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I s the escalation of great-power militarized disputes better explained by
rational deterrence theory or by structural realism? Are war outcomes
better explained by regime type and initiation effects or by traditional

realist variables? Each of these debates has been the subject of recent ar-
ticles in a leading political science journal (Huth, Gelpi, and Bennett 1993;
Reiter and Stam 1998b). The conclusions reported in these articles have
added to the growing presumption that realism is wrong or simply insuffi-
cient to account for conflict outcomes in international relations. At the
heart of each article is a statistical comparison of rival models. The tech-
niques used by these authors, however, cannot perform the required com-
parisons because the models being compared are nonnested or “separate.”
Two models are nonnested if one model is not a special case of the other
model (see the third section for a precise definition).

Unknown to most world politics scholars and political scientists in
general, traditional methods of model discrimination such as likelihood-
ratio tests, F-tests, or artificial nesting fail when applied to nonnested
models. That the vast majority of models used throughout international
relations are nonlinear in terms of their functional forms only complicates
the situation. The purpose of this research is to suggest techniques that
discriminate properly between nonnested models and then demonstrate
how these techniques can shed light on the aforementioned debates. The
results of my analyses suggest that the evidence against realism in both ar-
ticles is overstated.
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Two Debates in International Relations

The two articles upon which I have chosen to concen-
trate no longer represent the state of the art in their re-
spective debates. The articles have been surpassed by re-
search that explicitly models the strategic interactions
inherent in the theories. Smith (1999) and Signorino
(1999) show that analyzing strategic theories with tradi-
tional statistical models results in misspecification.1 The
Smith and Signorino papers demonstrate that statistical
models that take strategic interaction into account out-
perform statistical models that do not. I am putting aside
the strategic issues, however, in the interest of a clean ex-
position and simpler mathematics. My goal is to suggest
corrections to a common problem in the empirical litera-
ture of international relations, not to correct theoretical
problems.

Structural Realism versus
Rational Deterrence Theory

Does structural realism or rational deterrence theory
provide a better explanation of the escalation of great-
power militarized disputes? Realism has been the domi-
nant theoretical position in international relations for
the last fifty years, and structural realism (Waltz 1979)
has been the dominant brand of realism for the past
twenty years. Rational deterrence theory (Schelling 1960)
has been a serious contender for that position. Properly
specified, both theories demonstrate an empirical grasp
on important problems in world politics (Huth, Bennett,
and Gelpi 1992). Efforts to test these theories against one
another, however, have ignored the fact that the theories
are nonnested, and therefore standard model selection
techniques are inappropriate.

The most systematic attempt to test structural real-
ism against rational deterrence theory can be found in
Huth, Bennett, and Gelpi (1993). In that article, Huth
and his co-authors conceptualize structural realism in
terms of the amount of uncertainty created by the struc-
ture of the international system. To connect the amount
of uncertainty in the system to actual decisions taken by
state leaders, the authors interact uncertainty with the
risk propensities of these decision makers. When uncer-
tainty is high, risk-acceptant leaders will pursue policies
that might spark armed conflict, while risk-averse leaders
will likely be more cautious (Huth, Bennett, and Gelpi
1993). Structural realism, then, is operationalized by two

composite measures of uncertainty (size and capability
diffusion), a measure of risk propensity, and two interac-
tion terms (one for each measure of uncertainty).2

As for rational deterrence theory, Huth, Gelpi, and
Bennett (1993, 612) argue that, “the credibility of the
threat is the primary determinant of deterrence success
or failure.” Credibility is affected by the balance of mili-
tary capabilities, the interests at stake for the states in-
volved, the past dispute behavior of the states, and
whether either state is engaged in another dispute at the
same time. Deterrence is more likely to fail as the balance
of capabilities and the interests at stake shift toward the
challenger. Deterrence is also more likely to fail if the de-
fender has backed down in a previous dispute or is en-
gaged in a dispute elsewhere.

Huth, Gelpi, and Bennett (1993, 619) compare their
models by combining them in a single, large equation.
The authors conclude that “rational deterrence theory
provides a much more compelling explanation of great-
power decisions to escalate militarized disputes than
does structural realism.” A replication of their results is in
Table 1. Their conclusion is based upon the results of the
individual t-tests of the coefficients in the combined
model. Only one of the coefficients from the structural
realist model is significant, and it is in the wrong direc-
tion. On the other had, all of the coefficients from the ra-
tional deterrence model are in the correct direction, and
six of eight are conventionally significant. Based on Table
1, it appears that Huth and his co-authors’ conclusions
are warranted.

Regime Type and Initiation versus Realism

Do regime type and war initiation offer a better explana-
tion of war outcomes than realist variables? This ques-
tion is not central to Reiter and Stam’s (1998b) article on
democracy and victory. Reiter and Stam’s actual interest
is in tracing the effect of political structure on war out-
comes; that is, they are interested in determining why de-
mocracies win more wars than nondemocracies. Is it be-
cause democracies are intrinsically more effective at
waging war, or because democracies are more careful
about the decision to initiate conflict? The argument in
favor of the former is that it is easier for democracies to
rally their society behind a war effort and that demo-
cratic armies fight “with greater initiative and better
leadership than do the armies of other kinds of states”

1Signorino and Yilmaz (2000) demonstrate mathematically why
traditional models are misspecified in the strategic case.

2Huth, Gelpi, and Bennett (1993) actually test five separate models
of structural realism. I have focused solely on their most compre-
hensive model.
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(Reiter and Stam 1998b). The argument in favor of the
latter is that democratic leaders face greater post-defeat
political consequences than do other kinds of states and
therefore initiate wars only when the likelihood of vic-
tory is high.

In answering this question, Reiter and Stam estimate
five models, one which corresponds to a realist model of
war outcomes and one which corresponds to a model
that reflects the effects of regime type and the decision to
initiate war. These models provide an excellent opportu-
nity to test the question that Reiter and Stam do not ad-
dress directly—whether the realist explanation is better
than the nonrealist explanation. The realist argument is
that war outcomes are best explained by the distribution
of capabilities across combatants, the quality of the mili-
taries involved, strategy choice, terrain, and the effects of
allies. The nonrealist argument focuses on the regime
type of the combatants and the decision to initiate war. A
replication of Reiter and Stam’s results is in Table 2.3

The Nonnested Nature of the Models

Nonnested models are found throughout the literature
of international relations. Recent international relations
articles that contain nonnested models include Lai and

Reiter (2000), Davenport (1999), Feng and Zak (1999),
Palmer and David (1999), Rasler and Thompson (1999),
Shin and Ward (1999), Signorino (1999), Smith (1999),
Enterline (1998), Morrow, Siverson, and Taberes (1998),
Reiter and Stam (1998b), Reiter and Stam (1998a),
Bennett (1997), Gelpi (1997), Bennett and Stam (1996),
Benoit, Hermann and Kegley (1996), Lemke and Reed
(1996), Pollins (1996), Smith (1996), Huth, Gelpi, and
Bennett (1993), Huth and Russett (1993), and Maoz and
Russett (1993).4

In this section, I define the concept of nonnested and
provide a loose typology of the nonnested models found
in the above articles.

Defining “Nonnested”

Defining the concept of “nonnested” precisely is not an
easy task. Definitions are often imprecise and uncompli-
cated or precise and complicated. To avoid any potential
confusion, I first define nonnested in terms that are im-
precise but that are easily understood by nonmethod-
ologists. I then define nonnested in precise mathematical
terms. Finally, I make the connection between the defini-
tions and provide a final definition that rests somewhere
between these two extremes.

TABLE 1 A Probit Model of Great Power Dispute Escalation

Variable Coefficient S.E.a Significance

Constant –0.71 (1.32)

Structural Realism
System uncertainty 1 (size) 0.21 (0.34)
System size*risk –0.97 (0.31) p < 0.005
System uncertainty 2 (diffusion) –0.20 (0.22)
System diffusion*risk 0.18 (0.29)
Risk-acceptant 1.55 (1.32)

Deterrence Theory
Balance of forces 1.73 (0.84) p < 0.05
Secure 2nd strike –2.33 (0.73) p < 0.005
Defender vital interests –1.29 (0.40) p < 0.005
Challenger vital interests 1.09 (0.39) p < 0.01
Defender backed down 1.23 (0.49) p < 0.025
Challenger backed down –0.72 (0.61)
Defender other dispute 0.96 (0.32) p < 0.005
Challenger other dispute 0.05 (0.36)

aReported standard errors are robust standard errors.

