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From 12/15-18/2014, “the 4" Short Course on NGS:
Technology and Statistical Methods”, a 4-day training
course, was held in University of Alabama at Birmingham.

I’'m reintroducing some contents that were talked and
discussed from that 4-day Short Course.

The intention is to share the learning, to help us get
attention to those ideas and approaches to analyzing
sequencing data.

My quotes or directly referring to the content in the course-
provided slides are for the convenience in our study and
discussion. The copyrights belong to the original author(s)
and their institutions






What is this Short Course

High demands on novel analysis strategies to deal with wealth
of NGS data:

— “sound information extraction”
— “sophisticated statistical methodologies and algorithms”

The National Human Genome Research Institute (NHGRI)
sponsors this training course for “exchanging of cutting-edge
information and ideas, and fostering collaborations among
methodologists, analysts, and biomedical investigators.”

University of Alabama at Birmingham (UAB)’s Biostats Dept has
hosted this course for the 4t year.

A 4-day course, running from 12/15 - 18/2014.
~4 talks/day; each talk lasted 1 hour plus 15-min discussion.



The 4t Short Course at UAB

e 52 attended

Female Male Total
BS 4 1 5 9.6%
MS 4 a4  7.7%
MD 5 7] 13.5%
MD,PhD 1 1 2
PharmD 2 69.29%
PhD 11 20 31
PhD,MPH 1 1
Total 20 32 52




Topics that this course has covered

1.

10.
11.
12.

13.
14.
15.
16.

Technical Overview of NGS (Platforms; chemistry; library construction) Shawn Levy, PhD —
HudsonAlpha Institute of Biotechnology
Next Generation Sequencing in Methylation Studies Devin Absher, PhD - HudsonAlpha
Predicting Causal Variation Greg Cooper, PhD - HudsonAlpha

StatGenlab, a virtual machine for genetic data analysis

Jelai Wang, BSc — Wang Scientific Software Solutions, LLC
Software Demonstration & Hands-on Computing (R & Bioinformatics File Formats) Xiangqin Cui,
PhD — UAB
Functional Genomics: Identifying and characterizing cis-regulatory sequences Dan Savic, PhD —
HudsonAlpha
Variant Calling & Assembly NGS Data Degui Zhi, PhD - UAB
Rare Variants Analysis Michael Wu, PhD - Fred Hutchinson Cancer Research Center
Software Demonstration & Hands-on Computing (SKAT & NGS, Variant Calling) Michael Wu, PhD;
Vinodh Srini, MS - UAB
Transcriptome Analysis Using NGS Xiangqin Cui, PhD - UAB
ChiP-Seq Data Analysis Hao Wu, PhD - Emory University
Analysis of whole-genome bisulfite sequencing data Karen Conneely, PhD - Emory University
Software Demonstration & Hands-on Computing (ChIP-Seq, BSmooth and DSS) Hao Wu, PhD;
Karen Conneely, PhD
Computational Methods for Cancer Genome Interpretation Emidio Capriotti, PhD — UAB
Statistical Methods for NGS Data Nicholas Schork, PhD - J. Craig Venter Institute
1000 Genomes & Beyond Fuli Yu, PhD - Baylor College of Medicine
Software Demonstration & Hands-on Computing (RNA-Seq) Degui Zhi, PhD



Topic Listing of the Course

1. Technical Overview of NGS (Platforms; chemistry; library construction) Shawn Levy, PhD —
HudsonAlpha Institute of Biotechnology

2. Next Generation Sequencing in Methylation Studies Devin Absher, PhD - HudsonAlpha

3. Predicting Causal Variation Greg Cooper, PhD - HudsonAlpha Day 1

StatGenlab, a virtual machine for genetic data analysis
Jelai Wang, BSc — Wang Scientific Software Solutions, LLC

“ 4. Software Demonstration & Hands-on Computing (R & Bioinformatics File Formats) Xiangqin Cui,
PhD — UAB

5. Functional Genomics: Identifying and characterizing cis-regulatory sequences Dan Savic, PhD —
HudsonAlpha

6. Variant Calling & Assembly NGS Data Degui Zhi, PhD - UAB Day 2

7. Rare Variants Analysis Michael Wu, PhD - Fred Hutchinson Cancer Research Center

= 8. Software Demonstration & Hands-on Computing (SKAT & NGS, Variant Calling) Michael Wu, PhD;
Vinodh Srini, MS - UAB

9. Transcriptome Analysis Using NGS Xiangqin Cui, PhD - UAB

10. ChiP-Seq Data Analysis Hao Wu, PhD - Emory University Day 3

11. Analysis of whole-genome bisulfite sequencing data Karen Conneely, PhD - Emory University

= 12. Software Demonstration & Hands-on Computing (ChIP-Seq, BSmooth and DSS) Hao Wu, PhD;
Karen Conneely, PhD

13. Computational Methods for Cancer Genome Interpretation Emidio Capriotti, PhD — UAB

14. Statistical Methods for NGS Data Nicholas Schork, PhD - J. Craig Venter Institute Day 4

15. 1000 Genomes & Beyond Fuli Yu, PhD - Baylor College of Medicine

= 16. Software Demonstration & Hands-on Computing (RNA-Seq) Degui Zhi, PhD




part 2

part 1

The topics that I'd like to reintroduce

N

10.
11.
12.

13.

= 14,
15.

16.

Technical Overview of NGS (Platforms; chemistry; library construction) Shawn Levy, PhD —
HudsonAlpha Institute of Biotechnology
Next Generation Sequencing in Methylation Studies Devin Absher, PhD - HudsonAlpha
Predicting Causal Variation Greg Cooper, PhD - HudsonAlpha

StatGenlab, a virtual machine for genetic data analysis

Jelai Wang, BSc — Wang Scientific Software Solutions, LLC
Software Demonstration & Hands-on Computing (R & Bioinformatics File Formats) Xiangqin Cui,
PhD — UAB
Functional Genomics: Identifying and characterizing cis-regulatory sequences Dan Savic, PhD —
HudsonAlpha
Variant Calling & Assembly NGS Data Degui Zhi, PhD - UAB
Rare Variants Analysis Michael Wu, PhD - Fred Hutchinson Cancer Research Center
Software Demonstration & Hands-on Computing (SKAT & NGS, Variant Calling) Michael Wu, PhD;
Vinodh Srini, MS - UAB
Transcriptome Analysis Using NGS Xiangqin Cui, PhD - UAB
ChiP-Seq Data Analysis Hao Wu, PhD - Emory University
Analysis of whole-genome bisulfite sequencing data Karen Conneely, PhD - Emory University
Software Demonstration & Hands-on Computing (ChIP-Seq, BSmooth and DSS) Hao Wu, PhD;
Karen Conneely, PhD
Computational Methods for Cancer Genome Interpretation Emidio Capriotti, PhD — UAB
Statistical Methods for NGS Data Nicholas Schork, PhD - J. Craig Venter Institute
1000 Genomes & Beyond Fuli Yu, PhD - Baylor College of Medicine
Software Demonstration & Hands-on Computing (RNA-Seq) Degui Zhi, PhD



First 2 topics.

