimens that clinicians need to estimate the potential OS outcomes
for patients seen in the clinic depending on the treatment regimen chosen. For example,
the OS of a patient with stage 3 ccRCC who was not treated with adjuvant therapy and
received subsequent therapy with cabozantinib upon IMDC poor-risk disease recurrence
should not be compared with that of a patient with stage 3 ccRCC who was treated with
adjuvant therapy and received subsequent salvage therapy with cabozantinib upon IMDC
favorable-risk disease recurrence. Instead, the proper comparator is a patient with stage 3
ccRCC who was treated with adjuvant therapy and received subsequent salvage therapy
with cabozantinib upon IMDC poor-risk disease recurrence (Figure 12C). Depending on the
context, additional analyses may be performed to test the causal hypothesis that adjuvant
treatment allocation may influence the IMDC risk at recurrence. These may be considered
two-stage DTRs, denoted by (frontline therapy, salvage therapy), where randomization
chooses the frontline therapy, but rules based on intermediate covariates and time to
recurrence may be used to choose the salvage therapy [188,189,195]. In such settings, DTRs
should be compared, not just frontline therapies, and proper OS estimation requires far
more care and information on potential confounding effects than DFS.

Contemporary therapeutic strategies are progressively shifting the management of
diseases such as cancers toward more chronic rather than acute illnesses [196]. It is thus
becoming more pertinent, both from a health policy and direct patient care perspective,
to consider DTRs designed to improve OS, preserve quality of life, and minimize finan-
cial and other logistical costs. Powerful statistical models have been developed for this
purpose [188,189,192,195,197–202]. However, to use these tools effectively, RCTs need to
explicitly focus on minimizing confounding in their designs and collecting the necessary
information to debias OS estimates. To remove the confounding effects on subsequent treat-
ment choice, RCT designs may prespecify a fixed subsequent therapy regimen to be used,
known as a “static treatment regime” (Figure 13A) [195]. Alternatively, random allocation
can be performed both for the original treatment assignment and subsequent therapies in
RCTs of DTRs, known as sequentially multiple randomized assignment trials (SMART)
(Figure 13B) [191]. An early SMART specifically designed to evaluate well-defined DTRs
was an RCT of advanced prostate cancer in which patients could be switched from a choice
of four different initial combination chemotherapies to a second, different combination
chemotherapy from the same set [197]. The design included re-randomization among the
second-stage chemotherapies. Thus, rather than the conventional goal of simply comparing
the four initial chemotherapies, the aim of the SMART design was to compare 12 different
two-stage sequential decision rules aimed at maximizing long-term clinical benefit [197].
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Figure 13. Selection diagrams representing the data-generating processes of clinical endpoints in
RCTs to evaluate treatment regimes. (A) RCTs evaluating static treatment regimes prespecify a
fixed subsequent treatment strategy that all enrolled patients will use upon disease progression to
the randomly assigned first treatment. Thus, the only variable that influences whether a patient
receives the subsequent treatment is the presence of disease progression to the first treatment.
(B) RCTs evaluating dynamic treatment regimes may randomly allocate both the first and subsequent
treatment assignment. This facilitates reliable estimation of the effect of sequential decision rules for
the initial and subsequent therapy strategy to optimize long-term outcomes such as OS.

Crossover trials (Figure 14) are another example requiring careful consideration of
the data-generating processes induced by the RCT design to ensure that OS estimates are
not misleading [203]. In crossover trials, patients initially assigned to the control arm can
be given investigational therapy after the first disease progression [204]. The justification
may be ethical, to not deprive patients of potentially helpful therapy, or to prevent pa-
tient dropout from the RCT. However, whereas intermediate endpoints such as PFS may
be unaffected by crossover, OS estimates may be falsely negative or positive depending
on the RCT design [203,204]. An example of a false-positive OS signal occurred in the
crossover RCT testing the platelet-derived growth factor receptor-α-blocking antibody
olaratumab + doxorubicin versus doxorubicin alone in 133 patients with advanced soft
tissue sarcoma [205]. The EMA and FDA granted approval of olaratumab in 2016, under
the condition that additional RCT data would be provided in the future, based on the
observed OS benefit in favor of the olaratumab arm compared with doxorubicin alone,
despite a weak PFS signal. More specifically, for the secondary endpoint of OS, the trial
yielded an HR estimate of 0.46, 95% CI 0.30–0.71, and p = 0.0003, corresponding to 12 bits
of refutational information against the null hypothesis of no difference. The PFS signal
was much weaker, with an HR estimate of 0.67, 95% CI 0.44–1.02, and p = 0.0615, cor-
responding to 4 bits of refutational information against the null hypothesis [205]. The
false-positive OS signal due to crossover was shown by the subsequent ANNOUNCE
trial, which did not allow for crossover, and revealed a deleterious effect of olaratumab
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in patients with advanced soft tissue sarcoma, as evidenced by a shorter PFS estimate and
lack of OS benefit [206]. These results prompted the market withdrawal of olaratumab.
The key flaw with the OS estimation in the original RCT was that 46% of the subjects
in the control arm crossed over after progression to receive olaratumab monotherapy,
while patients in the experimental arm sought out potentially effective second-line regi-
mens [205]. Of note, patients in the experimental arm did not receive olaratumab monother-
apy but the combination of olaratumab with the established active drug doxorubicin.
Conversely, olaratumab alone was offered as subsequent therapy to patients in the control
arm. One can consider employing a different statistical model with the hope of generating
valid inferences. Using a Bayesian model with the winner’s curse prior derived from the
23,551 medical RCTs included in the CDSR [29–31], the posterior probability that the
olaratumab arm yielded worse OS than the control was only 0.23%, while the posterior
probability that olaratumab yielded worse PFS was 8.4%. Therefore, a strong signal per-
sisted for a longer OS under the olaratumab arm in both the frequentist and Bayesian
analyses, showing that trial data with a faulty design often cannot be salvaged by statistical
analyses.
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Figure 14. Selection diagram representing the data-generating processes of clinical endpoints in RCTs
that allow crossover. Random allocation removes all other causal influences on the assignment of
the first therapy, physically justifying the use of uncertainty estimates of the direct relative treatment
effect on patient survival and the relative treatment effect for intermediate endpoints such as disease
progression. These parameters are used for intermediate survival endpoints such as PFS or DFS. Due
to potential crossover, the randomly assigned initial treatment will influence the choice of subsequent
treatment. The effect of the original treatment assignment on survival will be mediated indirectly
by such subsequent therapy choices and disease progression events, which can also be confounded
by patient covariates at the time of subsequent treatment allocation. Depending on how the first
treatment assignment influences the subsequent treatment during crossover, the OS parameter can be
biased toward a false-positive or false-negative direction.

From a practical perspective, we should always consider the trial design and underly-
ing data-generating process of trials to guide our statistical analysis models. In RCTs where
no subsequent therapies are available (Figure 12A), standard statistical analyses can be used
to compare OS. However, more careful modeling is required to compute OS estimates from
RCTs when subsequent therapies are available, whereas intermediate endpoints such as PFS
and DFS can be estimated reliably using standard methodologies (Figure 12B,C). Ideally, the
intermediate endpoints and OS should point in the same direction. While it is unusual for a
clinically active therapy to yield a negative signal for intermediate clinical endpoints and a
positive signal for OS, or vice versa, such discrepancies may occur in moderate-sized trials
due to the play of chance and should prompt further investigation [19,203]. Furthermore,
it is not uncommon for an active therapy to yield a positive signal for an intermediate
endpoint and an inconclusive result, as opposed to a negative signal, for OS, particularly in
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more indolent illnesses that require rigorous long-term follow-up for the OS event [19,207].
Careful assessment of the data is needed if the intermediate endpoint yields a positive
signal in favor of the investigational treatment but OS shows the opposite signal in favor of
the control arm.

21. Synergy, Additivity, and Independence

With the development of a diverse portfolio of new therapies, the challenge has
arisen to determine whether and how we can combine such agents and/or sequentially
administer them as components of DTRs to maximize long-term clinical benefit [208]. The
rationale behind combination therapies in fields such as infectious diseases and oncol-
ogy is that microbes and cancer cells may develop resistance to a single drug whereas
combinations can fully eradicate such heterogeneous populations prior to developing
resistance [209–214]. Two combined drugs are considered to be additive when the half-dose
of each drug in combination is equally as effective as the full dose of one drug alone [209].
The combination effect is synergistic or antagonistic when it is respectively found to yield
better or worse efficacy than would be expected assuming additivity [209,215]. Additivity,
synergy, and antagonism may be measured preclinically using measures of drug potency,
such as the half-maximal inhibitory concentration (IC50), and efficacy, such as fractional can-
cer cell kill, to generate dose-response curves. However, commonly obtained dose-response
data using survival outcomes in RCTs are often insufficient to determine additivity, synergy,
or antagonism [209]. This highlights the need for careful dose-finding of therapy combina-
tions in the early phases of development [4,139,216–218] and elucidation of patient-specific
differences in drug pharmacokinetics and pharmacodynamics [219,220]. Tailored RCT
designs such as factorial RCTs can be used to efficiently determine the contribution of each
therapy by randomly allocating participants to receive neither, one or the other, or both
interventions [8,221].

Notably, the activity in the RCTs of most FDA-approved drug combinations in oncol-
ogy can be sufficiently explained by the concept of independence in the absence of drug
additivity or synergy [209,222,223]. The mechanism of independence was first postulated
in the trials conducted by the Acute Leukemia Group B (ALGB) and stipulates that each pa-
tient treated with a combination therapy can respond to only one of the two drugs and not
both [209,224]. The implication is that drug combinations give each patient more chances
of being exposed to the one drug that will be effective for them [209,222,223]. Furthermore,
the independence mechanism stipulates that potent monotherapy clinical activity should
be observed for each agent prior to considering their combination and that each agent
in the combination should be administered at the maximal tolerated dosing [209,222]. In
scenarios where independence is the mechanism behind the observed activity of a drug
combination, the sequential use of these drugs alone, compared with their simultaneous
combination, should also be carefully assessed. If it is found that sequential therapy with
each agent alone yields similar or improved long-term clinical outcomes compared with
the combination, then the adoption of sequential strategies may minimize unnecessary
toxicities from intensive combination therapies. In such scenarios, combination approaches
should be used only if rapid responses are desirable due to aggressive disease presentation
that precludes the use of sequential strategies. In addition, combination therapies should
be avoided for drugs known to have strong cross-resistance leading to highly correlated
responses. Combinations of agents with different mechanisms of action should instead
be prioritized [222]. Notable exceptions whereby co-inhibition of one pathway yielded
synergistic efficacy despite one agent being devoid of monotherapy activity include the
combination of fluorouracil with leucovorin across diverse malignancies, as well as the
combination of EGFR and BRAF inhibition for BRAF-mutated colorectal cancer [209].