3I used a logit link function as opposed to the originally reported
probit link function in order to be consistent with a later analysis.
No inferences are affected.

4Recognizing nonnested models in the literature is not always
straightforward. Maoz and Russett (1993), for instance, compress a
number of alternative explanations for the democratic peace into
one or two variables in an attempt to avoid the problem of non-
nested models.



      

In imprecise but easily understood language, we de-
fine two models as nested or nonnested based on
whether or not one model is a “special case” of the sec-
ond model.

Definition 1 (Nested) Two models are nested if one model
can be reduced to the other model by imposing a set of lin-
ear restrictions on the parameter vector.

Let us take, for example, two models, Hf and Hg , that
are characterized by the same functional form and the
same error structure. Express the data as deviations from
their means so that no intercept appears.5 These models
differ, then, only in terms of their regressors. In the fol-
lowing specification:

Hf : Y = β1x1 + β2x2 + ε0 (1)

Hg: Y = β1x1 + β2x2 + β3x3 + ε1 (2)

the models are nested because by imposing the restric-
tion that β3 = 0, Hg becomes Hf . In other words, Hg “en-
compasses” Hf . Discriminating between these models in-
volves simply testing the restriction on β3. This test can
be done with a t-test under ordinary least-squares
(Greene 1997) or a likelihood-ratio test under maximum
likelihood (King 1989). If Hg included a β4x4 as well:

Hf : Y = β1x1 + β2x2 + ε0 (3)

Hg: Y = β1x1 + β2x2 + β3x3 + β4x4 + ε1 (4)

an F-test or likelihood-ratio test would be appropriate
(Greene 1997).

Definition 2 (Nonnested) Two models are nonnested, ei-
ther partially or strictly, if one model cannot be reduced to
the other model by imposing a set of linear restrictions on
the parameter vector.

For example:

Hf : Y = β1x1 + β2x2 + β3x3 + ε0 (5)

Hg: Y = β3x3 + β4x4 + β5x5 + ε1 (6)

are nonnested models because even if we impose the re-
strictions that β4 = 0 and β5 = 0, Hg does not become Hf .
The above models are partially nonnested because they
have one variable in common, X3. If Hf and Hg do not
share X 3:

Hf : Y = β1x1 + β2x2 + ε0 (7)

Hg: Y = β4x4 + β5x5 + ε1 (8)

the models are strictly nonnested.
Technical definitions of nonnested center around a

statistical measure of the “closeness” between two models

TABLE 2 Logit Models of War Outcomes

Model 1 Model 2

Variable Coefficient S.E. Coefficient S.E.

Constant –6.99 (2.486)

Nonrealist
Politics*Initiation 0.072** (0.034)
Politics*Target 0.060** (0.028)
Initiation 0.826**** (0.252)

Realist
Capabilities 5.671**** (0.903)
Alliance Contributions 6.462**** (1.05)
Quality Ratio 0.160*** (0.09)
Terrain –15.270**** (4.284)
Strategy*Terrain 4.816**** (1.382)
Strategy 8.817** (4.286)
Strategy 2 4.502 (3.012)
Strategy 3 4.278* (2.193)
Strategy 4 3.707* (2.008)

Log-Likelihood –128.1 –74.9

a*p < 0.1, **p < 0.05, ***p < 0.01, ****p < 0.001
bReported standard errors are robust standard errors.

5 This move is made only for pedagogical reasons.
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called the Kullback-Leibler information criteria (KLIC).
When comparing two models, Hf and Hg , the KLIC is de-
fined as:
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where R is the range of variation of Y under Hf . The
KLIC is the mean information for discrimination in fa-
vor of f (y, θ) against g(y, γ) (Kullback 1959). The measure
is interpreted as the surprise experienced on average
when we believe that f (y, θ) is the data generating process
(DGP) and then we find that g(y, γ) is the DGP (White
1994). The KLIC is used because of its analytic tractabil-
ity and important properties: the KLIC is invariant to
transformations of θ and γ, is nonnegative, is additive for
independent random events, and equals 0 when f (y, θ)
and g(y, γ) coincide (Kullback 1959; Pesaran 1987).

Using the KLIC allows us to define two models as
nested, partially nonnested or strictly nonnested. Follow-
ing Pesaran (1987), let θ0 be the true value of θ under Hf

and let γ0 be the true value of γ under Hg. The Kullback-
Leibler information criteria for the discrimination of
f (y, θ) against g(y, γ) is:

Ifg(θ, γ) = E0{ln f (y, θ) – lng(y,γ)}

which has a unique minimum at γ*(θ0). This last quan-
tity is a “pseudo-true” value which means that it is the
value that γ would take were f (y, θ) the true DGP. The
closeness of Hg to Hf is then:

Cfg(θ0) = Ifg{θ0, γ*(θ0)}

We are now in a position to define nested, partially
nonnested, and strictly nonnested in terms of the close-
ness of two models.

Definition 3 (Nested) Model Hf is nested within model Hg

if and only if Cfg(θ0) = 0 for all admissible values of θ0.
Similarly, model Hg is nested within model Hf if and only if
Cgf (γ0) = 0 for all admissible values of γ0.

Definition 4 (Strictly Nonnested) Models Hf and Hg are
strictly nonnested if Cfg(θ0) and Cgf (γ0) are both nonzero
for all admissible values of θ0 and γ0.

Definition 5 (Partially Nonnested) Models Hf and Hg are
partially nonnested if Cfg(θ0) and Cgf (γ0) are both nonzero
for some but not all admissible values of θ0 and γ0.

The connections between Equations (1–8) and their
relevant categories defined in terms of the KLIC and

closeness are easy to see. Let us assume that Equation (1)
is the true model. The pseudo-true value of β3 in Equa-
tion (2), assuming that Equation (1) is true, is zero be-
cause β3 does not appear in Equation (1). The other
terms in the models are the same. The closeness of these
models is then:

Cfg(θ0) = Ifg{θ0, γ*(θ0)} = Eθ{ln f (y, θ) – ln g(y, γ*(θ0))} = 0.

The models are therefore nested.
In contrast, assume that Equation (5) is the true

model. Again, the pseudo-true values of β4 and β5 in
Equation (6) are zero because neither appear in Equation
(5). The other terms in the models, however, are not the
same. The closeness of these models is then:

Cfg(θ0) = Ifg{θ0, γ*(θ0)} = Eθ{lnf (y, θ) – lng (y, γ*(θ0))} ≠ 0.

Now let us assume that Equation (6) is true. The pseudo-
true values of β1 and β2 in Equation (5) are zero because
neither appear in Equation (6). Again, the other terms in
the model are not the same. The closeness of these mod-
els is then:

Cfg(γ0) = Igf {γ0, θ*(γ0)} = Eγ{lng(y, γ) – lnf(y, θ*(γ0))} ≠ 0.

As Cfg(θ0) ≠ 0 and Cgf(γ0) ≠ 0 for all values of θ0 and γ0,
the models are strictly nonnested.

Care must be taken when discussing the strictly
nonnested case. There are two cases where models with
different sets of regressors may not be strictly nonnested.
The first is the trivial case where either θ0 or γ0 equals
zero, in which case Cfg(θ0) = 0 and Cgf (γ0) = 0 and the
models are then nested. We can ignore this case in most
instances. The second case is where one or more explana-
tory variables in one model may be written as a linear
combination of the explanatory variables in the second
model, in which case Cfg(θ0) = 0 or Cgf (γ0) = 0 for some
or all values of θ0 or γ0 (Pesaran 1987). If no variables in
the first model can be written as a linear combination of
the variables in the second model, the models are strictly
nonnested. If one or more, but not all, of the explanatory
variables in the first model can be written as a linear
combination of the explanatory variables in the second
model, the models are partially nonnested. If all the ex-
planatory variables in the first model can be written as a
linear combination of the variables in the second model,
the models are nested.