Statistical Methods for Next Generation
Sequencing Data

Nicholas J. Schork, Ph.D.
J. Craig Venter Institute, La Jolla, CA &
The University of California, San Diego, La Jolla, CA

1. Background: The limits of the contemporary GWAS
2. Analysis of rare variants in sequencing studies

3. Predicting the functional effect of variants

4. Population genetic analysis of rare variants

5. The human ‘diplome’ and the need to phase

6. ‘Filtering’ strategies for identifying causal variants

L Clﬂg Venter

I' NS T I TUTE

Rare Variant Analysis

Michael C. Wu

Division of Public Health Sciences
Fred Hutchinson Cancer Research Center

http://research.fhcrc.org/wu/




An Overview of the Big Picture

DNA
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LCCGATCGGATCAATTCCGATCCAATTCCATACATACCGATTTGACCCAA

LCCAATCGGCTCAATTCCGATCCAATTCCATATATACCGATTTGACCCAA

http://research.thcrc.org/wu/ 4/75
Colored are SNP/variant
Green: low densed freq(Allele;) =
Red: high density+imputed
Blue: picked by seq’d

count(Allele,)
count(Allele,) + count(Allele,)




MAF and rare variant

Rare Variants
Common Variant

L Genomic Feature (e.g., Binding Site)

AGATTCGAGATCAGGATCGAG...
AGATTCGAGATCAGGATCGAG...
AG. TTCgTGATCAGGATCGAGm
AGATTCGAGATCAGGATCGAG...
. ACGTAGCTAGGGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. ..
.. ACGTAGCTAGAGATCGATACCAGAGHGCTATATCACTCGAGATTCGAGATCAGGATCGAG... > Case Se guences
..ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
..ACGTAGCTAGAGATCGATACCT GAGCTATATCACTCG%GATTC AGATCAGGATCGAG...
..ACGTAGCTAGAGATRGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

mACGTAGCTAGGéATCGA CCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

.. ACGTAGCTAGAGAT CGATACCTGAGAGCTATATCACTCGAGATTCGAGATTAGGATCGAG. .
. ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. .
. ACGTAGCTAGEGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. .
. ACGTAGCTMGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. .
. ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGAATCGAG. .
. ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. . > Control Sequences
. ACGTZGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. .
. ACETAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. .
. C¥GTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG. .

..ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

e Allelic frequency and MAF
e Common variants and rare variants
e Detection of disease association with common variants (MAF >=5%), OR~1.2-1.4, a
small fraction (e.g. 4 — 10%) of diseases.
* How to detect rare variants?
e Statistical methods
*  Whole genome scan or region selection
* Biological function and region identification
e Causal variant identification
* Etc.



Referring to the original slides (part 1)

Statistical Methods for Next Generation
Sequencing Data

Nicholas J. Schork, Ph.D.
J. Craig Venter Institute, La Jolla, CA &
The University of California, San Diego, La Jolla, CA

1. Background: The limits of the contemporary GWAS
2. Analysis of rare variants in sequencing studies

3. Predicting the functional effect of variants

4. Population genetic analysis of rare variants

5. The human ‘diplome’ and the need to phase

6. ‘Filtering’ strategies for identifying causal variants

J. Craig Venter

I' NS T I TUTE

Total 55 pages.
Copy of the slides made available to the
pertinent audience.



In the data, we have N samples with p phenotypic variables for
each, e.g. gene expression data. =2 a Y matrix
We have m genetic markers for each sample. 2 an X matrix

Xoo " xOm]

XNo 0 XNm

The y’s could be different phenotype data, and the x’s could be
DNA data and/or covariates.

The goal is to 1) define the pairwise similarity or diversity
within Y, and the pairwise similarity or diversity within X, and 2)
seek correlation between Yand X, i.e.

Y=pX+¢



The goal is to 1) define the pairwise similarity or diversity within
Y, and the pairwise similarity or diversity within X,

Definition of the To create a matrix of
similarity/diversity in the pairwise
a pair of individuals distance

A set of methods

e Set Method (by Hoh and Ott 2003)
* Diversity Method (by Jost 2007)
e Distance Dispersion (by Anderson 2006)
e AMOVA — analysis of molecular variance (by Excoffier, 1992)
e GAMOVA - a generalized AMOVA (by Schork, 2007)
— MDMR (multivariate distance matrix regression)
— Genetic distance-based
e etc.



The goal is to 1) define the pairwise similarity or diversity within
Y, and the pairwise similarity or diversity within X,

Definition of the To create a matrix of
similarity/diversity in the pairwise
a pair of individuals distance

A set of methods

e Set Method (by Hoh and Ott 2003)

= ¢ Diversity Method (by Jost 2007)

» Distance Dispersion (by Anderson 2006)
e  AMOVA — analysis of molecular variance (by Excoffier, 1992)

> ¢ GAMOVA - a generalized AMOVA (by Schork, 2007)

— MDMR (multivariate distance matrix regression)
— G@Genetic distance-based
e etc.



N. Schork’s slides: Example Application

Sanofi/Scripps Study: Gene Sequence Variation and Obesity

» 298 Individuals (148 morbidly cbese; 150 controls)

« Two endocannabinoid genes sequenced using lllumina GA (FAAH; MGLL)

» Standard assembly for SNP identification (60x coverage; 3 reads per variant)
« 242 variants identified in FAAH (many novel and rare): 31 kb of sequence

= 1232 variants identified in MGLL (many novel and rare): 157 kb of sequence

* FAAH: located on chromosome 1p33, known to hydrolize anandamide (AEA),
and other fatty acid amides

* MGLL: located on chromosome 3q21.3, a presynaptic enzyme that hydrolyzes
2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid found in the
brain

Harismendy et al. Genome Biol. 2010 Nov 30;11(11):R118. PMID: 21118518
Bansal et al. Pac Symp Biocomput. 2011:76-87. PMID: 21121035

Different Methods Applied to the MGLL Gene

B T e e gl

i , Set Method (Hoh and Ott 2003)

ol oo BN, i AN Omnibus Haplotype (Fallin et al. 2001)
WWMWMM%MQM Logic regression (Kooperberg et al. 2001)
\_M,m‘f‘»wﬁiﬂi‘h Ridge regression (Malo et al. 2008)
N*—Jw"i—ém/\.fw' Sequence similarity (Nievergelt et al. 2007

—

LN Diversity (Jost 2007)

ol
el NP A tr i SN SR Distance Dispersion (Anderson 2006)

*
et Wt 0t P it A rom et s SUbset selection (Bhatia et al. 2010)

b

cas Weighted average (Madsen et al. 2009)

t‘ T

| LA v
Tt A

| et Mot P st nst roornanr i 3 Hotelling's T-square (Li and Leal 2008)