Multiple statistical analyses over the past decades suggest that independence of the
agents in a combination therapy enables robust prediction of the outcomes of most RCTs in
oncology that use combination therapies, including cytotoxic chemotherapy regimens or
newer targeted therapies and immunotherapy agents [209,222,223]. However, one must
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be mindful of the patient relevance-robustness tradeoff described above [68,138]. The
independence assumption for combination therapies is likely to yield robust inferences in
the patient populations treated in RCTs. However, the independence assumption may not
be relevant to the individual patient encountered in the clinic, as some patients may benefit
from drug combinations because each agent may eradicate different tumor cells within
the heterogeneous cancer population and prevent the development of resistance. For this
reason, patient-centered translational research should be incorporated into RCTs to identify
biomarkers and mechanisms predictive of therapeutic response and resistance to each
agent, even if independence can robustly predict outcomes at the population level [68,225].
This phenomenon also illustrates why independence cannot explain curative regimens
established for germ cell tumors, leukemia, and lymphomas, which are more reliably
modeled assuming additivity [209]. As discussed in the above section on endpoints, the
endpoint of cure is distinct from survival endpoints such as OS time, as patients who are
not cured can live chronically with their disease and die of other causes. Cure rates may be
considered additional endpoints of RCTs testing combination regimens, with the limitation
of the OS time required to declare a patient “cured” [226,227].

22. Systematic and Random Biases

When designing and interpreting RCTs, causal diagrams such as the selection di-
agrams we have used here are helpful in identifying the potential presence of system-
atic biases, also known as systematic errors [68]. These may include selection biases
(Figure 6A,B), systematic confounding (Figure 6A,C), nonadherence to the assigned in-
tervention (Figure 9), and crossover bias (Figure 14). There are many other sources of
systematic errors that can compromise the internal validity of RCTs. Causal diagrams
can also be used to illustrate the data-generating processes subject to such biases. Ex-
amples of these biases include mediator–outcome confounding [82]; performance bias,
which can be addressed by blinding the participants and trialists to the assigned inter-
vention [143,228]; detection bias due to systematic differences between groups in how
outcomes are measured [143]; attrition bias due to systematic differences between groups in
cases of study withdrawal leading to bias from informative censoring [143]; and immortal
time bias, also known as guarantee time bias or survivor bias, which occurs when RCT
participants cannot experience the outcome during a period of follow-up time such as
when outcomes are compared between responders and nonresponders to the randomly
allocated intervention [229,230].

On the other hand, causal diagrams fail to indicate certain systematic RCT biases, such
as reporting biases due to differences between reported and unreported findings [143],
as well as not choosing an appropriate concurrent control arm for the study [8,231]. Fur-
thermore, there are many experimental design scenarios where additional work is needed
to synthesize contemporary causal inference techniques, such as causal diagrams. This
includes the RCT analysis approaches developed at the Rothamsted Research Station by
Ronald Fisher, Frank Yates, and John Nelder to properly estimate uncertainty measures
based on how the treatment and block structures are defined in the RCT [232,233].

In addition to systematic errors, random biases also can occur in RCTs [234]. As
shown in Figure 6A,B, random treatment allocation can remove systematic confounding,
also known as confounding “in expectation” [235], influencing treatment assignment and
outcomes. However, random confounding, also known as “realized” confounding [235],
can still occur and is defined as the difference between the observed relative treatment effect
in the actual RCT and the expected relative treatment effect on average over repetitions
of this RCT [71,236]. As described earlier, such random confounding may occur because
the random treatment allocation in an RCT generates observed imbalances in prognostic
variables between the treatment groups [234]. Uncertainty estimates of relative treatment
effects in RCTs are designed to account for such random errors induced by the randomiza-
tion procedure [101]. Additional modifications of causal diagrams, such as single-world
intervention graphs (SWIGs), have been proposed to more reliably investigate the effect
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of such random errors in forward and reverse causal inferences by explicitly representing
factual, counterfactual, and potential outcome considerations [237–239].

23. Conclusions

The present comprehensive overview has emphasized that the defining feature of
RCTs is random allocation, which justifies the estimation of a comparative treatment effect
using measures of uncertainty such as p-values and CIs, and not random sampling, which
would justify group-specific measures of uncertainty. By focusing on this distinction, we
have elucidated a number of concepts necessary for the proper interpretation of RCTs to
inform patient care.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15194674/s1, Supplementary File S1: Converting p values
and CIs into bits. Supplementary File S2: Forest plot indifference zone estimation.

Author Contributions: Conceptualization, P.M., J.L. and P.F.T.; writing—original draft preparation
and editing, P.M.; writing—review and editing, P.M., P.F.T. and J.L.; visualization, P.M. All authors
have read and agreed to the published version of the manuscript.

Funding: P.M. was supported by the Andrew Sabin Family Foundation Fellowship, Gateway for
Cancer Research, a Translational Research Partnership Award (KC200096P1) by the United States
Department of Defense, an Advanced Discovery Award by the Kidney Cancer Association, a Transla-
tional Research Award by the V Foundation, the MD Anderson Physician-Scientist Award, donations
from the Renal Medullary Carcinoma Research Foundation in honor of Ryse Williams, as well as
philanthropic donations by the Chris “CJ” Johnson Foundation, and by the family of Mike and Mary
Allen. P.F.T. was supported by the NIH/NCI R01 grant 1R01CA261978, and Cancer Center Support
Grant 5 P30 CA016672.

Acknowledgments: The authors would like to thank Bora Lim (The University of Texas MD An-
derson Cancer Center, Houston, TX, USA) for helpful conversations, as well as Sarah Townsend
(Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer
Center, Houston, TX, USA) for editorial assistance.

Conflicts of Interest: P.M. reports honoraria for scientific advisory board membership for Mirati
Therapeutics, Bristol Myers Squibb, and Exelixis; consulting fees from Axiom Healthcare; nonbranded
educational programs supported by Exelixis and Pfizer; leadership or fiduciary roles as a Medical
Steering Committee member for the Kidney Cancer Association and a Kidney Cancer Scientific
Advisory Board member for KCCure; and research funding from Takeda, Bristol Myers Squibb,
Mirati Therapeutics, and Gateway for Cancer Research. J.L. and P.F.T. Thall have nothing to disclose.

References
1. Msaouel, P.; Lee, J.; Thall, P.F. Making Patient-Specific Treatment Decisions Using Prognostic Variables and Utilities of Clinical

Outcomes. Cancers 2021, 13, 2741. [CrossRef] [PubMed]
2. Msaouel, P.; Lee, J.; Karam, J.A.; Thall, P.F. A Causal Framework for Making Individualized Treatment Decisions in Oncology.

Cancers 2022, 14, 3923. [CrossRef] [PubMed]
3. Lee, J.; Thall, P.F.; Lim, B.; Msaouel, P. Utility-based Bayesian personalized treatment selection for advanced breast cancer. J. R.

Stat. Soc. Ser. C Appl. Stat. 2022, 71, 1605–1622. [CrossRef] [PubMed]
4. Lee, J.; Thall, P.F.; Msaouel, P. Bayesian treatment screening and selection using subgroup-specific utilities of response and toxicity.

Biometrics 2022, 79, 2458–2473. [CrossRef]
5. Marshall, I.J.; Nye, B.; Kuiper, J.; Noel-Storr, A.; Marshall, R.; Maclean, R.; Soboczenski, F.; Nenkova, A.; Thomas, J.; Wallace, B.C.

Trialstreamer: A living, automatically updated database of clinical trial reports. J. Am. Med. Inform. Assoc. 2020, 27, 1903–1912.
[CrossRef]

6. Kruskal, W.; Mosteller, F. Representative sampling, IV: The history of the concept in statistics, 1895–1939. Int. Stat. Rev./Rev. Int.
De Stat. 1980, 48, 169–195. [CrossRef]

7. Kruskal, W.; Mosteller, F. Representative sampling, III: The current statistical literature. Int. Stat. Rev./Rev. Int. De Stat. 1979, 48,
245–265. [CrossRef]

8. Senn, S. Statistical Issues in Drug Development, 3rd ed.; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2021.
9. Greenland, S. For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates. Eur. J.

Epidemiol. 2017, 32, 3–20. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers15194674/s1
https://www.mdpi.com/article/10.3390/cancers15194674/s1
https://doi.org/10.3390/cancers13112741
https://www.ncbi.nlm.nih.gov/pubmed/34205968
https://doi.org/10.3390/cancers14163923
https://www.ncbi.nlm.nih.gov/pubmed/36010916
https://doi.org/10.1111/rssc.12582
https://www.ncbi.nlm.nih.gov/pubmed/36714159
https://doi.org/10.1111/biom.13738
https://doi.org/10.1093/jamia/ocaa163
https://doi.org/10.2307/1403151
https://doi.org/10.2307/1402647
https://doi.org/10.1007/s10654-017-0230-6


Cancers 2023, 15, 4674 38 of 45

10. Greenland, S. Analysis goals, error-cost sensitivity, and analysis hacking: Essential considerations in hypothesis testing and
multiple comparisons. Paediatr. Perinat. Epidemiol. 2021, 35, 8–23. [CrossRef]

11. Greenland, S.; Mansournia, M.A.; Joffe, M. To curb research misreporting, replace significance and confidence by compatibility: A
Preventive Medicine Golden Jubilee article. Prev. Med. 2022, 164, 107127. [CrossRef]

12. Rafi, Z.; Greenland, S. Semantic and cognitive tools to aid statistical science: Replace confidence and significance by compatibility
and surprise. BMC Med. Res. Methodol. 2020, 20, 244. [CrossRef]

13. Fisher, R.A. Design of experiments. Br. Med. J. 1936, 1, 554. [CrossRef]
14. Armitage, P. Fisher, Bradford Hill, and randomization. Int. J. Epidemiol. 2003, 32, 925–928, discussion 945–928. [CrossRef]

[PubMed]
15. Preece, D.A. RA Fisher and Experimental Design: A Review. Biometrics 1990, 46, 925–935. [CrossRef]
16. Marks, H.M. Rigorous uncertainty: Why RA Fisher is important. Int. J. Epidemiol. 2003, 32, 932–937, discussion 945–938.

