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Abstract

We propose a Bayesian nonparametric utility-based group sequential design

for a randomized clinical trial to compare a gel sealant to standard care for re-

solving air leaks after pulmonary resection. Clinically, resolving air leaks in the

days soon after surgery is highly important, since longer resolution time produces

undesirable complications that require extended hospitalization. The problem of

comparing treatments is complicated by the fact that the resolution time distribu-

tions are skewed and multi-modal, so using means is misleading. We address these

challenges by assuming Bayesian nonparametric probability models for the resolu-

tion time distributions and basing the comparative test on weighted means. The

weights are elicited as clinical utilities of the resolution times. The proposed design

uses posterior expected utilities as group sequential test criteria. The procedure’s

frequentist properties are studied by extensive simulations.

KEY WORDS: Bayesian nonparametric; Clinical trial; Mesothelioma; Utility

function

1 Introduction

1.1 The motivating clinical trial

Intraoperative air leaks (IALs) occur in 48 to 75% of patients after pulmonary resection

(Serra-Mitjans and Belda-Sanch́ıs, 2005). Despite the routine use of intraoperative su-

tures and stapling devices, IALs remain a significant problem in the practice of thoracic
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surgery. IALs that persist beyond the immediate postoperative period of five days may

result in longer chest tube drainage, greater postoperative pain, increased risk of infec-

tion, empyema, thromboemboli, and increased length of hospitalization (Merritt et al.,

2010; Singhal et al., 2010). Air leaks are a particularly severe problem in patients with

emphysematous lungs or who have undergone extensive visceral pleural denuding pro-

cedures, such as pleurectomy decortication. This is a surgical procedure in which the

lining surrounding one lung first is removed (pleurectomy), and then any tumor masses

that are growing inside the chest cavity are removed (decortication). In addition to the

noted risks to the patient, the economic impact of a prolonged air leak is significant,

primarily due to increased hospital stay. Because the standard procedure of suturing

visible leaks and using staple reinforcement gives unpredictable results, an alternative

technique to control IALs is the use of liquid sealants, which are thick fluids instilled

in the areas of leaks. Progel (Neomend, Inc., Irvine, CA) is a polymeric biodegradable

hydrogel sealant, that currently is the only FDA approved sealant to control IALs during

pulmonary resection (Kobayashi et al., 2001).

Despite FDA approval, the true benefit of Progel in reducing the rate of occurrence or

duration of IALs in lung resection patients has not been established, and therefore it is

not used routinely. Researchers have conducted two studies comparing Progel (treatment

group) with standard care (control group) to demonstrate the safety and efficacy of Progel

(Allen et al., 2004; Klijian, 2012). Because the study of Allen et al. (2004) varied the

application of Progel based on the size of the air bubbles seen in each patient, and the

precise methodology of how this was done was not explained in sufficient detail to enable

replication, the results of this trial are of limited use for a general comparison of Progel

to standard care. The study of Klijian (2012) was retrospective and not randomized.

Given these limitations of existing data, the desire to obtain a prospective randomized

comparison of Progel to standard care motivated the clinical trial described in this paper.

The trial has passed IRB (internal review board) approval and is scheduled to start
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accrual at The University of Texas M.D. Anderson Cancer Center.

1.2 Modeling considerations

Denote by T the days to resolve IALs, allowing the possibility that an air leak may not

develop, represented by T = 0. Allen et al. (2004) and Klijian (2012) compared µ0 and µ1,

the means of T in a control and treatment group, respectively, using a standard t-test, and

concluded that Progel was superior to standard care in reducing IALs. Figure 1 plots the

histogram of T obtained from non-randomized historical data in the clinical database

of the Department of Thoracic and Cardiovascular Surgery at M.D. Anderson Cancer

Center. The histogram suggests that a standard parametric model is inappropriate to

describe air leak resolution time distributions. For example, a normal or log normal

distribution would fail to allow for the observed multi-modality and late resolution times.

Moreover, some patients treated with Progel after resection may be free of air leaks

immediately following surgery, corresponding to a positive probability mass at T = 0.

