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Abstract

A design is presented for a randomized clinical trial comparing two second-line
treatments, chemotherapy versus chemotherapy plus reirradiation, for treatment of
recurrent non-small-cell lung cancer. The central research question is whether the
potential efficacy benefit that adding reirradiation to chemotherapy may provide jus-
tifies its potential for increasing the risk of toxicity. The design uses two co-primary
outcomes: time to disease progression or death, and time to severe toxicity. Be-
cause patients may be given an active third-line treatment at disease progression
that confounds second-line treatment effects on toxicity and survival following dis-
ease progression, for the purpose of this comparative study follow-up ends at disease
progression or death. In contrast, follow-up for disease progression or death contin-
ues after severe toxicity, so these are semi-competing risks. A conditionally conjugate
Bayesian model that is robust to misspecification is formulated using piecewise ex-
ponential distributions. A numerical utility function is elicited from the physicians
that characterizes desirabilities of the possible co-primary outcome realizations. A
comparative test based on posterior mean utilities is proposed. A simulation study
is presented to evaluate test performance for a variety of treatment differences, and a
sensitivity assessment to the elicited utility function is performed. General guidelines
are given for constructing a design in similar settings, and a computer program for
simulation and trial conduct is provided.

Keywords: Bayesian Analysis; Group Sequential; Piecewise Exponential Model; Radiation
Oncology; Randomized Comparative Trial; Utility Elicitation.

∗The work of the first three authors was partially funded by NIH/NCI grant 5-R01-CA083932.

1



1 Introduction

1.1 Background

This paper describes a Bayesian design for a randomized clinical trial to compare chemother-

apy alone (C) and chemotherapy plus reirradiation (C + R) as second-line treatments for

locoregional recurrence of non-small cell lung cancer (NSCLC). Locoregional disease recur-

rence, i.e., within the original region of disease, after first-line radiation therapy is a leading

cause of death in patients with NSCLC. Patients who are not candidates for surgery, due

to degraded health status from their first-line treatment or their disease, often are given

chemotherapy as second-line treatment. Because many of these patients do not respond

to chemotherapy alone, adding reirradiation to chemotherapy recently has been considered

as a second-line treatment option (McAvoy et al., 2014). In this trial, reirradiation will

be delivered using either intensity modulated radiation therapy (IMRT) or proton beam

therapy (PBT). The central research question is whether the potential benefit C +R may

provide over C for delaying disease recurrence or death justifies its potential for increasing

the risk of toxicity. To address this question, the design will enroll eligible patients, ran-

domize them to either treatment, and follow them for pertinent outcomes. The trial will

terminate when either a prespecified trial duration is achieved or there is strong evidence

at an interim point in the trial that one treatment is clinically preferable to the other.

A complication in evaluating and comparing these second-line treatments is that each

patient’s clinical outcome may include some combination of disease progression, toxicity,

or death, and all of these possible outcomes are very important. Moreover, an active third-

line treatment often is given following disease progression. In this case, for comparing

C to C + R as second-line treatments, any toxicity occurring after disease progression is

closely related to the third-line treatment, and thus the effects on toxicity of C or C + R

as second-line treatments are confounded with the effects of third-line treatment. Simi-

larly, time to death following disease progression is confounded with third-line treatment.

To obviate potential confounding from third-line treatment and account for all clinically

relevant outcomes, the trial will monitor two co-primary time-to-event outcomes that ter-

minate follow-up at disease progression or death. The first outcome is progression-free
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survival (PFS) time, defined as the time, YProg, to the earliest occurrence of death, distant

metastasis, or locoregional disease recurrence. For succinctness, hereafter we will refer to

these events collectively as “progression.” PFS is considered an acceptable clinical trial

end-point in NSCLC (Pilz et al., 2012). The second outcome is time to toxicity, defined

as the time, YTox, to the earliest occurrence of any severe (grade 3 or 4) National Cancer

Institute (NCI) toxicity. Because follow-up ends at progression, a toxicity is observed only

if it occurs prior to progression. Hence, these events are semi-competing risks, where toxi-

city is the non-terminal event and progression is the terminal event (see, e.g., Fine et al.,

2001; Peng and Fine, 2007).

Comparing treatments based on the event times YTox and YProg is challenging because

the treatment effects are multi-dimensional and possibly in opposite directions. For exam-

ple, relative to C, C + R may improve PFS but increase the probability of toxicity prior

to progression. Another possibility is that C + R may only improve PFS given that no

toxicities occur, and instead worsen PFS given that a toxicity does occur, possibly because

the toxicities that result from C+R compared to C are more severe and thus lead to earlier

death. These complexities raise the key issue of whether a particular treatment difference is

favorable, where any difference is multi-dimensional. Because this is central to therapeutic

decision making for individual patients, it also plays a central role in scientific comparison

of C to C +R in the trial.

The approach often used in such settings is to compare treatments using separate mon-

itoring criteria for PFS or overall survival (OS) and toxicity (Cannistra, 2004). This ap-

proach is limited by the fact that no formal criteria are specified for deciding whether a

particular increase in the risk of toxicity is justified given a particular PFS or OS improve-

ment. If the efficacy and safety outcomes are opposing, physicians must make subjective

decisions about whether either treatment is clinically preferable, accounting for these trade-

offs informally. The design described here takes a more transparent approach, based on

the above two co-primary outcomes and a utility function that characterizes the clinical

desirability for every possible realization of these outcomes. Clinical trial designs for co-

primary outcomes have been developed in other oncology settings by Thall et al. (2000),

Yuan and Yin (2009), and Hobbs et al. (2015).
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1.2 Mean Utility

To combine toxicity and progression information in a practical way that is scientifically and

ethically meaningful, we will compare the two treatments based on their mean utilities,

U(trt j) =

∫
U(y)p(y|trt j)dy, for j = C, C +R, (1)

where U(y) denotes a utility function that characterizes the clinical desirability of all

possible realizations y = (yTox, yProg) of Y = (YTox, YProg), and p(y|trt j) denotes the joint

probability distribution of the co-primary outcomes for patients given treatment j. For

brevity, we use U j to denote U(trt j). Mean utilities have been used in phase I-II trials by

Thall et al. (2013) for bivariate time-to-event outcomes, and Lee et al. (2015) for bivariate

binary outcomes. As far as we are aware, this is the first utility-based trial design proposed

for semi-competing risks outcomes.

Both p(y|trt j) and U(y) in (1) are crucial elements of the design. While p(y|trt j) can

be estimated via a probability model for the semi-competing risks, U(y) is subjective and

must be prespecified to reflect the desirability of y in this specific NSCLC context. We elicit

U(y) from the physicians planning the trial, DG and SM, who are co-authors of this paper,

so that U(y) reflects their experience treating this disease in this particular clinical setting.

While it may be argued that such subjectivity should not be used for treatment evaluation

and comparison, in fact all statistical methods require subjective decisions about what is or

is not important, and all physicians have utilities that motivate their therapeutic decisions,

whether they have written them down or not. For the methodology described here, the

physicians’ utilities represent a consensus, and they are given explicitly. A key advantage

of our approach is that the utility function makes explicit which treatment is preferred for

any efficacy-safety tradeoff, which is in contrast to an approach based on separate criteria

for each outcome.

1.3 Outline

In Section 2, we formulate a novel Bayesian model for p(y|trt j) in (1) based on piecewise

exponential distribution that is robust to model misspecification. We use historical data

reported by McAvoy et al. (2014) as a basis for establishing a prior. In Section 3, we describe
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the utility elicitation process in detail and provide general guidelines for applications of the

methodology in other contexts. We propose a parametric function for the specification

of U(y) in (1), which satisfies admissibility constraints that are relevant in this context,

and elicit interpretable parameter values for this function from the physicians planning

the trial. We also discuss efficient calculation of the U j defined in (1). In Section 4, we

describe a design that uses a monitoring criterion based on posterior mean utilities of the

two treatments. A simulation study is presented to evaluate operating characteristics of the

proposed design for a variety of multi-dimensional treatment differences, and a sensitivity

assessment to the utility is performed. In the NSCLC trial design, there are up to two

interim tests and a possible third, final test, i.e., a group sequential approach is taken,

although the methodology can be applied more generally. We provide software to aid

implementation of these methods in other contexts (see Supplementary Materials).

2 Probability Model

The possible realizations (yTox, yProg) of (YTox, YProg) are contained in the union

{(yTox, yProg) : yTox ∈ [0,∞), yProg ∈ (yTox,∞)} ∪ {(No Tox, yProg) : yProg ∈ [0,∞)} .

The first set in this union contains all progression times with an earlier toxicity time, yTox <

yProg, and the second set contains all progression times where no prior toxicity occurs, de-

noted by “No Tox.” We define the outcomes of the ith patient in terms of potential times

to progression, y∗Prog,i, toxicity, y∗Tox,i, and independent administrative right-censoring, c∗i ,

i = 1, . . . , N . We refer to these as potential times, indicated by a superscripted aster-

isk, because they may not be observed. Using conventional time-to-event definitions, the

observed data for the ith patient are yProg,i = min
{
y∗Prog,i, c

∗
i

}
, δProg,i = I

[
y∗Prog,i < c∗i

]
,

yTox,i = min
{
y∗Tox,i, y

∗
Prog,i, c

∗
i

}
, and δTox,i = I

[
y∗Tox,i < min

{
y∗Prog,i, c

∗
i

}]
, where I[A]

= 1 if the event A is true and 0 otherwise. We denote the treatment assigned to the

ith patient by zi, which equals C or C + R. Therefore, for the ith patient, we observe

(yTox,i, yProg,i, δTox,i, δProg,i, zi). Since patients are followed until progression or adminis-

trative censoring has occurred, yTox,i ≤ yProg,i, and δTox,i = 1 only if yTox,i < yProg,i. Figure
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| � •(δTox = 1, δProg = 1):

| � ◦(δTox = 1, δProg = 0):

| •(δTox = 0, δProg = 1):

| ◦(δTox = 0, δProg = 0):

yTox

yProg
yTox

yProg

yProg
yTox

yProg

Figure 1: The four possible orderings for the two co-primary outcomes (yTox, yProg). We
use a dark square to denote toxicity, a dark circle to denote progression, and a clear circle
to denote administrative censoring.

1 illustrates the four orderings of (yTox, yProg) that may be observed.

2.1 Likelihood Specification

We develop a Bayesian hierarchical model for the joint distribution of the co-primary out-

comes by conditioning on a binary indicator, ξ, of whether a toxicity will occur prior to

progression. We rely on a Bernoulli distribution to model the probability of toxicity prior

to progression, and piecewise exponential distributions to model the times to toxicity and

progression given that a toxicity will occur prior to progression, i.e., ξ = 1, and the time to

progression given that a toxicity will not occur prior to progression, i.e., ξ = 0. Discussions

of piecewise exponential models for univariate time-to-event outcomes have been given by

Holford (1976) and Friedman (1982) in a frequentist context, and by Ibrahim et al. (2001,

Section 3) in a Bayesian context.