[CrossRef] [PubMed]
17. Craiu, R.V.; Gong, R.; Meng, X.-L. Six Statistical Senses. Annu. Rev. Stat. Its Appl. 2023, 10, 699–725. [CrossRef]
18. Efron, B. Modern Science and the Bayesian-Frequentist Controversy; Division of Biostatistics, Stanford University: Stanford, CA,

USA, 2005.
19. Thall, P.F. Statistical Remedies for Medical Researchers; Springer International Publishing: New York, NY, USA, 2019.
20. Gelman, A.; Simpson, D.; Betancourt, M. The Prior Can Often Only Be Understood in the Context of the Likelihood. Entropy 2017,

19, 555. [CrossRef]
21. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; Taylor & Francis:

Abingdon, UK, 2013.
22. Msaouel, P.; Hong, A.L.; Mullen, E.A.; Atkins, M.B.; Walker, C.L.; Lee, C.H.; Carden, M.A.; Genovese, G.; Linehan, W.M.; Rao,

P.; et al. Updated Recommendations on the Diagnosis, Management, and Clinical Trial Eligibility Criteria for Patients with Renal
Medullary Carcinoma. Clin. Genitourin. Cancer 2019, 17, 1–6. [CrossRef]

23. Msaouel, P.; Malouf, G.G.; Su, X.; Yao, H.; Tripathi, D.N.; Soeung, M.; Gao, J.; Rao, P.; Coarfa, C.; Creighton, C.J.; et al.
Comprehensive Molecular Characterization Identifies Distinct Genomic and Immune Hallmarks of Renal Medullary Carcinoma.
Cancer Cell 2020, 37, 720–734.e713. [CrossRef]

24. Wiele, A.J.; Surasi, D.S.; Rao, P.; Sircar, K.; Su, X.; Bathala, T.K.; Shah, A.Y.; Jonasch, E.; Cataldo, V.D.; Genovese, G.; et al. Efficacy
and Safety of Bevacizumab Plus Erlotinib in Patients with Renal Medullary Carcinoma. Cancers 2021, 13, 2170. [CrossRef]

25. Wilson, N.R.; Wiele, A.J.; Surasi, D.S.; Rao, P.; Sircar, K.; Tamboli, P.; Shah, A.Y.; Genovese, G.; Karam, J.A.; Wood, C.G.; et al.
Efficacy and safety of gemcitabine plus doxorubicin in patients with renal medullary carcinoma. Clin. Genitourin. Cancer 2021, 19,
e401–e408. [CrossRef]

26. Lyman, G.H.; Msaouel, P.; Kuderer, N.M. Risk Model Development and Validation in Clinical Oncology: Lessons Learned. Cancer
Investig. 2023, 41, 1–11. [CrossRef] [PubMed]

27. Olsson, E.J. Bayesian Epistemology. In Introduction to Formal Philosophy; Hansson, S.O., Hendricks, V., Eds.; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 431–442.

28. Carnap, R. Testability and Meaning. Philos. Sci. 1936, 3, 419–471. [CrossRef]
29. van Zwet, E.; Schwab, S.; Greenland, S. Addressing exaggeration of effects from single RCTs. Significance 2021, 18, 16–21.

[CrossRef]
30. van Zwet, E.; Schwab, S.; Senn, S. The statistical properties of RCTs and a proposal for shrinkage. Stat. Med. 2021, 40, 6107–6117.

[CrossRef]
31. van Zwet, E.W.; Cator, E.A. The significance filter, the winner’s curse and the need to shrink. Stat. Neerl. 2021, 75, 437–452.

[CrossRef]
32. Greenland, S. Probability logic and probabilistic induction. Epidemiology 1998, 9, 322–332. [CrossRef] [PubMed]
33. Greenland, S. Induction versus Popper: Substance versus semantics. Int. J. Epidemiol. 1998, 27, 543–548. [CrossRef]
34. Popper, K.R. Conjectures and Refutations: The Growth of Scientific Knowledge; Routledge and Kegan Paul: London, UK, 1963.
35. Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence

intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [CrossRef] [PubMed]
36. Greenland, S. Divergence vs. Decision P-values: A Distinction Worth Making in Theory and Keeping in Practice—Or, How

Divergence P-values Measure Evidence Even When Decision P-values Do Not. Scand. J. Stat. 2023, 50, 54–88. [CrossRef]
37. Cole, S.R.; Edwards, J.K.; Greenland, S. Surprise! Am. J. Epidemiol. 2021, 190, 191–193. [CrossRef]
38. McShane, B.B.; Gal, D. Statistical Significance and the Dichotomization of Evidence. J. Am. Stat. Assoc. 2017, 112, 885–895.

[CrossRef]
39. Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [CrossRef]
40. Mansournia, M.A.; Nazemipour, M.; Etminan, M. P-value, compatibility, and S-value. Glob. Epidemiol. 2022, 4, 100085. [CrossRef]
41. Pearl, J. Bayesianism and Causality, or, Why I am Only a Half-Bayesian. In Foundations of Bayesianism; Corfield, D., Williamson, J.,

Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2001; pp. 19–36.
42. Carmona-Bayonas, A.; Jimenez-Fonseca, P.; Gallego, J.; Msaouel, P. Causal Considerations Can Inform the Interpretation of

Surprising Associations in Medical Registries. Cancer Investig. 2022, 40, 1–13. [CrossRef]

https://doi.org/10.1111/ppe.12711
https://doi.org/10.1016/j.ypmed.2022.107127
https://doi.org/10.1186/s12874-020-01105-9
https://doi.org/10.1136/bmj.1.3923.554-a
https://doi.org/10.1093/ije/dyg286
https://www.ncbi.nlm.nih.gov/pubmed/14681247
https://doi.org/10.2307/2532438
https://doi.org/10.1093/ije/dyg288
https://www.ncbi.nlm.nih.gov/pubmed/14681249
https://doi.org/10.1146/annurev-statistics-040220-015348
https://doi.org/10.3390/e19100555
https://doi.org/10.1016/j.clgc.2018.09.005
https://doi.org/10.1016/j.ccell.2020.04.002
https://doi.org/10.3390/cancers13092170
https://doi.org/10.1016/j.clgc.2021.08.007
https://doi.org/10.1080/07357907.2022.2137914
https://www.ncbi.nlm.nih.gov/pubmed/36254812
https://doi.org/10.1086/286432
https://doi.org/10.1111/1740-9713.01587
https://doi.org/10.1002/sim.9173
https://doi.org/10.1111/stan.12241
https://doi.org/10.1097/00001648-199805000-00018
https://www.ncbi.nlm.nih.gov/pubmed/9583426
https://doi.org/10.1093/ije/27.4.543
https://doi.org/10.1007/s10654-016-0149-3
https://www.ncbi.nlm.nih.gov/pubmed/27209009
https://doi.org/10.1111/sjos.12625
https://doi.org/10.1093/aje/kwaa136
https://doi.org/10.1080/01621459.2017.1289846
https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1016/j.gloepi.2022.100085
https://doi.org/10.1080/07357907.2021.1999971


Cancers 2023, 15, 4674 39 of 45

43. Bareinboim, E.; Correa, J.D.; Ibeling, D.; Icard, T.F. On Pearl’s Hierarchy and the Foundations of Causal Inference. In Probabilistic
and Causal Inference: The Works of Judea Pearl; ACM Books: New York, NY, USA, 2022; pp. 507–556.

44. Greenland, S. The Causal Foundations of Applied Probability and Statistics. In Probabilistic and Causal Inference: The Works of Judea
Pearl; Association for Computing Machinery: New York, NY, USA, 2022; Volume 36, pp. 605–624.

45. Junk, T.R.; Lyons, L. Reproducibility and Replication of Experimental Particle Physics Results. arXiv 2020, arXiv:2009.06864.
46. Smith, M.R.; Halabi, S.; Ryan, C.J.; Hussain, A.; Vogelzang, N.; Stadler, W.; Hauke, R.J.; Monk, J.P.; Saylor, P.; Bhoopalam,

N.; et al. Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone
metastases: Results of CALGB 90202 (alliance). J. Clin. Oncol. 2014, 32, 1143–1150. [CrossRef] [PubMed]

47. Morey, R.D.; Hoekstra, R.; Rouder, J.N.; Lee, M.D.; Wagenmakers, E.-J. The fallacy of placing confidence in confidence intervals.
Psychon. Bull. Rev. 2016, 23, 103–123. [CrossRef] [PubMed]

48. Amrhein, V.; Trafimow, D.; Greenland, S. Inferential Statistics as Descriptive Statistics: There Is No Replication Crisis if We Don’t
Expect Replication. Am. Stat. 2019, 73, 262–270. [CrossRef]

49. Greenland, S. Valid P-Values Behave Exactly as They Should: Some Misleading Criticisms of p-Values and Their Resolution with
S-Values. Am. Stat. 2019, 73, 106–114. [CrossRef]

50. Royall, R. On the Probability of Observing Misleading Statistical Evidence. J. Am. Stat. Assoc. 2000, 95, 760–768. [CrossRef]
51. Xie, M.-G.; Singh, K. Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review. Int. Stat. Rev.

2013, 81, 3–39. [CrossRef]
52. Meng, X.-L. Double Your Variance, Dirtify Your Bayes, Devour Your Pufferfish, and Draw your Kidstrogram. N. Engl. J. Stat. Data

Sci. 2022, 1, 4–23. [CrossRef]
53. Efron, B.; Hastie, T. Computer Age Statistical Inference: Algorithms, Evidence, and Data Science; Cambridge University Press: New

York, NY, USA, 2016; p. xix. 475p.
54. Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar,

N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [CrossRef]
[PubMed]

55. Msaouel, P.; Jimenez-Fonseca, P.; Lim, B.; Carmona-Bayonas, A.; Agnelli, G. Medicine before and after David Cox. Eur. J. Intern.
Med. 2022, 98, 1–3. [CrossRef] [PubMed]

56. Greenland, S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. Int. J. Epidemiol. 2006, 35,
765–775. [CrossRef]

57. Gelman, A.; Hill, J.; Vehtari, A. Regression and Other Stories; Cambridge University Press: Cambridge, UK, 2020.
58. Ioannidis, J.P. Why most discovered true associations are inflated. Epidemiology 2008, 19, 640–648. [CrossRef]
59. Greenland, S.; Hofman, A. Multiple comparisons controversies are about context and costs, not frequentism versus Bayesianism.