Let G1 denote the distribution of T in the treatment (Progel) group and G0 the

distribution of T with the control (standard care). We will represent each Gj, j = 0, 1

as a mixture of a point mass δ0 at 0 and a hypothesized distribution Mj for non-zero

resolution times, with M1 a left-shifted version of M0 to formalize the assumption that,

stochastically, IAL resolution times with Progel are no longer than with standard care.

This order constraint is motivated by several medical considerations: Progel is inert, and

thus it cannot react chemically with the patient’s lung tissue, is not a potential source of

infection, and does not slow down the healing process. Moreover, Progel cannot make an

air leak worse because it does not contribute to air leak formation. These considerations

motivate a priori stochastic ordering of G1 and G0, which effectively says that, in terms

of time to resolve an IAL, Progel may be better than standard care, but it cannot be

worse. Nevertheless, for comparison we later report also inference under an otherwise

equivalent model without the stochastic ordering constraint.

An important consideration in developing a trial design is that the use of an expected
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Figure 1: Histogram of times to resolve lung air leaks, from the historical dataset.

value as the target for a comparative test is inappropriate and inadequate, both because

the historical distribution is skewed with a long right tail, and because a change in the

early days after surgery is clinically more important than a comparable change in later

days. Also, a standard test of µ1 = µ0 versus µ1 < µ0 would require an impractically

large sample size to achieve any reasonable power. These complications are the principal

reasons why designing a randomized trial to compare Progel to standard care is non-

trivial, and why the use of Progel has not been widely accepted among surgeons who

perform pulmonary resections.

The desire to obtain reliable confirmatory evidence to evaluate the comparative ben-

efit of Progel motivates the randomized trial described in this paper. The goal of the

trial is to assess the extent to which Progel is superior to standard care. The comparison

also allows for the possibility no difference.

1.3 Stochastic ordering and Bayesian nonparametric priors

The time until resolution of air leaks for patients treated with Progel is a priori expected

to be shorter than under standard care. This introduces a stochastic ordering constraint

on G0 and G1. Formally, a distribution G1 is stochastically smaller than G0, denoted by
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G1 � G0, if the corresponding cumulative distribution functions satisfy F1(t) ≥ F0(t) for

all t. Lehmann and Romano (2006) and Randles and Wolfe (1979) have modeled stochas-

tic ordering parametrically. Although straightforward, these approaches are limited by

the requirement that a parametric family must be specified.

To compare distributions of air leak resolution times, detailed features (e.g., skewed

or multi-modal) of the distributions are important, leading us to consider a Bayesian

nonparametric (BNP) approach. Importantly, uncertainties about the inference on these

details are critical, as posterior probabilities about comparisons drive the decisions about

sequential continuation and the terminal decision. Such descriptions of uncertainties are

best considered in the framework of a probability model on the unknown distributions,

as they are implemented in BNP models.

Formally, BNP refers to prior models for infinite dimensional unknown quantities.

Inference for random distributions, like G0 and G1 here, is a typical example. A common

feature of BNP models is their large support, which allows one to approximate essen-

tially arbitrary distributions (Ishwaran and James, 2001). For the proposed design, we

use a model based on the Dirichlet process (DP) prior (Ferguson, 1973), which is by far

the most commonly used BNP model for a random distribution. MacEachern (1999)

introduced the dependent DP (DDP), which extended the DP to a probability model

for a family {Gx, x ∈ X} of random probability measures, indexed by some covariate

x. The special case of a finite family, like {G0, G1} in our application, was discussed in

De Iorio et al. (2004). Several authors have considered BNP models for stochastically or-

dered distributions. Gelfand and Kottas (2001) started with two DP random probability

measures G0 and G1, and used the product of the corresponding cumulative distribution

functions to define a pair of stochastically ordered random probability measures. A gen-

eral methodology for stochastic ordering by considering probability measures constrained

to a convex set was proposed by Hoff (2003). Finally, Dunson and Peddada (2008) incor-

porated stochastic ordering constraints in the DDP prior. In this paper, we use a simple
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implementation of this finite DDP model with order constraint as the prior probability

model for the distributions G1 and G0 of leak resolution times under Progel and control.

