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a few words before the talk

This is a report from attending a 2-day training course of Multilevel
Modeling by Dr. Raykov Tenko, held on March 22 — 23, 2012, in
Philadelphia, PA

The original course was a commercial product of Statistical Horizon Inc. and
it is strictly copyrighted on its content and handouts. We understand that no
replication of it is allowed before permissions.

This talk is intended to be an academic discussion of the topic and a report
of this trip.

We present the ideas, concepts and illustrations of the multilevel modeling
technique fully according to the original lecturer, i.e. Dr. Tenko, of this
course.

To avoid simple replication of the materials, we paraphrase or reorganize
the contents. These may be different from the original but representing our
limited understanding of the subject.

We don’t have any business-intention or profit interest in this report talk.
And we strongly prohibit anyone accessing this talk to do so.



Original Course Plans
day 1

Why do we need multilevel modeling (MLM), and how come
aggregation and disaggregation do not do the job?

The beginnings of MLM — Why what we already know about
regression analysis is so useful, and centering of predictor
variables.

The intra-class correlation coefficient — The underpinnings of a
multilevel model.

How many levels? — Proportion third-level variance and how to
evaluate it. Random intercept models, and model adequacy
assessment.

Robust modeling of lower-level variable relationships in the
presence of clustering effect.

Limitations and conclusion (Part 1).



Original Course Plans
day 2

. What are mixed models, what are they made of, and why are
they useful?

Random regression models — a general class of
mixed/multilevel models of great utility

Mixed models with discrete response variables
Limitations and conclusion (Part 2). Outlook.



Original: Goals of workshop

It is application oriented but with coherent discussion of theoretical issues,
at an introductory/ intermediate level, with some more advanced issues.

Original: Literature

e Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling with
Stata. College Station, TX: Stata Press.

e Raudenbush, S., & Bryk, A. (2002). Hierarchical linear and nonlinear modeling.
Thougsand Oaks, CA: Sage.

e Raykov, T. (2011). Lecture notes on multilevel modeling. Michigan State University.

e Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent linear and mixed
models. Boca Raton, FL: Chapman & Hall.

 Snijders, T. A. B., & Bosker, R. (2012). Multilevel models. An intro to basic an
advanced modeling. Thousand Oaks, CA: Sage.

Original: Software

 STATA



Original note

This workshop provides a connection to the following main
applied statistics areas (methodologies).

Structural Equation Longitudinal Data
Modeling Analysis

\/

Multilevel Modeling
(this seminar)

T

Missing Data Survey Data
Analysis Analysis
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1. Motivations for MLM



1. Motivations for MLM

Data from studies in social, behavioral, biomedical sciences, and business
exhibits distinct hierarchical structure (multi-level).
Because the studied units — individuals are grouped into larger units.
The nesting may have an effect upon the subjects’ outcome scores, some
degree of correlation within the upper level.
Examples
s Employees are nested (clustered) within companies; former are level-
1 units and the latter level-2 units.
¢ Workers are nested within managers; employees are nested within
teams. Workers/employees are level-1 units, managers/teams are
level-2 units.
The nesting implies a possibly serious lack of independence of individual
scores, X, on the dependent variable(s), Y, of concern. The Y’s within level-
2 units are correlated, Y’s are different among level-2 units.



1. Motivations for MLM - example

Employee (ID1) Firm ID (ID2) JS Score
1 Company 1 45
2 Company 1 46
3 Company 1 44
4 Company 1 42
5 Company 2 79
6 Company 2 78
7 Company 2 77
8 Company 2 75
9 Company 3 92
10 Company 3 91
11 Company 3 93
12 Company 3 94
50 Company 30 66

Note: JS = Job satisfaction score

The individual worker’s JS scores within company seem to be relatively
similar (correlated).



1. Motivations for MLM - example

* Another type of examples is when multiple measures obtained from
each subject, which can be viewed as nested within subject.
Longitudinal studies are typical cases.

* Thus, level-1 units are the repeated measurements, and subjects are
the level-2 units.



1. Motivations for MLM

Traditional methods, e.g. regression analysis, ANOVA, multivariate statistics,
analysis of qualitative data, etc., are called single-level methods, and they
assume that these subjects’ scores are independent.

To the degree to which this assumption is violated, the results of an application
of those methods on hierarchical data will yield less trustworthy if not even
misleading results.

A frequent consequence of a serious violation of the above independence
assumption is the phenomenon of spurious significance, if this violation is
neglected.

Traditional Mistakes: aggregation or disaggregation in dealing hierarchical data.

X Aggregation - scores on the lowest level of the data hierarchy are summarized (usually
aggregated) to scores that are then considered such of the higher-order unit they belong to, e.g.
taking means within level-2 unit.

