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13.4%

How well did we do in developing cancer drugs?

DiMasi, Clinical pharmacology & Therapeutics, 2013

Over half of 
the Phase III 
trials failed!



Limitations of Traditional Clinical Trials
Design depends on good estimation of unknown 
parameters and assumptions:
– Treatment effect and its standard error (effect size)
– Accrual rate
– Patient heterogeneity
– Known and unknown prognostic and predictive markers

What if the design assumptions are wrong?
– Mid-trial correction?

Conduct is rigid
– No interim analyses – bad !
– Few, fixed interim analysis (number/time) helps but hard 

to accommodate unplanned interim analysis
– Typically, patients are equally randomized.



How Can We Do Better?
Do more Phase I trials to determine the best dose, 
schedule, and route of administration.
Do more Phase II trials
– Single-arm or randomized Phase IIA screening trials.
– Randomized Phase IIB trials to confirm the efficacy.

Identify prognostic and predictive markers.
Apply adaptive designs, e.g. adaptive enrichment, 
adaptive randomization, adaptive marker selection 
& validation, predictive probability for early 
stopping for futility and efficacy, etc.
Do smaller, more focused Phase III trials.
Continue to learn and to adapt.



3 Primary Goals for Clinical Trials
Test the safety and efficacy of agents

Identify prognostic and predictive markers

Provide better treatments to patients enrolled 
in the trials





What Are Adaptive Designs?
Trials that use interim data to guide the study conduct

Adaptive dose finding and estimation
– Continual reassessment method (CRM) in Phase I trials

Adaptive decision making
– Predictive probability in Phase II trials
– Dropping bad treatments; add new treatments

Adaptive patient assignment to treatment
– Adaptive randomization in Phase II or Phase III trials

Seamless phase I/II, II/III designs; combination studies 
Adaptive marker identification and validation
Adaptive learning
– Build a comprehensive knowledge database
– Assign best treatment for each patient 
– Continuous updating of information; testing and validation of 

hypotheses



Why Adaptive?
Clinical trial is a learning process.  
It makes sense to adjust the study conduct based 
on real-time learning during the trial.
Can identify predictive marker(s) adaptively to 
enrich the study population
Use Bayesian paradigm for flexible and efficient 
designs and adaptive learning
– Adaptive design provides an ideal platform for learning 

“We learn as we go.”
– Validation is the key!

For both drugs and markers: 
“Many are Called, But Few Are Chosen”

Berry DA. Adaptive clinical trials in oncology. Nature Reviews Clinical Oncology, 2012.
Lee and Chu, Bayesian Clinical Trials in Action. Statistics in Medicine, 2012 



Adaptive Dose Finding
Continual reassessment method (CRM)
– A model-based method for estimating the dose-toxicity curve 
– Estimate MTD based on the available data
– Assign the next patient to the dose closest to the current estimate of the 

MTD
– Rapid dose escalation
– Simulations consistently show that the model-based method outperforms 

the 3+3 method in accurately identifying MTD
– 3+3 design only use the information in the current dose to decide the 

next dose. It is a myopic and inefficient design

Escalation with over-dose control (EWOC), Bayesian model 
averaging (BMA-CRM), TIme-To-Event (TITE-CRM) 
> 90 trials reported in the literature
Translation of innovative designs such as Bayesian adaptive 
designs into trials is a long and slow process (Rogatko, JCO 
2007; Chevret, SIM 2011)



Video 1 – Continuous Reassessment Method



Adaptive Estimation of the Response Rate

Suppose we developed a new targeted agent 
MDA01.
What is the response rate in metastatic lung cancer 
patients?
The response rate () is an unknown parameter of 
interest.
Conduct a clinical trial to collect data.
Estimate the unknown parameter  from the data
– Point and Interval Estimation
– Hypothesis testing
– All inferences can be made from the posterior 

distribution of 



Video 2: Estimate the Response Rate



Phase IIA Design for A Single Treatment
An efficacy screening trial
Binary response endpoint with a response rate p.
For testing H0: p  p0  vs. H1: p  p1