Details are discussed in Section 3. For more extensive reviews of BNP methods, see, for

example, Hjort et al. (2010).

Based on the proposed BNP model, we define a utility-based decision criterion to

develop a clinical trial design. To our knowledge, there is no literature on using BNP

stochastic ordering models in construction of clinical trial designs. The main novelties

in the proposed approach are the successful use of utilities in a small scale clinical trial,

a convincing case for the need of a full probabilistic description of uncertainties on ran-

dom probability measures, and a simple and practicable construction of a BNP prior on

stochastically ordered random probability measures with point masses. The trial will be

conducted in The University of Texas M.D. Anderson Cancer Center, with a co-author

of this paper (RM) its Principal Investigator.

Important practical advantages of the proposed approach are that it allows meaningful

borrowing of information from historical data (by centering the BNP model), borrowing

across treatments (by constructing correlated priors on G0 and G1), and the exploitation

of stochastic ordering constraints, if warranted and approved in IRB reviews. The use of

utility weighting for the outcomes, as in this application, is particularly natural under a

BNP model because it allows inference about all aspects of the event time distribution,

without constraint to parametric families. Together, these features allow the investigators

to plan a much smaller sample size than what would be required by a conventional trial

design. For example, based on the historical mean of 8 days and standard deviation 8.76,

a two sample one-sided 0.05-level t-test with power 0.80 to detect a 25% drop in the

mean, from 8 to 6 days, would require a sample of n = 476 patients. This is impossible

for this single-institution trial. Given the realistic maximum target accrual of 48 patients,

the question is whether a design can be constructed that has reasonably high power to

conclude that Progel is superior to standard care under clinically meaningful alternatives.
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T (days) 0 5 10 15 20 25 30 35 ≥ 40

Utility 100 50 10 6 5 4 3 2 0

Table 1: Elicited utility u(T ) for T = days to resolve intra-operative air leak.

We will show that the proposed design, based on differences in mean utilities evaluated

from the posterior under the BNP model, has very desirable operating characteristics

with n = 48 patients. The impact is the opportunity to establish what is expected to be

a greatly superior treatment option for patients, with reasonable cost and effort.

2 Utilities and Trial Design

The primary outcome is T , the time (in days) to resolve an air leak in the lungs following

surgery, and we define Y = log(T + 1). The possibility that an air leak may not develop

is represented by T = Y = 0. The mean, or any other single measure of central tendency

of Y , is not an appropriate summary for treatment comparisons. Instead, we take a

utility-based approach. Utility-based decision criteria have been used recently in clinical

trial designs (Thall and Nguyen, 2012; Lee et al., 2015). We use utilities to weight

the importance of air leak resolution times after surgery. For example, a difference of

a few days in time to resolution of air leaks in the days immediately after surgery is

far more important than a comparable difference in later days. We performed a formal

utility elicitation with our clinical collaborator RM. The rationale of the utility elicitation

includes: 1) the most desirable resolution time is T = 0 (free of air leaks immediately

after surgery, although this ideal outcome is almost never seen with standard care); 2)

early (1 ≤ T ≤ 5) resolution of air leaks is very desirable and therefore the interval [1,

5] received a relatively high utility; 3) the utilities drop off steeply for later resolution

times (T > 5). These considerations are based on both medical and economic, and they

motivated the elicited utilities u(Y ) for Y = log(T + 1) in Table 1. In the table, the

numerical utility 50 assigned to the outcome T = 5 days corresponds to the subjective

assessment of RM that this comparatively favorable outcome is half as desirable as the
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ideal outcome of having no air leak at all. Similarly, the utility for T = 10 days reflects

that this outcome, which involves a long hospital stay and the complications described

earlier, is 1/5 as desirable as the outcome T = 5 days. We now are ready to define the

expected utility for each group as

U j =

∫
u(Y )Gj(dY ), j = 0, 1, (2.1)

where Gj is a sampling model for the outcome in treatment group j. This expectation is

over the distribution of the outcome T , and is conditional on the unknown distribution

Gj. We do not need to make any specific assumptions about Gj yet, except for the

existence of such a distribution.