Eur. J. Epidemiol. 2019, 34, 801–808. [CrossRef]
60. Senn, S. You May Believe You Are a Bayesian But You Are Probably Wrong. Ration. Mark. Morals 2011, 2, 42.
61. Strevens, M. The Knowledge Machine: How irrationality Created Modern Science, 1st ed.; Liveright Publishing Corporation: New

York, NY, USA, 2020; p. x. 350p.
62. Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.L.; Peltola, K.;

et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [CrossRef]
63. Msaouel, P. Less is More? First Impressions From COSMIC-313. Cancer Investig. 2023, 41, 101–106. [CrossRef] [PubMed]
64. Choueiri, T.K.; Powles, T.; Albiges, L.; Burotto, M.; Szczylik, C.; Zurawski, B.; Yanez Ruiz, E.; Maruzzo, M.; Suarez Zaizar, A.;

Fein, L.E.; et al. Cabozantinib plus Nivolumab and Ipilimumab in Renal-Cell Carcinoma. N. Engl. J. Med. 2023, 388, 1767–1778.
[CrossRef] [PubMed]

65. Altman, D.G.; Bland, J.M. How to obtain the confidence interval from a P value. BMJ 2011, 343, d2090. [CrossRef]
66. Motzer, R.; Alekseev, B.; Rha, S.Y.; Porta, C.; Eto, M.; Powles, T.; Grunwald, V.; Hutson, T.E.; Kopyltsov, E.; Mendez-Vidal,

M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384,
1289–1300. [CrossRef]

67. Hoenig, J.M.; Heisey, D.M. The Abuse of Power. Am. Stat. 2001, 55, 19–24. [CrossRef]
68. Msaouel, P. The Big Data Paradox in Clinical Practice. Cancer Investig. 2022, 40, 567–576. [CrossRef]
69. Searle, S.R.; Casella, G.; McCulloch, C.E. Variance Components; Wiley: New York, NY, USA, 1992; p. xxiii. 501p.
70. Greenland, S. Principles of multilevel modelling. Int. J. Epidemiol. 2000, 29, 158–167. [CrossRef]
71. Greenland, S.; Robins, J.M. Identifiability, exchangeability and confounding revisited. Epidemiol. Perspect. Innov. 2009, 6, 4.

[CrossRef]
72. Cornfield, J. Recent methodological contributions to clinical trials. Am. J. Epidemiol. 1976, 104, 408–421. [CrossRef]
73. Gelman, A. The Boxer, the Wrestler, and the Coin Flip. Am. Stat. 2006, 60, 146–150. [CrossRef]
74. Stark, P.B. Pay No Attention to the Model Behind the Curtain. Pure Appl. Geophys. 2022, 179, 4121–4145. [CrossRef]
75. Hall, N.S. RA Fisher and his advocacy of randomization. J. Hist. Biol. 2007, 40, 295–325. [CrossRef] [PubMed]
76. Ludbrook, J.; Dudley, H. Issues in biomedical statistics: Statistical inference. Aust. N. Z. J. Surg. 1994, 64, 630–636. [CrossRef]

[PubMed]
77. Shapiro, D.D.; Msaouel, P. Causal Diagram Techniques for Urologic Oncology Research. Clin. Genitourin. Cancer 2021, 19, 271

271.e1–271.e7. [CrossRef]

https://doi.org/10.1200/JCO.2013.51.6500
https://www.ncbi.nlm.nih.gov/pubmed/24590644
https://doi.org/10.3758/s13423-015-0947-8
https://www.ncbi.nlm.nih.gov/pubmed/26450628
https://doi.org/10.1080/00031305.2018.1543137
https://doi.org/10.1080/00031305.2018.1529625
https://doi.org/10.1080/01621459.2000.10474264
https://doi.org/10.1111/insr.12000
https://doi.org/10.51387/22-NEJSDS6
https://doi.org/10.1056/NEJMoa2106391
https://www.ncbi.nlm.nih.gov/pubmed/34407342
https://doi.org/10.1016/j.ejim.2022.02.022
https://www.ncbi.nlm.nih.gov/pubmed/35241350
https://doi.org/10.1093/ije/dyi312
https://doi.org/10.1097/EDE.0b013e31818131e7
https://doi.org/10.1007/s10654-019-00552-z
https://doi.org/10.1056/NEJMoa1510016
https://doi.org/10.1080/07357907.2022.2136681
https://www.ncbi.nlm.nih.gov/pubmed/36239611
https://doi.org/10.1056/NEJMoa2212851
https://www.ncbi.nlm.nih.gov/pubmed/37163623
https://doi.org/10.1136/bmj.d2090
https://doi.org/10.1056/NEJMoa2035716
https://doi.org/10.1198/000313001300339897
https://doi.org/10.1080/07357907.2022.2084621
https://doi.org/10.1093/ije/29.1.158
https://doi.org/10.1186/1742-5573-6-4
https://doi.org/10.1093/oxfordjournals.aje.a112313
https://doi.org/10.1198/000313006X106190
https://doi.org/10.1007/s00024-022-03137-2
https://doi.org/10.1007/s10739-006-9119-z
https://www.ncbi.nlm.nih.gov/pubmed/18175604
https://doi.org/10.1111/j.1445-2197.1994.tb02308.x
https://www.ncbi.nlm.nih.gov/pubmed/8085981
https://doi.org/10.1016/j.clgc.2020.08.003


Cancers 2023, 15, 4674 40 of 45

78. Lipsky, A.M.; Greenland, S. Causal Directed Acyclic Graphs. JAMA 2022, 327, 1083–1084. [CrossRef] [PubMed]
79. Greenland, S.; Pearl, J.; Robins, J.M. Causal diagrams for epidemiologic research. Epidemiology 1999, 10, 37–48. [CrossRef]
80. Bareinboim, E.; Pearl, J. Causal inference and the data-fusion problem. Proc. Natl. Acad. Sci. USA 2016, 113, 7345–7352. [CrossRef]
81. Bareinboim, E.; Pearl, J. Transportability of Causal Effects: Completeness Results. Proc. AAAI Conf. Artif. Intell. 2021, 26, 698–704.

[CrossRef]
82. Msaouel, P. Impervious to Randomness: Confounding and Selection Biases in Randomized Clinical Trials. Cancer Investig. 2021,

39, 783–788. [CrossRef]
83. Correa, J.; Tian, J.; Bareinboim, E. Adjustment criteria for generalizing experimental findings. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 1361–1369.
84. Bareinboim, E.; Pearl, J. Controlling Selection Bias in Causal Inference. In Proceedings of the Fifteenth International Conference

on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, La Palma, Canary Islands, Spain, 21–23 April
2012; pp. 100–108.

85. Hernan, M.A.; Hernandez-Diaz, S.; Robins, J.M. A structural approach to selection bias. Epidemiology 2004, 15, 615–625. [CrossRef]
86. Lu, H.; Cole, S.R.; Howe, C.J.; Westreich, D. Toward a Clearer Definition of Selection Bias When Estimating Causal Effects.

Epidemiology 2022, 33, 699–706. [CrossRef] [PubMed]
87. Greenland, S. Randomization, statistics, and causal inference. Epidemiology 1990, 1, 421–429. [CrossRef] [PubMed]
88. Senn, S.J.; Auclair, P. The graphical representation of clinical trials with particular reference to measurements over time. Stat. Med.

1990, 9, 1287–1302. [CrossRef] [PubMed]
89. Senn, S. Controversies concerning randomization and additivity in clinical trials. Stat. Med. 2004, 23, 3729–3753. [CrossRef]
90. Albiges, L.; Tannir, N.M.; Burotto, M.; McDermott, D.; Plimack, E.R.; Barthelemy, P.; Porta, C.; Powles, T.; Donskov, F.; George,

S.; et al. First-line Nivolumab plus Ipilimumab Versus Sunitinib in Patients Without Nephrectomy and With an Evaluable Primary
Renal Tumor in the CheckMate 214 Trial. Eur. Urol. 2022, 81, 266–271. [CrossRef]

91. Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta,
C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378,
1277–1290. [CrossRef]

92. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2018.

93. Vickers, A.J.; Sjoberg, D.D. Methods Modernizing Statistical Reporting in Medical Journals: Challenges and Future Directions.
Eur. Urol. 2022, 82, 575–577. [CrossRef]

94. Pocock, S.J.; Clayton, T.C.; Altman, D.G. Survival plots of time-to-event outcomes in clinical trials: Good practice and pitfalls.
Lancet 2002, 359, 1686–1689. [CrossRef]

95. Laupacis, A.; Sackett, D.L.; Roberts, R.S. An assessment of clinically useful measures of the consequences of treatment. N. Engl. J.
Med. 1988, 318, 1728–1733. [CrossRef]

96. Hutton, J.L. Number needed to treat: Properties and problems. J. R. Stat. Soc. Ser. A Stat. Soc. 2000, 163, 381–402. [CrossRef]
97. Hutton, J.L. Number needed to treat and number needed to harm are not the best way to report and assess the results of

randomised clinical trials. Br. J. Haematol. 2009, 146, 27–30. [CrossRef]
98. Hutton, J.L. Misleading Statistics. Pharm. Med. 2010, 24, 145–149. [CrossRef]
99. Senn, S. Mastering variation: Variance components and personalised medicine. Stat. Med. 2016, 35, 966–977. [CrossRef]
100. Senn, S. Testing for baseline balance in clinical trials. Stat. Med. 1994, 13, 1715–1726. [CrossRef] [PubMed]
101. Senn, S. Seven myths of randomisation in clinical trials. Stat. Med. 2013, 32, 1439–1450. [CrossRef] [PubMed]
102. Pijls, B.G. The Table I Fallacy: P Values in Baseline Tables of Randomized Controlled Trials. J. Bone Joint. Surg. Am. 2022, 104, e71.

[CrossRef]
103. Elwert, F.; Winship, C. Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable. Annu. Rev. Sociol. 2014,

40, 31–53. [CrossRef] [PubMed]
104. Pocock, S.J.; Simon, R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial.

Biometrics 1975, 31, 103–115. [CrossRef]
105. Taves, D.R. Minimization: A new method of assigning patients to treatment and control groups. Clin. Pharmacol. Ther. 1974, 15,

443–453. [CrossRef] [PubMed]
106. Proschan, M.; Brittain, E.; Kammerman, L. Minimize the use of minimization with unequal allocation. Biometrics 2011, 67,

1135–1141. [CrossRef]
107. Pond, G.R. Statistical issues in the use of dynamic allocation methods for balancing baseline covariates. Br. J. Cancer 2011, 104,

1711–1715. [CrossRef] [PubMed]
108. Hasegawa, T.; Tango, T. Permutation test following covariate-adaptive randomization in randomized controlled trials. J. Biopharm.

Stat. 2009, 19, 106–119. [CrossRef] [PubMed]
109. Friedman, L.M.; DeMets, D.L.; Furberg, C.D.; Granger, C.B.; Reboussin, D.M. Fundamentals of Clinical Trials; Springer:

Berlin/Heidelberg, Germany, 2015. [CrossRef]
110. Greenland, S. On the Logical Justification of Conditional Tests for Two-By-Two Contingency Tables. Am. Stat. 1991, 45, 248–251.