As implied in Equations (5–6) and (7–8), whether or
not the models are partially or strictly nonnested does
not matter; the problems, and the solutions to those
problems, are the same. We are now in a position to pro-
vide a compromise definition.



      

Definition 6 (Final) Two models with the same functional
form and the same error structure are nonnested if and
only if at least one explanatory variable in each regressor
matrix cannot be written as a linear combination of the ex-
planatory variables of the other model.

From Table 1, it should be clear that the rival models
being tested by Huth, Gelpi, and Bennett (1993) are
nonnested and are, in fact, strictly nonnested. An easy
test of whether or not the models are strictly nonnested
is to combine both regressor matrices into a single ma-
trix and attempt to invert it. If the combined regressor
matrix inverts, it must be of full rank, which means that
each column is linearly independent of the others. The
two models in Table 1 have no variables in common, the
combined regressor matrix inverts, and therefore the
closeness of the models does not equal zero.6 The same
characteristics hold true for the Reiter and Stam models
in Table 2: the models have no variables in common, the
combined regressor matrix inverts, and therefore the
models are strictly nonnested.

A Typology

Articles in political science that estimate nonnested mod-
els may be classified along two dimensions: the reason
why the authors estimated nonnested models and the rea-
son why the models are nonnested. Along the first dimen-
sion, nonnested models are used either to test rival theo-
ries or as robustness checks on a single theory. Along the
second dimension, models are nonnested either in terms
of their functional form or their covariates. Nonnested

analyses fall, therefore, into one (or more) of four catego-
ries: comparative/functional, comparative/covariates, ro-
bustness/functional, and robustness/covariates. Figure 1
lists the various combinations as well as recent interna-
tional relations articles that fall into each cell. For ex-
ample, Smith (1999) is in the comparative/functional cell
as he compares a bivariate-ordered probit model to a stra-
tegically censored discrete choice model. These models
are not simply different specifications, but different theo-
ries. Shin and Ward (1999), on the other hand, estimate
the same theory of military spending on economic
growth using both a spatial lag specification and a spatial
error specification. This article falls into the robustness/
functional cell. Pollins (1996) estimates nonnested mod-
els in an attempt to compare long cycle theories of inter-
national relations. These models are nonnested only in
terms of their covariates so the article falls into the com-
parative/covariates cell. Finally, Hermann and Kegley
(1996) use nonnested models to trace assess the effect of
polity type on being a target of intervention across a num-
ber of specifications, all of which have the same functional
form. The article is then classified under robustness/
covariates.

The categories in Figure 1 are not mutually exclusive.
An article in the comparative/functional cell is likely to
fall into the comparative/covariates cell as well. Some,
such as Lai and Reiter (2000), check the robustness of
their results across covariates and functional forms and
hence fall into two categories. In a field where many ar-
ticles report estimates from a large number of models, a
mix of nested and nonnested models in the same article
is quite common.7

FIGURE 1 A Typology of Nonnested Models in International Relations

Comparative Testing Robustness Checking

Functional Signorino (1999) Lai and Reiter (2000)
form Smith (1999) Shin and Ward (1999)

Smith (1999)
Benoit (1996)
Smith (1996)

Covariates Palmer and David (1999) Lai and Reiter (2000)
Reiter and Stam (1998b) Davenport (1999)
Reiter and Stam (1998a) Feng and Zak (1999)
Bennett (1997) Rasler and Thompson (1999)
Gelpi (1997) Enterline (1998)
Bennett and Stam (1996) Morrow, Siverson, and Taberes (1998)
Pollins (1996) Benoit (1996)
Huth, Gelpi, and Bennett (1993) Hermann and Kegley (1996)
Huth and Russett (1993) Lemke and Reed (1996)
Maoz and Russett (1993) Smith (1996)

6We can safely reject the possibility that all the parameters in either
model equal zero.

7The average number of models reported in the articles in Figure 1
is six.
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The purpose of presenting this typology is to justify the
focus of this article on models that are nonnested in terms
of their covariates. As Figure 1 attests, comparative theory
testing or even robustness checking of models with differ-
ent functional forms has yet to enter the methodology of
international relations in a significant manner. Compet-
ing models in the published literature generally differ only
in terms of their covariates. Of the twenty-three articles in
Figure 1, seventeen concern models that are nonnested
only in terms of their covariates.

I also focus my comments on the generalized linear
model, particularly those models where the link function
is nonlinear. The reason for this choice is that statistical
models in international relations generally have discrete
dependent variables. I specifically look at the case where
the link function is a probit or logit, but the methods I
discuss are easily extended to other link functions. Dis-
criminating between nonnested linear models is easily
accomplished with Davidson and MacKinnon’s “J” and
“JA” tests (see Davidson and MacKinnon 1993; Judge et
al. 1985; Kmenta 986; Greene 1997).

Some Problematic Approaches

Tables 1 and 2 reveal a marked difference in the approach
Huth, Gelpi, and Bennett (1993) take to dealing with the
problem of testing nonnested rival models and the ap-
proach Reiter and Stam take. In Table 1, Huth and his co-
workers employ the “supermodel” approach, which re-
quires artificially nesting the two models in a single
equation and treating the rival model as a control. In
Table 2, Reiter and Stam choose to estimate the models
separately. Neither of these approaches, however, is suffi-
cient to compare nonnested models accurately.

Techniques for Artificially Nested “Supermodels”

The supermodel approach consists of combining the vari-
ables in the rival models into a single large equation. In-
ference is based on individual or joint significance tests of
the artificially nested models. Artificially nested models
can be found in Bennett (1997), Gelpi (1997), Bennett
and Stam (1996), Huth and Russett (1993), and Maoz and
Russett (1993). For the Huth, Gelpi, and Bennett analysis
in Table 1, six of eight coefficients from the rational deter-
rence model are conventionally significant.8 In contrast,
only one of five coefficients from the structural realist
model is significant. The conclusion that Huth, Gelpi, and

Bennett draw from these results is that the rational deter-
rence model receives more support from the data than the
structural realist model.

The persuasiveness of this conclusion rests on two
questionable techniques. The first is t-tests of individual
coefficients within the artificially nested model. The sec-
ond is controlling for alternative theories within the
same equation. These techniques for artificially nested
models, along with one not used by Huth, Gelpi, and
Bennett, the F-test, are considered below.9

T-tests. An obvious problem with using t-tests of indi-
vidual coefficients to test a model is that single variables
rarely encapsulate entire theories. A researcher must then
contend with a number of different t-tests within each
model, not all of which are likely to agree. No metric ex-
ists for assessing how many coefficients should be insig-
nificant before rejecting a theory. In addition, individual
t-tests do not generate probabilistic statements regarding
model choice. The results in Table 1 provide no sense of
the uncertainty surrounding the choice of rational deter-
rence as the superior model.

Individual significance tests, furthermore, do not al-
ways give the same answer as a joint significance test
(such as an F-test) would. It is quite possible for a num-
ber of variables to be individually insignificant and yet
jointly significant (Greene 1997).10 The fact that only one
of five coefficients from the structural realist model is
significant cannot be interpreted to mean that the struc-
tural realist model has no bearing on the escalation of
great-power militarized disputes. In the nonnested case,
unfortunately, a simple application of the F-test or a like-
lihood-ratio test will not solve the problem (see below
and the next section).

Finally, when rival models are combined in a single
equation, there is often a temptation to compare coeffi-
cients in order to identify the “important” ones. The
model with the greatest number of important variables is
then selected. Comparative claims, however, cannot be
based on the relative size of the coefficients. In general,
the size of two coefficients cannot be compared (King
1986). The effect on the dependent variable from a unit,
percent, or standard deviation change in “system uncer-
tainty 2 (diffusion)” cannot be compared with the effect
of a unit, percent, or standard deviation change in “se-
cure second strike.” The variables are simply measured
on different scales. The best we can do is state whether or

8P-value ≤ 0.05

9Collinearity is also a potential problem with artificially nested
models (see Greene 1997).

10In rare cases, it is also possible for a set of coefficients to be indi-
vidually significant and jointly insignificant.



