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Overlook

This workshop is designed to provide an
overview of advanced statistical methodology

for genetic studies of substance use and abuse
phenotypes.

It covers analytical methods for twin and family
studies, including measurement and

phenotyping, development, family processes
and GXxE interaction.



TABLE 1. Four Major Paradigms of Psychiatric Genetics

Samples Method
Paradigm Studied of Inquiry Scientific Goals
1. Basic genetic  Family, twin, Statistical To quantify the
epidemiology  and adoption degree of familial
studies aggregationand/or
heritability
2. Advanced Family, twin, Statistical To explore the
genetic and adoption nature and mode
epidemiology  studies of action of genetic
risk factors
3. Gene finding High-density Statistical To determine the
families, trios, genomic location
case-control and identity of
samples susceptibility genes
4. Molecular Individuals Biological To identify critical

genetics

DNA variants and
trace the biological
pathways from
DNA to disorder




) Psychiatric Other Important

~Z€ero

20-40%

40-60%

60-80%

80-100%

Anxiety disorders,
Depression, Bulimia,
Personality Disorders

Alcohol Dependence
Drug Dependence

Schizophrenia
Bipolar lliness

Autism

Language
Religion

Myocardial Infarction,
Normative Personality,
Breast Cancer, Hip
Fracture

Blood Pressure,
Asthma

Plasma cholesterol,
Prostate Cancer,
Adult-onset diabetes

Weight,
Bone Mineral Density

Height, Total Brain
Volume



Twin study

Twins are a valuable source for observation because
their genotypes and family environments tend to be similar.

monozygotic (MZ) or "identical" twins, share nearly 100%
of their genetic polymorphisms, which means that most
variation in pairs' traits is due to their unique experiences.

Dizygotic (DZ) or "fraternal" twins share only about 50% of

their polymorphisms. Fraternal twins are helpful to study
because they tend to share many aspects of their
environment by virtue of being born in the same time and
place.
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Structural Equation Modeling

e Structural Equation Modeling is a very
general, and powerful multivariate analysis
technique allow both confirmatory and
exploratory modeling, meaning they are
suited to both theory testing and theory
development.

e Factor analysis, path analysis and regression
all represent special cases of SEM.



Structural Equation Modeling

e Among the strengths of SEM is the ability to
construct latent variables: variables which are
not measured directly, but are estimated in
the model from several measured variables.

http://en.wikipedia.org/wiki/Structural_equation_modeling



The Basic Idea Behind
Structural Modeling

 One of the fundamental ideas taught in
intermediate applied statistics courses is the
effect of additive and multiplicative
transformations on a list of numbers. Students
are taught that, if you multiply every number
in a list by some constant K, you multiply
the mean of the numbers by K. Similarly, you
multiply the standard deviation by the
absolute value of K.




Structural Equation Modeling

 For example, suppose you have the list of
numbers 1,2,3. These numbers have
a mean of 2 and a standard deviation of 1.
Now, suppose you were to take these 3
numbers and multiply them by 4. Then the
mean would become 8, and the standard

deviation would become 4, the variance thus
16.



Structural Equation Modeling

e The point is, if you have a set of numbers X
related to another set of numbers Y by the
equation Y = 4X, then the variance of
Y must be 16 times that of X, so you can test
the hypothesis that Y and X are related by the
equation Y = 4X indirectly by comparing the
variances of the Y and X variables.



Structural Equation Modeling

e This idea generalizes, in various ways, to
several variables inter-related by a group of
linear equations. The rules become more
complex, the calculations more difficult, but
the basic message remains the same -- you
can test whether variables are interrelated
through a set of linear relationships by
examining the variances and covariances of
the variables.

http://www.statsoft.com/textbook/structural-equation-modeling/
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Path Diagram

e Path Diagrams play a fundamental role in
structural modeling. Path diagrams are like

flowcharts.

 They show variables interconnected with lines
that are used to indicate causal flow.

 Most structural equation models can be
expressed as path diagrams.



Path Diagram

* Consider the classic linear regression equation
y = ax + e

* Any such equation may be represented in a
path diagram as follows:

[t s
Gg b - Y

http://www.statsoft.com/textbook/structural-equation-modeling/



ACE model

e Typically these three components are called:
A (additive genetics)
C (common environment)

E (unique environment)

It is also possible to examine non-additive
genetics effects (often denoted D for
dominance)
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ACE model

 Monozygotic (identical - MZ) twins raised in a
family share both 100% of their genes, and all
of the shared environment. Any differences
arising between them in these circumstances

are random (unique).

e The correlation we observe between identical
twins provides an estimate of A+ C.
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ACE model

e Dizygous (DZ) twins have a common shared
environment, and share on average 50% of

their genes:

e so the correlation between fraternal twins is a
direct estimate of 2 A+ C.
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ACE model

e |f ris the correlation observed for a particular
trait, then:

e r.,=A+C
* r,=2A+C

* Wherer_,and r,, are simply the correlations of
the trait in identical and fraternal twins
respectively.

http://en.wikipedia.org/wiki/Twin_study



R & OpenMX

e What is OpenMx?

e OpenMXx is free and open source

software for use

with R that allows estimation of a wide variety of
advanced multivariate statistical models.

e OpenMx consists of a library of functions and

optimizers that allow you to quic
define Structural equation mode
and estimate parameters given o

http://openmx.psyc.virginia.edu/

<ly and flexibly
ing (SEM) model

nserved data.