Find the sample size to control 
– Type I () error
– Type II () error

Frequentist Designs
– One-stage
– Two-stage

Gehan’s design
Simon’s optimal and minimax designs

Bayesian Design
– Predictive probability design for continuous monitoring



Predictive Probability Design - Adaptive Stopping

For testing H0: p  p0  vs. H1: p  p1

Predictive Probability (PP):
– The probability of a positive conclusion at the end 

of study should the current trend continue.
At any given time of the trial, try to predict 
whether the drug is likely to work or not
– If PP is very low, then, stop the trial for futility
– Otherwise, continue  to the end of study
– No early stopping for efficacy

Lee JJ, Liu D. Clin Trials 2008; 5: 93–106.



prior for 
p = beta(0.2,0.8)
L=0.001, T =0.900

Simon’s Optimal PP

n Rej
Region PET(p0)

Rej
Region PET(p0)

10 0 0.1074
17 3 0.55 1 0.0563
21 2 0.0663
24 3 0.0815
27 4 0.0843
29 5 0.1010
31 6 0.0996

33 7 0.0895

34 8 0.0946

35 9 0.0767

36 10 0.55 10 0.86

 = 0.088 
 = 0.094
E(N | p0) = 27.67
PET(p0) = 0.86

Simon’s Optimal: 
 = 0.095 
 = 0.097
E(N | p0) = 26.02
PET(p0) = 0.55

Simon’s MiniMax:
 = 0.086
 = 0.098
E(N | p0) = 28.26
PET(p0) = 0.46

Stopping Boundaries for p0=0.20, p1=0.40, = = 0.10
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Adaptive Randomization
Traditional designs randomize patients equally to 
treatments via equal randomization (ER)
– Simple:   1:1 for two-arm trials; 1:1:1 for three-arm trials
– Consistent to the “clinically equipoise” principle.
– Maximize statistical power  (collective ethics)

Outcome adaptive randomization (AR)
– Assigning more patients to the better arm based on the observed 

data; Treat patients better in the trial (individual ethics)
– Imbalance causes loss of statistical power
– Study accrual may be faster

AR has substantial benefit over ER when 
– the efficacy difference between treatments is large 
– Outside trial population is small, e.g., rare disease, and there is 

an effective treatment 
Lee, Chen, and Yin, Worth adaptive? (CCR, 2012)



Video 3: Adaptive Randomization: P1=0.2, P2=0.4



Bayesian AR with Predictive Probability
Start with ER for initial learning
Switch to AR to assign more patients to the better 
treatment
Test treatment efficacy by computing the predictive 
probability
– If PP is very large, stop the trial for efficacy
– If PP is very small, stop the trial for futility

Continue until reaching early stopping criteria or Nmax

Make a final decision on treatment efficacy

Korn and Freidlin. Outcome-Adaptive Randomization: Is It Useful? JCO 2011
Berry DA. Adaptive Clinical Trials: The Promise and the Caution. JCO 2011
Lee, Chen, and Yin. Worth adapting? Revisiting the Usefulness of Outcome-Adaptive Randomization. CCR, 
2012
Yin, Chen, and Lee. Phase II trial design with Bayesian adaptive randomization and predictive probability. 
Applied Statistics (JRSS-C), 2012



Video 4: Adaptive Randomization /w Predictive Probability





Promise & Challenge of Combination Therapy
Promise
– Overcome drug resistance induced by single agents. 
– Block the potential by-pass mechanisms in signaling 

pathways and induce synthetic lethality
– Increase efficacy without increasing toxicity

Challenge
– 2 drugs, 3 drugs, 4 drugs, …?
– Select dose of each drugs
– Schedule

Simultaneous; Sequential (which sequence?); Intermittent (how?)

– Biomarkers
Selection: discovery and validation
Main effect: additive?  Non-linear?
Interaction effect: treatment x marker; marker x marker

Complexity exponentiates for combination studies!



Phase I/II Parallel Design for Combinations
Choose dose grid for single/combination treatments.
Simultaneously evaluate toxicity and efficacy. Define 
doses with acceptable toxicity as  “admissible doses.” 
Start at the lowest dose. Then, move up the grid if the 
current doses are admissible.
Adaptively randomize patients into all admissible doses
in proportion to the efficacy at each dose. Hence, more 
patients can be treated at more effective doses.
Allow early stopping when the trial results cross the 
pre-determined safety, efficacy, or futility boundaries.
Identify predictive biomarkers

Adapted from Huang, Biswas, Oki, Issa, Berry. Biometrics 2007;63(2):429-36.