      

not each individual variable has an effect on the depen-
dent variable (Achen 1982).

Controlling for alternative theories. The supermodel ap-
proach to testing nonnested models arises naturally from
the belief that we must control for alternative theories
within the same regression model. The argument is that
we cannot get a good estimate of the effect of theory one
(T1) if we cannot control for the effects of theory two
(T2). This argument, however, is flawed. Theory dictates
the choice of covariates in a regression. Statistical analysis
divorced from theory, in Achen’s (1982, 15) terms, “is
likely to degenerate into ad hoc curve fitting. . . .” Unless
there exists a well-specified theory that claims that both
T1 and T2 are relevant to the phenomena in question, T1

and T2 do not belong in the same equation.
Supermodels are, in effect, atheoretical. Including

both theories in the same equation is a misspecification
equivalent to including irrelevant variables, which affects
the precision of the estimates. As of this date, there exists
no theory of the escalation of great-power militarized
disputes that claims a role for variables from both struc-
tural realism and rational deterrence theory. If a com-
bined theory did exist, it would be interesting to test the
structural realist model and the rational deterrence
model against the combined model.11 Until such a theory
exists, however, these two sets of covariates should re-
main separate.

Accepting the premise that theory must determine
the covariates of a regression does not mean that there is
no place for nonnested hypothesis testing. Which theory
out of a group of plausible theories does the best job of
explaining a phenomenon remains a question. This is the
question that nonnested tests help us answer.

F-tests. Whether or not the F-test can be used to dis-
criminate between nonnested models depends upon
whether or not the models are partially or strictly
nonnested. The F-test cannot be used with partially
nonnested models. Consider the following the partially
nonnested models in matrix form:

Hf : Y = Xβ + ε0 (9)

Hg : Y = Zγ + ε1 (10)

If we artificially nest these models into a single equation
where     ̃X  are the variables in X but not in Z,     ̃Z  are the
variables in Z but not in X, and W are the variables in two
models have in common,

    H Y X Z WC : ˜ ˜ = + + +β γ σ ε

we see that the common variables (W) create a problem.
Testing either β or γ does not test the full models. On the
other hand, testing β and σ or γ and σ does not test Hg

against Hf . The F-test, in this case, discriminates between
either Hf or Hg and a hybrid model that is neither Hf nor
Hg (Kmenta 1986; Greene 1997).

The F-test can be used with strictly nonnested mod-
els such as the Huth, Gelpi, and Bennett models in Table
1. If Equations (9) and (10) are nonnested, the combined
model is then:

    H Y X ZC : ˜ ˜= + +β γ ε

As the models have no common variables, the problem
noted in the previous paragraph does not arise. The F-test
is rarely used, however, because monte carlo simulations
have demonstrated that it has low power (the probability
of rejecting a false null) in this situation (McAleer 1987).

Techniques for Separate Models

An alternative approach to testing nonnested models,
one taken by Reiter and Stam, is to estimate each model
separately and then compare the log-likelihoods. Similar
approaches compare the F-tests or likelihood-ratio tests
that are reported by most standard software packages.
Like the supermodel approach, probabilistic statements
regarding model discrimination cannot be made on the
basis of these techniques.

Likelihoods. Reiter and Stam estimate their models sepa-
rately, thus generating two log-likelihood statistics. The
log-likelihood of the realist model is larger than the log-
likelihood of the nonrealist model. Exactly what to make
of this fact is unclear. The number of coefficients in the
models affect the log-likelihoods. The greater the number
of coefficients, the greater the log-likelihood. In a nested
model, we could use a likelihood-ratio test where the dif-
ference in the number of coefficients would be handled
by the degrees of freedom of the χ2-distribution.12 Reiter
and Stam’s models, however, are nonnested. The realist
model has seven more coefficients than the nonrealist
model and part of the difference in the log-likelihoods
must be due to the extra included variables. We cannot be
sure how much. Furthermore, the fact that we cannot

11Such a test would be a nested test.

12Likelihood-ratio tests may only be used with nested models. This
point is not universally appreciated. Pollins (1996) incorrectly uses
likelihood-ratio tests to discriminate between nonnested long-
cycle theories in an otherwise well-regarded article.
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perform a likelihood-ratio test means that no probabilis-
tic statement can be made on the basis of the log-likeli-
hoods. Without such a statement, we cannot say how cer-
tain we are that one likelihood is significantly larger than
the other.

Likelihood-ratio tests and F-tests. Though not common,
model discrimination statements are occasionally made
on the basis of likelihood-ratio tests and F-tests where
the null is a completely restricted model. These tests are
commonly reported by standard software packages. The
smaller the p-value of these tests, the argument goes, the
better the model fits the data. There is nothing about
these tests and their associated p-values, however, that
supports such a conclusion. The idea of Neyman-
Pearson hypothesis testing is to use the information con-
tained in the p-value in a decision-making context. If the
p-value is less than the a priori probability of a type I er-
ror, the null hypothesis is rejected. No conclusions re-
garding the alternative hypothesis are to be drawn. A
point that is not well understood about this procedure is
that how much smaller the p-value is relative to the sig-
nificance level is immaterial. P-values do not provide
measures of support for or against hypotheses. In classi-
cal (as opposed to Bayesian) statistics, hypotheses are not
probabilistic. The null hypothesis is true with probability
0 or 1. There is no theory, in the Neyman-Pearson sys-
tem, that connects the significance level of a hypothesis
test with a measure of inductive support for that hypoth-
esis (Howson and Urbach 1993).13

Rejecting the null hypothesis in an F-test or likeli-
hood-ratio test implies that chance or randomness is
not a good explanation for the phenomenon being ex-
plained. This is a useful result if the goal is to explain a
phenomenon where chance is a powerful theory. If we
are able to reject chance as a model for the numbers that
come up in roulette, where chance is a powerful expla-
nation, we have learned something important. Chance is
not a powerful explanation, however, for the type of
phenomena that international relations scholars attempt
to explain. We therefore do not learn much by rejecting
the null hypothesis with these tests.14 The great strength
of the nonnested hypothesis tests presented in the next
section is that if we reject the null hypothesis, we are re-
jecting a hypothesis of substantive interest.

Tests for Nonnested Models

In this section, I present three appropriate tests for dis-
criminating between nonnested rival models.15

The Cox Text

The literature on nonnested model testing stems from
the seminal work of David Cox (1961, 1962). The philo-
sophical underpinning of Cox’s test is that a true model
should be able to predict the performance of specific al-
ternatives. The idea is to compare the actual performance
of the alternative model with the expected performance
of the alternative model under the null hypothesis
(McAleer 1987). A true null should not distort the actual
performance of the alternative model.

Econometricians have primarily used the Cox test to
distinguish between models with different functional
forms, and the test is particularly powerful in this situa-
tion. On the other hand, any social scientist looking up
“selection of regressors” in a major econometrics text
will find the Cox test. Greene (1997), Kennedy (1992),
Davidson and MacKinnon (1993), Kmenta (1986), and
Judge et al. (1985) all associate the Cox test, particularly
in its linear form, with models that are nonnested in
terms of their covariates. Of the three methods discussed
in this article, the Cox test is the only one that appears in
every one of the texts listed above.

The math behind Cox’s innovation is a generaliza-
tion of the familiar likelihood-ratio test statistic. The
modified statistic is the difference between the log-likeli-
hood ratio and the expected log-likelihood ratio under
the null hypothesis.16 That is, if 

    
L f f(ˆ )θ  is the maximum

value of the likelihood of a sample of y values when Hf is
postulated and 

    
L g g(ˆ )γ  is the maximum value of the like-

lihood of a sample of y values when Hg is postulated,
then the log of the likelihood ratio is:

    
ˆ ln (ˆ ) ln (ˆ )l L Lfg f f g g= −θ γ (11)

The numerator of the Cox statistic is the difference be-
tween Equation (11) and the expected log-likelihood ra-
tio under the null hypothesis:

    
T l E lf fg fg= −ˆ (ˆ ) (12)

13 This does not imply that regression is useless. The main point of
regression is the estimation of β.

14If, on the other hand, we do not reject the null, we have learned
that the model is no better than chance.