Let Bern(π) denote a Bernoulli distribution with probability π, let Exp
(
λ; t̃

)
denote

a piecewise exponential distribution with hazard vector λ = (λ1, . . . , λK+1) corresponding
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to the partition t̃ = (0 = t̃0 < t̃1 < · · · < t̃K < t̃K+1 = ∞), and let Exp
(
λ; t̃

)
[L,R]

denote a piecewise exponential distribution with domain truncated to [L,R]. The piecewise

exponential distribution has the hazard λk for t ∈
[
t̃k−1, t̃k

)
, k = 1, . . . , K + 1. Using this

notation, our assumed model for p(y|trt j) in (1) may be summarized as follows:

ξ | trt j ∼ Bern(πj)

YTox | ξ = 1, trt j ∼ Exp
(
λT,j; t̃T

)
YProg | ξ = 1, YTox, trt j ∼ Exp

(
λP1,j; t̃P1

)
[YTox,∞)

YProg | ξ = 0, trt j ∼ Exp
(
λP2,j; t̃P2

)
.

(2)

This models each event time as a piecewise exponential with parameters depending on the

observed, relevant preceding variables. We use the subscripts T , P1, and P2 to distinguish

the parameters characterizing the conditional hazards for toxicity and progression given

ξ = 1, and for progression given ξ = 0, respectively. We will discuss selecting the partitions

t̃` = (0 = t̃`,0 < t̃`,1 < · · · < t̃`,K`
< t̃`,K`+1 = ∞) below, for ` = T, P1, P2. This

model reflects historical experience that some proportion of the patients given treatment j

will not experience toxicity before progression, either because the treatment did not cause

enough damage to result in a grade 3 or higher toxicity or because progression happened

too quickly for an earlier toxicity to occur.

The model proposed in (2) is similar to that of Zhang et al. (2014), who do regression for

semi-competing risks with treatment switching. Other semi-competing risks models have

been proposed by Xu et al. (2010), Conlon et al. (2014), and Lee et al. (2015). While these

alternative models could be applied in this context, the proposed model greatly facilitates

posterior estimation and calculation of the mean utilities in (1). Moreover, the proposed

model is robust because it does not rely on restrictive parametric assumptions for the joint

distribution of the times to toxicity and progression, or the treatment effects on this joint

distribution, such as proportional-hazards. The proposed model can be extended to adjust

for covariates x by assuming say, log(πj)/ log(1−πj) = αj+x′β, and λ`,j = λ∗`,j exp{x′γ`},

for ` = T, P1, P2, and j = C, C + R. However, since this is a randomized clinical trial,

covariate adjustment is not strictly necessary to ensure fair treatment comparisons, and we

do not consider it below.
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We assume patients in the trial, indexed by i = 1, . . . , N , will contribute independent

observations. For some patients, ξi will be observed, and for other patients, ξi will not

be observed and it will be an unknown parameter that is updated in our Gibbs sampling

algorithm. The observed pair (δTox,i, δProg,i) determines whether ξi is known, as follows. If

δTox,i = 1, i.e., a toxicity is observed, then ξi = 1, regardless of whether δProg,i = 0 or 1. If

δTox,i = 0 this alone does not determine ξi, but if δTox,i = 0 and δProg,i = 1, i.e., progression

is observed with no prior toxicity, then ξi = 0. Finally, if δTox,i = 0 and δProg,i = 0, i.e., both

progression and toxicity are administratively censored, then ξi is unknown. However, in

this case ξi is partially observed, in the sense that the full posterior conditional distribution

for ξi depends on the administrative censoring time, and the likelihood contribution is a

mixture.

Temporarily suppressing the patient index i and treatment index j, the four possible

likelihood contributions of an individual observation are as follows:

(δTox = 1, δProg = 1) : πh
(
yTox |λT ; t̃T

)
S
(
yTox |λT ; t̃T

)
×

h
(
yProg |λP1; t̃P1

) [S (yProg |λP1; t̃P1

)
S
(
yTox |λP1; t̃P1

) ]

(δTox = 1, δProg = 0) : πh
(
yTox |λT ; t̃T

)
S
(
yTox |λT ; t̃T

) [S (yProg |λP1; t̃P1

)
S
(
yTox |λP1; t̃P1

) ]
(δTox = 0, δProg = 1) : (1− π)h

(
yProg |λP2; t̃P2

)
S
(
yProg |λP2; t̃P2

)
(δTox = 0, δProg = 0) : πS

(
yTox |λT ; t̃T

)
+ (1− π)S

(
yProg |λP2; t̃T

)
,

(3)

where the hazard function at y is

h
(
y |λ`; t̃`

)
= λ`,k for y ∈ [t̃`,k−1, t̃`,k ), k = 1, . . . , K`,

and the probability that Y > y is

S
(
y |λ`; t̃`

)
= exp

{
−

K∑̀
k=1

[
min(y, t̃`,k)−min(y, t̃`,k−1)

]
λ`,k

}
, ` = T, P1, P2.

Conditioning on ξ, the first three expressions in (3) are unaffected, whereas the fourth

expression in (3) can be written as
[
πS
(
yTox |λT ; t̃T

)]ξ [
(1− π)S

(
yProg |λP2; t̃P2

)]1−ξ
,

which facilitates computation.
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We are able to give this explicit form for the mixture likelihood contribution in the case

where ξ is unknown, i.e., (δTox = 0, δProg = 0) in (3), because the distributions of the event

times, YTox and YProg are defined conditional on ξ in (2). Given ξ = 0, we assume that

YProg is piecewise exponential, and YTox does not enter the likelihood in this case because

conditioning on ξ = 0 implies that a toxicity will not occur prior to disease progression.

Given ξ = 1, we assume that YTox is piecewise exponential, and, given the value of YTox,

we assume that YProg is piecewise exponential with left-truncation time YTox because con-

ditioning on ξ = 1 implies that a toxicity will occur prior to disease progression. Lastly,

we propose using distinct parameters for each treatment group, i.e., (πj,λT,j,λP1,j,λP2,j)

for j = C, C + R, thereby avoiding commonly used, yet often unchecked and unjustified

parametric assumptions, like proportional hazards, which typically are used to obtain a

univariate parameter for treatment comparison. We avoid such parametric assumptions by

using mean utility as a one-dimensional basis for constructing a comparative test, described

below.

Reintroducing the individual and treatment indices, i and j, under (2), the full likelihood

may be expressed in the following computationally convenient form:

L(λ, ξ, π | yProg, yTox, δProg, δTox, z) ∝
∏

j=C,C+R

π

∑
i:zi=j

[δTox,i+(1−δTox,i)(1−δProg,i)ξi]

j ×

∏
j=C,C+R

(1− πj)
∑

i:zi=j
[(1−δTox,i){δProg,i+(1−δProg,i)(1−ξi)}]

×

∏
j=C,C+R

KT+1∏
k=1

λ

∑
i:zi=j

δT,i,k

T,j,k e
−
{ ∑

i:zi=j
[δTox,i+(1−δTox,i)(1−δProg,i)ξi]yT,i,k

}
λT,j,k

× (4)

∏
j=C,C+R

KP1+1∏
k=1

λ

∑
i:zi=j

[δTox,iδP1,i,k]

P1,j,k e
−
{ ∑

i:zi=j
δTox,i(yP1,i,k−yT1,i,k)

}
λP1,j,k

×

∏
j=C,C+R

KP2+1∏
k=1

λ

∑
i:zi=j

[(1−δTox,i)δP2,i,k]

P2,j,k e
−
{ ∑

i:zi=j
(1−δTox,i)[δProg,i+(1−δProg,i)(1−ξi)]yP2,i,k

}
λP2,j,k

,

where δT,i,k = 1, if δTox,i = 1 and yTox,i ∈ [t̃T,k−1, t̃T,k), and δT,i,k = 0, otherwise, i.e., a

binary indicator for whether a toxicity has occurred in the kth interval of t̃K , and yT,i,k =

min
{
yTox,i, t̃T,k

}
− min

{
yTox,i, t̃T,k−1

}
, i.e., the overlap with the kth interval of t̃T . We
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define δP1,i,k, yP1,i,k, and yT1,i,k with respect to t̃P1, and δP2,i,k and yP2,i,k with respect to

t̃P2 similarly.

2.2 Prior Specification

To complete the model, we specify independent, conjugate prior beta distributions for πj,

and gamma distributions for λ`,j,k, k = 1, . . . , K`, ` = T, P1, P2, and j = C, C +R. This

prior choice for the λ’s is similar to the independent gamma process (IGP) proposed by

Walker and Mallick (1997) for univariate time-to-event analysis using a piecewise expo-

nential model, and results in a conditionally conjugate model structure, thereby greatly

facilitating posterior estimation. Let Beta(u, v) denote a beta distribution with mean

u/(u+ v), and let Gamma(c, d) denote a gamma distribution with mean c/d. The explicit

prior specification is

πj ∼ Beta [aπ∗, a(1− π∗)] ,

λ`,j,k ∼ Gam
(
r`,k, r`,k/λ

∗
`,k

)
, k = 1, . . . , K` + 1, ` = T, P1, P2,

(5)

for j = C, C + R, where the a’s, π∗’s, r’s and λ∗’s denote prespecified hyperparameters.

To ensure unbiased comparisons, we assign corresponding treatment parameters the same

prior distribution, i.e., πC and πC+R are assigned the same beta prior distribution, and

λT,C,1 and λT,C+R,1 are assigned the same gamma prior distribution, etc.

The prior mean of πj is π∗ and the prior effective sample size is a, which is an intuitive

measure for the amount of information provided by the prior (Morita et al., 2008). For

example, in a beta-binomial model, as in this model, the prior effective sample size (ESS)

of a Beta(u, v) prior distribution is u + v. To ensure that the prior does not provide an

inappropriate amount of information, the prior ESS should be small, say 1. Similarly,

the prior mean of λ`,j is λ∗` and the prior effective number of events is
∑K`

k=1 r`,k, for

k = 1, . . . , K` + 1, ` = T, P1, P2, and j = C, C + R. To ensure that the priors do

not provide an inappropriate amount of information, we use default values of a = 1 and

r` = r`,k = 1/(K` + 1), for k = 1, . . . , K` + 1 and ` = T, P1, P2. In contrast, specifying

values for π∗ and the λ∗` ’s will depend on the context. These values should reflect the

physicians expert knowledge, or historical data, when available. We use historical data from
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a similar patient population with locoregionally recurrent NSCLC treated with reirradiation

therapy, possibly with concurrent chemotherapy (McAvoy et al., 2014). We take λ∗` = λ∗`,1 =

. . . = λ∗`,K`+1, so that a priori the hazards are constant at magnitudes seen in the historical

data, which is reasonable in this context. Specifically, we specify π∗ = 0.15, λ∗T = 0.37,

λ∗P1 = 0.10, and λ∗P2 = 0.07.

In the Web Supplement, we consider an alternative prior specification that is motivated

by the hierarchical Markov gamma process (HMGP) proposed by Nieto-Barajas and Walker

(2002). This alternative specification induces dependence between hazard parameters in

successive intervals, while retaining a largely conditionally conjugate model structure. The

HMGP tends to give less variable estimates for the hazard parameters than the IGP, but it

increases computational complexity and does not substantially affect the design’s properties

(see Web Supplement, Table 2). Other options have been proposed by Gamerman (1991),

Gray (1994), and Arjas and Gasbarra (1994). However, these alternatives do not result

in conditionally conjugate structures like the IGP and HMGP priors that we consider. A

review of these prior processes is provided in Ibrahim et al. (2001, Section 3). We conduct

posterior estimation using a Gibbs sampler and provide the full conditional distributions in

the Web Supplement. We also provide R software to estimate the model with either prior

specification (see Supplementary Materials).