Based on the probability model and the utilities of Table 1, we now define a design

for the Progel trial. There are two types of decisions to be considered. At each interim

test in the group sequential procedure, we make a stopping decision di ∈ {0, 1} to stop

(di = 0) or continue (di = 1). If we reach a predetermined maximum sample size, N,

we set dN = 0 by definition. Upon stopping, a terminal decision a ∈ {0, 1} reports the

final recommendation, with a = 1 denoting a recommendation for Progel and a = 0 for

standard care. A decision-theoretic optimal solution would require backward induction

(Bellman, 1957) to solve the full sequential decision problem. We stop short of carrying

out this computationally prohibitive solution. Instead, we propose to conduct the trial

as follows.

Sequential stopping rule. Patients are enrolled in the trial sequentially in cohorts

of size m = 16 until a maximum of N = 48 patients is reached or early stopping is

indicated. All patients are randomized equally to control group and treatment group,

with the restriction of perfect balance after each cohort, when the continuation decisions

di are made.

Denote Yn = {Yji, i = 1, . . . , n/2, j = 0, 1}, the observed data for the first n treated
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patients, that is n/2 patients in each group under the restricted equal randomization

(rounding n/2 for odd n). The proposed decision criterion is the posterior probability

η(εU ,Yn) = p(U1 > U0 + εU | Yn), (2.2)

where εU ≥ 0 is a minimum clinically meaningful difference in expected utility. Because

the sequential rule makes multiple decisions, as with any group sequential procedure the

decision boundaries must be calibrated to control the design’s overall false positive error

rate. This is similar to the use of so-called alpha-spending functions in conventional fre-

quentist group sequential designs. Like other frequentist summaries, false positive error

rate (type-I error) is a probability under an assumed truth, with respect to repeated

simulations of the entire trial. In the context of clinical trial designs such summaries un-

der repeated simulations are also known as (frequentist) operating characteristics (OCs).

Because evaluating the design’s OCs analytically is far too complex, we do this by re-

peated computer simulations of the design, under an array of different possible scenarios.

This follows routine practice in evaluating the behavior of sequentially adaptive clinical

trial designs. In the present setting, the OCs are the type I error, mean sample size, and

probabilities of different possible decisions (correct decision, stop due to futility, stop due

to superiority). Details are reported in Tables 3 and S1.

After each cohort, we carry out Markov chain Monte Carlo posterior simulation and

evaluate the posterior estimates η̂(εU ,Yn). Let ξU be an upper probability boundary

for which the trial will be terminated early and the treatment arm declared superior

if η̂(εU ,Yn) ≥ ξU . Similarly, let ξL be a lower boundary for which the trial will be

terminated early due to futility, with the null hypothesis accepted, if η̂(εU ,Yn) ≤ ξL.

The bounds ξL and ξU are chosen by preliminary simulations to obtain a design with

desirable frequentist OCs. In Section 4, we will illustrate how one may calibrate these

bounds. In summary, the sequential stopping decision at any point of the trial is: dn = 1
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if ξL < η̂(εU ,Yn) < ξU ; dn = 0 otherwise.

Terminal decision rule. Upon stopping, we record the terminal decision a = 1 if

η̂(εU ,Yn) > 1
2

and a = 0 otherwise. Assuming that ξL < 0.5 < ξU , the rule simply

records whether we stop due to crossing either the upper or lower bound, respectively. If

the trial reaches the maximum number of patients, N = 48, the terminal decision uses

the threshold η̂ > 0.5 to determine a recommendation for Progel.

3 Probability Model

3.1 Model and properties

We now construct a prior probability model for Gj, the sampling model for Yij for patients

under control (j = 0) and Progel (j = 1). Because some patients may be free of air leaks

immediately following surgery, we allow a point mass at Yji = 0 by defining Gj, j = 0, 1,

as mixtures

Gj = νj0δ0 +
∞∑
h=1

νjhN(θjh, σ
2) = νj0δ0 + (1− νj0)

∞∑
h=1

whN(θjh, σ
2)

= νj0δ0 + (1− νj0)Mj, (3.1)

where
∑∞

h=1wh = 1. Also, we impose a constraint ν10 ≥ ν00 on the probabilities ν10 and

ν00, andM1 �M0, formalizing the prior belief that patients are more likely to be free of an

air leak in the treatment group than in the control group. For Mj =
∑∞

h=1whN(θjh, σ
2),

j = 0, 1, we use a DDP prior with common weights and dependent atoms. The common

weights wh have the DP stick-breaking prior, wh = vh
∏

`<h(1− v`) with vh ∼ Beta(1, α).