Drug B Doses

Drug A Doses
1 2 3

1

2

3 Start with dose 
(1,1) and check 
whether it is 
admissible or not

Dose (1,1) is 
admissible



Drug B Doses

Drug A Doses
1 2 3

1

2

3 Escalate to doses 
(1,2) and (2,1)



Drug B Doses

Drug A Doses
1 2 3

1

2

3 Doses (1,1), (1,2) 
and (2,1) are all 
admissible



Drug B Doses

Drug A Doses
1 2 3

1

2

3 Escalate to doses 
(1,3),  (3,1), and 
(2,2)



Drug B Doses

Drug A Doses
1 2 3

1

2

3 Doses (1,3) is too 
toxic but doses 
(2,2) and (3,1) 
are admissible



Drug B Doses

Drug A Doses
1 2 3

1

2

3 Skip dose (2,3)

Escalate to dose 
(3,2)



Drug B Doses

Drug A Doses
1 2 3

1

2

3 Dose (3,2) is  too 
toxic



Drug B Doses

Drug A Doses
1 2 3

1

2

3

All admissible 
doses are identified



Drug B Doses

Drug A Doses
1 2 3

1

2

3
Adaptive 
randomizing pts
into admissible 
doses

Predictive 
markers are 
evaluated



Seamless Phase II/III Design
Start with a randomized Phase II trial with an active control 
(standard treatment) and several experimental arms with 
different treatments and/or doses
Use a short-term endpoint in the Phase II part, e.g., ORR 
to inform the long-term endpoint, e.g. OS.
Drop inefficacious arms 
Suspend accrual in the marker subgroups with inferior 
outcomes
If at least one experimental arm is promising, roll into 
Phase III with one standard treatment and one or more 
selected experimental treatments. Use longer-term 
endpoint, e.g. OS.
Information collected in the Phase II part is used in Phase 
III.  No “white space” in trial conduct.

Inoue et al, Biometrics 2002; Bretz et al, Biometrical J 2006; Stallard, SIM 2010



Seamless Phase II-III Design

Berry, Nature Review Clinical Oncology, 2012



Seamless Phase II-III Design

Berry, Nature Review Clinical Oncology, 2012



Seamless Phase II-III Design

Berry, Nature Review Clinical Oncology, 2012



Biomarker Based Designs
Efficient target design 
Marker stratified design
Adaptive enrichment design
Bayesian adaptive randomized design
– Outcome adaptive randomization
– Early stopping for futility and/or efficacy

BATTLE-1 and BATTLE-2 trials
– Biomarker training (discovery), testing, and validation

Multiple randomized phase II studies  a small, 
more focus randomized phase III study
N-of-All design – Adaptive learning



Efficient Target Design

Treat off protocolMarker−
Registration

Testing Markers

Marker + Randm.
B: Targeted

Therapy

A: Standard
Therapy

1. Screen out Marker () patients and only focus on 
Marker + patients

2. Can answer the question: Does targeted therapy work in 
Marker (+)? (A vs. B)



Marker Stratified Design

Randm.Marker−
B: Targeted

Therapy

A: Standard
Therapy

Registration

Testing Markers

Marker + Randm.
D: Targeted

Therapy

C: Standard
Therapy

Can Answer 4 Questions: 
1. Does targeted therapy work in Marker ()? (A vs. B)
2. Does targeted therapy work in Marker (+)? (C vs. D)
3. Is marker prognostic?  (A vs. C)
4. Is marker predictive (MK x TX Interaction)? (A/B vs. C/D)

1:1

1:1



Adaptive Enrichment Design

Randm.Marker−
B: Targeted

Therapy

A: Standard
Therapy

Registration

Testing Markers

Marker + Randm.
D: Targeted

Therapy

C: Standard
Therapy

Stage 1

1:1

1:1

:  Test whether targeted therapy
work for Marker (–) / (+) patients

Wang and Hung, Contemporary Clinical Trials, 2013
Simon and Simon: Biostatistics, 2013 