2.3 Partition Specification

The piecewise exponential distributions in the model rely on three partitions, t̃T , t̃P1, and

t̃P2. The sampling methods proposed by either Arjas and Gasbarra (1994) or Demarqui

et al. (2008) may be implemented to facilitate posterior estimation of these partitions within

the Gibbs sampler. However, these methods are computationally demanding in our design

setting, which requires extensive simulation to assess the operating characteristics of the

design. Alternatively, these partitions can be prespecified to provide an adequately flexible

probability model. To greatly facilitate calculation of mean utilities in the sequel, we use

identical partitions with K = 12 two-month intervals that span the 24 month observation

period. We denote the shared partition by t̃, with t̃0 = 0, t̃1 = 2, t̃2 = 4, . . ., t̃12 = 24,

and t̃13 = ∞. As a sensitivity analysis, we report simulation results comparing shared
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partitions with one, two, and four month intervals (see Web Supplement, Table 4).

3 Utility Function

The utility function, U(y), in (1) must be specified to reflect the clinical desirability of every

possible realization of the two time-to-event outcomes, with larger values indicating greater

desirability. For this reason, we recommend that U(y) be elicited from the physicians

planning the trial. For these outcomes, which are semi-competing risks, it may seem that

eliciting U(y) from the physicians is very challenging; however, we provide guidelines below

to carry out this critical task in practice. We establish key admissibility constraints for

U(y) and propose a class of parametric functions that satisfy these constraints. Relying

on this class of parametric functions and a discretization of the response domain, we then

demonstrate how to develop a spreadsheet that may be provided to the physician(s) to

facilitate utility elicitation. We also provide an example spreadsheet (see Supplementary

Materials). When there are multiple physicians, we suggest that each physician select

numerical utilities using the spreadsheet on their own, and then confer with the other

physicians until consensus utilities are obtained. We provide detailed guidelines and an

illustration below, in the context of the NSCLC trial.

The utility elicitation approach below is similar to that of Thall et al. (2013), who

elicited utilities for bivariate time-to-event outcomes in the context of phase II trials. They

suggested that the two-dimensional outcome domain first be discretized, then numerical

utilities be elicited for all of the resulting elementary events, and finally a smooth utility

surface should be fit to the discrete numerical values. In contrast, the approach below relies

on a preemptively established class of admissible utility functions so that the physicians

need not select numerical values for all elementary events on the partition. Rather, they

select numerical values for two interpretable parameters that characterize the underlying

utility function and explicitly determine the numerical utilities on the partition. Another

important advantage of the elicitation approach given below is that the resulting numerical

utilities on the partition must satisfy the admissibility constraints. Moreover, the mean

utilities in (1) can be calculated using either the discrete utilities on the partition or the

underlying parametric utility function without concern about over-smoothing the elicited
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values. Lastly, the utility parameters provide a parsimonious basis for a sensitivity analysis

to the elicited numerical utility values (see, e.g., Web Supplement, Table 3).

3.1 Admissibility Constraints

Establishing constraints for U(y) in (1) substantially reduces the set of admissible speci-

fications for the utility. The utility constraints should be established before eliciting the

utilities from the physician(s). This can be done in cooperation with the physicians, al-

though a statistician often can intuit these on their own. In the NSCLC clinical setting,

it clearly is desirable for a treatment to delay progression, avoid toxicity, and, if a toxicity

occurs, delay its onset. Therefore, U(y) should be non-decreasing in both yTox and yProg,

and it should not be larger for a progression time with a prior toxicity than for the same

progression time with no prior toxicity. In addition, progression, which includes death, is

less desirable than toxicity. Therefore, the utility of any outcome with a progression at

time y should not be larger than the utility of any outcome with a toxicity at time y or

later. This subtle, yet important constraint ensures that the utility of an outcome with

death at time y is not larger than the utility of an outcome with toxicity at time y or

later. Without this constraint, the utility could be specified so that an early death would

be preferable to a toxicity later on, which is not reasonable. Following the above logic and

defining U(No Tox, YProg = y) = U(YTox = y, YProg = y), the utility should satisfy the

following constraints:

U(y, y′) ≤ U(y, y′′) ≤ U(y′, y′′), for y ≤ y′ ≤ y′′. (6)

After establishing these utility admissibility constraints, we find it helpful to develop a

flexible class of parametric functions satisfying these constraints that can be used as a basis

for elicitation. For example, a flexible class of utility functions that satisfy the constraints

in (6) is defined as follows:

U(YTox, YProg) =


min {100 [YProg − ρ(YProg − YTox)] /τ, 100} if γ = 0,

min

{
100

(
exp{γ[YProg−ρ(YProg−YTox)]/τ}−1

exp{γ}−1

)
, 100

}
otherwise,

(7)

where τ is the upper bound on the observation period, ρ ∈ [0, 1] is the toxicity discount
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Figure 2: The proposed utility function for various specifications of the toxicity discount
parameter, ρ, and the temporal preference parameter, γ, with τ = 24 months. The top
line in each panel depicts how the utility increases given no prior toxicity, whereas the
lower dashed lines depict how the utility increases following a toxicity at the time-point
of departure from the top line. An example case is depicted in each panel where (YTox =
10, YProg = 20).

parameter, and γ is the temporal preference parameter. Figure 2 illustrates U(y) defined in

(7) for various specifications of ρ and γ, with τ = 24 months. To determine U(YTox, YProg)

using the figure for a particular outcome, follow the top line until YTox, and then follow

parallel to the dashed lines until YProg; projecting the terminal point to the y-axis deter-

14



mines the numerical utility of that outcome. An example is depicted in each panel where

(YTox = 10, YProg = 20). As illustrated by Figure 2, γ controls how rapidly U(y) increases

in time and ρ controls the rate at which U(y) increases following a toxicity.

In the sequel, let y ≤ y′ ≤ y′′. When ρ = 0, U(y, y′′) = U(y′, y′′) = U(y′′, y′′), i.e.,

toxicity does not affect the utility. When ρ = 1, U(y, y) = U(y, y′) = U(y, y′′), i.e., the

utility is completely determined by the earliest occurrence of either type of event, and

thus, the time to progression after toxicity does not affect the utility. When 0 < ρ < 1,

U(y) increases in yProg at a diminished rate following a toxicity, so that ρ quantifies the

diminished quality of life a patient experiences following toxicity. A formal interpretation

for ρ arises from the identity, U(y, (1 − ρ)−1(y′ − y) + y) = U(y′, y′), which implies that

(1− ρ)−1 is the factor of additional time that a patient must be alive and progression-free

following a toxicity at time y for the patient’s outcome to be equally desirable as that

of a progression at time y′ with no prior toxicity. For example, using (7), the outcome

(YTox = 0, YProg = y′(1− ρ)−1) has the same utility as the outcome (No Tox, YProg = y′).

From a treatment comparison perspective, if the physician knows that C +R will result in

toxicity and C will not, ρ dictates how long C + R would need to delay progression for it

to be clinically preferable to C.

Turning to γ in the functional form for U(y) in (7), when γ = 0, U(y) increases linearly

in YTox and YProg, which implies that all regions of the observation period are equally

important. For this reason, we suggest using γ = 0 as a default value. When γ < 0, U(y)

increases more rapidly during the earlier region of the observation period, which implies

that delaying early events is more important, and conversely for γ > 0, U(y) increases

more slowly during the earlier region of the observation period, which implies that delaying

early events is less important,. A formal interpretation for γ arises from the identity,

exp
{
γ
( ε
τ

)}
=
U(y − ε, y′ + ε)− U(y − ε, y′)
U(y − ε, y′)− U(y − ε, y′ − ε)

,

which implies that γ controls the relative change in U(y) over successive ε-length intervals

in the observation period. For example, when τ = 24 months and ε = 2 months, the

utility increase over successive 2 month intervals in the observation period changes by the

factor exp{ γ
12
}. From a treatment comparison perspective, γ reflects whether a progression
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delay from 1 to 3 months has greater clinical importance than a progression delay from

3 to 5 months. Interestingly, some “objective” measures of efficacy arise from certain

specifications of U(y) in (7). For example, when γ = 0 and ρ = 0, U(y) ∝ yProg, and mean

utility is thus proportional to mean PFS. Similarly, when γ = 0 and ρ = 1, mean utility is

proportional to mean progression-and-toxicity-free survival (PTFS).

3.2 Utility Elicitation

Using the functional form for U(y) in (7), we elicited ρ and γ from the physicians as

follows: (a) We explained the meaning of ρ and γ to each physician and asked them to

select numerical values for ρ and γ individually, and (b) we then asked them to confer in

order to obtain consensus values. To accomplish (a) and (b), we provided each physician

with a spreadsheet that takes numerical values for ρ and γ, and populates a discretized

outcome domain with numerical utilities based on U(y) (see Supplementary Materials).

We asked them to select numerical values using the spreadsheet that reflected their clinical

experience treating recurrent NSCLC.

Before creating the spreadsheet, in cooperation with the physicians, we selected an

observation period of [0, τ = 24] months and, following the advice of Thall et al. (2013), we

discretized the observation period using the shared partition t̃ defined in Section 2.3. We

denote the two-month intervals, which were selected in cooperation with DG and SM, as

I1 = (0, 2], I2 = (2, 4], · · · , I12 = (22, 24]. Using these intervals, the semi-competing risks

outcome has the elementary events, (YTox ∈ Ik, YProg ∈ Ik′), and (No Tox, YProg ∈ Ik′),

for k ≤ k′ = 1, . . . , 12, and (No Tox, No Prog), where “No Tox” denotes the outcome

that no toxicity is observed prior to progression during the 24 month observation period

and “No Prog” denotes the outcome that no progression is observed during the 24 month

observation period. We found that discretizing time in this way greatly helps the physicians

understand the utility, and, as we discuss below, it also facilitates computation of mean

utilities in (1).

To translate U(y) in (7) to numerical utilities on the partition, we define a discrete
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version of the utility function, UDiscrete(y), as follows:

Uk,k = UDiscrete (YTox ∈ Ik, YProg ∈ Ik) = U
(
t̃k−1, 0.5

[
t̃k + t̃k−1

])
,

Uk,k′ = UDiscrete (YTox ∈ Ik, YProg ∈ Ik′) = U
(
0.5
[
t̃k + t̃k−1

]
, 0.5

[
t̃k′ + t̃k′−1

])
,

UK+1,k = UDiscrete (No Tox, YProg ∈ Ik′) = U
(
0.5
[
t̃k′ + t̃k′−1

]
, 0.5

[
t̃k′ + t̃k′−1

])
,

Uk,K+1 = UDiscrete (YTox ∈ Ik, No Prog) = U
(
0.5
[
t̃k + t̃k−1

]
, t̃K + 0.5

[
t̃1 + t̃0

])
, and

UK+1,K+1 = UDiscrete (No Tox, No Prog) = U
(
t̃K + 0.5

[
t̃1 + t̃0

]
, t̃K + 0.5

[
t̃1 + t̃0

])
,

for k < k′ = 1, . . . , K. To restrict these discrete numerical utilities to the domain [0, 100],

we subtracted the minimum, U
(
t̃0, 0.5

[
t̃1 + t̃0

])
, from each Uk,k′ defined above, and then

divided by the range, U
(
t̃K + 0.5

[
t̃1 + t̃0

]
, t̃K + 0.5

[
t̃1 + t̃0

])
−U

(
t̃0, 0.5

[
t̃1 + t̃0

])
. While

any compact utility domain could be used, [0, 100] works well in practice when communicat-

ing with the physicians, cf. Thall and Nguyen (2012); Thall et al. (2013). The above transla-

tion strategy ensures that Uk,k′′ ≤ Uk′,k′′ , Uk,k′ ≤ Uk,k′′ , Uk,k′ ≤ UK+1,k′ , and UK+1,k ≤ Uk,k′ ,

for k < k′ < k′′ = 1, . . . , K, so the discrete utilities satisfy the previously established ad-

missibility constraints. Crucially, the physicians need only select numerical values for ρ and

γ, rather than all 0.5(K + 1)× (K + 2) +K = 103 numerical utilities on the partition. In

our context, after examining several pairs of (ρ, γ) values and their resulting utilities, the

consensus utilities from DG and SM use ρ = 0.6 and γ = 0. The elicited U(y) is illustrated

in Figure 2, and the corresponding numerical utilities on the partition are reported in Table

7 of the Web Supplement.