The dependent prior on the atoms is constructed as follows, to ensure M1 � M0. We

assume θh = (θ0h, θ1h) ∼M?, where M? is a truncated multivariate normal base measure,

including a positive probability κ for ties θ0h = θ1h:

M?(θh) = N(θ1h | µ1, σ
2
1)
(
κI(θ0h = θ1h) + (1− κ)N+(θ0h | θ1h, τ 2)

)
, (3.2)
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where N+(x | m,V ) refers to a truncated normal random variable x subject to x ≥ m,

and κ = p(θ0h = θ1h). For comparison we will also consider inference under a variation of

model (3.2) without the order constraint, replacing the N+ kernel by an unconstrained

normal N(θ1h, τ
2).

Denote M̃j =
∑

hwhδθjh , where δθjh denotes a point mass at θjh, j = 0, 1. It is

straightforward to show that M̃1 � M̃0, which implies M1 � M0, and this in turn

implies G1 � G0, as desired. Barrientos et al. (2012) study the support properties of

various DDP models. Applying Theorem 2 of Barrientos et al. (2012), it follows that

the proposed model has full support over all pairs of stochastically ordered random

probability measures.

For reference we state the complete model,

Yji | νj0, νj1,M0,M1 ∼ Gj = νj0δ0 + (1− νj0)
∞∑
h=1

whN(Yji | θjh, σ2)

(θ0h, θ1h) | µ1, σ1, κ, τ ∼ M?. (3.3)

We complete the model specification with choices for the hyperparameters νj0, νj1, σ
2,

κ, µ1, σ1, τ . In the context of clinical trial design, the hyperparameters should not intro-

duce inappropriately strong information into the prior. To ensure this, we provide the

following guidelines.

We first standardize the data by subtracting the sample mean Ȳ1 of the Y1i’s of the

treatment group and scaling with the sample standard deviation s1, mapping Yji → (Yji−

Ȳ1)/s1. This is done to mitigate sensitivity to the measurement scale. We fix µ1 = 0 and

σ1 = 1, to reflect the standardization. For σ2, we assume p(1/σ2) = Ga(0.001, 0.001) to

ensure that the prior is not too informative, where Ga(a, b) denotes a gamma distribution

with mean a/b. To allow for a wide range of shifts in the response density, we specify

p(1/τ 2) = Ga(0.5, 0.5). This implies a Cauchy distribution for θ0h, which often is used as

a robust choice in parametric models. To satisfy the constraint ν10 ≥ ν00, we let ζ0 = ν00,
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ζ1 = ν10 − ν00, and assume p(ζ0, ζ1) = Dirichlet(0.1, 0.1, 0.1). Finally, we assume p(κ) =

Beta(1, 1) and p(α) = Ga(1, 1). The conjugacy of the implied normal on θh in (3.2) and

the normal kernel in (3.3) greatly simplify posterior inference. Any Markov chain Monte

Carlo (MCMC) scheme for DP mixture model as described, for example, in Neal (2000),

can be applied. In our implementation, we used an implementation based on the finite DP

(Ishwaran and James, 2001), which truncates the infinite sum in the DP mixture model

after a finite number of terms. We used H = 10, following a recommendation based on

Theorem 1 in Ishwaran and James (2002) that gives tight bounds on the approximation

error, well below what is clinically relevant in this application. Details of the MCMC

implementation are presented in Supplement A.

We carried out a preliminary simulation study to better understand the nature and

accuracy of posterior inference under the proposed model for a reasonable sample size.

The simulation setup and results are summarized in Supplement B. The inference under

the proposed method incorporating the stochastic ordering constraint performed well,

indicating small bias even with moderate sample size.