< Disaggregation - to disaggregate the data down to the level-1 units and use classical (single-
level) methods for analysis. In study of employees’ sales ~ profit in a nationwide marketing
company, disregarding regional difference, flatting all employees from their groups.



1. Motivations for MLM

Errors with aggregation

¢ ‘shift of meaning’
¢ ‘ecological fallacy’

¢ Precluding examining cross-level interaction effects
Errors with disaggregation

¢ Destroyed the interrelationships within a secondary level unit

¢ Exaggerates the effect of sample size through flatting the secondary level
Both aggregation and disaggregation lead to very different results. Typically,
neither leads to the correct results.
Analytic benefits of multilevel modeling

¢ Improved estimation of effects within individual level-2 units
By estimating regression coffients within a level-2 unit can be strengthened through finding
similar estimates from other level-2 units.

*¢* Modeling cross-level effects

In hierarchical data, relationships at level-1 are moderated by charateristics of level-2 units,
e.g. the relationship between job satisfaction and quality of life of employees may be affected
by the size of the company they work for. MLM helps properly estimate these effects.

¢ Partitioning of Variance-Covariance Components

Breaking down the variance of a response variable at a given level into within-level sources
and such stemming from differences among higher-order units.



2. Basics of MLM



2. Basics of MLM

e MLM could be viewed as ‘multiple multiple regression modeling’, or as
sets of regression equations.

e |n studying satisfaction with company management (MS; Y) in an industry
by employees’ intelligence (1Q; X):

MS =B, + B, 1Q+residual, or, Y=B;+B, X+r

Company 1: Y, =By, + By Xy + 1,

Company 2: Y, =By, + B, X, + 1,
Y= B+ By X+ 1
Company J: Y, =By, + By, X, +1,. i=1,..)

where residual r and variance o?: r ~N (0, 2).

* Bgjand By;are random variables (i.e. companies were randomly picked)
and not observed, i.e. latent variables, with mean E(By)=140, E(B;) = Y10,
variance Var(B,)=1,,, and covariance Cov(B,, B;)= 7; -

e MLM, including high-order level, e.g. the 2-level model

Y= Boj + By Xj + 1 G=1,..,4i=1,..,n)

e.g. i —employees, 1 level, j — company, 2" level



2. Basics of MLM - example

use "C:\TEACH\Multilevel Modeling\Workshops\Misc\lea.dta", clear

d
Contains data from C:\TEACH\Multilevel Modeling\Workshops\Misc\lea.dta
obs: 887

vars: 3 14 Jul 2011 16:23
size: 14,192 (99.9% of memory free)
storage display value
variable name type  format label variable label
firm float %9.0g firm ID
Js float %9.0g jJjob satisfaction score
iq float %9.0g ingelligence test score

sum
Variable | Obs Mean Std. Dev Min Max
_____________ e
firm | 887 26.05637 14 .12965 1 48
Jjs | 887 30.56595 6.666168 5 40

iq | 887 100.3608 5.783583 79 111



graph twoway (scatter js ig, mlabel(firm)) (Ifit js iq) if firm <=8

/* single-level method, ignoring the firm effects: */

regjsiq
Source

Model
Residual

2. Basics of MLM

The line through the points would be the single-
level regression line, js; = b, + b, iq;;

- example

o
<t
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Number of obs = 887
FC 1, 885) = 341.40
Prob > F = 0.0000
R-squared = 0.2784
AdjJ R-squared = 0.2776
Root MSE = 5.666

SS df MS
10960.2737 1 10960.2737
28411.6181 885 32.1035233
39371.8918 886 44.4378011

Coef Std. Err. t
.6081306 .0329126 18.48
-30.4665 3.30861 -9.21

[95% Conf. Interval]

.6727265
-23.97286

.5435347
-36.96014

The single-level model result:

js =-30.52 + .61 x iq

ues

110



2. Basics of MLM - example

/* Multi-level method: */

xtmixed js iq | | firm:, variance

Performing EM optimization:

Performing gradient-based optimization:
Iteration O: log likelihood = -2767.8923
Iteration 1: log likelihood = -2767.8923
Computing standard errors:

Mixed-effects ML regression Number of obs = 887
Group variable: firm Number of groups = 48
Obs per group: min = 5
avg = 18.5
max = 62
Wald chi2(l) = 347.92
Log likelihood = -2767.8923 Prob > chi2 = 0.0000
Js | Coef Std. Err. z P>]z] [95% Conf. Interval]
_____________ e
iq | .6088066 .0326392 18.65 0.000 .5448349 .6727783
_cons | -30.51571  3.295415 -9.26 0.000 -36.9746  -24.05682
The last line tests the
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] hypothesis — given this
TTTTTTTTTT T T T - model — that we can do
firm: fdentity ! 4.026853 1.189895 2.256545 7.186004 better using this
__________________ Y?ff:f??fz_l____L__________L_____________L___________L______ multilevel model than
var(Residual) | 28.12721  1.37289 255611  30.95094  Stondard, single-level
______________________________________________________________________________ regression.
LR test vs. linear regression: chibar2(01l) = 56.38 Prob >= chibar2 = 0.0000

The MLM (2-level) modeling gives (i) the degree of variability in the parallel regression lines of
firm variability upon job satisfaction around this population line, var(_cons); as well as (ii) the
error variance, var(Residual).



2. Basics of MLM - example

/* to evaluate these firm effects, with standard errors (SE): */

predict re, reffects /* evaluate effects */
predict se, reses /* evaluate standard errors */
list in 1/40 /* print to screen */
o +
| firm js ig re se |
R T [
1. | 1 32 89 -2.676116 .9377579 |
2.1 1 20 89 -2.676116 .9377579 |
3. 1 18 90 -2.676116 .9377579 |
a. | 1 25 91 -2.676116 .9377579 |
5.1 1 11 91 -2.676116 .9377579 |

21. | 1 27 105 -2.676116  .9377579 |
22. | 1 22 106 -2.676116  .9377579 |
23. | 1 32 107 -2.676116  .9377579 |
24 | 1 27 109 -2.676116  .9377579 |
25. | 1 33 109 -2.676116  .9377579 |

| == I
26. | 2 19 89 -.0152072 1.286861 |
27. | 2 35 90 -.0152072 1.286861 |
28. | 2 27 95 -.0152072 1.286861 |
29 | 2 34 100 -.0152072 1.286861 |
30. | 2 37 100 -.0152072 1.286861 |

| == I
31. | 2 28 101 -.0152072 1.286861 |
32. | 2 28 103 -.0152072 1.286861 |
33. | 2 27 106 -.0152072 1.286861 |
34. | 2 32 108 -.0152072 1.286861 |
35. | 2 37 109 -.0152072 1.286861 |

| - I
36. | 3 37 96  1.058414 1.370049 |
37. | 3 33 99  1.058414 1.370049 |
38. | 3 22 100  1.058414 1.370049 |
39. | 3 37 101  1.058414 1.370049 |
40. | 3 32 104  1.058414 1.370049 |



3. ICC — decision to level



3. ICC — decision to level

With a hierarchical data set, 2 things to consider: (1) make sure the
uncorrelatedness assumption in the data is violated — decision to have high-
order, (2) how many levels are sustained by the data.

ICC — Intraclass Correlation Coefficient, is a measurement of how much
correlatedness in a hierarchical data set.

In a 2-level MLM, using the conventional one-way ANOVA model,

Yl.j=uj+e,j(=u+aj+e,j).

Y, is the dependent variable score for the ith subject in the jth group, y; is the mean of
the latter on this variable, and e;is the associated residual, i.e., individual-specific
deviation of his/her Y score from the corresponding group mean (j=1, ..., J,i=1, ..., n)).
This is an equation only with an intercept, the mean of the jth level-2 unit.

In MLM, level-2 units are randomly picked, and thus ; (a ;) are random.
Comparing with classical one-way ANOVA with fixed effects, this model

Y; = Boj + By X + 1 G=1,..,Ji=1,..,n)

is with random effect
Yi=Boi+r;

where Var(r;) = 02, group mean Boj = Yoo + Kg; i-€. grand mean + a random quantity,
assuming uncorrelated with ry.



3. ICC — decision to level

Taking variance from both sides,
Var(Y;) = Var(By; + ry) = 140 + 0%

where 1,, = Var(B).
“How much variance in the response variable Y stems from between-group
differences (and how much from within-group differences)?”
Definition of ICC: P ="Tpp/(Too + T?)-
i.e. ICC = percentage of between-group variability in observed variance.
Note, in Stata, ICC = V/(V + ©).
“What is the relevance of the value of ICC?”
A high ICC implies “the between-group variance dominates the within-group
variance. And thus, most of the differences that we see across subjects on Y
are actually stemming from group differences.” Conversely, a small ICC points
to the variance in observed response stems from individual differences within
groups (level-2 units).
“Why is the ICC called a correlation?”
Corr(Y;, Y;) = Corr(Bo; + rjy B + i)

= COV(BOj+ Fijy BOj + ri’j)/[var(BOj+ rij)l Var(BOj + ri'j)]l/z

= Var(By,)/Var(By; + r;)

=Tgo /(Too+ %) =p .