3.3 Mean Utility Calculation

Given the elicited U(y) and the Bayesian model for p(y|trt j) in Section 2, we discuss

how to calculate mean utilities in (1). The mean utility of treatment j, U j, is a function

of the model parameters, (πj,λT,j,λP1,j,λP2,j), so U j has induced prior and posterior

distributions. Because we use G draws from a Gibbs sampler for estimation, to obtain

draws from the posterior distribution of U j, we calculate U
(g)

j at each sampled value of

(π
(g)
j ,λ

(g)
T,j,λ

(g)
P1,j,λ

(g)
P2,j) from the Gibbs sampler, for g = 1, . . . , G.

The samples from the posterior distribution of U j can be calculated based on either the

elicited U(y) or the discrete numerical utilities on the partition. Using the elicited U(y),
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these samples are given formally as

U
(g)

j =π
(g)
j

100S
(
τ |λ(g)

T,j; t̃T

)
+

∫ τ

0

∫ τ

u

U(u, v)f
(
u|λ(g)

T,j; t̃T

) f (v|λ(g)
P1,j; t̃P1

)
S
(
u|λ(g)

P1,j; t̃P1

)dv du


+
(

1− π(g)
j

)[
100S

(
τ |λ(g)

P2,j; t̃P2

)
+

∫ τ

0

U(v, v)f
(
v|λ(g)

P2,j; t̃P2

)
dv

]
,

(8)

where f(t) = h(t)S(t), for j = C, C + R and g = 1, . . . , G. We considered using (8) as

the basis for our comparative testing criterion discussed below, however doing so requires

a numerical integration routine at each iteration of the Gibbs sampler, and we found this

to be too computationally expensive. One evaluation of (8) using numerical integration

takes about 4 seconds in R, so this approach is too computationally expensive for post-

processing the G posterior draws from the Gibbs sampler. We instead rely on the elicited

numerical utilities on the partition, which provide an excellent approximation to (8) and

greatly facilitate computation.

Denote the vector of elicited numerical utilities on the partition by U , using any con-

venient ordering. For treatment j = C, C +R, we denote

pj,k,k′ = Pr{(YTox ∈ Ik, YProg ∈ Ik′) | trt j},

pj,K+1,k′ = Pr{(No Tox, YProg ∈ Ik′) | trt j}, for k ≤ k′ = 1, . . . , K, and

pj,K+1,K+1 = Pr{(No Tox,No Prog) | trt j}.

Denote the vector of these probabilities with the same ordering as U by pj. Using this

notation, given U and pj, the mean utility of treatment j is simply

U j =
K+1∑
k=1

K+1∑
k′=k

Uk,k′pj,k,k′ = U ′pj.

To facilitate computation of pj, we use the same partition t̃ for all three piecewise

exponential distributions in the model defined by (2), and for translating U(y) to U using

the previously described strategy. Given (πj,λT,j,λP1,j,λP2,j), the probabilities for the
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elementary events on the partition are given formally as

pj,k,k = πj

{
S
(
t̃k−1 |λT,j; t̃

)
− S

(
t̃k |λT,j; t̃

)
− S

(
t̃k−1 |λT,j; t̃

)
×

[
λT,j,k

λT,j,k − λP1,j,k

][
S
(
t̃k |λP1,j; t̃

)
S
(
t̃k−1 |λP1,j; t̃

) − S
(
t̃k |λT,j; t̃

)
S
(
t̃k−1 |λT,j; t̃

)]},
pj,k,k′ = πj

[
S
(
t̃k′−1 |λP1,j; t̃

)
− S

(
t̃k′ |λP1,j; t̃

)] [ λT,j,k
λT,j,k − λP1,j,k

]
×[

S
(
t̃k−1 |λT,j; t̃

)
S
(
t̃k−1 |λP1,j; t̃

) − S
(
t̃k |λT,j; t̃

)
S
(
t̃k |λP1,j; t̃

)] ,
pj,K+1,k′ = (1− π)

[
S
(
t̃k′−1 |λP2,j; t̃

)
− S

(
t̃k′ |λP2,j; t̃

)]
, and

pj,K+1,K+1 = πjS
(
t̃K |λT,j; t̃

)
+ (1− πj)S

(
t̃K |λP2,j; t̃

)
,

(9)

for k < k′ = 1, . . . , K. A detailed derivation of the expressions in (9) is provided in the

Web Supplement. Plugging (π
(g)
j ,λ

(g)
T,j,λ

(g)
P1,j,λ

(g)
P2,j) into (9), we obtain U

(g)

j = U ′p
(g)
j , for

g = 1, . . . , G and j = C, C +R.

4 Group Sequential Design

For the NSCLC trial, we propose a design with up to two interim tests and one final

test, i.e., a group sequential procedure (see e.g., Jennison and Turnbull, 2000). Enrollment

is expected to be two patients per month. Due to this logistical constraint and power

considerations, we plan a five year (60 month) trial that will enroll patients until either

the trial has been terminated or a maximum sample size of Nmax = 100 is achieved. We

will perform interim tests at 20 and 40 months into the trial, at which points 40 and 80

patients are expected to have be enrolled, respectively. Our comparative test criteria are

as follows, wherein we use t to denote the proportion of the trial’s maximum duration

that has passed at the time of the analysis, D to denote the observed data at any point

in the trial, and ηTox,j = Pr(YTox < 24 | j) to denote the probability of toxicity within

the observation period, for treatment j = C + R, C. For the probability model in (2),

ηTox,j = πj
[
1− S

(
τ |λT,j; t̃

)]
. Given a test cut-off pcut(t), and maximum acceptable

19



toxicity probability during the observation period ηTox, if

Pr
(
UC > UC+R or ηTox,C+R > ηTox | D

)
> pcut(t), (10)

then we terminate the trial and conclude that C is superior to C +R. If

Pr
(
UC+R > UC and ηTox,C+R < ηTox | D

)
> pcut(t), (11)

then we terminate the trial and conclude that C + R is superior to C. If neither (10) nor

(11) holds, then there is not sufficient evidence in the current data to conclude that either

treatment is superior and we continue the trial, up to the final analysis. Given the set

of η
(g)
Tox,j’s and U

(g)

j ’s from the Gibbs sampler, where the U
(g)

j ’s are calculated using the

methods in Section 3.3, we estimate the posterior probabilities in (10) and (11) empirically

from the posterior sample. Because U(y) defines the desirability of all possible outcomes,

given that ηTox,C+R < ηTox, the decision rules are based on the idea that, if UC > UC+R,

then on average C will result in clinically superior outcomes compared to C + R, and

conversely.

Even though we rely on Bayesian methods, it is important to ensure that the proposed

method controls type I error and has adequate power at the planned sample size for iden-

tifying the anticipated treatment differences. To control type I error, and account for the

practical issue that the interim looks may not occur at planned times or sample sizes, we

rely on an α-spending function (Lan and Demets, 1983). Specifically, we use the α-spending

function αt3 so that our method spends 4%, 26% and 70% of the type I error at the first

interim, second interim and final analysis, respectively. We use simulation to determine

pcut(t) in (10) and (11) at each analysis so that type I error is spent in this manner. That

is, the test cut-off pcut(t) varies with the α-spending function.

Because we are monitoring two outcomes that are semi-competing risks, treatment

differences are more complex than for a univariate outcome. In this context, treatment

differences are defined with respect to the joint distribution of (YTox, YProg) for each treat-

ment. For example, the irradiation component of C + R may delay progression compared

to C, but simultaneously cause additional late-onset toxicities. To elucidate treatment

differences, we focus on four interpretable measures of these joint distributions, (a) ηTox,j
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Figure 3: True hazard functions for C in our simulation study, along with the induced
distributions of time to toxicity (“Tox”) and progression (“Prog”) when πC = 0.15. T
denotes the hazard for toxicity given that a toxicity will occur prior to progression, and P1
(P2) denotes the hazard for progression given prior (no prior) toxicity.

= the probabilities of toxicity during the observation period, (b) T50j = the median times

to toxicity, (c) ηProg,j = the probabilities of progression during the observation period, and

(d) P50j = the median times to progression, for j = C, C + R. To assess power, we also

use simulation, wherein we iteratively generate data for each treatment arm from joint

distributions of (YTox, YProg) that we specify to exhibit a plausible treatment difference in

the NSCLC setting, and we calculate the proportion of simulation runs that lead to each

conclusion. Because it is challenging to specify joint distributions of (YTox, YProg) for each

treatment that exhibit plausible differences, we provide guidelines below.

We recommend generating data from the same joint distribution for the standard of

care, i.e., treatment C, throughout the simulation study. This joint distribution should be

based on historical data, when available, and the clinician’s expertise. We use the structure

of the probability model in (2) to specify the joint distribution for C. For the NSCLC trial,

we specify πC , hT (t | C), hP1(t | C), and hP2(t | C) to reflect the historical data reported

by McAvoy et al. (2014). Specifically, we specify πC = 0.15 and hazard functions that

are illustrated in Figure 3, along with the induced distributions for the times to toxicity
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and progression. This joint distribution has ηTox,C = 0.15, where T50C = 3 months, and

ηProg,C = 0.79, where P50C = 7.3 months. Moreover, the hazard for progression after a

toxicity is greater during the initial 18 months, but equivalent thereafter. The analytical

definitions for the hazard functions and the time to progression distribution are provided in

the Web Supplement. We emphasize that the hazard functions are not piecewise constant,

so the joint distribution we use to generate data for the simulation study deviates from the

underlying probability model that we use for posterior inference.

In contrast, in the simulation study we recommend generating data from various plau-

sible joint distributions for the experimental therapy, i.e., treatment C +R. To determine

a plausible joint distribution for C + R, we asked DG and SM to hypothesize values for

ηTox,C+R and P50C+R, which were 0.15 and 14 months, respectively. For the NSCLC trial,

we consider joint distributions for C + R that exhibit a range of ηTox,C+R around 0.15

and P50C+R around 14 months. To specify these joint distributions, it is practical, and

reasonable in this context, to use a proportional-hazards (PH) model with baseline hazard

functions defined above for C. As a sensitivity assessment, we also generate data from

joint distributions that are specified using an accelerated failure time (AFT) model with

baseline hazard functions defined above for C. To further illustrate the robustness of the

proposed method, we generate data for each treatment arm from joint distributions that

are specified using a much different structure than the underlying model in (2). We pro-

vide further details about the specification of these joint distributions for C + R when we

report the results of an investigation below. In general, a simulation study should be used

to assess the proposed method’s power for the anticipated treatment difference, and then

to decide whether the trial should be conducted at the planned sample size. If power is

inadequate, the statistician should not recommend running the trial at the planned sample

size.