[CrossRef]

https://doi.org/10.1001/jama.2022.1816
https://www.ncbi.nlm.nih.gov/pubmed/35226050
https://doi.org/10.1097/00001648-199901000-00008
https://doi.org/10.1073/pnas.1510507113
https://doi.org/10.1609/aaai.v26i1.8232
https://doi.org/10.1080/07357907.2021.1974030
https://doi.org/10.1097/01.ede.0000135174.63482.43
https://doi.org/10.1097/EDE.0000000000001516
https://www.ncbi.nlm.nih.gov/pubmed/35700187
https://doi.org/10.1097/00001648-199011000-00003
https://www.ncbi.nlm.nih.gov/pubmed/2090279
https://doi.org/10.1002/sim.4780091108
https://www.ncbi.nlm.nih.gov/pubmed/2277879
https://doi.org/10.1002/sim.2074
https://doi.org/10.1016/j.eururo.2021.10.001
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1016/j.eururo.2022.09.014
https://doi.org/10.1016/S0140-6736(02)08594-X
https://doi.org/10.1056/NEJM198806303182605
https://doi.org/10.1111/1467-985X.00175
https://doi.org/10.1111/j.1365-2141.2009.07707.x
https://doi.org/10.1007/BF03256810
https://doi.org/10.1002/sim.6739
https://doi.org/10.1002/sim.4780131703
https://www.ncbi.nlm.nih.gov/pubmed/7997705
https://doi.org/10.1002/sim.5713
https://www.ncbi.nlm.nih.gov/pubmed/23255195
https://doi.org/10.2106/JBJS.21.01166
https://doi.org/10.1146/annurev-soc-071913-043455
https://www.ncbi.nlm.nih.gov/pubmed/30111904
https://doi.org/10.2307/2529712
https://doi.org/10.1002/cpt1974155443
https://www.ncbi.nlm.nih.gov/pubmed/4597226
https://doi.org/10.1111/j.1541-0420.2010.01545.x
https://doi.org/10.1038/bjc.2011.157
https://www.ncbi.nlm.nih.gov/pubmed/21540857
https://doi.org/10.1080/10543400802527908
https://www.ncbi.nlm.nih.gov/pubmed/19127470
https://doi.org/10.1007/978-3-319-18539-2
https://doi.org/10.2307/2684304


Cancers 2023, 15, 4674 41 of 45

111. Holmberg, M.J.; Andersen, L.W. Adjustment for Baseline Characteristics in Randomized Clinical Trials. JAMA 2022, 328,
2155–2156. [CrossRef] [PubMed]

112. Harrell, J.F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis;
Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]

113. Greenland, S.; Pearl, J.; Robins, J.M. Confounding and Collapsibility in Causal Inference. Stat. Sci. 1999, 14, 29–46, 18. [CrossRef]
114. Hernan, M.A. A definition of causal effect for epidemiological research. J. Epidemiol. Community Health 2004, 58, 265–271.

[CrossRef]
115. Holland, P.W. Statistics and Causal Inference. J. Am. Stat. Assoc. 1986, 81, 945–960. [CrossRef]
116. Russell, B. On the notion of cause. In Proceedings of the Aristotelian Society; Oxford University Press: Oxford, UK, 1912;

Volume 13, pp. 1–26.
117. Gelman, A.; Imbens, G. Why Ask Why? Forward Causal Inference and Reverse Causal Questions; National Bureau of Economic

Research: Cambridge, MA, USA, 2013.
118. Rubin, D.B. Causal Inference Using Potential Outcomes. J. Am. Stat. Assoc. 2005, 100, 322–331. [CrossRef]
119. Pearl, J.; Bareinboim, E. Note on “Generalizability of Study Results”. Epidemiology 2019, 30, 186–188. [CrossRef]
120. Brooks, D. The Sampling Distribution and Central Limit Theorem; CreateSpace Independent Publishing Platform: Scotts Valley, CA,

USA, 2012.
121. Degtiar, I.; Rose, S. A Review of Generalizability and Transportability. Annu. Rev. Stat. Its Appl. 2023, 10, 501–524. [CrossRef]
122. Dahabreh, I.J.; Robertson, S.E.; Steingrimsson, J.A.; Stuart, E.A.; Hernan, M.A. Extending inferences from a randomized trial to a

new target population. Stat. Med. 2020, 39, 1999–2014. [CrossRef] [PubMed]
123. Dahabreh, I.J.; Hernan, M.A. Extending inferences from a randomized trial to a target population. Eur. J. Epidemiol. 2019, 34,

719–722. [CrossRef] [PubMed]
124. Campbell, D.T. Factors relevant to the validity of experiments in social settings. Psychol. Bull. 1957, 54, 297–312. [CrossRef]

[PubMed]
125. Findley, M.G.; Kikuta, K.; Denly, M. External Validity. Annu. Rev. Political Sci. 2021, 24, 365–393. [CrossRef]
126. Rothman, K.J.; Gallacher, J.E.; Hatch, E.E. Why representativeness should be avoided. Int. J. Epidemiol. 2013, 42, 1012–1014.

[CrossRef]
127. Richiardi, L.; Pizzi, C.; Pearce, N. Commentary: Representativeness is usually not necessary and often should be avoided. Int. J.

Epidemiol. 2013, 42, 1018–1022. [CrossRef]
128. Ebrahim, S.; Davey Smith, G. Commentary: Should we always deliberately be non-representative? Int. J. Epidemiol. 2013, 42,

1022–1026. [CrossRef]
129. Rothman, K.J.; Gallacher, J.E.; Hatch, E.E. Rebuttal: When it comes to scientific inference, sometimes a cigar is just a cigar. Int. J.

Epidemiol. 2013, 42, 1026–1028. [CrossRef]
130. Bradburn, M.J.; Lee, E.C.; White, D.A.; Hind, D.; Waugh, N.R.; Cooke, D.D.; Hopkins, D.; Mansell, P.; Heller, S.R. Treatment effects

may remain the same even when trial participants differed from the target population. J. Clin. Epidemiol. 2020, 124, 126–138.
[CrossRef]

131. Brookes, S.T.; Whitely, E.; Egger, M.; Smith, G.D.; Mulheran, P.A.; Peters, T.J. Subgroup analyses in randomized trials: Risks of
subgroup-specific analyses; power and sample size for the interaction test. J. Clin. Epidemiol. 2004, 57, 229–236. [CrossRef]

132. Wallington, S.F.; Dash, C.; Sheppard, V.B.; Goode, T.D.; Oppong, B.A.; Dodson, E.E.; Hamilton, R.N.; Adams-Campbell, L.L.
Enrolling Minority and Underserved Populations in Cancer Clinical Research. Am. J. Prev. Med. 2016, 50, 111–117. [CrossRef]
[PubMed]

133. Schmotzer, G.L. Barriers and facilitators to participation of minorities in clinical trials. Ethn. Dis. 2012, 22, 226–230. [PubMed]
134. Behring, M.; Hale, K.; Ozaydin, B.; Grizzle, W.E.; Sodeke, S.O.; Manne, U. Inclusiveness and ethical considerations for observa-

tional, translational, and clinical cancer health disparity research. Cancer 2019, 125, 4452–4461. [CrossRef] [PubMed]
135. Shlomo, N.; Skinner, C.; Schouten, B. Estimation of an indicator of the representativeness of survey response. J. Stat. Plan. Inference

2012, 142, 201–211. [CrossRef]
136. Messiah, A.; Castro, G.; de la Vega, P.R.; Acuna, J.M. Random sample community-based health surveys: Does the effort to reach

participants matter? BMJ Open 2014, 4, e005791. [CrossRef]
137. Apolo, A.B.; Msaouel, P.; Niglio, S.; Simon, N.; Chandran, E.; Maskens, D.; Perez, G.; Ballman, K.V.; Weinstock, C. Evolving Role

of Adjuvant Systemic Therapy for Kidney and Urothelial Cancers. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 1–16. [CrossRef]
138. Liu, K.; Meng, X.-L. There Is Individualized Treatment. Why Not Individualized Inference? Annu. Rev. Stat. Its Appl. 2016, 3,

79–111. [CrossRef]
139. Lee, J.; Thall, P.F.; Msaouel, P. Precision Bayesian phase I-II dose-finding based on utilities tailored to prognostic subgroups. Stat.

Med. 2021, 40, 5199–5217. [CrossRef]
140. Kaelin, W.G.J. Common pitfalls in preclinical cancer target validation. Nat. Rev. Cancer 2017, 17, 425–440. [CrossRef]
141. Rubin, D. Interview with Don Rubin. Obs. Stud. 2022, 8, 77–94. [CrossRef]
142. Greenland, S. An introduction to instrumental variables for epidemiologists. Int. J. Epidemiol. 2018, 47, 358. [CrossRef]
143. Mansournia, M.A.; Higgins, J.P.; Sterne, J.A.; Hernan, M.A. Biases in Randomized Trials: A Conversation Between Trialists and

Epidemiologists. Epidemiology 2017, 28, 54–59. [CrossRef]

https://doi.org/10.1001/jama.2022.21506
https://www.ncbi.nlm.nih.gov/pubmed/36394881
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1214/ss/1009211805
https://doi.org/10.1136/jech.2002.006361
https://doi.org/10.1080/01621459.1986.10478354
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1097/EDE.0000000000000939
https://doi.org/10.1146/annurev-statistics-042522-103837
https://doi.org/10.1002/sim.8426
https://www.ncbi.nlm.nih.gov/pubmed/32253789
https://doi.org/10.1007/s10654-019-00533-2
https://www.ncbi.nlm.nih.gov/pubmed/31218483
https://doi.org/10.1037/h0040950
https://www.ncbi.nlm.nih.gov/pubmed/13465924
https://doi.org/10.1146/annurev-polisci-041719-102556
https://doi.org/10.1093/ije/dys223
https://doi.org/10.1093/ije/dyt103
https://doi.org/10.1093/ije/dyt105
https://doi.org/10.1093/ije/dyt124
https://doi.org/10.1016/j.jclinepi.2020.05.001
https://doi.org/10.1016/j.jclinepi.2003.08.009
https://doi.org/10.1016/j.amepre.2015.07.036
https://www.ncbi.nlm.nih.gov/pubmed/26470805
https://www.ncbi.nlm.nih.gov/pubmed/22764647
https://doi.org/10.1002/cncr.32495
https://www.ncbi.nlm.nih.gov/pubmed/31502259
https://doi.org/10.1016/j.jspi.2011.07.008
https://doi.org/10.1136/bmjopen-2014-005791
https://doi.org/10.1200/EDBK_350829
https://doi.org/10.1146/annurev-statistics-010814-020310
https://doi.org/10.1002/sim.9120
https://doi.org/10.1038/nrc.2017.32
https://doi.org/10.1353/obs.2022.0009
https://doi.org/10.1093/ije/dyx275
https://doi.org/10.1097/EDE.0000000000000564


Cancers 2023, 15, 4674 42 of 45

144. Bretthauer, M.; Loberg, M.; Wieszczy, P.; Kalager, M.; Emilsson, L.; Garborg, K.; Rupinski, M.; Dekker, E.; Spaander, M.; Bugajski,
M.; et al. Effect of Colonoscopy Screening on Risks of Colorectal Cancer and Related Death. N. Engl. J. Med. 2022, 387, 1547–1556.
[CrossRef] [PubMed]

145. Rudolph, J.E.; Naimi, A.I.; Westreich, D.J.; Kennedy, E.H.; Schisterman, E.F. Defining and Identifying Per-protocol Effects in
Randomized Trials. Epidemiology 2020, 31, 692–694. [CrossRef] [PubMed]

146. Kent, D.M.; Paulus, J.K.; van Klaveren, D.; D’Agostino, R.; Goodman, S.; Hayward, R.; Ioannidis, J.P.A.; Patrick-Lake, B.; Morton,
S.; Pencina, M.; et al. The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement. Ann. Intern. Med. 2020,
172, 35–45. [CrossRef] [PubMed]

147. Greenland, S. Effect Modification and Interaction. In Wiley StatsRef: Statistics Reference Online; Wiley Online Library: Hoboken, NJ,
USA, 2014; pp. 1–5.