3. ICC — decision to level

e How to use ICC?

e “..no hard and fast rule that would tell us how large an ICC is large
enough to proclaim non-negligible nesting (clustering, lack of
independence) effect.”

e “..anICC well into the double digits (on the percentage scale) could often
be considered large enough to justifying a two-level analysis (i.e.,
application of a multilevel model as opposed to a classical statistical
modeling approach). ”

e “.. asimplified ‘rule’ submits that an ICC well into the single digits on the
percentage scale may be viewed as suggestive of single-level analysis may
still be appropriate (i.e., conventional regression analysis or another
appropriate analysis ignoring the hierarchical nature of the data). ”

e Observation: “the [classical] one-way random effect ANOVA ... is also called a
two-level (fully) unconditional model. The reason is that at none of its two
levels we have included any predictor (explanatory variable, regressor, or
covariate). “

e Confidence Interval (Cl) of ICC can provide more info over point estimate ICC.

e Cl of ICC can be obtained in Stata using command ‘xtreg’.



3. ICC — decision to level - example

 JS~I1Qdata, n=7185 workers from J=160 companies.

_____________________________________________ +
| id minority female iq Js |
|~ [
1. | 1224 0 1 -1.528 5.876 |
2. | 1224 0 1 -.588 19.708 |
3. | 1224 0 0 -.528 20.349 |

19. | 1224 0 1 042 2.927 |
20. | 1224 0 0 -.078 16.405 |
Ry +
xtreg js, i(id) mle
Iteration O: log likelihood = -23558.083
Iteration 1: log likelihood = -23557.906
Iteration 2: log likelihood = -23557.905
Random-effects ML regression Number of obs = 7185
Group variable: id Number of groups = 160
Random effects u_i ~ Gaussian Obs per group: min = 14
avg = 44 .9
max = 67
Wald chi2(0) = 0.00
Log likelihood = -23557.905 Prob > chi2 =
Js | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ e e
_cons | 12.63707 .2436216 51.87 0.000 12.15958 13.11456
_____________ e e
/sigma_u | 2.924631 -1826925 2.587612 3.305544
/sigma_e | 6.256868 -0527937 6.154245 6.361202
rho | -1793109 .0185934 .1452078 .2180551

Likelihood-ratio test of sigma u=0: chibar2(01)= 983.92 Prob>=chibar2 = 0.000
Note: in Stata, p as “rho”, and 2 as ‘sigma_u’.



3. ICC — decision to level - example

e The resulting 95% Cl is not symmetric around the ICC
estimae: 0.18 (0.14, 0.22).

 The Cl may provide information about how close this ICC is
to the population ICC.

* If a ‘threshold” ICC p, has been established in a domain,
one can ‘test’ the hypothesis “ICC > p,“ in the population
by using the above CI:

e IfICC> p,, retain that hypothesis.
e If Clis entirely positioned below p,, reject it.

 Model choice issue could be more complicated in a
particular substantive domain and empirical setting.



4. PTLV — how many levels



4. PTLV — how many levels

Proportion Third-Level Variance — PTLV
Example of a 3-level model:

Yik = Tojkc + €jjkc »

T ojic = Pook * Fojic »

B ook = Yooo *+ Mook -

Interval estimation of the ratio of third-level variance to level-1
variance for a contemplated three-level model:
T
- 02+Ti+rﬁ'

When this 0 is “large enough”, a 3-level model is warranted.
The 0 ‘s Cl may be indispensible in such a decision process.
A 2-step procedure for point and interval estimation of PTLV
but one single command in Stata: xtmixed

e Step 1. to fit 3-level model and get the variance and

convariances.

e Step 2. to obtain PTLV 6 and its 95% Cl.



4. PTLV — how many levels

Example
Contains data from C:\T E A C H\Workshops\SH\MLM\Data\3L_income.dta
obs: 3,153

vars: 11 20 Aug 2011 18:22

size: 138,732
variable name: (float %9.09g)

region, state, age, gender, marital, hours, citizen, person, constant, degree, income
(Step 1) xtmixed income| | region:| |state:

Performing EM optimization:

Performing gradient-based optimization:

Iteration O: log likelihood = -3987.4675 Iteration 1: log likelihood = -3987.4675
Computing standard errors:

Mixed-effects ML regression Number of obs = 3152
| No. of Observations per Group
Group Variable | Groups MEinimum Average Max imum
________________ A
region | 9 139 350.2 548
state | 51 5 61.8 221
Wald chi2(0) = -
Log likelihood = -3987.4675 Prob > chi2 = -
income | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ A e e
_cons | 10.08074 -1582428 63.70 0.000 9.770594 10.39089

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ A e
region: ldentity |

sd(_cons) | -4624112 -1155155 .2833927 .7545151
_____________________________ A e
state: ldentity |

sd(_cons) | -2087944 -0324538 .1539618 .2831554
_____________________________ A e

sd(Residual) | -8439511 .010721 .8231977 -8652277
LR test vs. linear regression: chi2(2) = 863.67 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.