4.1 Simulation Comparator

In our simulation study, we compare the proposed method to one that is based on separate

tests for safety and efficacy. Specifically, the comparator assesses efficacy using a log-rank

test for whether the PFS distributions differ between the two treatment arms, and assesses
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safety using a proportion test of the hypotheses,

H0 : ηTox,C+R = ηTox versus HA : ηTox,C+R < ηTox or ηTox,C+R > ηTox.

The above safety test only uses the data from the C +R arm, and assesses whether C +R

is safe, which we define as ηTox,C+R < ηTox, or unsafe, which we define as ηTox,C+R > ηTox.

For the safety test, we define a binary indicator, xi, as follows. If the ith patient has 24

months follow-up and had a toxicity prior to progression, we define xi = 1. If the ith

patient has 24 months follow-up and did not have a toxicity prior to progression, we define

xi = 0. If the ith patient does not have 24 months follow-up, we consider xi not evaluable.

We conduct the safety test using the evaluable xi’s in the C +R arm.

The decision criteria for the comparator are as follows. Let ZTox denote the safety test

statistic, ZProg denote the log-rank test statistic, and cTox(t) and cProg(t) denote prespecified

cut-offs for an analysis at time t. If either ZTox > cTox(t) or ZProg > cProg(t), we conclude

that C is superior to C + R. If both ZTox < −cTox(t) and ZProg < −cProg(t), we conclude

that C+R is superior to C. Otherwise, the trial continues until the next analysis, unless the

maximum sample size has been achieved, in which case the trial is inconclusive. In contrast

to the proposed method, the comparator requires different cut-offs for the safety and efficacy

tests. Following Jennison and Turnbull (2000), we specify O’Brien & Fleming cut-offs that

require greater evidence to stop the trial at earlier analyses and control type I error at the

0.10 level, like the proposed method. Using this decision criteria, the comparator will select

C +R when there is sufficient evidence that C +R is more efficacious than C and C +R is

safe, and it will select C when either C is more efficacious than C +R or C +R is unsafe.

Hence, the comparator does not account for the relative safety of the two regimes, and

does not make explicit whether an efficacy improvement combined with a decline in safety

is favorable. In contrast, the proposed method will select C + R when there is sufficient

evidence that C + R offers a favorable tradeoff for the two outcomes compared to C and

C + R is safe, and it will select C when either C offers a favorable tradeoff for the two

outcomes compared to C +R or C +R is unsafe.
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4.2 Simulation Conduct

In each simulation run, we assign half of the Nmax = 100 patients to each treatment group,

and generate potential event times from the true model for each patient’s assigned treat-

ment. We use inversion sampling to generate data, which is a well-known technique for

generating data from non-uniform distributions by inverting the cumulative distribution

function (Devroye, 1986). To determine the observed outcomes at each analysis, we distin-

guish between trial time, defined as the time in months since the start of the trial, and an

individual patient’s follow-up time, defined as the time in months since the patient initiated

treatment. We assume that one patient is assigned to each treatment at the beginning of

every month, so that the first two patients are enrolled at trial time 0, the second two at

trial time 1, the third two at trial time 2, and so on until the last two patients are enrolled

49 months after the start of the trial. We perform the two interim analyses at 20 and 40

months, and a final analysis at Tmax = 60 months. Therefore, at the first interim analysis,

40 of the planned 100 patients are enrolled, wherein the first two enrollees have accrued

a maximum of 20 months follow-up, the second pair a maximum of 19 months follow-up,

and so on. These logistical calculations for the second interim and final analyses follow

similarly. For example, at the second interim analysis, 80 of the planned 100 patients are

enrolled, and, at the final analysis, the last two patients enrolled have accrued a maximum

of 11 months of follow-up.

Since the potential events can only be observed if they occur during the presently

accrued follow-up, in our simulation study, the individual follow-up times at each analysis

are the administrative right-censoring times. We assume that this is the only censoring

mechanism. In the actual trial, we anticipate very few losses to follow-up for other reasons.

Combining the potential event times with the logistical calculations discussed above, we

determine the observed data at each analysis, i.e., D = (yTox,yProg, δTox, δProg, z). Using

the observed data, we apply the stopping criteria for the proposed method and comparator,

and thereby determine each method’s stopping time and decision for the run. By iterating

this entire process, we compare the operating characteristics of the two designs. One run

takes about 30 seconds in R. We used HTCondor, high-performance computing software,

to conduct runs in parallel across 200 computational nodes.
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4.3 Simulation Results

We set the maximum acceptable toxicity probability within the observation period at ηTox =

0.4, which is the value that will be used in the actual trial. For the proposed method, we

estimate the posterior using the probability model described in Section 2, and calculate

mean utilities using the computationally efficient method described in Section 3.3, based

on the elicited utilities with ρ = 0.6 and γ = 0. For our main simulation study, we generate

data for C +R from joint distributions that are specified using PH models as follows:

h`(t | C +R) = h`(t | C) exp{β`}, for ` = {T, P1, P2}.

When we specify πC+R = 0.15 and βT = βP1 = βP2 = 0, C + R and C have identical

joint distributions of (YTox, YProg). By adjusting πC+R, βT , βP1, and βP2, we can specify

a joint distribution for C +R with the desired values of ηTox,C+R, T50C+R, ηProg,C+R, and

P50C+R. To further simplify specification, we use the same coefficient, βP = βP1 = βP2, to

adjust both hP1 and hP2 for C+R. Increasing πC+R causes ηTox,C+R to increase, increasing

βT causes T50C+R to increase, and increasing βP causes both ηProg,C+R and P50C+R to

increase. We compare the two methods for different sets of πC+R, βT and βP that result

in joint distributions for C + R with a range of plausible values for ηTox,C+R, T50C+R,

ηProg,C+R, and P50C+R. We focus on scenarios where ηTox,C+R ranges from 0.05 to 0.45,

and P50C+R ranges from 5 months to 15 months.

Before presenting the simulation results, we emphasize that in this semi-competing risks

context the conventional notion of power is inadequate as it relies on a one-dimensional

treatment effect. Here, the treatments may differ for both toxicity and progression, and

these differences may be in opposite directions for these outcomes. In such a case, it

may not be clear which treatment is superior. For example, when ηTox,C+R = 0.05 versus

ηTox,C = 0.15 and P50C+R = 15 versus P50C = 7 months, C + R improves both toxicity

and progression compared to C, a so-called “win-win” scenario, so C+R is clearly superior

to C. In contrast, when ηTox,C+R = 0.25 versus ηTox,C = 0.15 and P50C+R = 15 versus

P50C = 7 months, C + R improves progression but worsens toxicity compared to C, a

so-called “win-lose” scenario, so it is not at all clear which treatment is superior, if either.

The proposed method, which is based on mean utilities, offers an explicit solution for this
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Table 1: Main simulation study results. ∆U = UC+R − UC is the mean utility difference,
where ∆U > 0 indicates C+R is more desirable than C; ηTox and ηProg are the probabilities
of toxicity and progression during the 24 month observation period for C +R, where ηTox
= 0.15 and ηProg = 0.79 for C throughout; T50 and P50 are the median times to toxicity
and progression for C +R, where T50 = 3.0 and P50 = 7.3 for C throughout; N and Dur
denote mean sample size and mean duration in months; and “C + R” (“C”) denotes the
proportion of runs where the method concluded that C+R (C) is superior. The maximum
allowable toxicity probability during the 24 month observation period is ηTox = 0.4.

Specifications Proposed Comparator
Scenario ∆U ηTox T50 ηProg P50 C +R C N (Dur) C +R C N (Dur)

1.1 1.4 0.05 3.0 0.78 7.1 0.08 0.03 99.2(59.2) 0.05 0.06 99.4(59.4)
1.2 0.0 0.15 3.0 0.79 7.3 0.05 0.05 99.6(59.6) 0.04 0.05 99.6(59.6)
1.3 -1.4 0.25 3.0 0.79 7.6 0.02 0.08 98.8(59.0) 0.02 0.05 99.6(59.6)
1.4 -2.9 0.35 3.0 0.80 7.8 0.00 0.18 97.0(57.4) 0.01 0.06 99.6(59.6)
1.5 -4.3 0.45 3.0 0.80 8.0 0.00 0.46 92.8(53.6) 0.00 0.21 99.2(59.2)
2.1 -10.4 0.05 3.0 0.90 4.8 0.00 0.48 96.0(56.4) 0.00 0.59 91.8(52.6)
2.2 -11.0 0.15 3.0 0.90 5.1 0.00 0.52 93.8(54.4) 0.00 0.58 92.8(53.4)
2.3 -11.7 0.25 3.0 0.90 5.4 0.00 0.60 90.4(51.6) 0.00 0.51 94.4(54.8)
2.4 -12.3 0.35 3.0 0.91 5.7 0.00 0.69 86.8(48.6) 0.00 0.50 95.2(55.4)
2.5 -12.9 0.45 3.0 0.91 5.9 0.00 0.85 81.2(44.0) 0.00 0.55 97.2(55.4)
3.1 20.9 0.05 3.0 0.55 14.8 0.86 0.00 88.8(48.8) 0.80 0.00 92.0(52.0)
3.2 18.2 0.15 3.0 0.56 14.4 0.76 0.00 93.6(53.6) 0.79 0.00 97.4(57.4)
3.3 15.5 0.25 3.0 0.56 14.1 0.41 0.00 98.2(58.2) 0.46 0.00 99.4(59.4)
3.4 12.7 0.35 3.0 0.57 13.9 0.06 0.01 100.0(60.0) 0.09 0.02 99.8(59.8)
3.5 10.0 0.45 3.0 0.57 13.7 0.00 0.17 98.6(58.6) 0.01 0.17 99.4(59.4)

problem, whereas the comparator does not.

The results of our main simulation study are given in Table 1. To describe each scenario

in the table, we report ∆U = UC+R−UC , which is the mean utility difference, where ∆U > 0

indicates C + R provides a favorable tradeoff for the two outcomes compared to C; ηTox

and ηProg, which are the probabilities of toxicity and progression during the 24 month

observation period for C + R, where ηTox = 0.15 and ηProg = 0.79 for C throughout; and

T50 and P50, which are the median times to toxicity and progression for C + R, where

T50 = 3.0 and P50 = 7.3 months for C throughout. In each scenario block, i.e., 1.1-1.5,

2.1-2.5, and 3.1-3.5, ηTox,C+R ranges from 0.05 to 0.45, while T50C+R = T50C = 3 months

throughout. In contrast, ηProg,C+R (P50C+R) is relatively invariant in each block near 0.79,

0.90, and 0.56 (7, 5, and 14 months), respectively. Scenario 1.2 is the null case where the

joint distribution of (YTox, YProg) is identical for C + R and C. We used its results to

select the probability cut-offs for the proposed method, so it is based on 25,000 runs, which

ensures these cut-offs are accurate to three digits. All other scenarios are based on 2,500
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runs, which ensures the corresponding power figures are accurate to two digits. By design,

both methods control type I error at the α = 0.10 level, and each method erroneously

concludes that C+R is superior to C, and C is superior to C+R with probability at most

0.05.