Adaptive Enrichment Design

Randm.Marker−
B: Targeted

Therapy

A: Standard
Therapy

Registration

Testing Markers

Marker + Randm.
D: Targeted

Therapy

C: Standard
Therapy

Stage 2

1:1

1:1

: If not working in Marker (–) patients,
terminate the subgroup 



Randm.Marker−
B: Targeted

Therapy

A: Standard
Therapy

Registration

Testing Markers

Marker + Randm.
D: Targeted

Therapy

C: Standard
Therapy

Bayesian Adaptive Randomization Design

AR  1:1

AR  1:1

AR  2:1

AR  1:3

AR  1:1

AR  1:4

Similar to Marker Stratify Design but instead of using ER, apply 
AR to assign more patients with more effective treatments.
Lee JJ, Gu X, Liu S. Bayesian adaptive randomization designs for  targeted agent 
development. Clinical Trials, 2010;7:584-596



BATTLE (Biomarker-based 
Approaches of Targeted Therapy 

for Lung Cancer Elimination)
Patient Population: Stage IV recurrent non-small cell 
lung cancer (NSCLC)  
Primary Endpoint: 8-week disease control rate (DCR) 
4 Targeted treatments, 11 Biomarkers
200 evaluable patients
Goal:
– Test treatment efficacy
– Test biomarker effect and their predictive roles to treatment
– Treat patients better in the trial based on their biomarkers 

1. Zhou X, Liu S, Kim ES, Lee JJ. Bayesian adaptive design for targeted therapy development in lung cancer - A 
step toward personalized medicine (Clin Trials, 2008).
2. Kim ES, Herbst RS, Wistuba II, Lee JJ, et al, Hong WK. The BATTLE Trial: Personalizing Therapy for Lung 
Cancer. (Cancer Discovery, 2011)



BATTLE Schema

Erlotinib SorafenibVandetanib Erlotinib + Bexarotene

Randomization:
Equal   Adaptive

Primary end point: 8 week Disease Control (DC)

Umbrella Protocol

EGFR KRAS/BRAF     
VEGF      RXR/CyclinD1

Core Biopsy
Biomarker 

Profile
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Information
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Evaluate at
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And determine
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Schematic Diagram to run the web based 
“BATTLE” application
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Randomization Process
Patient Consented and 
Registered in Database

Information sent to 
Surgical Team for biopsy

Biopsy sent to Thoracic 
Molecular Path Lab

Randomization of 
Patient to Trial

Biomarker results entered 
into database

Research Nurse Notified 
Automatically

Patient Consented to 
Appropriate Trial

Randomize



Video 5: Adaptive Randomization in BATTLE Trial



51

BATTLE Results:  Disease Control in % (n)

EGFR KRAS VEGF
RXR/

CycD1
None Total

Erlotinib 35% (17) 14% (7) 40% (25) 0% (1) 38% (8) 34% (58)

Vandetanib 41% (27) 0% (3) 38% (16) NA (0) 0% (6) 33% (52)

Erlotinib + 
Bexarotene 55% (20) 33% (3) 0% (3) 100% (1) 56% (9) 50% (36)

Sorafenib 39% (23) 79% (14) 64% (39) 25% (4) 61% (18) 58% (98)

Total 43% (87) 48% (27) 49% (83) 33% (6) 46% (41) 46% (244)

Tr
ea

tm
en

ts

Marker Groups

AACR Presentation: http://app2.capitalreach.com/esp1204/servlet/tc?cn=aacr&c=10165&s=20435&e=12587&&m=1&br=80&audio=false



Individual Biomarkers for Response 
and Resistance to Targeted Treatment: 

Exploratory Analysis
Drug Treatment Biomarker P–value DC

Erlotinib EGFR mutation 0.04 Improved

Vandetanib High VEGFR-2 expression 0.05 Improved

Erlotinib + 
Bexarotene High Cyclin D1 expression 0.001 Improved

EGFR FISH Amp 0.006 Improved

Sorafenib EGFR mutation 0.012 Worse

EGFR high polysomy 0.048 Worse



Lessons Learned from BATTLE-1?
Biomarker-based adaptive design is doable!  It is well 
received by clinicians and patients.
Prospective tissues collection & biomarkers analysis 
provide a wealth of information
Treatment effect & predictive markers are efficiently 
assessed. 
Pre-selecting and grouping markers are not good 
ideas.  We don’t know what are the best predictive 
markers at get-go.
AR should kick in earlier & be closely monitored.