4. PTLV — how many levels

Explanation of this Stata command, xtmixed,

* Inthe example, the levels go person => state => region.

e Command xtmixed takes response variable (Income) and then the highest leveled
variable (region) — 37 level, and then lower nesting leveled variable (state) — 2"
level.

Check the covariance matrix of these 3 variances, i.e. the covariance matrix of the

logarithms of the above standard deviation estimates (estimates of the square roots of the 3
variances, in § = ZT—B).
0°+Tr+Tp

mat list e(V)
symmetric e(V)[4,4]

income: Insl 1 1: Ins2_1 1: Insig_e:
_cons _cons _cons _cons
income:_cons .02504077
Insl_1 1: cons 0 -06240561
Ins2_1 1: cons 0 -.00096802 .02415984
Insig_e:_cons 0 -1.007e-06 -.00007521 -00016138

(Step 2) Transform them back by: to exponentiate and then square the estimated square-rooted
variances of interest, which is achieved in Stata as follows:

local var_r exp([Insl_1 1] _b[_cons])"™2

local var_s exp([Ins2_1 1] b[ _cons])"™2

local var_e exp([Insig_e] b[ _cons])"2

Using Stata command “nlcom” to work out point and interval estimates.

nlcom (PTLV: “var_r*/(Cvar_e"+ var_s"+ var_r"))

PTLV: exp([Insl_1 1] b[ _cons])™2/(exp([Insig_e] b[ _cons])™2+exp([Ins2_1 1] b[ cons])"2+
exp([Ins1_1_1]_b[_cons])"2)

income | Coef. Std. Err. z P>]z| [95% Conf. Interval]

PTLV | .2205116 .0861043 2.56 0.010  .0517503

Nearly a quarter of the obseved variability in income across workers is due to regional
differences, and the significant 95% Cl may conclude a 3-level modeling is needed.



4. PTLV — Random Intercept Models

 Random Intercept Models (RIMs) — multilevel models with covariates

e RIMs are the next step up from ANOVA Random Effects model.

* InaRIM, covariates are included but none of them is allowed to have a cluster-specific
effect upon the response, i.e. each covariate’s effect is assumed to be the same in the
clusters. Note: in the 2" part of the talk, one or more of these covariates are allowed to
have different effect across clusters.

e Example: relationship between mastery test scores of employees and a host of explanatory
variables including worker’s gender and manager characteristics.

obs: 8,604
vars: 10 10 Aug 2011 16:52
size: 378,576 (99.3% of memory free)

manager = manager 1D;

masttest = worker’s score on a professional mastery test;

mage = age;

male = gender (1 for male, 0 for female);

married = 0/1-variable for manager being married;

hsgrad = 0/1-variable for manager having HS diploma;

somecoll = 0/1-variable for manager (some college education, like community college);
collgrad = 0/1-variable for manager having college degree;

black = 0/1-variable for manager being black;

e Conventional regression model:

Yij = BotBiXy,ij B2Xz 5 +-+BpXp.ij t€ij. (1=1,..,n;,J=1,..,J)

X1 Xy, o) Xp are covariates.



4. PTLV — Random Intercept Models

* In this modeling, covariates are fixed and only the error term is random.
 To accommodate the clustering effect of the managers, split the error term into
(i) a‘common’ part associated only with the manager
(i) an unrelated remaining contribution associated only with his/her employees
e; =Gt &
Then the above becomes
Yij = BotBiXy ij *B2X5 55 +-+BoXs i *€ij
= BotBaXyij tBXo 55 ttBXs i tGiteE;
= (BotG ) +BiXe iy *BXo 55 +tBXo iy T & (1=1,..,n5,3=1,..,3)

The intercept, (|30+Cj ), is not a constant, but rather depends on the manager (level-2
unit). It ‘changes’ from manager to manager.

* The intercept is a random coefficient (because managers are randomly drawn) and not
associated with any explanatory variable, and thus the model is called a random intercept
model.

e ANOVARE is in fact a RIM but without any covariate.

* The variance of the intercept, ¥ = Var(C)), is all that is estimated with regard to this quantity
G, just like 6 = Var(g;) is all that is estimated with regard to the ‘remaining’ (actual) error
term, gjj-

e This clearly makes these random parameters different from any one of the 8’s, which are
themselves estimated. Since the latter are population-specific, they are called fixed
parameters, unlike the C and ¢ that are called random effects. The terms BX, (s =2, ..., p),
or the B’s, are called fixed effects. (This reference is often used more loosely for the 3’s.)