In Scenarios 1.1-1.4, |∆U | is quite small, ηTox,C+R < ηTox, and both methods are unlikely

to conclude that either treatment is superior. That said, Scenario 1.1 is a “win-lose” case

that slightly favors C + R with ∆U = 1.4, where C + R is safer but less efficacious than

C, and the proposed method is more likely to select C + R whereas the comparator is

more likely to select C. Scenarios 1.3 an 1.4 are “win-lose” cases that slightly favor C

with ∆U of -1.4 and -2.9, where C + R is less safe but more efficacious than C, and the

proposed method selects C with probabilities 0.08 and 0.18 compared to 0.05 and 0.06 for

the comparator. Scenario 1.5 is a “win-lose” case that favors C where C + R is also too

toxic, and the proposed method is far more likely to select C than the comparator, with

probability 0.46 versus 0.21. Moreover, the proposed method has consistently has smaller

mean sample size and duration than the comparator.

Scenarios 2.1-2.5 increasingly favor C as ηTox,C+R increases, with ∆U between -10.4 and

-12.9, and the proposed method accordingly selects C with probability between 0.48 and

0.85. In contrast, the comparator is insensitive to increases in ηTox,C+R, selecting C with

probability between 0.50 and 0.59. More specifically, in Scenarios 2.1 and 2.2, C +R is at

least as safe as C but it is less efficacious than C, and the proposed method is less likely to

select C than the comparator with respective probabilities 0.48 and 0.52 compared to 0.59

and 0.58. However, in “lose-lose” Scenarios 2.3-2.5, C + R is less safe and less efficacious

than C, and the proposed method is far more likely to select C than the comparator with

respective probabilities 0.60, 0.69, and 0.85 compared to 0.51, 0.50, and 0.55.

Scenarios 3.1-3.5 present five cases where C + R has much better efficacy than C but

ηTox,C+R varies between 0.05 and 0.45. In Scenarios 3.1 and 3.2, C+R is at least as safe C,

both methods are likely to select C +R, but the proposed method benefits from a smaller

mean sample size and duration than the comparator. Scenario 3.2 reflects the anticipated

difference between C + R and C, and the proposed method has adequate power, 0.76, for

selecting C + R at the planned sample size. In “win-lose” Scenarios 3.3 and 3.4, C + R is
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less safe than C but offers a favorable tradeoff as C + R is highly efficacious, whereas in

Scenario 3.5 C + R is too toxic despite its large efficacy advantage. These are challenging

cases for both methods, as there is low power to distinguish whether ηTox,C+R < ηTox or

ηTox,C+R > ηTox, and both methods are likely to be inconclusive.

In the Web Supplement, we report results from additional simulation studies, including

where Nmax = 200 with an enrollment rate of 4 patients per month rate. The results show

the same general patterns as the main investigation, but with larger power figures. We

also report comparisons of the probability model with the IGP prior versus the alternative

HMGP prior, utilities with ρ = 0.1 and ρ = 0.9, and shared partitions with one and four

month intervals. The results show that the HMGP prior tends to slightly increase power,

but the shared partition negligibly affects the proposed method’s operating characteristics.

In contrast, for utilities with ρ = 0.1 (ρ = 0.9) compared to rho = 0.6, the results show

that the proposed method is less (more) sensitive to changes in ηTox,C+R. We also report

a simulation study where we generate data for treatment C +R from AFT models, rather

than PH models. The results show that the comparator has diminished power, which is not

surprising as it relies on the log-rank test, whereas the proposed method is less affected.

Lastly, we illustrate the flexibility of the proposed method by generating data for both

treatments from joint distributions defined using latent outcomes that follow mixture dis-

tributions, and thus these joint distributions have a different structure than the underlying

probabilty model for the proposed method.

5 Conclusion

Conventional methods based on separate tests for each clinically important outcome do not

reflect the implicit tradeoff between outcomes, so when the treatment affects these outcomes

in opposite ways, i.e., a “win-lose” scenario, it is not clear which treatment is preferred. The

proposed method compares treatments accounting for toxicity and efficacy outcomes via

posterior mean utility, which explicitly reflects the physicians’ clinical experience with these

tradeoffs. The elicited utilities provide a practical basis for transforming complex outcomes,

like the two NSCLC semi-competing risk outcomes, into a one-dimensional criterion for

comparing treatments. Moreover, the main simulation study in Section 4 shows that,
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compared to the proposed method, an approach based on separate tests can have much

lower power when a treatment provides a modest advantage for both outcomes.

One potential limitation of the proposed design is that follow-up terminates at non-

fatal progression. An alternative would be a sequential, multiple assignment, randomized

trial (SMART) (cf. Almirall et al., 2014; Murphy, 2003; Murphy and McKay, 2004) that

has an additional randomization for third-line treatment at disease progression, see, e.g.,

Thall et al. (2000, 2007) or Wang et al. (2012). We chose not to implement a SMART

design for practical reasons; the proposed design is already very complex, and third-line

treatment options are numerous. Another potential limitation is the piecewise constant

hazard assumption, which could be relaxed by assuming continuous hazard models (see,

e.g., Sharef et al., 2010) that might provide better model fit to the realized data and

greater power than the proposed method. These enhancements are natural extensions to

the methods developed in this paper, although computation will be a challenge.

SUPPLEMENTARY MATERIAL

Web Supplement: This document provides the full conditional distributions for Gibbs

sampling, derivations of the elementary event probabilities, simulation details and

additional results, and the table of elicited numerical utilities on the partition. (Web-

Supplement.pdf)

Software: R software to implement the models discussed in Section 2 using a Gibbs sam-

pler, calculate mean utility discussed in Section 3, and conduct the simulation study

detailed in Section 4. (SCRBUB-Design.R)

Utility Elicitation Spreadsheet: Spreadsheet mentioned in Section 3 that was used for

utility elicitation. (Utility-Elicitation.xls)
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Appendices

Unless explicitly noted, the section, equation, and figure references in this document are to

the main manuscript.

Alternative Prior Specification

We consider an alternative prior specification that facilitates temporal smoothing of the

hazard parameters characterizing hT , hP1, and hP2. This specification is motivated by

the hierarchical Markov gamma process (HMGP) proposed by Nieto-Barajas and Walker

(2002).

The prior specification using a HMGP is

πj ∼ Beta [aπ∗, a(1− π∗)] ,

λ`,j,k | γ`,j,k−1, η`,j,k−1 ∼ Gam
(
r`,k + γ`,j,k−1, r`,k/λ

∗
`,k + η`,j,k−1

)
,

γ`,j,k | λ`,j,k, η`,j,k ∼ Pois (η`,j,kλ`,j,k) ,

η`,j,k | ω`,j ∼ Gam (1, 1/ω`,j) , k = 1, . . . , K` + 1,

ω`,j ∼ Gam (b`, b`/ω
∗
` ) , for ` = {T, P1, P2}, j = {C, C +R},

(1)

where Pois(m) denote a Poisson distribution with mean m, γ`,j,0 = η`,j,0 = 0, and a, π∗,

r`,k, λ
∗
`,k, b` and ω∗` denote prespecified hyperparameters. As in (5), π∗ is the prior mean

of πj and a is the prior effective sample size, which we set equal to the default value of

one. The prior mean and variance of ω`,j are ω∗`,j and (ω∗`,j)
2/b`, respectively. The con-

ditional prior mean of λ`,j,k given λ`,j,k−1 and ω`,j is (r`,k + ω`,jλ`,j,k−1) /
(
r`,j,k/λ

∗
`,k + ω`,j

)
=
(

1− ω`,j

r`,j,k/λ
∗
`,k+ω`,j

)
λ∗`,k +

(
ω`,j

r`,j,k/λ
∗
`,k+ω`,j

)
λ`,j,k−1. As ω`,j goes to zero, the prior mean

of λ`,j,k goes to λ∗`,k, and
∑K

k=1 r`,k is the prior effective number of events. In contrast, as

ω`,j goes to infinity, the prior mean of λ`,j,k goes to λ`,j,k−1 and prior variance goes to zero.

Therefore, ω`,j controls the amount of smoothing between hazard parameters in succes-

sive intervals, with larger values resulting in more smoothing. We use a default value of

r`,k = 1/(K` + 1) and use the historical data to select λ∗` = λ∗`,k, for k = 1, . . . , K` + 1. We

use default values b` = 1 and ω∗` = 1/λ∗` that result in a prior mean for λ`,j,k given λ`,j,k−1 of

(K`+1
K`+2

)λ`,j,k−1+( 1
K`+2

)λ∗` , which encourages greater smoothing between subsequent intervals
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when a finer partition is specified, i.e., as K` increases, and still allows the data to largely

decide the amount of smoothing. If desired, the user can encourage greater smoothing by

specifying larger values for b` and ω∗` . We estimate the posterior of this model using the

Metropolis-Hasting within Gibbs sampling scheme discussed by Nieto-Barajas and Walker

(2002), and provide the full conditional distributions resulting from this model below. We

also provide a R software to implement these methods (see Supplementary Materials).

Full Conditional Distributions

For brevity, we use f (θ|•) to denote the full conditional distribution of θ given all other

unknown model parameters and the observed data.

Independent Gamma Process

Under the IGP prior defined in (5), the full conditional distributions are

f (ξi|•) ≡ Bern

(
1

/[
1 +

(
1− πzi
πzi

)
exp

{
KT+1∑
k=1

yT,i,kλT,zi,k −
KP2+1∑
k=1

yP2,i,kλP2,zi,k

}])
,

for i : (δTox,i = 0, δProg,i = 0) .

f (πj|•) ≡ Beta

(
aπ∗ +

∑
i:zi=j

[δTox,i + (1− δTox,i) (1− δProg,i) ξi] ,

a (1− π∗) +
∑
i:zi=j

[(1− δTox,i) {δProg,i + (1− δProg,i) (1− ξi)}]

)
,

for j = {C, C +R}.

f (λT,j,k|•) ≡ Gam

(
rT,k +

∑
i:zi=j

δT,i,k,

rT,k/λ
∗
T,k +

∑
i:zi=j

[δTox,i + (1− δTox,i) (1− δProg,i) ξi] yT,i,k

)
,

for j = {C, C +R}, and k = 1, . . . , KT + 1.

f (λP1,j,k|•) ≡ Gam

(
rP1,k +

∑
i:zi=j

[δTox,iδP1,i,k] ,
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rP1,k/λ
∗
P1,k +

∑
i:zi=j

δTox,i (yP1,i,k − yT1,i,k)

)
,

for j = {C, C +R}, and k = 1, . . . , KP1 + 1.

f (λP2,j,k|•) ≡ Gam

(
rP2,k +

∑
i:zi=j

[(1− δTox,i) δP2,i,k] ,

rP2,k/λ
∗
P2,k +

∑
i:zi=j

(1− δTox,i) [δProg,i + (1− δProg,i) (1− ξi)] yP2,i,k

)
,

for j = {C, C +R}, and k = 1, . . . , KP2 + 1.

Sampling directly from each of the above full conditionals in turn, implementing a Gibbs

sampler is straightforward.