15Other discrimination procedures for nonnested models exist in
the literature (see Horowitz 1983; Davidson and MacKinnon
1993). The three methods detailed here are the most common.

16Both models must, in turn, serve as the null hypothesis.



      

The Cox statistic is then the difference in Equation (12)
suitably normalized:
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Cox’s statistic is sometimes referred to as a centered-
likelihood ratio, as Nf has a standard normal distribution.

The major problem with applying the Cox statistic
to models other than least-squares models is calculating
the expected value of the log-likelihood ratio under the
null hypothesis. We can approximate this expected value
using the Kullback-Leibler information criteria, the mea-
sure of closeness defined in an earlier section. Where the
KLIC cannot be analytically derived, a simulation ap-
proach is necessary (Pesaran and Pesaran 1993). For the
binary choice models we are using, an analytical deriva-
tion of the KLIC is possible, and we need only simulate
what statisticians refer to as the pseudo-maximum likeli-
hood estimator—a consistent estimator produced by a
misspecified model (see White 1994; Gourieroux and
Monfort 1995) .

Following the approach used by Pesaran (1987) and
Pesaran and Pesaran (1993), the numerator of the test
statistic is:

    
L Y L Y C Rf g( , ˆ) ( , ˆ ) (ˆ , ˆ ( ))*θ γ θ γ− −

where     C R(ˆ , ˆ ( ))*θ γ  is the estimated KLIC. Notice that   
ˆ

*γ
is the maximum-likelihood estimator of Hg assuming
that Hf is the actual data generating process.   

ˆ
*γ  is there-

fore a pseudomaximum-likelihood estimator and R
stands for the number of repetitions used to simulate the
estimator. Running the simulations is not difficult; a
three-step procedure is outlined in Figure 2.

The standard error of the statistic is :

    
N d I R R R R dN

− −′ − ′ ′{ }1 1(ˆ)[ (ˆ) (ˆ)] (ˆ)θ θ θ θ

where d is the observed-likelihood ratio and     R(ˆ)θ  is a
matrix of partial derivatives of ln(Y, θ) with respect to θ.
See Appendix A for the math worked out in terms of rival
binary-choice models.

In very simple terms, the Cox test resembles a χ2 test
in form. The χ2 test is based on the difference between an
observed value and an expected value. The general idea
of the Cox test is similar:

  

Observed log-likelihood ratio – Expected log-likelihood ratio

S.E.
= 0

if the null hypothesis is true. We reject the null hypoth-
esis if the test statistic differs significantly from zero in ei-
ther direction.

The results of a Cox test are not always unambiguous.
As there is generally no reason to assume that either rival
model is the null, each model must, in turn, take that role.
Four outcomes are therefore possible: one or the other
model may be rejected, both models may be rejected, or
neither model may be rejected. Just as in any hypothesis
test, it is important to remember that if the null is rejected,
it is not rejected in favor of the alternative.

The possibility of rejecting both models without a
hint of what to do next has led some to criticize the Cox
test (Granger, King, and White 1995). The fact that both
models may be rejected or neither model rejected should
not, however, be taken as a weakness of the test; the rejec-
tion of both models implies that neither model could
predict the results of the other model. We should con-
clude, then, that both models are misspecified in some
way. Such a result is not inconsistent with the results of
individual likelihood-ratio tests against a completely re-
stricted model. Even misspecified models may be strong
enough to reject a null hypothesis of no effect.

The Vuong Test

What to do if both models are rejected is, of course, a
natural question. It is in this situation that Vuong’s (1989)
model selection test proves useful. Short of inventing bet-
ter theories, we might want to choose the best of a bad lot
of models and work at respecifying that model. Similarly,
if we fail to reject either model, we might use model selec-
tion criteria such as Vuong’s to identify the model that is
closer to the true specification.

FIGURE 2 Running the Simulations

Step One: Run the null model, Hf , against the observed
y-vector and save the estimated coefficient vector,     θ̂f .

Step Two: Produce a simulated y-vector,     ̂y , using     θ̂f  and
the data.

Step Three: Run Hg, the alternative model, on the simulated
y-vector,     ̂y . The resulting estimates,   ̂ *γ  are pseudo-
maximum likelihood estimates because they are produced
by an assumed misspecified model run on a dependent
variable generated by the null.

Step Four: Replicate this estimation and average over the
results.
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Vuong’s test also makes use of the Kullback-Leibler
information criteria. Vuong defines the KLIC as:

    
KLIC E h Y X E f Y Xt t t t≡ −0 0 0[ln ( )] [ln ( ; )]*θ (13)

where h0(..) is the true conditional density of Yt given Xt

(that is, the true but unknown model), and θ* are the
pseudotrue values of θ (the estimates of θ when f (Yt Xt)
is not the true model). The best model is the model that
minimizes Equation (13), for the best model is the one
that is closest to the true specification. We should there-
fore choose the model that maximizes E0[lnf (Yt Xt jθ*)].
In other words, one model should be selected over an-
other if the average log-likelihood of that model is sig-
nificantly greater than the average log-likelihood of the
rival model.

The null hypothesis of Vuong’s test is:
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meaning that the two models are equivalent.17 The alter-
native hypotheses are:
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meaning that Hf is better than Hg or Hf is worse than Hg ,
respectively.

The expected value in the above hypotheses is un-
known. Vuong demonstrates, however, that under fairly
general conditions:
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 times the likelihood-ratio statistic.

The actual test is then:
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Like the Cox test, the Vuong test can be described in
simple terms. If the null hypothesis is true, the average
value of the log-likelihood ratio should be zero. If Hf is
true, the average value of the log-likelihood ratio should
be significantly greater than zero. If the reverse is true,
the average value of the log-likelihood ratio should be
significantly less than zero. In other words, the Vuong test
statistic is simply the average log-likelihood ratio suitably
normalized.

The log-likelihood ratio used in Equations (14–16)
can be affected if the number of coefficients in the two
models being estimated is different. Unlike the Cox test,
the Vuong test needs a correction for the degrees of free-
dom.18 The adjusted statistic is:

    
LR LR K F Gn n n n n n n

˜ (ˆ , ˆ ) (ˆ , ˆ ) ( , )θ γ θ γ θ γ≡ −

where Kn(Fθ,Gγ) is the correction factor. Vuong (1989)
suggests using a correction that corresponds to either
Akaike’s (1973) information criteria or Schwarz’s (1978)
Bayesian information criteria.19 I have chosen the latter,
making the adjusted statistic 20:

17γ* and Z in model g are analogous to θ* and X in model f.

18 The Cox test does not need a correction as it uses the log-likeli-
hood ratio and the expected log-likelihood ratio, which has already
taken the degrees of freedom into account.

19 The Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC), like the adjusted R2, are selection criteria
that balance model fit with some adjustment for parsimony (Judge
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where p and q are the number of estimated coefficients in
models f and g, respectively. Figure 3 walks through the
calculation of the Vuong statistic for the Huth, Gelpi, and
Bennett (1993) models and Appendix B works out the
math for rival binary choice models.

The difference between the Cox test and the Vuong
test lies in the null hypothesis. The Cox test takes one of
the models under consideration as the null. The null hy-
pothesis for the Vuong test is that there is no difference
between the models. The implication of this difference is

that application of the Cox test may result in the rejec-
tion of both models. The Vuong test, if it chooses a
model, will choose the model that is closer to the true
specification even if both models are far from the specifi-
cation. The distinction is between an absolute test where
the models are evaluated against the data (the alternative
model provides the power) and a relative test where the
models are evaluated against the data and each other.

Bayes Factors

The data set in Huth, Gelpi, and Bennett (1993) consists
of the population of great-power extended and direct
immediate deterrence encounters from 1816 to 1984.
The data set in Reiter and Stam (1998b) is the population
of interstate wars between 1816 and 1982. In neither case
can we easily argue that we are dealing with a sample.
Classical tests procedures such as the Cox and Vuong
tests assume that repeated sampling is possible. Unless
one resorts to the philosophically weak argument that
the world could have produced other outcomes, classical
tests are inappropriate for these data. The solution is to
turn to Bayesian inference.