== Fisher’s exact, single locus test

o

apsed Variations

Genomic Features with Coll
Table 2. P-values for association for each analysis method for specific sets of collapsed variations in the MGLL Gene
FAAH
NS H3K27 TFBS FOX2 Amidase
# of variants 5 29 4 14 5
Dispersion (Dis) 0.59 0.05 0.77 0.99 0.61
Diversity (Div) 0.43 0.42 0.81 0.33 0.46
MDMR Similarity (Sim) 0.19 0.21 0.05 0.14 0.41
Li & Leal (LL) 0.60 0.03 0.60 1.00 0.50
Subset Selection (SS) 1.00 0.01 0.60 0.75 0.60
w Madsen & Browning (MB) 1.00 0.01 0.33 1.00 0.75
@ Logic Regression (LR) 0.23 0.18 0.39 0.22 0.48
= Ridge Regresssion (RR) 0.35 0.09 0.06 0.33 0.54
_8 PLINK Haplotype (Phap) NA 0.92 NA 0.24 0.61
Q PLINK Set Analysis (Pset) 1.00 1.00 0.02 1.00 1.00
=
o MGLL
= NS H3K27 TFBS FOX2 Amidase
@ # of variants 9 100 11 3 0
6 Dispersion 0.28 0.99 0.02 0.72 NA
= Diversity 0.77 0.65 0.73 0.64 NA
5 MDMR. 0.81 0.07 0.67 0.29 NA
Li & Leal 1.00 1.00 1.00 0.75 NA
SubsetSelection 0.60 0.43 1.00 1.00 NA
Madsen & Browning 0.75 0.30 0.02 0.20 NA
Logic Regression 0.35 0.67 0.02 0.49 NA
Ridge Reg. 0.71 0.50 0.01 0.61 NA
PLINK Haplotype NA 0.81 0.07 NA NA
PLINK Set Analysis 1.00 0.43 0.05 1.00 NA

Bansal et al. PSB 2011




N. Schork’s slides: Diversity Methods

Diversity Methods: Summary Measures vs. Comparing
Individual Sequences

Mbolecular Ecology (2008) 17, 40154026 doi: 101111 /j.1365-264X 2008 03887 x

Ggrp and its relatives do not measure differentiation

LOU JOST
Via Rantun, Banos, Tungurahua, Ecuador

~(85)

Figure B 2. Window-based association analysis for the MGLL gene assuming a

(1/(1-4)

diversity statistic with different exponents based on the work of Jost (2007). The A
walues used to construct the graphs are, from the botiom panel to the top panel: 0.2

05,20, and 4.0

: . o’ et~
. ”"*ij\-v\
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Summary Measure Approach

BroMerrIcs 62, 245-233 DO 10,1111/ 1541-0420.2005.00440.5
March 2006

Distance-Based Tests for Homogeneity of Multivariate Dispersions

Marti J. Anderson

Department of Statistics, University of Ancidand, Private Bag 92019, Auckland, New Zealand
email: mjaQstat. auckland.ac.nz

-

_ MW*WM#’-\M‘A“

Sequence Diversity/Similarity Measure Approach



N. Schork’s slides: Distance-based Method

Distance-Based Sequence Analysis for Associations:
Simple Nucleotide-Level Identity-By-State Similarity Matrix

9

DNA Sequence-Based

Phenotypic Association
Analysis

Nicholas J. Schork,****¥ Jennifer Wessel,**¥ and
Nathalie Malo*-*V

Advances in Genelics, Vol. 50

9. DNA Sequence Associations

Sequence Diversity/Similarity Measure Approach

1

=l

Table 9.1. Srudies Suggesting That Mulriple, Potential Interacting Variants Within a Gene or

Specified Genomic Region Influence Phenotypic Epression

Gene In vitro! Phenotype References
ADRBZ Yes Bronchodilator response Drysdale et al. (2000)
DRD4 No Schizophrenia Nakajima et al. (2007)
NRG1 No* Schizophrenia and NRG1 Law et al. (2006)

mRNA levels
HTR2A Yes HTR2A gene expression Myers er al. (2007)
ENTI Yes ENT1 gene expression Myers et al. (2006)
CDhA Yes CDA gene expression Fitzgerald et al. (2006)
PCSK9 No Lipoprotein levels Kotowski et al. (2006)
NPCI1L1 No Lipoprotein levels Cohen et al. (2006)
KRTI Yes KRT1 gene expression Tao et al. (2006)
GH1 Yes GH1 gene expression/ Horan e al. (2003)
adult height
DATIL Yes DATI gene expression Greenwood and Kelsoe (2003)
(SLC6A3)
APOE No Lipid levels Stengard etal. (2002)
SLCAA3 Yes Parkinson's disease Kelada et al (2005)
CHGA Yes Catechclamine Wen et al. (2004)

physiology

Nere thar the study of the NRG1 gene involved compurational assessments of the funcrionaliry

of gene variations rather than in vitro studies or just associarion studies.
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Pan W. Relationship between genomic distance-based regression and
kernel machine regression for multi-marker association testing. Genet

Epidemiol. 2011 [Epub ahead of print]; PMID:21308765



N. Schork’s slides;: MDMR/GAMOVA Method

Relating Variation in Similarity to Outcomes: MDMR/GAMOVA

Multivariate regression analysis of distance matrices

A standard multivariate multiple regression for testing associations between gene expression
moae! 1or tis siuation would be (20, 21) patterns and related variables
Mtthow A Tapala® and Hicholar ARTICLE
Y=Xpg+e, 1 b 1

i o vt ooy eyt s€N€ralized Genomic Distance-Based Regression Methodology

where B is an M % P matrix of regression cocfficicnts and ¢ is Srmmamynea s comwae fOr Multilocus Association Analysis

an error term, often thought be distributed as a (multivariate) et o i e el a3 e

normal vector. The least-squares solution for g is B = ot s s . rso e et s s e i ki

(X'X) 'X'Y, with the matrix of residual errors for the model o s o oo T Ip—— s
being B T Generalized Analysis of Molecular Variance

aas

Carohire M --'.- Ondej Libiger ", Nichotan 1. Schark® #4434

R=Y-¥=Y-X,=(I- H)Y, 12] Vel i porstimiaty k.