4 Trial Simulation Study

To assess average behavior of the proposed BNP trial design, we performed an extensive

simulation study under a variety of scenarios that were constructed to mimic the Progel

trial. For the proposed stopping and decision rules, we fixed the parameters as ξU =

0.9, ξL = 0.05, based on preliminary studies (described later) and examining the OCs of

the proposed BNP design. In all scenarios, we set the maximum number of patients to be

N = 48, randomized equally between the control and treatment group, with cohorts of

16 patients. The smallest clinically meaningful improvement used to define the decision

criterion η(εU ,Yn) was determined by our clinical collaborator (RM) to be εU = 18, given

the numerical utilities of IAL resolution times in Table 1.

We considered nine scenarios, and simulated 100 trials for each scenario. The response

outcomes Yji were generated from the simulation truth Go
j shown in the last column of
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Table 2. Other columns in the same table show the true utilities U o
j =

∫
u(y) dGo

j(y) for

each arm and the differences U o
1 − U o

0 .

To calculate type I error and power, we define the null hypothesis H0 : G1 = G0.

Under the proposed design, the test rejects H0 in favor of Progel if η̂(εU ,Yn) ≥ ξU

interimly with early stopping at n=16 or 32, and if η̂(εU ,YN) ≥ 0.5 for the terminal rule

at N = 48. Similarly, the test fails to reject H0 if η̂(εU ,Yn) ≤ ξL (n = 16, 32), with early

stopping for futility, and if η̂(εU ,YN) < 0.5 at N = 48.

We fixed the hyperparameters as described earlier in Section 3 and fit the proposed

BNP model (3.3) to each simulated data set. Table 3 summarizes the OCs of the proposed

BNP utility-based design for nine scenarios. The OCs include the average number of

patients treated, type I error, the probabilities of making the correct decision (PCD),

stopping the trial early due to either superiority, Pr(EarS), or futility, Pr(EarF) and,

in a final analysis without early stopping, declaring superiority, Pr(FinS), or futility

Pr(FinS). For comparison we also implemented inference under a variation of the model

without the stochastic ordering constraint, that is, model (3.2) with an unconstrained

normal N(θ0h | θ1h, τ 2) replacing the truncated normal in (3.2). Scenarios 1a and 2a

show summaries of inference under this unconstrained version of the model, using the

same simulation truths as in scenarios 1 and 2.

Details of the simulation results are discussed in Supplement C. Scenarios 1 and 2

are null scenarios; in Scenario 3 we assumed a large treatment effect of U o
1 − U o

0 = 41.6,

far beyond εU = 18; Scenario 4 has a small treatment effect of U o
1 − U o

0 = 19.2, barely

beyond εU ; under Scenarios 5 and 6 we assumed a moderate treatment effect; and the last

three Scenarios 7, 8, and 9 have simulation truths different from the assumed mixture of

normal distributions.

For reference we also evaluated summaries related to estimation. Denote the true

utility difference under the simulation truth by ∆U? = U o
1 −U o

0 , and ∆U = U1−U0. For

each scenario, we computed the estimation bias E{∆U −∆U?} and root mean squared
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Table 2: In each scenario, the models Go
j in the right column are the simulation truths.

Here σ̄ = 0.3 and Exp(·),Weib(·, ·) denote an exponential distribution and a Weibull
distribution, respectively. U o

j reports the expected utilities under the simulation truth
Go
j . The second column reports the true difference U o

1 − U o
0 .

Scenario U o
1 − U o

0 Group U o
j Simulation truth Go

j

Progel - Resample from historical data
1 0

Control - Resample from historical data

Progel 23.44 0.1δ0 + 0.63N(2, σ̄2) + 0.27N(3, σ̄2)
2 0

Control 23.44 0.1δ0 + 0.63N(2, σ̄2) + 0.27N(3, σ̄2)

Progel 57.25 0.3δ0 + 0.49N(1, σ̄2) + 0.14N(2, σ̄2) + 0.07N(3.5, σ̄2)
3 41.64

Control 15.61 0.1δ0 + 0.63N(2.5, σ̄2) + 0.18N(3, σ̄2) + 0.09N(4.5, σ̄2)