148. Cuzick, J. Prognosis vs. Treatment Interaction. JNCI Cancer Spectr. 2018, 2, pky006. [CrossRef] [PubMed]
149. Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and

survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [CrossRef] [PubMed]
150. Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; et al.

Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244, 707–712. [CrossRef]
151. Cooke, T.; Reeves, J.; Lanigan, A.; Stanton, P. HER2 as a prognostic and predictive marker for breast cancer. Ann. Oncol. 2001, 12

(Suppl. S1), S23–S28. [CrossRef]
152. Hayes, D.F. HER2 and Breast Cancer—A Phenomenal Success Story. N. Engl. J. Med. 2019, 381, 1284–1286. [CrossRef]
153. Wang, X.; Zhou, J.; Wang, T.; George, S.L. On Enrichment Strategies for Biomarker Stratified Clinical Trials. J. Biopharm. Stat. 2018,

28, 292–308. [CrossRef] [PubMed]
154. Thall, P.F. Adaptive Enrichment Designs in Clinical Trials. Annu. Rev. Stat. Appl. 2021, 8, 393–411. [CrossRef] [PubMed]
155. Park, Y.; Liu, S.; Thall, P.F.; Yuan, Y. Bayesian group sequential enrichment designs based on adaptive regression of response and

survival time on baseline biomarkers. Biometrics 2022, 78, 60–71. [CrossRef] [PubMed]
156. Hahn, A.W.; Dizman, N.; Msaouel, P. Missing the trees for the forest: Most subgroup analyses using forest plots at the ASCO

annual meeting are inconclusive. Ther. Adv. Med. Oncol. 2022, 14, 17588359221103199. [CrossRef] [PubMed]
157. Heng, D.Y.; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov, F.;

Tan, M.H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma
Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [CrossRef]

158. Harrington, D.; D’Agostino, R.B.S.; Gatsonis, C.; Hogan, J.W.; Hunter, D.J.; Normand, S.T.; Drazen, J.M.; Hamel, M.B. New
Guidelines for Statistical Reporting in the Journal. N. Engl. J. Med. 2019, 381, 285–286. [CrossRef]

159. Kent, D.M.; Steyerberg, E.; van Klaveren, D. Personalized evidence based medicine: Predictive approaches to heterogeneous
treatment effects. BMJ 2018, 363, k4245. [CrossRef]

160. Schuirmann, D.J. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of
average bioavailability. J. Pharmacokinet. Biopharm. 1987, 15, 657–680. [CrossRef]

161. Gauthier, J.; Wu, Q.V.; Gooley, T.A. Cubic splines to model relationships between continuous variables and outcomes: A guide for
clinicians. Bone Marrow Transpl. 2020, 55, 675–680. [CrossRef]

162. Dickler, M.N.; Barry, W.T.; Cirrincione, C.T.; Ellis, M.J.; Moynahan, M.E.; Innocenti, F.; Hurria, A.; Rugo, H.S.; Lake, D.E.; Hahn,
O.; et al. Phase III Trial Evaluating Letrozole As First-Line Endocrine Therapy With or Without Bevacizumab for the Treatment
of Postmenopausal Women With Hormone Receptor-Positive Advanced-Stage Breast Cancer: CALGB 40503 (Alliance). J. Clin.
Oncol. 2016, 34, 2602–2609. [CrossRef]

163. Birtle, A.; Johnson, M.; Chester, J.; Jones, R.; Dolling, D.; Bryan, R.T.; Harris, C.; Winterbottom, A.; Blacker, A.; Catto, J.W.F.; et al.
Adjuvant chemotherapy in upper tract urothelial carcinoma (the POUT trial): A phase 3, open-label, randomised controlled trial.
Lancet 2020, 395, 1268–1277. [CrossRef] [PubMed]

164. Cuzick, J. Forest plots and the interpretation of subgroups. Lancet 2005, 365, 1308. [CrossRef] [PubMed]
165. Pfeffer, M.A.; McMurray, J.J.; Velazquez, E.J.; Rouleau, J.L.; Kober, L.; Maggioni, A.P.; Solomon, S.D.; Swedberg, K.; Van de Werf,

F.; White, H.; et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction,
or both. N. Engl. J. Med. 2003, 349, 1893–1906. [CrossRef] [PubMed]

166. Blume, J.D.; D’Agostino McGowan, L.; Dupont, W.D.; Greevy, R.A.J. Second-generation p-values: Improved rigor, reproducibility,
& transparency in statistical analyses. PLoS ONE 2018, 13, e0188299. [CrossRef]

167. Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe
COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [CrossRef]

168. DeMets, D.L.; Cook, T. Challenges of Non-Intention-to-Treat Analyses. JAMA 2019, 321, 145–146. [CrossRef]
169. Mauri, L.; D’Agostino, R.B.S. Challenges in the Design and Interpretation of Noninferiority Trials. N. Engl. J. Med. 2017, 377,

1357–1367. [CrossRef]
170. Soonawala, D.; Dekkers, O.M.; Vandenbroucke, J.P.; Egger, M. Noninferiority is (too) common in noninferiority trials. J. Clin.

Epidemiol. 2016, 71, 118–120. [CrossRef]
171. Flacco, M.E.; Manzoli, L.; Ioannidis, J.P. Noninferiority is almost certain with lenient noninferiority margins. J. Clin. Epidemiol.

2016, 71, 118. [CrossRef]

https://doi.org/10.1056/NEJMoa2208375
https://www.ncbi.nlm.nih.gov/pubmed/36214590
https://doi.org/10.1097/EDE.0000000000001234
https://www.ncbi.nlm.nih.gov/pubmed/32740471
https://doi.org/10.7326/M18-3667
https://www.ncbi.nlm.nih.gov/pubmed/31711134
https://doi.org/10.1093/jncics/pky006
https://www.ncbi.nlm.nih.gov/pubmed/31360838
https://doi.org/10.1126/science.3798106
https://www.ncbi.nlm.nih.gov/pubmed/3798106
https://doi.org/10.1126/science.2470152
https://doi.org/10.1093/annonc/12.suppl_1.S23
https://doi.org/10.1056/NEJMcibr1909386
https://doi.org/10.1080/10543406.2017.1379532
https://www.ncbi.nlm.nih.gov/pubmed/28933670
https://doi.org/10.1146/annurev-statistics-040720-032818
https://www.ncbi.nlm.nih.gov/pubmed/36212769
https://doi.org/10.1111/biom.13421
https://www.ncbi.nlm.nih.gov/pubmed/33438761
https://doi.org/10.1177/17588359221103199
https://www.ncbi.nlm.nih.gov/pubmed/35677319
https://doi.org/10.1016/S1470-2045(12)70559-4
https://doi.org/10.1056/NEJMe1906559
https://doi.org/10.1136/bmj.k4245
https://doi.org/10.1007/BF01068419
https://doi.org/10.1038/s41409-019-0679-x
https://doi.org/10.1200/JCO.2015.66.1595
https://doi.org/10.1016/S0140-6736(20)30415-3
https://www.ncbi.nlm.nih.gov/pubmed/32145825
https://doi.org/10.1016/S0140-6736(05)61026-4
https://www.ncbi.nlm.nih.gov/pubmed/15823379
https://doi.org/10.1056/NEJMoa032292
https://www.ncbi.nlm.nih.gov/pubmed/14610160
https://doi.org/10.1371/journal.pone.0188299
https://doi.org/10.1016/S0140-6736(20)31022-9
https://doi.org/10.1001/jama.2018.19192
https://doi.org/10.1056/NEJMra1510063
https://doi.org/10.1016/j.jclinepi.2015.11.009
https://doi.org/10.1016/j.jclinepi.2015.11.010


Cancers 2023, 15, 4674 43 of 45

172. Zampieri, F.G.; Casey, J.D.; Shankar-Hari, M.; Harrell, F.E.J.; Harhay, M.O. Using Bayesian Methods to Augment the Interpretation
of Critical Care Trials. An Overview of Theory and Example Reanalysis of the Alveolar Recruitment for Acute Respiratory
Distress Syndrome Trial. Am. J. Respir. Crit. Care Med. 2021, 203, 543–552. [CrossRef]

173. Spiegelhalter, D.J.; Freedman, L.S.; Mahesh, K.B.P. Bayesian Approaches to Randomized Trials. J. R. Stat. Soc. Ser. A Stat. Soc.
1994, 157, 357–416. [CrossRef]

174. Ruberg, S.J.; Beckers, F.; Hemmings, R.; Honig, P.; Irony, T.; LaVange, L.; Lieberman, G.; Mayne, J.; Moscicki, R. Application
of Bayesian approaches in drug development: Starting a virtuous cycle. Nat. Rev. Drug Discov. 2023, 22, 235–250. [CrossRef]
[PubMed]

175. Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoue, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al.
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975.
[CrossRef] [PubMed]

176. Harrington, D.; Drazen, J.M. Learning from a Trial Stopped by a Data and Safety Monitoring Board. N. Engl. J. Med. 2018, 378,
2031–2032. [CrossRef]

177. Goligher, E.C.; Tomlinson, G.; Hajage, D.; Wijeysundera, D.N.; Fan, E.; Juni, P.; Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal
Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post
Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA 2018, 320, 2251–2259. [CrossRef] [PubMed]

178. Weir, C.J.; Taylor, R.S. Informed decision-making: Statistical methodology for surrogacy evaluation and its role in licensing and
reimbursement assessments. Pharm. Stat. 2022, 21, 740–756. [CrossRef] [PubMed]

179. Ionan, A.C.; Paterniti, M.; Mehrotra, D.V.; Scott, J.; Ratitch, B.; Collins, S.; Gomatam, S.; Nie, L.; Rufibach, K.; Bretz, F. Clinical
and Statistical Perspectives on the ICH E9(R1) Estimand Framework Implementation. Stat. Biopharm. Res. 2022, 15, 554–559.
[CrossRef]

180. Mayo, S.; Kim, Y. What Can Be Achieved with the Estimand Framework? Stat. Biopharm. Res. 2023, 15, 549–553. [CrossRef]
181. Korn, E.L.; Freidlin, B.; Abrams, J.S. Overall survival as the outcome for randomized clinical trials with effective subsequent

therapies. J. Clin. Oncol. 2011, 29, 2439–2442. [CrossRef]
182. Stewart, D.J. Before we throw out progression-free survival as a valid end point. J. Clin. Oncol. 2012, 30, 3426–3427. [CrossRef]
183. Booth, C.M.; Eisenhauer, E.A. Progression-free survival: Meaningful or simply measurable? J. Clin. Oncol. 2012, 30, 1030–1033.