A M progo s FalBan B b

s, e : =) N . Totuing e vimmrtors o 3 A3

where H = (X'X)"'X’ and is the traditional “hat” matrix. e M ey Smledna——

Unfortunately, If N << P, as is often the case with gene e bbb Blamy s I the fakds f gonetic apidamiskogy and apped populsion grastcs sre predicsind an or requie, 2a
2 b N R Mg Simaruronat assay cr Gt | Ao i of the genetic bachg o dineriity of the individio sy hasen for viudy. A nurer of 1tiategies have beem
expression and other genomic data types, then this model is wing 1080w of e darmed by . K catected =
. ) b %] chemical patineczy cr other 2 o Whe Indhratusls in the 18ady. bated oo & panel of DRA makers. Mows ves. masy of thise stretegses are aher roated in
problematic. An alternative would consider how the M predictor welimtuingy ey s pehing | oy s Mhasash ot g e
variables relate to the similarity or dissimilarity of the subjects s e e g e ""..";_-,::,.'.,“:..,,‘*.m:t:::t;‘::_ma‘::m.:..‘:;‘
under study with respeet to the P gene cxpression values as a Bk mmumrs md ot o S oty of It e sy s el fropomey oo of o popedoions b i
whole or as a scrics of unique subsets of the data. ,.,.M% plained by grousing faciors such 2% coutry of wrigit, race, o whAkity. of o quantty the wrengeh of the
Let D be an N % N distance matrix, whose clements, dj, reflect g o po e abmutian ..,..‘_.‘,: e oy el sk v
ot r

o i, e ut f these
hat chey

the distance (or dissimilarity) of subjects i and j with respect to
the P gene expression values. For example, dj; could be calculated
as the Euclidean distance or as a function of the correlation
coefficient (see Forming the Distance Matrix below). Let A =
(ag) = (—"ad}). One can form Gower's centered matrix G from
A by calculating

P seea as “opumal,” afpropae
el e Dslpicnl menaiog of e

1 N/ 1 \

6=(1-—w)al1-—w), 131 e O nie

\ n ), \ " J whch i i et & precumer und fuai

B L N VR | WAL | e -
where 1 is a N-dimensional column vector whose every clement
is 1 and 1 is an N X N identity matrix. An appropriate F statistic
for assessing the relationship between the M predictor variables
and variation in the dissimilarities among the N subjects with

respect to the P variables is

r(HGH) /(M — 1)

Fema-—wmeca-myw-m"

141

G o s | e ey

No a priori clustering or data reduction: test of predictors and variation in matrix



Some review of population genetics (1)

* Fixation Index F,, Wright’s F-statistics — a measure of population

differentiation, usually using genetic polymorphism data, e.qg. SNP,
microsatellite markers. This method is good for 2-allele locus.

If p is the average frequency of an allele in the total population, g; is the variance in

the frequency of the allele between different subpopulations, weighted by the sizes of
the subpopulations, and J’f"‘ is the variance of the allelic state in the total population,

Foris defined as [1]

T2 2
Fsg = 5 =—5_
oz p(1—p)
Estimation

In practice, none of the quantities used for the definitions can be easily measured. As a
consequence, various estimators have been proposed. A particularly simple estimator
applicable to DNA sequence data is.

TBetween — TWithin
For =

TMBetween
where T Between aNd Mwithin represent the average number of pairwise differences
between two individuals sampled from different sub-populations {(Teetween) OF from the
same sub-population (Mwithin). The average pairwise difference within a population
can be calculated as the sum of the pairwise differences divided by the number of pairs.
However, this estimator is biased when sample sizes are small or if they vary between
populations. Therefore, more elaborate methods are used to compute Fgy in practice.
Two of the most widely used procedures are the estimator by Weir & Cockerham
(1984),[*] or performing an Analysis of molecular variance. A list of implementations is
available at the end of this article.

Ref: http://en.wikipedia.org/wiki/Fixation_index



Some review of population genetics (1)

* Fixation Index F,, Wright’s F-statistics — a measure of population
differentiation, usually using genetic polymorphism data, e.qg. SNP,

microsatellite markers. This method is good for 2-allele locus.

If p is the average frequency of an allele in the total population, g; is the variance in

the frequency of the allele between different subpopulations, weighted by the sizes of
the subpopulations, and J’f"‘ is the variance of the allelic state in the total population,

Foris defined as [1]

T2 2
Fsg = 5 =—5_
oz p(1—p)
Estimation

In practice, none of the quantities used for the definitions can be easily measured. As a
consequence, various estimators have been proposed. A particularly simple estimator
applicable to DNA sequence data is.

TBetween — TWithin
For =

TMBetween

where T Between aNd Mwithin represent the average number of pairwise differences

between two individuals sampled from different sub-populations {(Teetween) OF from the

same sub-population (Mwithin). The average pairwise difference within a population

can be calculated as the sum of the pairwise differences divided by the number of pairs.

However, this estimator is biased when sample sizes are small or if they vary between
% populations. Therefore, more elaborate methods are used to compute Fgy in practice.

Two of the most widely used procedures are the estimator by Weir & Cockerham

(1 984}_[43 or performing an Analysis of molecular variance. A list of implementations is
available at the end of this article.

Ref: http://en.wikipedia.org/wiki/Fixation_index



Some review of population genetics (2)

Analysis of Gene Diversity in Subdivided Populations

(population structure/ genetic variability/heterozygosity/gene differentiation)

MASATOSHI NEI

Center for Demographic and Population Genetics, University of Texas at Houston, Tex. 77025

Communicated by Sewall Wright, August 6, 1973

* G, Nei’s G-statistics — a measure of gene diversity (or population
differentiation), an extention of F, but using weighted average of F., for all
alleles in the case of multiallelic conditions.

Gsr = Dys/Hy = (Hr=Hg) /Hy =1-Hg/ Hy.

where D¢ - between-subpopulation diversity, H; — heterozygosities of
total population, and H, — heterozygosities of subpopulations.



Diversity Method (1)

Ggy and its relatives do not measure differentiation

LOU JOST
Via Runtun, Baiios, Tungurahua, Ecuador

Abstract

G¢p and its relatives are often interpreted as measures of differentiation between sub-
populations, with values near zero supposedly indicating low differentiation. However,
_Ggrnecessarily approaches zero when gene diversity is high, even if subpopulations are
completely differentiated, and it is not monotonic with increasing differentiation. Likewise,
when diversity is equated with heterozygosity, standard similarity measures formed by
taking the ratio of mean within-subpopulation diversity to total diversity necessarily
approach unity when diversity is high, even if the subpopulations are completely dissimilar
(no shared alleles). None of these measures can be interpreted as measures of differentiation
or similarity. The derivations of these measures contain two subtle misconceptions which
cause their paradoxical behaviours. Conclusions about population differentiation, gene
flow, relatedness, and conservation priority will often be wrong when based on these fixation
indices or similarity measures. These are not statistical issues; the problems persist even

when true population frequencies are used in the calculations. Recent advances in the
mathematics of diversity identify the misconceptions, and yield mathematically consistent

descriptive measures of population structure which eliminate the paradoxes produced by
standard measures. These measures can be directly related to the migration and mutation
rates of the finite-island model.



Diversity Method (2)

Ggy and its relatives do not measure differentiation

LOU JOST
Via Runtun, Baiios, Tungurahua, Ecuador
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Fig.1 Differentiation measures applied to two completely
differentiated subpopulations (no shared alleles) for various
values of mean within-subpopulation heterozygosity. Gsr and Dy
approach zero when mean heterozygosity is high, even though
differentiation is 100% for these subpopulations. New measures D
and Hg; correctly reflect differentiation regardless of the value of
mean heterozygosity. All values are calculated using actual
population frequencies, not sample frequencies; this is not a
sampling issue.