4. PTLV — Random Intercept Models

e A statistical model is a set of equation(s) with some distributional assumptions.
e For RIM,
Yij=BotG )+B:Xy i tBXo 55 +.+BX, 55 t & (1=1,..,n;,5=1,..,J)

the assumptions are

1) the (’s are independent of one another (across managers) but remain the same
across employees with same manager (i.e., constant within manager), since they are
manager-specific;

2) the €’s are worker-specific and vary across workers and managers (unlike the C’s),
being independent of one another across workers and managers;

3) the(’s and ¢’s are independent of each other (any C of any €); and

4) E(C;| X;)=E(e; | C; X;) =0 (and hence also E(g ; | X;) = 0); these two equations are
referred to as exogeneity assumptions.

* The manger-specific error component C; represents all effects of omitted manager
characteristics upon the response y, or unobserved heterogeneity. Since (; is the same for
all subordinates to a given manager (jt"), G ;induces within-manager dependence among the
total residuals e;. This is a new phenomenon for standard regression, which it does not deal
with.

e with assumptions (i) through (iv),

E(y; | G Xj) =B+ B Xpj+ B X+ +B, X+

* This above equation represents the cluster-specific (unit-specific) or conditional regression —
given C and all the covariates (denoted for simplicity X) — while averaged only over €.

* Alternatively, the population-averaged or marginal regression is (averaged over C and ¢,
given the covariates X):

E(y,.j | Xij) =By + P 1Xl',.j+ B 2XZ’U+ ot Bp Xp’,.j.



4. PTLV — Random Intercept Models

e Example
xtmixed masttest male mage hsgrad somecoll collgrad married black |[manager:

Performing EM optimization:
Performing gradient-based optimization:

Iteration O: log likelihood = -34610.86
Iteration 1: log likelihood = -34610.857
Computing standard errors:
Mixed-effects ML regression Number of obs = 8604
Group variable: manager Number of groups = 3978
Obs per group: min = 2
avg = 2.2
max = 3
Wald chi2(7) = 494 .88
Log likelihood = -34610.857 Prob > chi2 = 0.0000
masttest | Coef Std. Err. z P>|z] [95% Conf. Interval]
_____________ e
male | 3.462295 .2735761 12.66 0.000 2.926095 3.998494
mage | .2144932 .0388718 5.52 0.000 -1383059 .2906804
hsgrad | 2.952742 .7180955 4.11 0.000 1.545301 4.360184
somecoll | 4.050778 .7775768 5.21 0.000 2.526756 5.574801
collgrad | 4.900397 .7875138 6.22 0.000 3.356899 6.443896
married | 2.917374 . 7255747 4.02 0.000 1.495274 4.339474
black | -5.573554 .8170046 -6.82 0.000 -7.174854  -3.972255
_cons | 86.30132 1.132518 76.20 0.000 84.08163 88.52102
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ e
manager: ldentity | -~ =~
sd(_cons) | 7/ 9-945966\\ .179843 9.599654 10.30477
_____________________________ A e
sd(Residual) |(\ 10-5647/’ -110056 10.35119 10.78263

________________________________ _\_;_:__7'_____________________________________
LR test vs. linear regression: chibar2(01) = 1199.15 Prob >= chibar2 = 0.0000



4. PTLV — Random Intercept Models

Comparing RIM
Vij=BotG )+BiXy a5 B2Xo 55 +-tBoXolij T+ &
with fully unconditional, combined (mixed) model associated with one-way ANOVA RE, i.e.
Yi =Yoot Hoj * I
which one is better?
This question is answered using the proportional reduction in error variance (PREV) quantity that is
defined as follows
PREV = [EV(null model) — EV(full model)] / EV(null model)
where EV(.) denotes ‘error variance’, i.e. EV =YV + 0.
The full model for the PREV is the currently considered RIM, while the null model is the ANOVA RE
model (fully unconditional model).