Progel 48.94 0.2δ0 + 0.56N(1.5, σ̄2) + 0.24N(2, σ̄2)
4 19.15

Control 29.79 0.1δ0 + 0.63N(1.8, σ̄2) + 0.27N(3, σ̄2)

Progel 64.82 0.4δ0 + 0.48N(1, σ̄2) + 0.12N(2.5, σ̄2)
5 29.68

Control 35.14 0.1δ0 + 0.54N(1.5, σ̄2) + 0.18N(2.5, σ̄2) + 0.18N(3.5, σ̄2)

Progel 60.80 0.4δ0 + 0.36N(1, σ̄2) + 0.12N(2, σ̄2) + 0.12N(3, σ̄2)
6 34.15

Control 26.65 0.1δ0 + 0.36N(1.5, σ̄2) + 0.54N(3.5, σ̄2)

Progel 55.33 0.3δ0 + 0.3Exp(1) + 0.4Exp(0.5)
7 43.47

Control 11.86 0.1δ0 + 0.4N(3, 0.22) + 0.5N(4, 0.22)

Progel 45.08 0.2δ0 + 0.4Weib(1, 2) + 0.4Weib(0.7, 2)
8 8.13

Control 36.95 0.2δ0 + 0.5N(1.8, 0.22) + 0.3N(2.5, 0.32)

Progel 55.33 0.3δ0 + 0.3Exp(1) + 0.4Exp(0.5)
9 10.25

Control 45.08 0.2δ0 + 0.4Weib(1, 2) + 0.4Weib(0.7, 2)
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Table 3: Trial simulation results. MSS = mean sample size, TIE = type I error, PCD
= probability of making the correct decision, Pr(EarS) = probability of stopping early
due to superiority, Pr(EarF) = probability of stopping early due to futility, Pr(FinS)
= probability of declaring superiority in a final analysis without early stopping, and
Pr(FinF) = probability of declaring futility in a final analysis without early stopping.
All probabilities are computed by repeated simulations.

Scenario Uo
1 − Uo

0 MSS TIE PCD Pr(EarS) Pr(FinS) Pr(EarF) Pr(FinF)

1 0 16.80 0.00 1.00 0.00 0.00 1.00 0.00

1a 0 16.32 0.00 1.00 0.00 0.00 1.00 0.00

2 0 28.80 0.02 0.98 0.01 0.01 0.64 0.34

2a 0 28.00 0.01 0.99 0.00 0.01 0.69 0.30

3 41.64 29.12 - 1.00 0.81 0.18 0.01 0.00

4 19.15 40.16 - 0.63 0.15 0.48 0.15 0.22

5 29.68 31.68 - 0.93 0.60 0.33 0.04 0.03

6 34.15 29.92 - 0.94 0.65 0.29 0.05 0.01

7 43.47 28.64 - 0.96 0.77 0.19 0.04 0.00

8 8.13 34.08 - 0.79 0.04 0.17 0.45 0.34

9 10.25 34.88 - 0.74 0.10 0.13 0.34 0.43

error (RMSE)
√
E{(∆U −∆U?)2}, where the expectation is over repeated simulations

under each scenario. The results are given in Table S1.

The OCs under all nine scenarios are given in Table 3, and show a favorable evaluation

of the proposed design. The results under scenarios 1a and 2a, compared to scenarios

1 and 2, show that the design’s frequentist OCs appear to be robust with respect to

the inclusion or not of the constraint G0 < G1 in the prior. The simulation truths in

scenarios 7, 8, and 9 are different from the assumed mixture of normal distributions

with equal variance. The results under these scenarios demonstrate the flexibility of BNP

mixture models with a common variance parameter. In summary, inferences under the

proposed BNP model and trial monitoring rules exhibit desirable OCs across all nine

scenarios.
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Parametric models and sensitivity analyses. For comparison, we implemented

alternative inference under a parametric model assuming a zero-enriched Weibull dis-

tribution, that is, a mixture of point mass at 0 and Weibull distribution. We assumed

Tij
i.i.d.∼ GW

j , i = 1, . . . , nj for groups j = 0 and j = 1, using GW
j = πjδ0 + Weib(λ1j, λ2j).