Hierarchical Markov Gamma Process

Under the HMGP prior defined in Web Supplement equation (1), f (ξi|•) and f (πi|•) are

as above and the remaining full conditionals are

f (λT,j,k|•) ≡ Gam

(
rT,k + γT,j,k + γT,j,k−1 +

∑
i:zi=j

δT,i,k,

rT,k/λ
∗
T,k + ηT,j,k + ηT,j,k−1 +

∑
i:zi=j

[δTox,i + (1− δTox,i) (1− δProg,i) ξi] yT,i,k

)
,

for j = {C, C +R}, and k = 1, . . . , KT + 1.

f (λP1,j,k|•) ≡ Gam

(
rP1,k + γP1,j,k + γP1,j,k−1 +

∑
i:zi=j

[δTox,iδP1,i,k] ,

rP1,k/λ
∗
P1,k + ηP1,j,k + ηP1,j,k−1 +

∑
i:zi=j

δTox,i (yP1,i,k − yT1,i,k)

)
,

for j = {C, C +R}, and k = 1, . . . , KP1 + 1.

f (λP2,j,k|•) ≡ Gam

(
rP2,k + γP2,j,k + γP2,j,k−1 +

∑
i:zi=j

[(1− δTox,i) δP2,i,k] ,

rP2,k/λ
∗
P2,k + ηP2,j,k + ηP2,j,k−1 +

∑
i:zi=j

(1− δTox,i) [δProg,i + (1− δProg,i) (1− ξi)] yP2,i,k

)
,

for j = {C, C +R}, and k = 1, . . . , KP2 + 1.
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f (η`,j,k|•) ∝
(
r`,k+1/λ

∗
`,k+1 + η`,j,k

)r`,k+1+γ`,j,k η
γ`,k,j
`,j,k exp {− (λ`,j,k+1 + λ`,j,k + 1/ω`,j,k) η`,j,k} and

f (γ`,j,k|•) ∝
[η`,j,kλ`,j,kλ`,j,k+1 (r`,k+1/λ`,k+1 + η`,j,k)]

γ`,k,j

Γ (r`,k+1 + γ`,j,k) Γ (γ`,j,k + 1)
, for k = 1, . . . , K`,

f (η`,j,K`+1|•) ≡ Gam (γ`,j,K`+1 + 1, λ`,j,K`+1 + 1/ω`,j) ,

f (γ`,j,K`+1|•) ≡ Pois (η`,j,K`+1λ`,j,K`+1) , and

f (ω`,j|•) ≡ Gam

(
b` +K` + 1, b`/ω

∗
` +

K`+1∑
k=1

η`,j,k

)
, for ` = {T, P1, P2} and j = {C, C +R}.

Because f(η`,j,k) and f(γ`,j,k) above, for k = 1, . . . , K`, ` = {T, P1, P2}, and j = {C, C+

R} are not proportional to a familiar class of probability distributions, we cannot sample

directly from these full conditional distributions. Following Nieto-Barajas and Walker

(2002), we use univariate Metropolis-Hastings (M-H) steps to sample from the f(η`,j,k|•),

with proposal densities dependent on the current numerical values of the other parameters:

q(η`,j,k|•) ≡ Gam

(
γ`,j,k + 1, λ`,j,k+1 + λ`,j,k +

1

ω`,j

)
.

These proposal densities result in acceptance ratios that are the minimum of one and the

respective simple expressions(
r`,k+1/λ

∗
`,k+1 + η

(Candidate)
`,j,k

r`,k+1/λ∗`,k+1 + η
(Current)
`,j,k

)r`,k+γ`,j,k

.

We sample from the f(γ`,j,k|•)’s directly by truncating the domain to {0, 1, . . . , 100}. Nieto-

Barajas and Walker (2002) do not discuss this explicitly in the paper; however, we verified

that this is the method utilized by the R package BGPhazard that corresponds to the paper.

This approach works well because the full conditional probabilities for large values of the

γ`,j,k tend to quickly become negligible, so truncation has no inferential impact, yet it

greatly facilitates computation. We considered using a M-H algorithm for this step, but

selecting an efficient proposal density proved to be problematic.

Elementary Event Probability Derivations

Here we provide detailed derivations of the elementary event probabilities given in (9). To

ease notation, we suppress the treatment subscript j = {C, C + R}, and let f`(t) denote

5



the posterior probability density function, with S`(t) =
∫∞
t
f`(u)du, for ` = {T, P1, P2}.

Using this notation, the probability model defined in (2), and a shared partition, the

elementary event probabilities are as follows:

pk,k = Pr (YTox ∈ Ik, YProg ∈ Ik) = π

t̃k∫
t̃k−1

t̃k∫
u

fP1(v)

SP1(u)
fT (u) dv du

= π

t̃k∫
t̃k−1

[
1− SP1(t̃k)

SP1(u)

]
fT (u) du

= π

[ST (t̃k−1)− ST (t̃k)
]
− SP1(t̃k)

t̃k∫
t̃k−1

fT (u)

SP1(u)
du

 ,

pk,k′ = Pr (YTox ∈ Ik, YProg ∈ Ik′) = π

t̃k∫
t̃k−1

t̃k′∫
t̃k′−1

fP1(v)

SP1(u)
fT (u) dv du

= π
[
SP1(t̃k′−1)− SP1(t̃k′)

] t̃k∫
t̃k−1

fT (u)

SP1(u)
du,

pK+1,k′ = Pr (No Tox, YProg ∈ Ik′)

= (1− π)

t̃k′∫
t̃k′−1

fP2(u) du = (1− π)
[
SP2(t̃k′−1)− SP2(t̃k′)

]
, and

pK+1,K+1 = Pr (No Tox, No Prog)

= π

∫ ∞
t̃K

∫ ∞
u

fP1(v)

SP1(u)
fT (u)dv du+ (1− π)

∫ ∞
t̃K

fP2(u)du

= π

∫ ∞
t̃K

fT (u)du+ (1− π)SP2(t̃K) = πST (t̃K) + (1− π)SP2(t̃K).

Since

t̃k∫
t̃k−1

fT (u)

SP1(u)
du = λT,k

[
ST (t̃k−1)

SP1(t̃k−1)

] t̃k∫
t̃k−1

exp
{
− (λT,k − λP1,k)

(
u− t̃k−1

)}
du,
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if λT,k 6= λP1,k, then

t̃k∫
t̃k−1

fT (u)

SP1(u)
du =

[
λT,k

λT,k − λP1,k

] [
ST (t̃k−1)

SP1(t̃k−1)
− ST (t̃k)

SP1(t̃k)

]
.

Substituting these identities into the above definitions for pk,k and pk,k′ , we obtain the

expressions in (9). If λT,k = λP1,k, then the integrated hazard over the kth interval is

t̃k∫
t̃k−1

fT (u)

SP1(u)
du =

(
t̃k − t̃k−1

)
λT,k

[
ST (t̃k−1)

SP1(t̃k−1)

]
.

Although a posteriori λT,k 6= λP1,k with probability one (the posterior distributions are

continuous), it is possible to generate semi-competing risks data from piecewise exponential

distributions where equality holds, in which case the latter identity has relevance.

Simulation Specifications

We analyzed the historical data reported by McAvoy et al. (2014) using the probability

models described in Section 2. We constructed parametric approximations for hT , hP1

and hP2 using the resulting piecewise exponential hazard estimates and survival distri-

bution estimates. These parametric functions are depicted in Figure 3, along with their

corresponding survival distributions, and given explicitly below:

hT (t | C) = 0.3 +
0.45(t− 6.6)

0.9(t− 7.6)2 + 1
,

hP1(t | C) = 0.02 +
0.13

1 + exp(t− 15)
, and

hP2(t | C) = 0.02 +
0.08

1 + exp(t− 13)
.

The identity for the time to progression distribution, i.e., Pr(YProg > t) = 1−Pr(YProg ≤ t),

which is depicted in Figure 3, follows from:

Pr(YProg ≤ t) = π Pr(YProg ≤ t | YTox < YProg) + (1− π)Pr(YProg ≤ t | No Tox),

where Pr(YProg ≤ t | YTox < YProg) =

∫ t

0

∫ u

0

fP1(u)

SP1(v)
fT (v)dvdu

7



=

∫ t

0

fT (v)

SP1(v)

[∫ t

v

fP1(u)du

]
dv =

∫ t

0

fT (v)

SP1(v)
[SP1(v)− SP1(t)] dv

=

∫ t

0

fT (v)dv + SP1(t)

[∫ t

0

fT (v)

SP1(v)
dv

]
= 1− ST (t) + SP1(t)

[∫ t

0

hT (v)
ST (v)

SP1(v)
dv

]
,

and Pr(YProg ≤ t | No Tox) =

∫ t

0

fP2(u)du = 1− SP2(t).

Plugging the relevant functions into the above, we calculate Pr(YProg ≤ t), and thus

Pr(YProg > t), using numerical integration in R.
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Additional Simulation Results

We report the results of our additional simulation studies below. These investigations

include replications of the main simulation study detailed in Section 4, but using (a) a

maximum sample size of Nmax = 200 with an enrollment rate of 4 patients per month;

(b) the probability model developed in Section 2 with the HMGP prior; (c) alternative

numerical utilities resulting from ρ = 0.1 and ρ = 0.9, which respectively place lesser and

greater emphasis on delaying and avoiding toxicities than the elicited numerical utilities

with ρ = 0.6; and (d) alternative shared partitions t̃ that are composed of one or four month

intervals. To illustrate that the proposed procedure is robust for identifying treatment

differences that arise from other functional forms, we also conducted simulation studies

using (e) accelerated failure time (AFT) adjustments to define the true hazard for C +R;

and (f) true data generation models that are composed of mixture distributions, and thus

do not even have the same structure as the proposed method’s underlying probability model

developed in Section 2.

For investigation (e), we define the true hazard functions for C +R as follows,

h`(t | C +R) = exp{β`}h`(exp{β`}t | C),

where h`(t | C) for ` = {T, P1, P2} are defined above. As for the main simulation study,

we specify values for the β`’s that induce a range of plausible treatment differences for the

NSCLC context.

For investigation (f), we generate data by taking

(YTox, YProg) = (No Tox, Y ∗Prog), if Y ∗Prog < Y ∗Tox,

(YTox, YProg) = (Y ∗Tox, Y
∗
Tox + Y ∗Gap), otherwise,

where the latent event times are drawn from the following distributions,

[Y ∗Tox | j] ∼ 0.7φj Gamma(10, 10/4) + 0.3φj Gamma(20, 1/8) + (1− φj) δ∞,[
Y ∗Prog | j

]
∼ Gamma(3, 3/ψj), and[

Y ∗Gap | Y ∗Tox, j
]
∼ (2− 2/ [1 + exp{−0.2Y ∗Tox}]) Gamma(1, 1/2)

+ (1 + 2/ [1 + exp{−0.2Y ∗Tox}]) Gamma(3, 3/ψj),

9



with δ∞ denoting a probability mass at infinity. The distributions of the latent progression

time (Y ∗Prog) and toxicity time (Y ∗Tox) are competing risks, so only the earlier of the two

latent times will be observed. Y ∗Prog follows a gamma distribution with mean ψj, and

Y ∗Tox follows a mixture of gamma distributions plus a probability mass at infinity, which

represents the subpopulation of patients who would never experience a toxicity. The latent

gap time between toxicity and progression (Y ∗Gap) follows a Gamma-mixture, where the

mixture weight is a function that decreases quickly in Y ∗Tox from one to zero. Because

the first component in this mixture has a mean of 2 months, compared to the second

component that has a mean of ψj months, an early onset toxicity is more likely than a late

onset toxicity to be followed quickly by progression. We chose values for φj, which affects

the toxicity probability, and ψj, which affects the time to progression, to again induce

plausible treatment differences in our NSCLC context.