% Example
xtreg masttest, i(manager) mle
Iteration O: log likelihood = -34850.322 Iteration 1: log likelihood = -34850.281

Random-effects ML regression Number of obs = 8604
Group variable: manager Number of groups = 3978
Random effects u_i1 ~ Gaussian Obs per group: min = 2
avg = 2.2
max = 3
Wald chi2(0) = 0.00
Log likelihood = -34850.281 Prob > chi2 =
masttest | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ e
_cons | 99.94417 .2031043 492.08 0.000 99.54609 100.3422
————————————— e e e e T e e e
/sigma_u |/"10-47977‘\ -1836636 10.12591 10.846
/sigma_e | N 10.74643. .1117388 10.52964 10.96768 PREV = (225.39 —
ol SR omawes AL 0O iosayasas - os

Likelihood-ratio test of sigma u=0: chibar2(01)= 1315.66 Prob>=chibar2 = 0.000

EV(null model) = 10.48% + 10.752 = 225.39, EV(full model) = EV(RIM) = 9.952 + 10.562 = 21(;52/

i.e. 6.6% variance reduction is achieved when going from the ANOVA RE to the RIM=



4. PTLV — Random Intercept Models

Hypotheses testing, e.g. testing significance of sets of predictors/explanatory variables, using the Wald tests.

X/

% Example
testparm married hsgrad
( 1) [masttest]hsgrad = 0O
( 2) [masttest]married = 0
chi2( 2) = 44.07
Prob > chi2 0.0000

the effect upon worker’s mastery test score of manager marital status and education cannot be dispensed
with (i.e. the hypothesis that the regression coefficients for manager age and education being both 0, is
rejected).
Predicted means (on the outcome variable) for level-2 or level-1 units
+» Example —in the case of RIM for married non-black managers of female employees, who have various
levels of education.

1) First generating a corresponding educational level variable

gen educ = hsgrad*1+somecol l*2+collgrad*3

label define ed O "no HS grad™ 1 "HS grad” 2 "some Coll"™ 3 "Coll grad*
label values educ ed

2) Then ‘cross-tabulating’ the predicted means by RIM
adjust male=0 married=1 black=0, by(educ) ci format(%4.0fT)

~

Dependent variable: masttest Equation: masttest Command: xtmixed
Variables left as is: mage, hsgrad, somecoll, collgrad
Covariates set to value: male = 0, married = 1, black = 0

educ | Xb Ib ub

___________ e e

no HS grad | 94 [93 95]

HS grad | 98 [97 99]

some Coll | 99 [99 100]

Coll grad | 101 [100 102]
Key: xb Linear Prediction

[Ib , ub] = [95% Confidence Interval]



4. PTLV — Model Adequacy Evaluation

MLM does not have a ‘saturated model’ that could be used as a benchmark for evaluating overall model fit.
Model adequacy is evaluated usmg residuals. In a 2-level modeling, there are 3 types of residuals

1) Total residuals  &; =y, — ,6 ,61 L~ ﬂ X, 2) Level-1 residuals & =& CJ

3) Level-2 residuals 5
The level-2 residuals, C;, can be obtained from empirical Bayes estimates. The Stata does this internally and
automatically, using a main modeling module, ‘gllamm’.

Example — the same data set from the employee mastery test study.
gllamm masttest male mage hsgrad somecoll collgrad married black, i(manager) adapt
Running adaptive quadrature

Iteration O: log likelihood = -35207.583 Iteration 1 log likelihood = -34924.634
Iteration 2: log likelihood = -34624.349 Iteration 3: log likelihood = -34610.913
Iteration 4: log likelihood = -34610.86 Iteration 5 log likelihood = -34610.86
Adaptive quadrature has converged, running Newton-Raphson

Iteration O: log likelihood = -34610.86 Iteration 1: log likelihood = -34610.86
(backed up) Iteration 2: log likelihood = -34610.857

number of level 1 units = 8604 number of level 2 units = 3978Condition Number = 186.0425

gllamm model
log likelihood = -34610.857

masttest | Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ e e e

male | 3.462295 .2735929 12.65 0.000 2.926063 3.998527

mage | .2144925 .0389559 5.51 0.000 .1381404 .2908447

hsgrad | 2.952749 .7181249 4.11 0.000 1.54525 4.360248

somecoll | 4.050788 . 7776692 5.21 0.000 2.526585 5.574992

collgrad | 4.900411 .787755 6.22 0.000 3.35644 6.444382

married | 2.917371 .7255996 4.02 0.000 1.495222 4.33952

black | -5.573552 .817007 -6.82 0.000 -7.174856  -3.972248

_cons | 86.30134  1.134018 76.10 0.000 84.0787 88.52397

Variance at level 1

111.61281 (2.325413)
Variances and covariances of random effects

***Jevel 2 (manager)
var(1): 98.922294 (3.5774213)



Density

4. PTLV — Model Adequacy Evaluation-cont’d

Example (cont’d)

Store the associated estimates that will be handy for later use.
estimates store gllamm

Evaluate the fit of the model — looking at their histograms provided below.
gllapred levl, pearson

(residuals will be stored in levl)

Non-adaptive log-likelihood: -34610.952

-3.461e+04 -3.461e+04 . - o
log-likelihood:-34610.857 The slight deviation from normality in both plots