Number of unique alleles per subpopulation

Fig. 2 Behaviour of Gg; and D as differentiation increases. We
start with two identical subpopulations (four equally common
alleles, 1000 individuals per allele per subpopulation). We then
successively add unique alleles to each subpopulation (1000
individuals per allele) and graph G, and D (the measure of
differentiation defined in the text). G¢; is normalized by dividing
by its maximum value (0.0345). Even though differentiation
increases steadily from left to right, G4 reaches its maximum and
then falls back to zero. G is calculated from exact population
allele frequencies, so this is not a sampling issue.



Ggy and its relatives do not measure differentiation

Diversity Method (3)

LOU JOST

Via Runtun,

Baiios, Tungurahua, Ecuador

k

Why not derive new mathematically self-consistent
descriptive measures of diversity and differentiation
that really behave the way that geneticists thought their
traditional measures behaved? The first step in such a
program is to find a measure of genetic diversity that
behaves correctly in common ratio comparisons and
conservation genetics problems such as those just mentioned.
We can then derive a formula to partition this diversity into
truly independent within- and between-subpopulation
components. The resulting pure between-subpopulation
component can then be transformed into a meaningful,
logically and mathematically consistent measure of relative

differentiation to replace Gg;.

Diversity A= () p!)1/0- (eqn 4)
i=1

where p; is the population frequency of the i-th allele and

the exponent g determines the measure’s sensitivity to

allele frequencies. When =0, eqn 4 gives the allele

number. When g approaches unity, eqn 4 gives (via

calculus) the exponential of Shannon entropy

Partitioning true diversity

It can be proven (Jost 2007) that the decomposition of
any true diversity A; into pure within- and between-
subpopulation components (A and Ag, respectively) must
be multiplicative: the effective number of alleles in the
pooled subpopulations (A;) must equal the effective
number of alleles per subpopulation times the effective

number of distinct subpopulations:

A =Ag - Agr.

(eqn7)




N. Schork’s Slide of Results

Different Methods Applied to the MGLL Gene

; AP RR 7T oo N S wﬁmﬂgghﬁg
i msbomainan o e b o v
: M»W,Mf‘,wﬁm\m

s "-\v—t‘\l\-—

A 2oty
- M ‘M \M’

: ;
® W M""W'Mr‘m Jm-nm—.—&l-?' ?\'ju
N _ ﬂm-m%y% "‘MMMMH: iﬂ"a 2%

R

Set Method (Hoh and Ott 2003)

Omnibus Haplotype (Fallin et al. 2001)
Logic regression (Kooperberg et al. 2001)
Ridge regression (Malo et al. 2008)
Sequence similarity (Nievergelt et al. 2007)
Diversity (Jost 2007)

Distance Dispersion (Anderson 2006)
Subset selection (Bhatia et al. 2010)
Weighted average (Madsen et al. 2009)

Hotelling’s T-square (Li and Leal 2008)
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MDMR/GAMOVA (1)

In the data, we have N samples with p phenotypic variables for
each, e.g. gene expression data. = a Y matrix
We have m genetic markers for each sample. = an X matrix

Yoo = JYop

Xoo xOm]

YNo " YnNp XNOo " XNm

The y’s could be different phenotype data, and the x’s could be
DNA data and/or covariates.

The goal is to 1) define the pairwise similarity within Y, and the
pairwise similarity within X, and 2) seek correlation between Y
and X, i.e.

Y=pBX+¢



The goal is to 1) define the pairwise similarity within ¥, and the
pairwise similarity within X,

Define the pairwise To create a matrix of
similarity within the the pairwise
matrix. distance
s |
2 51/(818)) The distance could be

T e Euclidean distance
* Transformation of r;, correlation
- coefficients.
y El w's; (81.8) \\- IBS allele sharing distance
Sy = L IBS allele sharing with weighting
El a5 * Weighting by nucleotide
conservation across spieces

e Using ancestry information
e etc.

b




MDMR/GAMOVA (2)

Formation of a distance matrix
- Transforming a correlation coefficient, r, matrix to the distance, D, matrix

d,—,— = \2(1 = f',',')-
A Multivariate Multiple Regression Model
Y=XB+e,
where Yis an N x P matrix of phenotype, say expression of P genes from N
individuals, X is an N x M matrix of M genetic markers from N individuals, and 8 is
an M x P matrix of regression coefficients and € is an error term.

The least-squares solution for B is § = (X'X)~1X'Y, with the matrix of residual
errors being

R=Y-Y=Y-Xg=(I- HY

whereH = (X’X) X’ and is the traditional “hat” matrix.



MDMR/GAMOVA (3)

Let G be Gower’s centered matrix
.. l L |
G=(1-—1)a{1-—1r)
where 1 is a N-dimensional column vector whose every elementis1andlisan N
N identity matrix, and A = (a;) = (—'2d};).

An appropriate F statistic for assessing the relationship between the M predictor
variables and variation in the dissimilarities among the N subjects with respect to

the P variables is
tr(HGH)/ (M — 1)

F= fl‘[(l — H)G(I — H)]/(}V — ﬂ’j).

where “tr” stands for “trace”, H is a hat matrix (projection matrix, H = X(X'X)-1X'),
G is Gower’s centered matrix, and F is the F statistics possessing the properties as
in the Fin ANOVA.



MDMR/GAMOVA (4)

Assessing Statistical Significance

- Distribution of the F statistic is determined by the particular
distance matrix, i.e. different type of distance calculation
could result in different F distribution.

- To generalize the F statistic, permutation tests to evaluate
the probabilistic significance of the observed F is needed.

- Different predictor variables or subsets of variables can be
tested for association with variation in a distance matrix.

- Then step-wise or variable selection procedures can be done
as usually done in univariate standard multiple regression
analysis.



Distance-based phenotypic association analysis of
DNA sequence data

Doyoung Chung, Qunyuan Zhang, Aldi T Kraja, Ingrid B Borecki, Michael A Province

Example 1.

From Genetic Analysis Workshop 17
Boston, MA, USA. 13-16 October 2010

The GAW17 provided a GWAS simulated data set containing

e 3 continuous phenotypes, Q1, Q2 and Q4

e 697 unrelated individuals, with information on their Age, Sex and Smoke

e 200 replications

e 3,205 autosomal genes with 24,487 SNPs; 3,132 of the SNPs having MAF >
0.05

This study chose

e 13 risk genes that is associated with phenotype Q2

e All 697 unrelated individuals and 200 replications

e Rare variant (SNP) using MAF < 0.01

e 508 noncausative genes for control analysis. In rare variant analysis, 125 of
the 508 genes were omitted due to their MAF did not meet rare variant
criteria.



Example 1.