AR works well only when we have good drugs and 
good predictive markers.

Marchenko, Fedorov, Lee, Nolan, and Pinheiro: Adaptive Clinical Trials: Overview of Early-Phase 
Designs and Challenges. Therapeutic Innovation & Regulatory Science, 2014,



BATTLE-2 Schema
Protocol enrollment
Biopsy performed

Stage 1  (N=200): 
Adaptive Randomization

KRAS mutation

Primary endpoint: 8-week disease control
N = 400

Erlotinib Erlotinib+AKTi MEKi+AKTi

Stage 2  (N=200): 
Refined Adaptive Randomization

“Best” discovery markers/signatures

Principles
Better specific drugs
Better specific 
targets
No biomarker 
grouping 
Selection, integration 
and validation of 
novel predictive 
biomarkers

Sorafenib
Open: 
MDA - June 2011 
Yale  - August 2012
200 Randomized, 12/2013 
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Statistical Design
Main goals
– Test treatment efficacy 
– Identify prognostic and predictive markers 
– Provide better treatment for patients enrolled in the trial 

based on their marker status
Bayesian logistic regression model for 8-week DCR 

Adaptive randomization
– The prob. of a patient being randomized to Arm j is

0
1 1 1

logit( ) ' '
K K K

j j j k k jk j k j j jk j k
k k k

p T M T M T Z T M Z     
  

 
      

 
  

'Pr( , ' {1,2,3, 4 | ' })j jp p j j j  



Statistical Design (cont.)
Early futility stopping rule
– Evaluated starts from 71th patient to the end of trial
– Stop the trial only if all three experimental arms are not better 

than the control arm with a high probability
Markers Selection 
– A panel of putative prognostic and predictive markers will be 

analyzed in Stage 1
– Extensive model apply the two-step LASSO

1st step: Group selection of either prognostic or predictive markers to 
any treatments
2nd step: Step-down test with adaptive LASSO to refine the selection

Define “success” for treatment j in marker k if
– For erlotinib-naïve patients:
– For erlotinib-resistant patients:
–  is chosen to control type I error to 10% 

Pr( 0)j jk    
' 'Pr( 0)j j jk jk        



Step 1: Group LASSO
For each marker k, let , , , , , ,

Priors				

~ , 																

~InvGamma ,

~Gamma , 																	
Letting be a posterior random sample of , and 
̅ , ̅ , ̅ , ̅ , ̅ , ̅ , ̅ be its posterior mean, compute 

the distance between the posterior sample and the zero vector: 
, where is the sample variance–

covariance matrix. Let be the qth empirical quantile of . For 
a given q, select the kth marker if  . 
Choose 1, 10, 30% for selecting 

Park, T., Casella, G. The Bayesian Lasso. JASA 103, 681--686 (2008)
Kyung, M., Gill, J., and Ghosh, M.: Penalized Regression, Standard Errors, and Bayesian Lassos. 
Bayesian Analysis, 5, 369--412 (2010)
Meier, van de Geer, Buhlmann:The Group Lasso for Logistic Regression. JRSS B, 70, 53-71 (2008)



Step 2: Adaptive LASSO
Let  be the set of markers selected in the first step, the prior 
distribution for : ∈  in the adaptive lasso is

| ∝ exp | |
| |

, where is a generic representation of 

either the marker main effect or the marker–treatment 
interaction and is the least squares estimation of the 
parameter
A variable will be selected if the 80% empirical posterior 
credible interval does not cover zero. The selections of the 
credible interval in this second step and the in the first step 
can be adjusted to achieve a desirable false-positive rate and 
true-positive rate of the variable selection in the null case and 
alternative case separately.