- . , , Id b ibly due to violati f del
histogram levl, normal xtitle(Standardized Level-1 Residuals) sell [ RESLa 2 Lo HRlENIEnD Do il

- 7 N _ assumptions. It would be recommendable to use a
é?:ggiga ?ngt;;285373143’ width=.26869142) robust estimation procedure as below

. _ B _ Ilamm, robust
histogram lev2ml, normal xtitle(Standardized Level-2 Residuals) 9

These last commands produce the histograms of standardized level-1 and level-2 residuals

T T T T T T ©

-2 0 2 -2 0
Standardized Level-1 Residuals Level-2 Residuals



4. PTLV — Model Adequacy Evaluation-cont’d

Example (cont’d)

Robust estimation procedure to overcome slight non-normality distribution in the residuals:
gllamm, robust

Non-adaptive log-likelihood: -34610.952
-3.461e+04 -3.461e+04

number of level 1 units = 8604
Condition Number = 186.0425

number of level 2 units = 3978

gllamm model

log likelihood = -34610.857
Robust standard errors

masttest | Coef Std. Err. z P>]z] [95% Conf. Interval]
_____________ e
male | 3.462295 .2771227 12.49 0.000 2.919145 4.005446

mage | .2144925 .0409445 5.24 0.000 .1342428 .2947422

hsgrad | 2.952749 .7570516 3.90 0.000 1.468955 4.436543
somecoll | 4.050788 -8204092 4.94 0.000 2.442816 5.658761
collgrad | 4.900411 .8325151 5.89 0.000 3.268711 6.532111
married | 2.917371 .7740334 3.77 0.000 1.400293 4.434448
black | -5.573552 -850151 -6.56 0.000 -7.239818 -3.907287

_cons | 86.30134 1.19685 72.11 0.000 83.95555 88.64712

Variance at level 1

111.61281 (3.7655232)
Variances and covariances of random effects

***level 2 (manager)
var(1l): 98.922294 (3.9585828)

From this table, standard errors are larger than when the first fitted model with ‘gllamm’. But they are ‘safe’
to use as far as finding out the individual predictor contribution is concerned to explain variability in the
response variable.



5. RMAC

Robust Modeling Accounting for Clustering



5. RMAC

RMAC, robust modeling accounting for clustering (Woodridge, 2009),
is @ modeling choice for the clustering effect when

e dealing with hierarchical data

e |CCis not very pronounced, yet substantive

* the study design needs to take into account for the clustering
A Robust Modeling is an alternative approach to standard statistical
methods, such as those for estimating location, scale and regression
parameters. It “produces estimators that are not unduly affected by
small departures from the model assumptions under which these
standard methods are usually derived: the standard methods are
comparatively badly affected.” (Robust statistics — Wikipedia)



6. Summary



6. Summary

Statistical studies of data from social, behavioral, biomedical, business disciplines
are dealing with studied subjects (units of analysis) that are clustered within
higher-order units. MLM becomes an increasingly popular methodology of choice.
Application of classical, single-level statistical models, e.g. linear model,
generalized linear model, “1st-generation” structural equation modeling, will in

general produce

1. mostly spuriously significant parameters

2. short confidence intervals

3. liberal statistical tests
Using aggregation and disaggregation to deal with nesting phenomenon doesn’t
deliver answers to the actual question of interest in MLM, if not misleading.
MLM offers a unified statistical methodology accounting for the lack of
independence across level-1 units of analysis, being achieved by using an
extension of OLS regression, viz. generalized least squares.
MLM is based on a large-sample statistical theory, and thus best used with ‘large
samples’. This is specifically a requirement with regard to number of higher-order
units. For example, for 2-level modeling, the units in level-2 has to be large, e.g.
30+. And it is not essential that the number of level-1 units be large, as long as that
there is at least some level-2 units having 2+ cases in them.

“MLM does not have routinely avaiable ‘saturated model’...”, “and hence no similar
overall goodness of fit index(-es).”



Listing of Stata Commands



Data input/output
use “c:\path\data.dta”, clear
« infile varl var2 using “c:\path\data.dat”
e save “c:\path\newdata.dta”, replace

Summary
e d /* display — print to screen the input */
e sSum /* summary */

« graph twoway (scatter y var x_var, mlabel(id_var)) (Ifit y var, x var) if
1d_var <=8
e list In 1/50

« mat list e(V) /* print to screen a matrix */
Analyses

* reg y var x var

« xtmixed y_var x _var || 1d_var:, variance

e predict re, reffects
e predict se, reses
« xtreg y_var, 1(id_var) mle
e.g. xtmixed income || region: || state:
e testparm varl var2 /* testing significance of individual var */

other