R & OpenMX

e OpenMx can be used by those who think in
terms of path models or by those who prefer
to specify models in terms of matrix algebra.
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Path Model Specification

e Here is a path diagram for a one factor path
model with five indicators. Beside itis an R
script using OpenMx path modeling
commands to read the data from disk, create
the one factor model, fit the model to the
observed covariances, and print a summary of
the results.
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Path Model Specification

%1

X3

x5

require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",
type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,
free=FALSE, values=1.0),
mxData(cov(demoOneFactor),
type="cov",
numObs=500))
summary(mxRun(factorModel))




Matrix Model Specification

e OpenMx can also specify models in terms of
matrix algebra. On the left is an equation for
the same one factor path model with five
indicators. Beside it is an R script
using OpenMx matrix modeling commands to
read the data from disk, create the one factor
model, fit the model to the observed
covariances, and print a summary of the
results.
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Matrix Model Specification

data(demoOneFactor)
factorModel <- mxModel("One Factor",
mxMatrix("Full", 5, 1, values=0.2,
free=TRUE, name="A"),
mxMatrix("Symm", 1, 1, values=1,
free=FALSE, name="L"),
mxMatrix("Diag", 5, 5, values=1,

R . ALA; —|— U free=TRUE, name="U"),
= mxAlgebra(A %*% L %*% t(A) + U,
name="R"),
mxMLObjective("R", dimnames =
names(demoOneFactor)),
mxData(cov(demoOneFactor),
type="cov", numObs=500))
summary(mxRun(factorModel))




Multivariate Genetic Analysis -
Question

Univariate Analysis: What are the contributions
of additive genetic, dominance/ shared
environmental and unique environmental
factors to the variance?

Bi/Multivariate Analysis: What are the
contributions of genetic and environmental

factors to the covariance between two traits?
What makes sets of variables correlate or
co-vary, comorbid?



Univariate ACE model
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http://www.slideshare.net/devenvaija09/bivariate
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Expected Covariance Matrices

2 MZ =

2 DZ=

a°+Ce+e?
a%+C?

as+ce+e?

ba2+c?

ac+C°
ac+ce+e°

5a2+c?

a2+ce+e?

2% 2

22X 2
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Bivariate Questions |

m Univariate Analysis: What are the contributions

of additive genetic, dominance/shared
environmental and unique environmental factors

to the variance?

m Bivariate Analysis: What are the contributions of
genetic and environmental factors to the
covariance between two traits?
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Two Traits
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Bivariate Questions ||

m WO or more traits can be correlated because
they share common genes or common
environmental influences

O e.q. Are the same genetic/environmental factors
influencing the traits?

m With twin data on multiple traits it is possible to
partition the covariation into its genetic and
environmental components

m Goal: to understand what factors make sets of
variables correlate or co-vary
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Bivariate Twin Data

individual twin
within hetween
trait |within variance twin covariance

hetween |trait covariance |cross-trait
twin covariance
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Bivariate Twin Covariance Matrix
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Genetic Correlation
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Alternative Representations
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Cholesky Decomposition
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More Variables
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Bivariate AE Model
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MZ Twin Covariance Matrix
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DZ Twin Covariance Matrix

39



Within-Twin Covariances [MX]
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Within-Twin Covariances
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Cross-Twin Covariances
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Cross-Trait Covariances

m Within-twin cross-trait covariances imply
common etiological influences

m Cross-twin cross-trait covariances imply
familial common etiological influences

m MZ/DZ ratio of cross-twin cross-trait
covariances reflects whether common

etiological influences are genetic or
environmental
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Univariate Expected Covariances
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Univariate Expected Covariances Il
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Bivariate Expected Covariances
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Practical Example |

m Dataset: MCV-CVT Study

m 1983-1993

m BMI, skinfolds (bic,tri,calf,sil,ssc)
m Longitudinal: 11 years

m N MZFY: 107, DZF: 60
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Practical Example ||

m Dataset: NL MRI Study

m 1990's
m \Working Memory, Gray & White Matter

m N MZFY: 68, DZF: 21



Cholesky decomposition

e A typical starting point in bivariate and
multivariate analysis is the Cholesky
decomposition .

http://genepi.qgimr.edu.au/contents/p/staff/CvV409.pdf
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Cholesky decomposition

e Given a symmetric positive definite matrix A,
the Cholesky decomposition is an upper
triangular matrix U with strictly positive
diagonal entries such that

A=U"1,

http://mathworld.wolfram.com/CholeskyDecomposition.html
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Cholesky decomposition

e The most commonly used multivariate
technique in the Classical Twin Design is
Cholesky decomposition.

 The Cholesky is a method of triangular
decomposition where the first variable (Y,)
is assumed to be caused by a latent factor ()
that can explain the variance in remaining
variables (y,,...,y ) and so on.



Cholesky decomposition

Y1 Yo Yn

Figure 1 Multivariate Cholesky triangular decomposition,
vi, ..., yp = observed phenotypic variables, ni_, = latent
factors



Cholesky decomposition

 The expected variance-covariance matrix in
the Cholesky decomposition is parameterized
in terms of n latent factors ( Where n is the
number of variables).

e All variables load on the first latent factor, n-1
variables load on the second factor and so on,
the final variable loads on the nth latent factor
only. Each source of phenotypic variation (i.e
A, Cor D, E) is parameterized in the same way.



Cholesky decomposition

 Therefore, the full factor Cholesky does not
distinguish between common factor and
specific factor variance and does not estimate

a specific factor effect for any variable expect
the last.
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