We completed the model with a prior p(πj) = Beta(0.1, 0.1) and a conjugate prior

p(λ2j) = InvGa(b1j, b2j). The hyperparameters b1j and b2j were determined by matching

the prior mean of λ2j with a maximum likelihood estimate and assuming a prior variance

of 10. Finally, for λ1j there is no conjugate prior. We followed Fink (1997) by assuming

p(λ1j) ∝ λ
a1j
1j exp(−a2jλ1j −

a
λ1j
3j

λ2j
), with a1j = 1, a2j = log(

∏nj
i=1 Tij) + 2, and a3j = 2,

j = 0, 1.

Table 4 shows the OCs comparing the inferences under the proposed model versus

the zero-enriched parametric Weibull model in some (arbitrarily) selected scenarios. The

proposed BNP model with stochastic ordering compares quite favorably, with much larger

probabilities of making a correct decision and correctly stopping early for superiority.

Finally, we carried out an alternative analysis to understand how much the results

might change if different utilities u(t) were elicited. Table S2 in the supplement presents

the results of a sensitive analysis using different utilities. In summary, while the actual

decisions naturally change, the frequentist OCs change only slightly. Different decisions

are desirable, under different utilities that reflect different clinical preferences.

A final set of simulations explored robustness with respect to the decision boundaries

ξU and ξL for the continuation decision. Table S3 summarizes OCs under Scenarios 2, 3,

and 4. Again, while some summaries, like the probability of early stopping for futility,

change in the expected direction, the nature of the overall comparison across scenarios

remains unchanged under different criteria.

5 Conclusions and Discussion

We developed a Bayesian nonparametric (BNP) utility-based group sequential design to

compare Progel with standard care in resolving air leaks after lung surgery. In this setting,
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Table 4: Comparisons in selected scenarios under the proposed BNP model with stochas-
tic ordering (BNPSO) versus an alternative parametric model with a zero-enriched
Weibull (Z-Weib).

Scenario True Diff Group MSS PCD Pr(EarS) Pr(FinS) Pr(EarF) Pr(FinF)

BNPSO 29.12 1.00 0.81 0.18 0.01 0.00
3 41.64

Z-Weib 44.32 0.65 0.10 0.52 0.04 0.34

BNPSO 40.16 0.63 0.15 0.48 0.15 0.22
4 19.15

Z-Weib 42.40 0.17 0.03 0.14 0.18 0.65

BNPSO 29.92 0.94 0.65 0.29 0.05 0.01
6 34.15

Z-Weib 40.00 0.85 0.28 0.57 0.02 0.13

BNPSO 28.64 0.96 0.77 0.19 0.04 0.00
7 43.47

Z-Weib 41.92 0.87 0.20 0.65 0.04 0.11

BNPSO 34.08 0.79 0.04 0.17 0.45 0.34
8 8.13

Z-Weib 45.28 0.42 0.06 0.50 0.05 0.39

standard statistical tests or parametric models are not appropriate for trial designs or to

describe air leak resolution time distributions. We solved the problem by developing a

BNP model with a stochastic ordering constraint and proposing a trial design based on

expected utility, computed from elicited utility values. The model assessment and trial

simulation studies show unbiased results and desirable OCs.

Beyond the application discussed in this paper, the proposed BNP utility-based

method can be extended to many other contexts. For example, in applications that in-

volve multiple groups, one may replace the truncated bivariate normal base measure M∗

in (3.3) with a truncated multivariate normal distribution that incorporates the desired

stochastic ordering constraints. Furthermore, the hypothesis testing framework discussed

in Section 4 can be extended easily to testing equalities in multiple distributions that are

stochastically ordered.

Finally, we note that the BNP model could be replaced by a sufficiently flexible

parametric model without any substantial change in the performance of the proposed

design. For example, one could use a mixture of H = 5 normals as the model. However,
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the computational effort for posterior simulation in any finite mixture of normal model

is nothing less than in the proposed DDP model. We prefer the BNP model for reasons

of conceptual clarity and, in principle, natural scaling to larger sample sizes and greater

precision.
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