Distance-based phenotypic association analysis of
DNA sequence data

Doyoung Chung’, Qunyuan Zhang, Aldi T Kraja, Ingrid B Borecki, Michael A Province

From Genetic Analysis Workshop 17

MDMR as a gene-based association test Boston, MA, USA. 13-16 October 2010

We calculated Euclidean distances using numerically
coded genotypes of 13 Q2 risk genes for all possible
pairs of the 697 unrelated individuals:

d(a,b) =[a-b]=[(@a-b)-(a-b)]"", @

where the Euclidean distance is defined as the L2 norm
between two individual genotype vectors a and b. Geno-
types were coded as the number of minor alleles with no
weighting of single-nucleotide polymorphisms (SNPs) was
applied. For each gene and each Q2 simulation, we con-
structed a 697 x 697 genotypic distance matrix D and a
697 x 1 phenotype matrix X, which consists of the indivi-
dual Q2 trait values, and used them to calculate a pseudo-
F statistic under the regression model that includes the
Q2 trait as the sole independent variable. Each of the 13 x
200 tests underwent 1,000 permutations in which the
rows and columns of its raw genotype matrix (i.e., the
individual-by-SNP matrix) were shuffled at random. The
empirical p-value was determined as the frequency of
observing more extreme pseudo-F statistics in permuta-
tions than in the actual gene case. MDMRs were per-
formed either using all variants within a gene or using
only rare variants with minor allele frequency (MAF) less
than 0.01. Similarly, we selected 508 noncausative (i.e.,
control) genes for Q2 and tested them using all 200 repli-
cations. We omitted a subset containing 125 genes from
these 508 control genes for the rare-variant-only analyses
because they contained no rare variants.

Mantel test

The Mantel test measures the correlation between two
distance matrices [8]. In our application, we calculated a
phenotypic distance matrix and a genotypic distance
matrix based on the Euclidean distance measure. The
two distance matrices were then tested for correlation
[9]. The genotypic distance matrix for the Mantel test
was identical with that of the MDMR, whereas a 697 x
697 distance matrix was calculated for each Q2 simulated
replicate. Mantel tests were performed for the 13 Q2 risk
genes using either all variants or only rare variants. Simi-
larly, 508 control genes were tested for association using
all variants, among which 383 genes continued to be
tested using only rare variants. P-values were empirically
determined using 1,000 permutations. We estimated the
power and false-positive rates on the basis of the signifi-
cance threshold value of 0.05 and compared them with
the values from MDMR and collapsing analysis.

Collapsing analysis

Collapsing analysis is a simple regression analysis that
uses a collapsed variable [10] into which rare variants are
collapsed in a binary manner based on the presence of
any rare variant. Because our collapsing analysis excluded
all “common” variants (defined by MAF > 0.01), we also
removed common variants in the other analyses to facili-
tate comparison. This allowed 12 Q2 risk genes to be
compared, because one risk gene had no rare variants.
Similarly, we tested 380 selected genes, simulated under
the null hypothesis for Q2, for association with Q2 using
all three methods. No correction for population structure
or hidden relatedness was applied throughout this study.



Table 1 True positive rates of five different strategies for the 13 Q2 risk genes

Gene Setting MDMR using all Mantel test using MDMR using only Mantel test using only Collapsing analysis using

variants all variants rare variants rare variants only rare variants

BCHE Tc + 28r 0.045 0.170 0.320 0310 0.455
(13s)

GCKR 1c (1s) 0405 0.150 NA NA NA

INSIGT  1c + 4r (3s) 0.090 0.020 0.040 0.040 0.035

LPL 5c (1s) + 0.045 0.135 0.060 0.125 0.040

15r (29)

PDGFD 5c + 6r (4s) 0.065 0.035 0.685 0.290 0.745

PLAT 4c + 251 0.035 0.030 0.055 0.040 0.110
(8s)

RARB  2C + 9r (25) 0.105 0.145 0410 0.115 0.155

SIRTT  1c+ 23r 0365 0.285 0.605 0320 0330
(9s)

SREBF1  3c + 21r 0.030 0.110 0.380 0.205 0.690
(10s)

VLDLR 4c + 23r 0.055 0.065 0.140 0.140 0.140
(8)

VNNT 1c (1s) + 6r 0.940 0.250 0.200 0.085 0.050
(1s)

VNN3  6c (3s) + Or 0.190 0.175 0.025 0.055 0.030
(4s)

VWF 2C + 6r (25) 0.180 0.080 0.285 0.080 0.190

Mean 0.196 0127 0.267 0.150 0.248

The true positive rate was determined as the frequency of observing p-values less than 0.05 among 200 (replication) p-values for each gene. The “Setting”
column shows the composition of SNPs within a gene: ¢, r, and s stand for common, rare, and signal SNPs, respectively. For example, VNNT has 1 common causal
SNP and 6 rare SNPs, one of which is a signal. SNPs with MAF > 0.01 are defined as common.
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Figure 1 False positive rates of five strategies. mdmr_rvt, MDMR using only rare variants; mantel_rvt, Mantel test using only rare variants;
collapse_rvt, collapsing analysis using only rare variants; mdmr_allvar, MDMR using all variants; mantel_allvar, Mantel test using all variants. The

red vertical lines mark the significance threshold p-value of 0.05.



N. Schork’s slides: Methods Comparison

Simulation-based Comparison of Methods

Comparison of Statistical Tests for Disease
Association with Rare Variants

SAONLI Basvu, Wer Pax

http://www.hiostat.umn_edu/~weip/paper/RV2.pdf

Simulate a wide variety of settings:
with LD, with opposite effect
variants, with neutral variants, etc.

Fit a number of different methods >

The Kernel Machine Regression
(KMR) which was shown to be
equivalent to GAMOVA/MDMR
similarity-based method was one of
the most  consistently  best
performers

Table 4 |‘t|||'i]i|.\| power for tests at nominal level o

for a non-ideal case

(43,3,

2
the RVs

based on 1000 replicates

for 8 causal RVs with various association strengths OR =

02.2.1/2.1/2.1/2) and a number of non-causal RVs. There is no LD among

a = 0.05 a = 0.01
Test # of neutral RVs # of neutral RVs
0 | 8 16 2 0 | 8 16 12

UminP 607 D32 181 17 MG 18 259 227 204 142
Score B69 T72 721 632 183 GG hia2 AR0 306 233
SS1 805,835 815 774 .696 | .72 G662 .645 583 472
wSSU-P K61 TT6G T35 685 550 | 606G 310 160 401 258
SSUw B67T T3 732 633 501 GGl Aol 151 355 238
Sum 682 566 .65 365 258 171 348 257 172 .101
KMR(Lincar) | .897 .842 .824 .783 .707|.740 .678 .G6T .Gl19 .495
KMR(Quad) 8093 835 815 781 08 T34 680 .G63 GOSN 184
CMC{0.01) 703 669 670 670 590 511 157 170 170 83
CNIC 0661 544 456 330 204 | 461 iy 235 157 086
wSum 659 5M8 459 335 228 160 336 236 .158 00:
aSum-P 854 45  .684 574 130 670 538 430 315 207
Step-up 830 TOT .T24 640 27 652 a6 Hl8 A13 285
Seq-nSum 802 811 77 671 28 | .752 620 5h32 138 27
Seg-aSum-VS | 885 807 768 686 545 | .20 G2 H6T 448 203
KBAC 907 81 T63 642 436 | .737 .60T 536G 399 199
C-alpha-A 802 826 802 75T 655 | 824 .T32  .T20 653 512
C-alpha-P 006 844 823 775 .GT4 735 673 .G61 .6G12 496
RBT 810 659 6(0: 182 J01 590 129 356 .250 125