Zou, H. The Adaptive Lasso and Its Oracle Properties, JASA 101, 1418--1429 (2006)
Chipman, H.: Bayesian variable selection with related predictors. Canadian Journal of Statistics, 
24, 17--36 (1996)



N-of-ALL Design (Adaptive Learning)
Build a comprehensive knowledge database with
– Consistent and accurate curating of patient demographics, 

clinical characteristics, treatments, and outcomes 
– Frequent and timely updates 

Apply statistical analysis to identify the effective 
marker-treatment pairs
– Classification, machine learning
– Prediction, validation

Refine the model based on the updated outcome
– Real time learning; Continuous learning

E.g.: MD Anderson’s APOLLO/IBM-Watson project
– A cognitive computing system piloted in leukemia
– An “adaptive learning environment” as part of its Moon 

Shots program.



Example: IBM Watson                  
Name after IBM’s Thomas J. Watson
Watson is a question answering (QA) computing system 
applying advanced natural language processing, information 
retrieval, knowledge representation, automated reasoning, 
and machine learning technologies to the field of open 
domain question answering.
– It is optimized, integrating massively parallel POWER7 processors 

and IBM's DeepQA technology, which generates hypotheses, gather 
massive evidence, and analyze data.

– Composed of a cluster of 90 IBM Power 750 servers, each of which 
uses a 3.5 GHz POWER7 eight core processor, with four threads per 
core. In total, the system has 2,880 POWER7 processor cores and 
has 16 terabytes of RAM.

In 2011, Watson competed on Jeopardy! against former 
winners Brad Rutter and Ken Jennings. Watson received the 
first prize of $1 million.



Oncology Expert Advisor (OEA)
MD Anderson’s APOLLO/IBM-Watson project
– A cognitive computing system piloted in leukemia
– By pulling together, analyzing, and synthesizing vast amounts of 

information from patient and research databases, the goal of OEA 
is to help care teams identify and fine-tune the best possible 
cancer treatments

Watson technology drives “adaptive learning environment” 
as part of its Moon Shots program. 
– Enable iterative and continued learning between clinical care and 

research
– Streamline and standardize the longitudinal collection, ingestion 

and integration of patient’s medical and clinical history, laboratory 
data as well as research data. 

– The complex data is linked and made available for deep analyses 
by advanced analytics to extract novel insights to improve 
effectiveness of care and better patient outcomes. 



Software Tools
https://biostatistics.mdanderson.org/SoftwareDownload/
Over 80 programs freely available 



Tools for Conducting 
Bayesian / Adaptive Trials at MDA

Clinical Trial Conduct (CTC) Website
Secured web application for conducting Bayesian 
clinical trials
Can be used to 
– Register patients
– Log in key information for randomization

Baseline characteristics
Outcome (toxicity, efficacy)

– Randomize patients
Connect to statistical software via web services

– Capture endpoints for interim analysis



New Trial Request Form



Trial Information and Administration



Monitoring Efficacy and Toxicity



Clinical Trial Conduct (CTC) Website
(from Jan 2012 to Dec 2013)

Adaptive Randomization 21
Bayes Factor One Arm Time to Event 2
Bayesian Model Averaging CRM               6
CRM 1
CRM With Escalation Option                     3
Efftox 2
Equal Randomization 8
One Arm Time-To-Event Monitoring 19
Pocock-Simon Design 25

Total active trials during 2012-2013 87
Total patients enrolled in 2012-2013  ~3,000



Summary
Adaptive design continues to learn about the new 
agents’ activities and provide best treatments to 
patients in real time. 
– Adaptive dose finding, estimation, treatment assignment, 

biomarker identification and validation, stopping for futility 
and/or efficacy, combination studies, seamless designs

Adaptive learning is an ambitious and appealing 
concept. Need data to train and refine the algorithm 
and demonstrate how well it works.
Adaptive designs can assist biomarker discovery and 
validation to match patients with treatments.
Need more tools for study design, conduct & analysis.
Biomarker-based adaptive designs can increase the 
study efficiency, allow flexibility in study conduct, and 
provide better treatment to study patients to
– Speed up drug development
– Step towards personalized medicine