[CrossRef] [PubMed]
184. Anderson, K.C.; Kyle, R.A.; Rajkumar, S.V.; Stewart, A.K.; Weber, D.; Richardson, P. Clinically relevant end points and new drug

approvals for myeloma. Leukemia 2008, 22, 231–239. [CrossRef] [PubMed]
185. Hussain, M.; Goldman, B.; Tangen, C.; Higano, C.S.; Petrylak, D.P.; Wilding, G.; Akdas, A.M.; Small, E.J.; Donnelly, B.J.; Sundram,

S.K.; et al. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from
Southwest Oncology Group Trials 9346 (Intergroup Study 0162) and 9916. J. Clin. Oncol. 2009, 27, 2450–2456. [CrossRef] [PubMed]

186. Bashir, Q.; Thall, P.F.; Milton, D.R.; Fox, P.S.; Kawedia, J.D.; Kebriaei, P.; Shah, N.; Patel, K.; Andersson, B.S.; Nieto, Y.L.; et al.
Conditioning with busulfan plus melphalan versus melphalan alone before autologous haemopoietic cell transplantation for
multiple myeloma: An open-label, randomised, phase 3 trial. Lancet Haematol. 2019, 6, e266–e275. [CrossRef] [PubMed]

187. Thall, P.F.; Millikan, R.E.; Sung, H.G. Evaluating multiple treatment courses in clinical trials. Stat. Med. 2000, 19, 1011–1028.
[CrossRef]

188. Chakraborty, B.; Moodie, E.E.M. Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and
Personalized Medicine; Springer: New York, NY, USA, 2013.

189. Tsiatis, A.A. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine; CRC Press: Boca Raton, FL, USA; Taylor &
Francis Group: Abingdon, UK, 2020.

190. Wang, X.; Chakraborty, B. The Sequential Multiple Assignment Randomized Trial for Controlling Infectious Diseases: A Review
of Recent Developments. Am. J. Public Health 2023, 113, 49–59. [CrossRef]

191. Murphy, S.A. An experimental design for the development of adaptive treatment strategies. Stat. Med. 2005, 24, 1455–1481.
[CrossRef]

192. Almirall, D.; Lizotte, D.J.; Murphy, S.A. SMART Design Issues and the Consideration of Opposing Outcomes: Discussion of
“Evaluation of Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer” by Wang,
Rotnitzky, Lin, Millikan, and Thall. J. Am. Stat. Assoc. 2012, 107, 509–512. [CrossRef]

193. Almirall, D.; Nahum-Shani, I.; Sherwood, N.E.; Murphy, S.A. Introduction to SMART designs for the development of adaptive
interventions: With application to weight loss research. Transl. Behav. Med. 2014, 4, 260–274. [CrossRef]

194. Motzer, R.J.; Jonasch, E.; Agarwal, N.; Alva, A.; Baine, M.; Beckermann, K.; Carlo, M.I.; Choueiri, T.K.; Costello, B.A.; Derweesh,
I.H.; et al. Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20,
71–90. [CrossRef]

195. Chakraborty, B.; Murphy, S.A. Dynamic Treatment Regimes. Annu. Rev. Stat. Appl. 2014, 1, 447–464. [CrossRef] [PubMed]
196. Boele, F.; Harley, C.; Pini, S.; Kenyon, L.; Daffu-O’Reilly, A.; Velikova, G. Cancer as a chronic illness: Support needs and

experiences. BMJ Support. Palliat. Care 2019. [CrossRef] [PubMed]
197. Wang, L.; Rotnitzky, A.; Lin, X.; Millikan, R.E.; Thall, P.F. Evaluation of Viable Dynamic Treatment Regimes in a Sequentially

Randomized Trial of Advanced Prostate Cancer. J. Am. Stat. Assoc. 2012, 107, 493–508. [CrossRef]

https://doi.org/10.1164/rccm.202006-2381CP
https://doi.org/10.2307/2983527
https://doi.org/10.1038/s41573-023-00638-0
https://www.ncbi.nlm.nih.gov/pubmed/36792750
https://doi.org/10.1056/NEJMoa1800385
https://www.ncbi.nlm.nih.gov/pubmed/29791822
https://doi.org/10.1056/NEJMe1805123
https://doi.org/10.1001/jama.2018.14276
https://www.ncbi.nlm.nih.gov/pubmed/30347031
https://doi.org/10.1002/pst.2219
https://www.ncbi.nlm.nih.gov/pubmed/35819121
https://doi.org/10.1080/19466315.2022.2081601
https://doi.org/10.1080/19466315.2023.2173645
https://doi.org/10.1200/JCO.2011.34.6056
https://doi.org/10.1200/JCO.2012.44.1220
https://doi.org/10.1200/JCO.2011.38.7571
https://www.ncbi.nlm.nih.gov/pubmed/22370321
https://doi.org/10.1038/sj.leu.2405016
https://www.ncbi.nlm.nih.gov/pubmed/17972944
https://doi.org/10.1200/JCO.2008.19.9810
https://www.ncbi.nlm.nih.gov/pubmed/19380444
https://doi.org/10.1016/S2352-3026(19)30023-7
https://www.ncbi.nlm.nih.gov/pubmed/30910541
https://doi.org/10.1002/(SICI)1097-0258(20000430)19:8%3C1011::AID-SIM414%3E3.0.CO;2-M
https://doi.org/10.2105/AJPH.2022.307135
https://doi.org/10.1002/sim.2022
https://doi.org/10.1080/01621459.2012.665615
https://doi.org/10.1007/s13142-014-0265-0
https://doi.org/10.6004/jnccn.2022.0001
https://doi.org/10.1146/annurev-statistics-022513-115553
https://www.ncbi.nlm.nih.gov/pubmed/25401119
https://doi.org/10.1136/bmjspcare-2019-001882
https://www.ncbi.nlm.nih.gov/pubmed/31537579
https://doi.org/10.1080/01621459.2011.641416


Cancers 2023, 15, 4674 44 of 45

198. Wahed, A.S.; Thall, P.F. Evaluating Joint Effects of Induction-Salvage Treatment Regimes on Overall Survival in Acute Leukemia.
J. R. Stat. Soc. Ser. C Appl. Stat. 2013, 62, 67–83. [CrossRef] [PubMed]

199. Huang, X.; Choi, S.; Wang, L.; Thall, P.F. Optimization of multi-stage dynamic treatment regimes utilizing accumulated data. Stat.
Med. 2015, 34, 3424–3443. [CrossRef] [PubMed]

200. Xu, Y.; Muller, P.; Wahed, A.S.; Thall, P.F. Bayesian Nonparametric Estimation for Dynamic Treatment Regimes with Sequential
Transition Times. J. Am. Stat. Assoc. 2016, 111, 921–935. [CrossRef]

201. Thall, P.F.; Mueller, P.; Xu, Y.; Guindani, M. Bayesian nonparametric statistics: A new toolkit for discovery in cancer research.
Pharm. Stat. 2017, 16, 414–423. [CrossRef]

202. Murray, T.A.; Yuan, Y.; Thall, P.F. A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes. J. Am.
Stat. Assoc. 2018, 113, 1255–1267. [CrossRef]

203. Valenti, V.; Jimenez-Fonseca, P.; Msaouel, P.; Salazar, R.; Carmona-Bayonas, A. Fooled by Randomness. The Misleading Effect
of Treatment Crossover in Randomized Trials of Therapies with Marginal Treatment Benefit. Cancer Investig. 2022, 40, 184–188.
[CrossRef]

204. Isbary, G.; Staab, T.R.; Amelung, V.E.; Dintsios, C.M.; Iking-Konert, C.; Nesurini, S.M.; Walter, M.; Ruof, J. Effect of Crossover in
Oncology Clinical Trials on Evidence Levels in Early Benefit Assessment in Germany. Value Health 2018, 21, 698–706. [CrossRef]

205. Tap, W.D.; Jones, R.L.; Van Tine, B.A.; Chmielowski, B.; Elias, A.D.; Adkins, D.; Agulnik, M.; Cooney, M.M.; Livingston, M.B.;
Pennock, G.; et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: An open-label
phase 1b and randomised phase 2 trial. Lancet 2016, 388, 488–497. [CrossRef] [PubMed]

206. Tap, W.D.; Wagner, A.J.; Schoffski, P.; Martin-Broto, J.; Krarup-Hansen, A.; Ganjoo, K.N.; Yen, C.C.; Abdul Razak, A.R.; Spira, A.;
Kawai, A.; et al. Effect of Doxorubicin Plus Olaratumab vs Doxorubicin Plus Placebo on Survival in Patients with Advanced Soft
Tissue Sarcomas: The ANNOUNCE Randomized Clinical Trial. JAMA 2020, 323, 1266–1276. [CrossRef] [PubMed]

207. Goss, P.E.; Ingle, J.N.; Pritchard, K.I.; Robert, N.J.; Muss, H.; Gralow, J.; Gelmon, K.; Whelan, T.; Strasser-Weippl, K.; Rubin,
S.; et al. Extending Aromatase-Inhibitor Adjuvant Therapy to 10 Years. N. Engl. J. Med. 2016, 375, 209–219. [CrossRef] [PubMed]

208. Laber, E.B.; Davidian, M. Dynamic treatment regimes, past, present, and future: A conversation with experts. Stat. Methods Med.
Res. 2017, 26, 1605–1610. [CrossRef] [PubMed]

209. Plana, D.; Palmer, A.C.; Sorger, P.K. Independent Drug Action in Combination Therapy: Implications for Precision Oncology.
Cancer Discov. 2022, 12, 606–624. [CrossRef]

210. Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31,
177–184. [CrossRef]

211. Richman, D.D. HIV chemotherapy. Nature 2001, 410, 995–1001. [CrossRef]
212. Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin.