Methods Comparison with Simulated Data

Comparison of Statistical Tests for Disease
Association with Rare Variants

SAONLI BAasu, WEI PaN
Division of Biostatistics, School of Public Health, University of Minnesota,

Minneapolis, MN 55455

November 30, 2010; Revised March 23, 2011

Simulated data

We generated simulated data as in Wang and Elston (2008) and Pan (2009).
Specifically, we simulated k& SNVs with the sample size of 500 cases and 500 controls.
Each RV had a mutation rate or MAF uniformly distributed between 0.001 and 0.01,
while for a CV it was between 0.01 and 0.1. First, we generated a latent vector Z =
(Zy, ..., Z;) from a multivariate normal distribution with a first-order auto-regressive

(AR1) covariance structure: there was an correlation Corr(Z;, Z;) = p'"~/' between

any two latent components. We used p = 0 and p = 0.9 to generate (neighboring)
SNVs in linkage equilibrium and in linkage disequilibrium (LD) respectively. Second,
the latent vector was dichotomized to vield a haplotype with MAFs each randomly
selected. Third, we combined two independent haplotypes and obtained genotype
data X; = (Xi1....,X;). Fourth, the disease status Y; of subject i was generated
from the logistic regression model (1). For the null case, we used [ = 0; for non-null
cases, we randomly selected 8 non-zero components of J while the remaining ones
were all 0. Fifth, as in any case-control design we sampled 500 cases and 500 controls
in each dataset.

We considered several simulation set-ups. Throughout the simulations, we fixed
the test significance level at a = 0.05 (or @ = 0.01 in a few cases), and used 500
permutations for each permutation-based method. The results were based on 1000
independent replicates for each set-up.

We used the R code of Wu et al (2010) implementing the KMR methods. We
used the linear, IBS and quadratic kernels; since the first two performed similarly
across all simulations, we present results for the linear and quadratic kernels. We
used the R package thgenetics implementing the Step-up procedure, and a C++/R
implementation of KBAC. We implemented all other tests in R. For the CMC test,
we used the default cut-off of MAF < 0.05 for RVs, though we explored using the

cut-off < 0.01 in a few cases.



Comparison of Statistical Tests for Disease
Association with Rare Variants

SAoNLI Basu, WEI PAN
Division of Biostatistics, School of Public Health, University of Minnesota,
Minneapolis, MN 55455

November 30, 2010; Revised March 23, 2011 Table 2: Type I error rates at nominal level a based on 1000 replicates for 8 RVs plus

a number of non-causal RVs. There is no LD among the RVs.
[able 1: A summary of the properties of the tests to be compared: originally proposed

to target CVs or RVs (or both), whether pooling over variants, whether sensitive to a = 0.05 a=0.01
association directions (+/-). to a large number of non-causal RVs (nRVs) and to a few Test # of neutral RVs # of neutral RVs
non-causal CVs (nCVs), requiring permutations for p-value calculations, capability 0 4 8 16 29 0 4 8 16 39
to adjust for other covariates (Cov), applicability to other non-binary traits, whether Thninp 027 027 016 .011 .019].003 .001 .004 .001 .002
can be formulated as testing on a variance component in a random-effects (R-E) Score 043 049 040 .040 040 |.006 000 005 .005 .007
model, and references for more details.
SSuU .044 055 .045 .037 .043].004 .013 .009 .005 .011
Original Sens to  Sens to  Sens to Other
=4 A
Test target  Pool  +/- nRVs  nCVs  Permut Cov  traits R-E  Refs wSSU-P 052 051 .048 .048 .046(.008 .008 014 .00 .0OB
UminP cv No No No No No Yes Yes No 3 SSUw 041 .049 .039 .034 .040 | .006 .011 .005 .005 .007
Score Ccv No No No No No Yes Yes  Yes 1 Sum 047 055 .041 .054 .038|.012 .007 .010 .010 .007
S5U cv No No No Yes No Yes  Yes Yes 2 ; KMR(Linear) | .046 .056 .046 .042 .047|.007 .016 .011 .007 .012
wSSU-P Both No  No No No Yes  Yes Yes Yes here KMR(Quad) |.046 .056 .047 .039 .046|.007 .016 .010 .006 .011
Sot VR e e R SR A CMC(0.01) |.035 053 .044 .055 .039|.008 .014 010 .011 .009
Sum CvV No Yes Yes Yes No Yes Yes No 2
CMC 048 .053 .043 .056 .051|.010 .009 .011 .011 .007
KMR Cv No No No Yes No Yes Yes Yes 4,5
OMC RV Yos Yes Yes No No No No  No 6 wSum 050 .057 .038 .059 .056|.010 .012 .011 .009 .006
wSum RV Yes Yes Yes Some Some No No No 7T aSum-P 058 .064 .052 .063 .047].012 .011 .010 .010 .011
aSum-P Both Yes  Some Yes Some Yes Yes Yes No 8 Step-up 046 059 056 .051 .051.012 .011 .009 .009 .010
Step-up RV~ Yes Some Some  No Yes  Yes Yes No 10 Seq-aSum 044 066 .056 .055 .059 [.008 .013 .008 .008 .013
SeEAIT Hogh. e ibume dade s 0 Ym e e Wo e Seq-aSum-VS | .050 .058 .056 .051 .058|.011 .018 011 .009 .013
Seq-aSum-VS Both Yes  Some Some No Yes Yes Yes No here KBAC 058 044 053 054 046 |.013 007 009 012 .009
KBAC RV No Some Some Some Yes Some  No No 11
i C-alpha-A 045 051 .042 .036 .043|.016 .030 .022 .010 .014
C-alpha-A RV No No No Yes No No No Yes 9
C-alpha-P RV No No No Yes Yos No No  Yes 9 C-alpha-P 050 .065 .058 .051 .055|.005 .016 .013 .006 .012
RBT RV Yes Some Yes No Yes No No No 12 RBT 045 .045 .050 .062 .044 | .011 .010 .011 .011 .005

ML, 1 Meeiaee -2 -1 (ONQNRAY. A Too. [ANANN. A Moo 0D _Lol. [annmy. 4 /e -2 -1



Table 3: Empirical power for tests at nominal level a based on 1000 replicates for

an ideal case for 8 causal RVs with a common association strength OR = 2 and a

number of non-causal RVs. There is no LD among the RVs.