The Bayesian approach to the problem of discrimi-
nating between nonnested models is quite different from
the classical approach. Bayesians reject the notion that
one model should be accepted to the exclusion of a sec-
ond model, for neither model is likely to be the truth.
Rather, Bayesians use sample data to update their assess-
ment of the comparative likelihood of the two models
(Greene 1997). A nice international relations application
of Bayes factors for nonnested models can be found in
Smith (1999).

Following Raftery (1995), let D be the data and Mf

and Mg be two nonnested models we wish to compare
with parameter vectors θf and θg. If P(Mf) is the prior
probability of model f and P(D Mf) is the integrated
likelihood of model f, the posterior probability of Mf is
given by Bayes theorem:
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f

f f
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where,

    
P D M P D M P M df f f f f f( ) = ( ) ( )∫ θ θ θ,

The posterior probability of Mg is:
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( ) ( ) + ( ) ( ) (18)

FIGURE 3 Calculating the Vuong Test for the
Huth, Gelpi, and Bennett (1993) Models

Step One: Run Hf and save the reported log-likelihood
(–55.933).

Step Two: Run Hg and save the reported log-likelihood
(–45.558).

Step Three: Calculate the degrees of freedom correction for
the two models:
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Step Four: The numerator is then:

[–55.933 – (–45.558)] – 6.86 = –3.5.

Step Five: The variance is the expectation of the squared
difference in the individual log-likelihoods minus the square
of the expectation:

    

1 1
4 5

1

2

1

2

n

f Y X

g Y Z n

f Y X

g Y Z

t t n

t t ni

n t t n

t t ni

n
ln

; ˆ

; ˆ
ln

; ˆ

; ˆ
.

θ

γ

θ

γ

( )
( )

















−
( )
( )

















=
= =
∑ ∑

Step Six: The Vuong statistic then is the value in step four
divided by the square root of the value calculated in step
five:

–3.5/4.5= –0.78.

et al. 1985). These measures are particularly useful in a time-series
framework where forecasting is the goal (Greene 1997). Like the
Vuong test, but unlike the Cox test, these measures will always
choose a model even if neither model fits the data well (McAleer
1987). Unlike either the Vuong or the Cox test, these techniques do
not provide probabilistic statements regarding model selection
and neither technique incorporates knowledge from the rival
model.

20 Which correction factor is used makes no difference to this
analysis.
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Notice that the denominators of Equations (17)
and(18) are the same. We can therefore take the ratio of
the two posteriors:
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The first factor on the right-hand side of (19) is defined
as the Bayes factor (the ratio of integrated likelihoods),
while the second factor is the prior odds ratio. Equation
(19), then, corresponds to:

Posterior odds = Bayes factor × Prior odds. (20)

Assuming that we assign equal priors to the models,
the prior-odds ratio equals 1 and drops out. The poste-
rior-odds ratio then equals the Bayes factor. When the
Bayes factor is greater than 1, the data favor Mg over Mf.
When the Bayes factor is less than 1 the reverse is true.
Raftery (1995), following Jeffreys (1961), proposes the
following “rules of thumb” for interpreting twice the
logarithm of the Bayes factor:

0 ≤ 2 ln (BF) ≤ 2.2 Very weak evidence for Mg

2.2 ≤ 2 ln(BF) ≤ 5 Weak to moderate evidence
for Mg

5 ≤ 2 ln (BF) ≤ 10 Moderate to strong evidence
for Mg

2 ln (BF) > 10 Decisive evidence for Mg

Posterior probabilities for each model can be calcu-
lated from the Bayes factors of each model against a null
model. If Mi are the models being compared with the
null (M0), Bi0 are the corresponding Bayes factors, and αi

are the prior odds, then:

    

P M Di
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α β

α β
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(21)

are the posterior probabilities of the models given the
data.

While the theory and use of Bayes factors are
straightforward, calculating the integrated likelihoods
necessary for Bayes factors is not straightforward. Three
main approaches to calculating Bayes factors exist in the
literature. The first is a relatively simple version of the
Laplace approximation known as a BIC (Bayesian infor-
mation criteria) approximation. This is the approach
taken by Bartels (1997). The second is a Markov chain
Monte Carlo approach used by Smith (1999) and Clarke
(2000). The third approach, and the one used here, is a

more complicated, but more accurate, version of the
Laplace approximation. Jeffreys (1961) first proposed us-
ing the Laplace method for approximating Bayes factors,
and Raftery (1993) applied the method to generalized
linear models.21

Assuming the ratio of the priors equals 1, the ap-
proximation provides the first factor in Equation (19):
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Remember, though, that P(D Mi) also includes a prior,
P(θi Mi):

    
P D M P D M P M di i i i i i( ) = ( ) ( )∫ θ θ θ,

The work in estimating a Bayes factor lies in choos-
ing this prior. For generalized linear models, Raftery
(1993) argues for a multivariate normal prior with all the
parameters except the intercept centered at zero and all
the covariances not involving the intercept set equal to
zero. The prior then involves only one hyperparameter to
which the results are sensitive. This hyperparameter, de-
noted by ϕ, controls the prior standard deviations of the
regression parameters. To ensure that the prior does not
contribute much evidence in favor either model in the
nonnested case, ϕ should be large. On the other hand,
large values of ϕ tend to favor simpler models. In cases of
ignorance, Raftery (1993) recommends evaluating the
Bayes factors over the range 1 ≤ ϕ ≤ 5 with ϕ = 1.65 as a
“central” value.22

For a specific set of models, it is possible to translate
ϕ into actual standard deviations (see Clarke 2000). For
the Reiter and Stam models, setting ϕ to 1 is roughly
equivalent to setting the prior standard deviations of the
coefficients to 10, setting ϕ to 1.65 is roughly equivalent
to a prior standard deviation of 32, and setting ϕ to 5 is
roughly equivalent to a prior standard deviation of 100.23

I report results for ϕ ={1,1.65,5}.

21The details of the Laplace method for integrals is beyond the
scope of this paper. See Raftery (1993) for details of the method.
The estimates were produced with Raftery’s “glib” software, an S-
Plus program which uses the Laplace method. “Glib” is freely avail-
able from Statlib.

22 The simple BIC approximation (Raftery 1995) sets the prior co-
variance matrix at 

    
i j

−1, where ij is the expected Fisher information
for one observation (Bartels 1997).

23The effect of ϕ would disappear if the sample size were large
enough.



      

Results

We are now in a position to evaluate the rival nonnested
models presented by Huth, Gelpi, and Bennett and Reiter
and Stam. The results of the Cox test applied to the struc-
tural realist and rational deterrence models are in Table
3. Both null models, according to the Cox test, are ac-
cepted at conventional significance levels.24 The test
therefore fails to discriminate between the models. No-
tice, however, that the test statistic when the structural
realist models serves as the null is further from zero than
when the rational deterrence model is the null. The re-
sults of the test therefore lean slightly in favor of the ra-
tional deterrence model. This evidence is quite weak,
though. The conclusion, then, is that a result that ap-
peared to be clear-cut in the Huth, Gelpi, and Bennett
analysis is now problematized. Our level of uncertainty
regarding the explanatory power of the rational deter-
rence model over the structural realist model has in-
creased dramatically.

The results of the Vuong test are in Table 4. Like the
Cox test, the Vuong test fails to discriminate between the
models. We cannot place much confidence in the loca-
tion of the test statistic given the relative size of the stan-
dard error. Far from the strong support that Huth, Gelpi,
and Bennett find for the rational deterrence model, the
results indicate that the evidence in favor of the rational
deterrence model is weak and uncertain.

There is no mystery why neither the Cox test nor the
Vuong test can discriminate between the structural real-
ist and deterrence theory explanations. The answer lies in

the correlation between the models. Canonical correla-
tion is related to bivariate correlation, except that instead
of measuring the relationship between two variables, ca-
nonical correlation measures the relationship between
two sets of variables (Johnson and Wichern 1998). The
two sets of variables are used to create linear combina-
tions, which are then weighted so that the correlation be-
tween the combinations is as high as possible.25 The ca-
nonical correlation between the structural realist model
and the rational deterrence model is 0.88, which implies
that the structural realist model and the rational deter-
rence model are highly correlated. The higher the corre-
lation between the models, the less likely it is that either
the Cox test or the Vuong can discriminate between them
(see Clarke 1999 for monte carlo simulation results).