Microbiol. Rev. 2012, 25, 450–470. [CrossRef]
213. Kerantzas, C.A.; Jacobs, W.R.J. Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development

and Application. mBio 2017, 8, 10–1128. [CrossRef]
214. Frei, E., III; Holland, J.F.; Schneiderman, M.A.; Pinkel, D.; Selkirk, G.; Freireich, E.J.; Silver, R.T.; Gold, G.L.; Regelson, W. A

comparative study of two regimens of combination chemotherapy in acute leukemia. Blood 1958, 13, 1126–1148. [CrossRef]
215. Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combina-

tion studies. Pharmacol. Rev. 2006, 58, 621–681. [CrossRef] [PubMed]
216. Msaouel, P.; Goswami, S.; Thall, P.F.; Wang, X.; Yuan, Y.; Jonasch, E.; Gao, J.; Campbell, M.T.; Shah, A.Y.; Corn, P.G.; et al. A phase

1-2 trial of sitravatinib and nivolumab in clear cell renal cell carcinoma following progression on antiangiogenic therapy. Sci.
Transl. Med. 2022, 14, eabm6420. [CrossRef]

217. Lee, J.; Thall, P.F.; Msaouel, P. A phase I-II design based on periodic and continuous monitoring of disease status and the times to
toxicity and death. Stat. Med. 2020, 39, 2035–2050. [CrossRef] [PubMed]

218. Yuan, Y.; Nguyen, H.Q.; Thall, P.F. Bayesian Designs for Phase I-II Clinical Trials; CRC Press: Boca Raton, FL, USA, 2017.
219. de Lima, M.; Couriel, D.; Thall, P.F.; Wang, X.; Madden, T.; Jones, R.; Shpall, E.J.; Shahjahan, M.; Pierre, B.; Giralt, S.; et al.

Once-daily intravenous busulfan and fludarabine: Clinical and pharmacokinetic results of a myeloablative, reduced-toxicity
conditioning regimen for allogeneic stem cell transplantation in AML and MDS. Blood 2004, 104, 857–864. [CrossRef] [PubMed]

220. Gerard, E.; Zohar, S.; Thai, H.T.; Lorenzato, C.; Riviere, M.K.; Ursino, M. Bayesian dose regimen assessment in early phase
oncology incorporating pharmacokinetics and pharmacodynamics. Biometrics 2022, 78, 300–312. [CrossRef]

221. Montgomery, A.A.; Peters, T.J.; Little, P. Design, analysis and presentation of factorial randomised controlled trials. BMC Med.
Res. Methodol. 2003, 3, 26. [CrossRef]

222. Palmer, A.C.; Sorger, P.K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug
Additivity or Synergy. Cell 2017, 171, 1678–1691.e1613. [CrossRef]

223. Kotecha, R.R.; Hsu, D.J.; Lee, C.H.; Patil, S.; Voss, M.H. In silico modeling of combination systemic therapy for advanced renal
cell carcinoma. J. Immunother. Cancer 2021, 9, e004059. [CrossRef]

224. Frei, E., III; Freireich, E.J.; Gehan, E.; Pinkel, D.; Holland, J.F.; Selawry, O.; Haurani, F.; Spurr, C.L.; Hayes, D.M.; James, G.W.
Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 1961,
18, 431–454. [CrossRef]

https://doi.org/10.1111/j.1467-9876.2012.01048.x
https://www.ncbi.nlm.nih.gov/pubmed/24014891
https://doi.org/10.1002/sim.6558
https://www.ncbi.nlm.nih.gov/pubmed/26095711
https://doi.org/10.1080/01621459.2015.1086353
https://doi.org/10.1002/pst.1819
https://doi.org/10.1080/01621459.2017.1340887
https://doi.org/10.1080/07357907.2021.2020281
https://doi.org/10.1016/j.jval.2017.09.010
https://doi.org/10.1016/S0140-6736(16)30587-6
https://www.ncbi.nlm.nih.gov/pubmed/27291997
https://doi.org/10.1001/jama.2020.1707
https://www.ncbi.nlm.nih.gov/pubmed/32259228
https://doi.org/10.1056/NEJMoa1604700
https://www.ncbi.nlm.nih.gov/pubmed/27264120
https://doi.org/10.1177/0962280217708661
https://www.ncbi.nlm.nih.gov/pubmed/28482753
https://doi.org/10.1158/2159-8290.CD-21-0212
https://doi.org/10.1016/j.tibtech.2012.12.006
https://doi.org/10.1038/35073673
https://doi.org/10.1128/CMR.05041-11
https://doi.org/10.1128/mBio.01586-16
https://doi.org/10.1182/blood.V13.12.1126.1126
https://doi.org/10.1124/pr.58.3.10
https://www.ncbi.nlm.nih.gov/pubmed/16968952
https://doi.org/10.1126/scitranslmed.abm6420
https://doi.org/10.1002/sim.8528
https://www.ncbi.nlm.nih.gov/pubmed/32255206
https://doi.org/10.1182/blood-2004-02-0414
https://www.ncbi.nlm.nih.gov/pubmed/15073038
https://doi.org/10.1111/biom.13433
https://doi.org/10.1186/1471-2288-3-26
https://doi.org/10.1016/j.cell.2017.11.009
https://doi.org/10.1136/jitc-2021-004059
https://doi.org/10.1182/blood.V18.4.431.431


Cancers 2023, 15, 4674 45 of 45

225. Logothetis, C.J.; Gallick, G.E.; Maity, S.N.; Kim, J.; Aparicio, A.; Efstathiou, E.; Lin, S.H. Molecular classification of prostate cancer
progression: Foundation for marker-driven treatment of prostate cancer. Cancer Discov. 2013, 3, 849–861. [CrossRef]

226. Farewell, V.T. Mixture Models in Survival Analysis: Are They Worth the Risk? Can. J. Stat./La Rev. Can. Stat. 1986, 14, 257–262.
[CrossRef]

227. Amico, M.; Keilegom, I.V. Cure Models in Survival Analysis. Annu. Rev. Stat. Its Appl. 2018, 5, 311–342. [CrossRef]
228. Senn, S.J. Falsificationism and clinical trials. Stat. Med. 1991, 10, 1679–1692. [CrossRef]
229. Mansournia, M.A.; Nazemipour, M.; Etminan, M. Causal diagrams for immortal time bias. Int. J. Epidemiol. 2021, 50, 1405–1409.

[CrossRef] [PubMed]
230. Giobbie-Hurder, A.; Gelber, R.D.; Regan, M.M. Challenges of guarantee-time bias. J. Clin. Oncol. 2013, 31, 2963–2969. [CrossRef]
231. Senn, S. Lessons from TGN1412 and TARGET: Implications for observational studies and meta-analysis. Pharm. Stat. 2008, 7,

294–301. [CrossRef] [PubMed]
232. Senn, S. Tea for three: Of infusions and inferences and milk in first. Significance 2012, 9, 30–33. [CrossRef]
233. Senn, S. A Conversation with John Nelder. Stat. Sci. 2003, 18, 118–131. [CrossRef]
234. Greenland, S.; Mansournia, M.A. Limitations of individual causal models, causal graphs, and ignorability assumptions, as

illustrated by random confounding and design unfaithfulness. Eur. J. Epidemiol. 2015, 30, 1101–1110. [CrossRef]
235. Weele, T.J.V. Confounding and effect modification: Distribution and measure. Epidemiol. Methods 2012, 1, 55–82. [CrossRef]
236. Suzuki, E.; Shinozaki, T.; Yamamoto, E. Causal Diagrams: Pitfalls and Tips. J. Epidemiol. 2020, 30, 153–162. [CrossRef] [PubMed]
237. Breskin, A.; Cole, S.R.; Hudgens, M.G. A Practical Example Demonstrating the Utility of Single-world Intervention Graphs.

Epidemiology 2018, 29, e20–e21. [CrossRef] [PubMed]
238. Richardson, T.S.; Robins, J.M. Single world intervention graphs: A primer. In Second UAI Workshop on Causal Structure Learning;

Bellevue: Washington, DC, USA, 2013.
239. Ocampo, A.; Bather, J.R. Single-world intervention graphs for defining, identifying, and communicating estimands in clinical

trials. Stat. Med. 2023, 42, 3892–3902. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/2159-8290.CD-12-0460
https://doi.org/10.2307/3314804
https://doi.org/10.1146/annurev-statistics-031017-100101
https://doi.org/10.1002/sim.4780101106
https://doi.org/10.1093/ije/dyab157
https://www.ncbi.nlm.nih.gov/pubmed/34333642
https://doi.org/10.1200/JCO.2013.49.5283
https://doi.org/10.1002/pst.322
https://www.ncbi.nlm.nih.gov/pubmed/18381774
https://doi.org/10.1111/j.1740-9713.2012.00620.x
https://doi.org/10.1214/ss/1056397489
https://doi.org/10.1007/s10654-015-9995-7
https://doi.org/10.1515/2161-962X.1004
https://doi.org/10.2188/jea.JE20190192
https://www.ncbi.nlm.nih.gov/pubmed/32009103
https://doi.org/10.1097/EDE.0000000000000797
https://www.ncbi.nlm.nih.gov/pubmed/29319631
https://doi.org/10.1002/sim.9833
https://www.ncbi.nlm.nih.gov/pubmed/37340887

	Introduction 
	Sampling Theory and Experimental Design 
	Bayesian and Frequentist Inference 
	Confirmations and Refutations 
	Inferences and Decisions 
	Pre Hoc and Post Hoc Power 
	Variability and Uncertainty 
	Aleatory and Epistemic Probabilities 
	Random Sampling and Random Allocation 
	Comparative and Group-Specific Inferences 
	Blocking and Stratification 
	Forward and Reverse Causal Inference 
	Generalizability and Transportability of Causal Effects 
	Representativeness and Inclusiveness 
	Relevance and Robustness 
	Intention to Treat and Per Protocol 
	Prognostic and Predictive Effects 
	Superiority and Noninferiority 
	Enthusiastic and Skeptical Priors 
	Intermediate Endpoints and Overall Survival 
	Synergy, Additivity, and Independence 
	Systematic and Random Biases 
	Conclusions 
	References