For reference, we use the following notation for reporting the simulation specifications

and results:

• ∆U = UC+R − UC denotes the mean utility difference, where ∆U > 0 indicates that

C +R is preferred, and conversely.

• ηTox = Pr(YTox < 24) denotes the probability of toxicity during the 24 month obser-

vation period.

• T50 = {t :
∫ t
0
Pr(YTox > t | YTox < YProg) = 0.50} denotes the median time to

toxicity, given that a toxicity will occur prior to progression.

• ηProg = Pr(YProg < 24) denotes the probability of toxicity during the 24 month

observation period.

• P50 = {t :
∫ t
0
Pr(YProg > t) = 0.50} denotes the median time to progression.

• N denotes mean the trial sample size.

• Dur denotes mean the trial duration in months.

• “C + R” (“C”) denotes the proportion of runs where the method concluded that

C +R (C) is superior.

10



• ηTox denotes The maximum allowable toxicity probability during the 24 month ob-

servation period for C +R, and ηTox = 0.4 throughout.

Table 1: Simulation results using the same specifications as the main study, but with a
maximum sample size of Nmax = 200 and an enrollment rate of 4 patients per month. ηTox
= 0.15, T50 = 3.0, ηProg = 0.79, and P50 = 7.3 for C throughout.

Specifications Proposed Comparator
Scenario ∆U ηTox T50 ηProg P50 C +R C N (Dur) C +R C N (Dur)

1.1 1.4 0.05 3.0 0.78 7.1 0.10 0.03 198.4(59.2) 0.04 0.05 198.8(59.4)
1.2 0.0 0.15 3.0 0.79 7.3 0.05 0.05 199.2(59.6) 0.05 0.05 198.8(59.4)
1.3 -1.4 0.25 3.0 0.79 7.6 0.03 0.11 195.6(58.2) 0.04 0.04 199.6(59.8)
1.4 -2.9 0.35 3.0 0.80 7.8 0.00 0.24 190.8(56.2) 0.02 0.04 199.6(59.8)
1.5 -4.3 0.45 3.0 0.80 8.0 0.00 0.66 171.2(47.8) 0.00 0.22 198.8(59.4)
2.1 -10.4 0.05 3.0 0.90 4.8 0.00 0.71 188.4(54.6) 0.00 0.85 170.4(46.8)
2.2 -11.0 0.15 3.0 0.90 5.1 0.00 0.76 177.2(50.0) 0.00 0.80 174.4(48.4)
2.3 -11.7 0.25 3.0 0.90 5.4 0.00 0.83 166.4(45.8) 0.00 0.78 178.0(49.8)
2.4 -12.3 0.35 3.0 0.91 5.7 0.00 0.91 148.8(39.6) 0.00 0.74 181.2(51.2)
2.5 -12.9 0.45 3.0 0.91 5.9 0.00 0.98 130.4(33.4) 0.00 0.76 183.2(52.0)
3.1 20.9 0.05 3.0 0.55 14.8 0.99 0.00 166.0(43.0) 0.98 0.00 167.2(43.6)
3.2 18.2 0.15 3.0 0.56 14.4 0.96 0.00 171.6(45.8) 0.98 0.00 174.0(47.0)
3.3 15.5 0.25 3.0 0.56 14.1 0.83 0.00 186.4(53.2) 0.85 0.00 191.6(55.8)
3.4 12.7 0.35 3.0 0.57 13.9 0.17 0.00 199.2(59.6) 0.23 0.00 198.8(59.4)
3.5 10.0 0.45 3.0 0.57 13.7 0.00 0.24 195.2(57.8) 0.01 0.21 199.2(59.6)

Table 2: Simulation results with the same specifications as the main study, but comparing
the proposed procedure for probability models with the IGP prior versus the HMGP prior.
ηTox = 0.15, T50 = 3.0, ηProg = 0.79, and P50 = 7.3 for C throughout.

Specifications IGP Prior HMGP Prior
Scenario ∆U ηTox T50 ηProg P50 C +R C N (Dur) C +R C N (Dur)

1.1 1.4 0.05 3.0 0.78 7.1 0.08 0.03 99.2(59.2) 0.06 0.03 99.8(59.8)
1.2 0.0 0.15 3.0 0.79 7.3 0.05 0.05 99.6(59.6) 0.05 0.05 99.6(59.6)
1.3 -1.4 0.25 3.0 0.79 7.6 0.02 0.08 98.8(59.0) 0.03 0.09 98.0(58.4)
1.4 -2.9 0.35 3.0 0.80 7.8 0.00 0.18 97.0(57.4) 0.00 0.18 97.2(57.6)
1.5 -4.3 0.45 3.0 0.80 8.0 0.00 0.46 92.8(53.6) 0.00 0.50 90.6(52.2)
2.1 -10.4 0.05 3.0 0.90 4.8 0.00 0.48 96.0(56.4) 0.00 0.50 95.8(56.4)
2.2 -11.0 0.15 3.0 0.90 5.1 0.00 0.52 93.8(54.4) 0.00 0.53 92.8(54.0)
2.3 -11.7 0.25 3.0 0.90 5.4 0.00 0.60 90.4(51.6) 0.00 0.61 90.4(51.8)
2.4 -12.3 0.35 3.0 0.91 5.7 0.00 0.69 86.8(48.6) 0.00 0.75 84.0(46.8)
2.5 -12.9 0.45 3.0 0.91 5.9 0.00 0.85 81.2(44.0) 0.00 0.89 77.2(41.6)
3.1 20.9 0.05 3.0 0.55 14.8 0.86 0.00 88.8(48.8) 0.87 0.00 90.2(50.2)
3.2 18.2 0.15 3.0 0.56 14.4 0.76 0.00 93.6(53.6) 0.74 0.00 93.6(53.6)
3.3 15.5 0.25 3.0 0.56 14.1 0.41 0.00 98.2(58.2) 0.44 0.00 98.6(58.6)
3.4 12.7 0.35 3.0 0.57 13.9 0.06 0.01 100.0(60.0) 0.07 0.01 99.8(59.8)
3.5 10.0 0.45 3.0 0.57 13.7 0.00 0.17 98.6(58.6) 0.00 0.16 98.4(58.6)
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Table 5: Simulation results using the same specifications as the main study, but based on
true models for C + R defined using AFT adjustments to the true model for C. ηTox =
0.15, T50 = 3.0, ηProg = 0.79, and P50 = 7.3 for C throughout.

Specifications Proposed Comparator
Scenario ∆U ηTox T50 ηProg P50 C +R C N (Dur) C +R C N (Dur)

1.1 1.4 0.05 3.0 0.78 7.1 0.08 0.03 99.4(59.4) 0.05 0.06 99.2(59.2)
1.2 0.0 0.15 3.0 0.79 7.3 0.05 0.05 99.6(59.6) 0.04 0.05 99.6(59.6)
1.3 -1.4 0.25 3.0 0.79 7.6 0.01 0.09 98.8(59.0) 0.02 0.05 99.6(59.6)
1.4 -2.9 0.35 3.0 0.80 7.8 0.00 0.18 97.0(57.4) 0.00 0.05 99.8(59.8)
1.5 -4.3 0.45 3.0 0.80 8.0 0.00 0.46 92.2(53.2) 0.00 0.20 99.4(59.4)
2.1 -5.7 0.05 3.0 0.83 4.8 0.01 0.22 98.2(58.4) 0.00 0.31 96.0(56.4)
2.2 -6.4 0.15 3.0 0.82 5.1 0.00 0.27 96.2(56.8) 0.00 0.27 96.4(56.8)
2.3 -7.2 0.25 3.0 0.82 5.4 0.00 0.32 94.6(55.4) 0.00 0.22 96.8(57.2)
2.4 -8.0 0.35 3.0 0.82 5.7 0.00 0.42 92.0(53.2) 0.00 0.19 97.6(57.8)
2.5 -8.8 0.45 3.0 0.81 6.0 0.00 0.68 86.2(48.2) 0.00 0.31 97.4(57.6)
3.1 19.4 0.05 3.0 0.68 14.7 0.84 0.00 88.8(48.8) 0.68 0.00 93.4(53.4)
3.2 16.7 0.15 3.0 0.68 14.6 0.74 0.00 93.6(53.6) 0.65 0.00 97.8(57.8)
3.3 14.1 0.25 3.0 0.69 14.5 0.41 0.00 98.4(58.4) 0.37 0.00 99.6(59.6)
3.4 11.4 0.35 3.0 0.70 14.4 0.09 0.01 99.6(59.6) 0.08 0.01 100.0(60.0)
3.5 8.8 0.45 3.0 0.71 14.3 0.00 0.19 97.8(58.0) 0.01 0.19 99.4(59.4)

Table 6: Simulation results using the same specifications as the main study, but with
true data generation models for that are defined using latent variable that follow mixture
distributions. ηTox = 0.15, T50 = 3.8, ηProg = 0.99, and P50 = 6.9 for C throughout.

Specifications Proposed Comparator
Scenario ∆U ηTox T50 ηProg P50 C +R C N (Dur) C +R C N (Dur)

1.1 1.1 0.06 3.8 0.99 7.0 0.11 0.02 99.0(59.0) 0.06 0.04 99.6(59.6)
1.2 0.0 0.15 3.8 0.99 6.9 0.05 0.05 99.4(59.4) 0.05 0.05 99.6(59.6)
1.3 -1.6 0.23 3.8 0.99 6.7 0.01 0.13 97.8(58.2) 0.03 0.07 99.6(59.6)
1.4 -3.5 0.35 3.7 0.99 6.4 0.00 0.34 94.2(55.0) 0.00 0.10 99.4(59.4)
1.5 -5.2 0.46 3.8 0.99 6.2 0.00 0.79 82.0(45.0) 0.00 0.35 98.2(58.2)
2.1 -6.9 0.05 3.6 1.00 5.3 0.00 0.62 96.2(56.6) 0.00 0.72 89.6(50.6)
2.2 -7.7 0.14 3.6 1.00 5.2 0.00 0.72 91.4(52.4) 0.00 0.73 89.2(50.2)
2.3 -8.7 0.24 3.6 1.00 5.2 0.00 0.83 85.2(47.2) 0.00 0.74 89.2(50.2)
2.4 -10.0 0.36 3.6 1.00 5.0 0.00 0.95 74.2(39.2) 0.00 0.75 88.4(49.6)
2.5 -11.2 0.45 3.6 1.00 5.0 0.00 0.99 64.6(33.0) 0.00 0.83 87.6(48.8)
3.1 27.8 0.08 4.2 0.83 13.8 1.00 0.00 81.4(41.4) 1.00 0.00 88.2(48.2)
3.2 25.3 0.17 4.2 0.83 13.6 0.99 0.00 87.2(47.2) 0.94 0.00 95.8(55.8)
3.3 21.3 0.28 4.1 0.83 12.8 0.58 0.00 98.0(58.0) 0.41 0.00 99.4(59.4)
3.4 18.5 0.37 4.1 0.83 12.4 0.16 0.01 99.6(59.6) 0.09 0.02 99.8(59.8)
3.5 14.2 0.48 4.2 0.84 11.5 0.00 0.30 97.6(57.8) 0.00 0.30 98.8(58.8)
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