The Bayesian analysis echoes the results of the Cox
and Vuong tests. Due to the high correlation between the
models and the relatively small sample size (n = 97), the
Bayes factors and posterior model probabilities calcu-
lated from Equation (21) turn out to be highly sensitive
to the choice of ϕ. The results are in Table 5. As ϕ moves
from 1 to 5, the results move from weak evidence in favor
of the rational deterrence model to strong evidence in fa-
vor of the structural realist model. The prior would only
have this effect if the models were close to indistinguish-
able in the first place. If we look solely at the “central”

TABLE 3 The Cox Test for the Huth, Gelpi, and Bennett (1993) Models

Model One as Nulla Model Two as Null

Sim # n Z Stat Significance Z Stat Significance

1 300 –0.6747 0.4999 –0.1028 0.9181
2 400 –0.6727 0.5011 –0.1019 0.9189
3 500 0.6757 0.4992 –0.1042 0.9179
4 1000 –0.6739 0.5004 –0.1016 0.9190

aModel one is the structural realist model.

24 The p-value for each test is greater than 0.05. We therefore make
a decision to not to reject both null hypotheses.

25 Think of canonical correlation analysis as multivariate regres-
sion. Instead of regressing a single-response variable on a set of
covariates, we regress a set of covariates on a second set of co-
variates. Just as OLS regression maximizes the correlation between
the linear combination on the right-hand side of the equation and
the dependent variable, canonical correlation maximizes the cor-
relation between two linear combinations. The square of the ca-
nonical correlation is equivalent to R2 from a linear least-squares
regression.

TABLE 4 The Vuong Test for the Huth, Gelpi, and Bennett (1993) Models

Vuong Std. Error Z Stat Significance 95% Confidence Int.

–3.5 4.5 –0.78 0.435 –12.33 5.31
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TABLE 6 The Cox Test for the Reiter and Stam Models

Model One as Nulla Model Two as Null

Sim # n Z Stat Significance Z Stat Significance

1 300 –2.0599 0.0394 –0.1181 0.9060
2 400 –2.0608 0.0393 –0.1181 0.9060
3 500 –2.0592 0.4992 –0.1181 0.9060
4 1000 –2.0598 0.0394 –0.1181 0.9060

aModel one is the nonrealist model.

TABLE 7 The Vuong Test for the Reiter and Stam Models

Vuong Std. Error Z Stat Significance 95% Confidence Int.

–36.74 8.93 –4.11 0.0 –54.24 –19.24

TABLE 5 Bayes Factors and Posterior
Probabilities for the Huth, Gelpi,
and Bennett (1993) Models

ϕ = 1 ϕ = 1.65 ϕ = 5

Bayes Factorsa –3.97 –0.72 6.09

Posterior Probabilities
Structural Realist Model 0.12 0.41 0.95
Rational Deterrence Theory 0.88 0.59 0.05

aNegative values are evidence in favor of the rational deterrence model.

value of ϕ, the results very weakly support the rational
deterrence model. The “central” value is particularly use-
ful in this situation, for we know that large values of ϕ
tend to favor simpler models. We could have anticipated
that the larger value of ϕ would support the structural
realist model as it is the model with fewer parameters.

The models estimated by Reiter and Stam do not pose
the same problems as the Huth, Gelpi, and Bennett mod-
els. The canonical correlation between the models is 0.58,
which means that these models are not as highly corre-
lated as the previous example. The nonnested tests should
do a better job of discriminating between these models.

The results of the Cox test are in Table 6, and they
are quite clear. When the nonrealist model serves as the
null, it is rejected at the 0.05 level. When the realist model
serves as the null, the test fails to reject it at conventional
significance levels. The realist model can therefore pre-
dict the results of the nonrealist model, but the reverse is
not true. We conclude, then, that the realist model is con-
sistent with the data and the nonrealist model is incon-
sistent with the data.

The Vuong test tells the same story, the results of
which are in Table 7. Judging from the small standard er-
ror, we can have great confidence in the location of the
test statistic. The results demonstrate strong support for
the conclusion that the realist model is much closer to
the true specification than the nonrealist model.

Unlike the results from the last example, the Bayes
factors for this example are robust in the face of alterna-
tive priors. The Bayesian results are in Table 8. For each
value of ϕ, there is what Raftery (1993) calls “decisive”
support for the realist model. That is, for each value of ϕ,
2ln(BF) is far greater than 10. We can use Equation (21)
to go beyond Raftery’s “rules of thumb” and actually cal-
culate the posterior probabilities of both models. The
posterior probability of the nonrealist model is approxi-
mately zero, while the posterior probability of the realist
model is approximately one.

Taking the results together, there is little or no evi-
dence in support of the nonrealist model. All three meth-
ods indicate that the realist model is the superior expla-
nation of war outcomes.



      

Whether the realist or the nonrealist model provides
a better explanation of war outcomes was not the ques-
tion of interest for Reiter and Stam. Their question was
whether regime type and initiation have independent ef-
fects on war outcomes while controlling for the realist
variables. Light can be shed on this question by using
Equation (21) and our Bayes factors to produce posterior
model probabilities.

The results of Reiter and Stam’s tests indicate that re-
gime type and initiation do have independent effects.
The specifications for the five models Reiter and Stam es-
timated are in Table 9.26 From the first two columns, we

can see that inclusion of the realist variables is necessary
whatever the effects of regime type and initiation. The
posterior probabilities of the models without the realist
variables, calculated from Equation (21), are approxi-
mately zero, across all values of ϕ. Of the models that in-
clude the realist variables, the posterior probabilities, cal-
culated from Equation (21), are affected by the value of
ϕ. As ϕ goes from 1 to 5, we see a shift from relatively
strong support for model 4 to very strong support for
model 3.27 The explanation for the sensitivity is the same
as it was for the dispute escalation example; models (3–5)
are highly correlated.28 The addition of the regime and

TABLE 8 Bayes Factors and Posterior
Probabilities for the Reiter
and Stam Models

ϕ = 1 ϕ = 1.65 ϕ = 5

Bayes Factorsa 78.07 73.69 61.52

Posterior Probabilities
Nonrealist Model ≈ 0 ≈ 0 ≈ 0
Realist Model ≈ 1 ≈ 1 ≈ 1

aPositive values are evidence in favor of the realist model.

TABLE 9 Five Model Specifications and Posterior Probabilities

Variable Model 1 Model 2 Model 3 Model 4 Model 5

Nonrealist
Poly-Pol 1*Initiation x x
Poly-Pol 2*Initiation x x
Politics*Initiation x x
Political*Target x x x x
Initiation x x x x

Realist
Capabilities x x x
Alliance Contributions x x x
Quality Ratio x x x
Terrain x x x
Strategy*Terrain x x x
Strategy 1 x x x
Strategy 2 x x x
Strategy 3 x x x
Strategy 4 x x x

Posterior Probabilities
ϕ = 1 ≈ 0 ≈ 0 0.11 0.67 0.21
ϕ = 1.65 ≈ 0 ≈ 0 0.28 0.56 0.16
ϕ = 5 ≈ 0 ≈ 0 0.90 0.09 0.01

27When ϕ is equal to 1, the probability of model 4 is 67 percent.
When ϕ is equal to 5, the probability of model 3 is 90 percent.

28The canonical correlations between these models are 1.

26In models 2 and 5, Reiter and Stam use a pair of fractional poly-
nomials. The canonical correlation between models 1 and 2 and
between models 4 and 5 are 1.
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initiation variables makes little difference. If we look at
the “central value” for ϕ (1.65), however, we see that
model 4, which includes the regime type and initiation
variables, is the best-supported model. There is some evi-
dence then for Reiter and Stam’s results, but that evi-
dence is far from conclusive. There is little evidence for
the fractional polynomial models.

Discussion

The substantive results of the analyses I have presented
are surprising. There is a significant and steadily growing
presumption, fueled by empirically based research such
as that produced by Huth, Gelpi, and Bennett and Reiter
and Stam, that realism is wrong or is insufficient to ex-
plain conflict outcomes in international relations. Some
of the research upon which this presumption is based,
however, is flawed. The analyses I address in this article
contain comparative model tests that compare a realist
model with a nonrealist model. These models are non-
nested in the sense defined in an earlier section. The tra-
ditional methods of model comparison used by these
authors are therefore inappropriate, and overstated con-
clusions have been the result.

The analyses I have presented challenge the conven-
tional wisdom that realism performs poorly when com-
pared to its rivals. Results that appeared certain in Huth,
Gelpi, and Bennett now appear much less certain. While
the Cox, Vuong, and Bayes results all lean slightly toward
the rational deterrence model, the evidence is weak at
best. The inconclusive results stem from the fact that the
models are highly correlated. Clearing up the confusion
would require respecifying one or both models in such a
way as to diminish their correlation. Future research
might also profitably examine the reasons why the mod-
els appear to be measuring the same underlying factors.
An exploration of this curious result may lead to a syn-
thesis of the two models that is more satisfactory than ei-
ther of these models alone.

Reanalysis of the Reiter and Stam models also chal-
lenges the conventional wisdom regarding realism. The
Reiter and Stam models, unlike the previous models, are
not highly correlated, and the results of the three tests re-
flect this fact. In each test, the results robustly show that
the realist model does a better job of accounting for war
outcomes than the nonrealist model. In both cases, then,
we see that realism, when appropriately tested against
these particular rival theories, either does almost as well
as the rival or better than the rival. Appropriate com-
parative tests are the key.

On the methodological side, the results I have pre-
sented reinforce the idea that we must use statistical
tests that are appropriate for the question being asked.
Inappropriate tests produce misleading results. The Cox
test, the Vuong test, and Bayes factors are appropriate
techniques for discriminating between rival nonnested
models. Which approach a nonmethodologist should
use remains a question. All three techniques perform
poorly when the models under consideration are highly
correlated Clarke (1999). All three techniques perform
well when the models under consideration are not
highly correlated. The decision comes down to how easy
the method is to perform and the degree to which the
method is controversial.

Figure 4 summarizes the relative “pros and cons” of
the three techniques. The Vuong test is the easiest to per-
form; it requires only calculation of the difference in the
average log-likelihoods and calculation of the normaliza-
tion. The Vuong test is also the least controversial of the
three techniques. The test allows one to accept or reject a
single null hypothesis much as one would with a t-test or
an F-test. Furthermore, it requires neither simulation nor
prior information. The Vuong test does have two disad-
vantages. First, the Vuong test is a “relative” as opposed to
an “absolute” test and therefore cannot tell us whether or
not both models under consideration are a bad fit for the
data. Second, the Vuong test is a classical hypothesis test
with all the concomitant problems of hypothesis tests.

The Cox test is harder to perform than the Vuong test.
It is also more controversial than the Vuong test, but not
as controversial as Bayes factors. Calculation of the Cox
test, at least for probit and logit models, requires simulat-
ing the pseudomaximum-likelihood estimates that are
used in the expected log-likelihood ratio. Extending this
technique to different models is not difficult. The advan-
tage of using the Cox test, the ability to reject both mod-
els, is also the test’s most controversial aspect. Most tests
allow a single decision to be made regarding a single null

FIGURE 4 Comparing the Three Approaches

Cox Vuong Bayes

Absolute X

Relative X X

Model Selection X X

Requires Simulation X

Hypothesis test X X

Prior Information X

Ease of calculation 2 1 3



      

hypothesis, which greatly eases the interpretative task.
Opponents of the Cox test argue that if the test rejects
both models, it is unclear how one should proceed.

Bayes factors based on the Laplace approximation are
both the hardest to calculate and the most controversial.
Calculation requires approximating the integrated likeli-
hoods for both models. Software for this purpose has only
been produced for generalized linear models with log,
logit, or log-log link functions and either binomial or
poisson errors.29 Generalizing to other models is not
straightforward. The technique is controversial for the
same reason that all Bayesian techniques are controversial:
it requires the specification of a prior distribution. The
inclusion of prior information into empirical research has
yet to be widely embraced by political methodologists and
is still foreign to many substantive political scientists. The
strength of the technique is that Bayes factors are not hy-
pothesis tests and are therefore free of the controversies
regarding sample size and p-values that surround hypoth-
esis tests (see Morrison and Henkel 1970).

If only one of these techniques were to be used, I
would argue for the Vuong test because of the relative ease
of calculation and the fact that it is relatively un-
controversial. One can never go wrong, however, by using
all three techniques simultaneously. The Vuong and Cox
tests are complimentary in the sense that if the Cox rest
rejects both models, the Vuong test can suggest a direction
for further research. Bayes factors are useful for the simple
reason that they are not hypothesis tests. If all three tech-
niques reach similar substantive conclusions, as they do
here, the results demonstrate a robustness that is absent
when any of these techniques are used in isolation.

Directions for Further Research

The expository nature of this article leaves certain ques-
tions unanswered. With the exception of Bayes factors,
the tests presented are paired tests. That is, they attempt
to discriminate between two rival models. Researchers in
international relations, however, are often faced with
three or more models at a time. While work on joint ver-
sions of the Cox and Vuong tests for discrete choice mod-
els has begun (see McAleer 1995), more development is
needed.

Empirical work in international relations is plagued
with a lack of independence among units, across time,
and across space. Without extensive Monte Carlo testing

to assess the impact of this lack of independence on the
methods presented here, my results, however compelling,
must be considered preliminary.

Finally, I have not directly addressed the question of
when the methods will give divergent answers. The ques-
tion is a difficult one, as the three methods answer
slightly different questions. The answer to this question
will depend upon values such as the size of the sample
and the correlation between the models. Preliminary
Monte Carlo simulations have been suggestive (Clarke
1999), but again, more detailed analysis is necessary.

As I have demonstrated, the tasks of comparative
theory testing and model selection in international rela-
tions, and throughout political science, often take place
on an informal and ad hoc basis. Rarely are probabilistic
statements made regarding rival models. Given the pro-
liferation of theories and models in political science re-
search, methods of discriminating between nonnested
models should hold a more prominent place in the
toolboxes of empirical scholars. This statement is as true
for the American subfield as it is for international rela-
tions. Although there is more agreement on a general
model in American politics, issues of functional form
and error structure are still debated. With advances in
statistical techniques and the concomitant advances in
computing, there is no reason why probabilistic state-
ments concerning rival models cannot be made. As I
have demonstrated, such statements can make important
contributions to prominent debates in the literature. Ide-
ally, these methods will become as common and as famil-
iar as the t-test.

Manuscript submitted January 13, 2000.
Final manuscript received December 1, 2000.

Appendix A
The Cox Test for Rival Probit Models

Consider the following univariate binary choice models30:
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where Φ(θxt) = Φ1 and Φ(γ zt) = Φ2 are normal probabil-
ity distribution functions and φ(.) is the density function of
the standard normal variate.

29It is also possible, but not easy, to produce Bayes factors using
MCMC methods (see Smith 1999; Clarke 2000).

30 To calculate the Cox test for logit models, simply replace Φ with
Λ in what follows.
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The average log-likelihood functions under Hf and Hg are:
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The numerator of the Cox test statistic is:
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generated artificially according to     f y( , ˆ)θ .
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Appendix B
The Vuong Test for Rival Logit Models

Consider the following univariate binary choice models31:
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where Λ(θ xt) = Λ1 and Λ(γ zt) = Λ2 are logistic probabil-
ity distribution functions.

The average log-likelihood functions under Hf and Hg

are:

    

H L Y x N Y Y

H L Y z N Y Y

f f t t t t
t

N

g g t t t t
t

N

: , ln ln

: , ln ln

θ

γ

( ) = + −( ) −( )

( ) = + −( ) −( )

−

=

−

=

∑

∑

1
1 1

1

1
2 2

1

1 1

1 1

Λ Λ

Λ Λ
.

The Vuong test statistic with the BIC correction is:
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For the binary choice models defined above:
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