a=0.05 a=0.01
Test. # of neutral RVs # of neutral RVs
0 4 8 16 32 64 0 4 8 16 32 64
UminP A41 3360 296 222 175 117 | 142 089 .094  .050 .043  .029
Score 746 632 595 AT 332 245 | 496 391 314 221 143 .073
SSU 7560 702 694 626 499 .423 | 520 479 448 379 283 205
wSSU-P 821 732 714 644 514 390 | 573 471 407 332 222 161
SSUw 743638 593 477 339 268 | 502 389 316 218 153 .082
Sum 951 875 .808 .673 484 313 |.859 .709 .605 .438 248 .116
$KA\,-IR(Lineaur) 62711 699 .631 509 438 | 548 500 473 405 .308 .234
KMR(Quad) | .755 .707 .699 .629 501 .410 | .545 497 466 403 .299 .215
CMC(0.01) 853 761 702 628 484 396 | .672 524 452 384 268 .218
CMC 038 .853 777 .616 .399 211 | .831 .679 570 .383 .196 .086
wSum 040 846 782 618 424 267 | .838 .68T 568 394 216 .14
aSum-P 933 .858 780 .669 499 313 | .781 .611 .534 381 .257 .125
Step-up 859 801 769 .679 .521 335 | 712 608 552 .431 301 .135
Seq-aSum 810 705 663 .547 407 312 | 596 470 415 320 190 (128
Seg-aSum-VS | 798 722 692 590 420 344 | 508 506 452 345 216 .141
KBAC 960 911 .867 .779 .600 388 | .858 .749 .680 .529 .317 .160
C-alpha-A 741 687 664 597 460 364 | 637 580 538 446 320 234
C-alpha-P 710712 688 627 484 378 | 542 492 459 402 .305 .219
RBT 941 849 784 664 463 321 | 813 667 58T 424 238 121

Table 4: Empirical power for tests at nominal level a based on 1000 replicates

for a non-ideal case for 8 causal RVs with various association strengths OR =

(3,3,2,2,2,1/2,1/2,1/2) and a number of non-causal RVs. There is no LD among

the RVs.
a = 0.05 a=10.01
Test # of neutral RVs # of neutral RVs
0 4 8 16 32 0 4 8 16 32
UminP 607 532 481 417 346 | 318 259 227 204 142
Score 869 772 721 632 483 | 660 .532 480 .356 .233
SSU 895 .835 .815 .774 .696 | 723 662 645 583 472
wSSU-P 861 776 735 .685 550 | .606 .510 .460 401 258
SSUw 867 773 732 633 501 | 661 .550 481 .355 238
Sum 682 566 465 365 258 | 471 348 257 172 101
$KI\-IR.(Lincar) 897 .842 .824 .783 .707|.740 .678 .667 .619 .495
KMR(Quad) | .893 835 815 .781 .G98 | .734 .680 .663 .608 .484
CMC(0.01) 703 669  .670 670 590 | 511 457 470 470 383
CMC 661 544 456 336 204 | 461 337 235 157 .086
wSuim 659 548 459 335 228 | 460 336 236 .158 .093
aSum-P 854 745 684 574 430 | 670 538 430 315 207
Step-up 839 767 724 640 527 | 652 564 518 413 .28
Seq-aSum 892 B11 757 671 528 |.752 620 532 438 .273
Seq-aSum-VS | 885 807 768 686 545 | .T29 623 567 448 203
KBAC 907 813 763 .642 436 | .737 .607 536 .399 .199
C-alpha-A 892 826 .802 .757 .655 | .824 732 .720 .653 512
C-alpha-P 906 .844 823 .v75 .674| .735 .673 .661 .612 .496
RBT 810 659 603 482 301 | 590 429 356 .250 125




Table 5:

1000 replicates for 8 RVs and a number of other non-causal RVs. There is LD among

Type I error (with OR = 1) and power (with eight causal RVs with
OR = (3,1/3,2,2,2,1/2,1/2,1/2)) for tests at nominal level @ = 0.05 based on

Table 6: Type I error (with OR = 1) and power (with eight causal RVs with

OR = (3,1/3,2,2,2,1/2,1/2,1/2)) for tests at nominal level a = 0.05 based on 1000
replicates for 8 RVs and a number of other non-causal RVs. There is LD among the 8

RVs and among other non-causal RVs, but no LD between the 8 RVs and non-causal

the RVs. RVs.

OR=1 OR = (3,1/3,2,2,2,1/2,1/2,1/2) OR=1 OR=(3,1/3,2,2,2,1/2,1/2,1/2)

Test # of neutral RVs # of neutral RVs Test # of neutral RVs # of neutral RVs
0 4 8 16 32 0 4 8 16 32 0 8 16 32 64 0 8 16 32 64

UminP 033 .027 026 .016 .013 | 489 479 452 365 .318 UminP 032 .018 .021 .014 .007 | .506 .380 .324 .288  .208
Score 034 .022 025 019 .023 | 599 538 491 380  .276 Score 029 029 028 .019 .021 | .631 480 373 241  .160
SSU 040 041 .052  .044 .036 | .603 .624 .635 .581 .574 SSU .049 051 .035 .034 .034 | .642 553 .475 .444 .334
wSSU-P 057 043 047  .062 053 | .66 586 .609 585 491 wSSU-P 045 .060 042 050 .052 | .606 494 424 362  .269
SSUw 035 .042 049 033 034 | 532 561 574 506 .493 SSUw 045 .040 027 015 .036 | .562 450 352 272 187
Sum 049 047 059  .033  .049 | 342 312 315 .28 239 Sum .046 .059 .046 .046 .046 | .345 229 .159 110 .079
KMR(Linear) | .042 .045 .057 .046 .043 | .611 .630 .644 .597 .590$K11\[R(Linear) 051 .056 .039 .040 .037 | .649 .568 .490 .459 .356
KMR(Quad) |.038 .033 .041 .030 .025 | .545 563 .565 493 474 KMR(Quad) | .046 .049 .022 .021 .017 | .572 487 .392 .331 .205
CMC 045 .053  .056 036 .060 | .296 .283 189 182  .365 CMC 046 .053 .040 .050 .047 | .339 235 .193 .124 111
wSum 045 .054 056 .040 .063 | .369 .297 287 191  .200 wSum 048 052 .041 .053 .048 | .342 237 .199 .133 114
aSum-P 050,046 .061 038 .053 | .350 .323 .325 258 243 aSum-P 052 061 .049 .046 .052 | .364 .239 .170 .113 .081
Step-up 047 0 .060 059 042 050 | 524 516 532 429 409 Step-up 057 055 .047 .048 .051 | .554 449 378 304 213
Seq-aSum 045 .062  .054 056 .055 | .658 .617 596 484 416 Seg-aSum .051 .053 .041 .046 .052 |.703 .584 .453 .353  .249
Seq-aSum-VS | .043  .056 .058 .054 .049 | .658 .606 57T 472 414 Seg-aSum-VS | .053 .053 .048 .041 .054 |.701 572 447 351 .238
KBAC 050 .054  .050 053 .049 | 497 439 426 371 275 KBAC .048 .058 .036 .053 .047 | .527 388 321 .262  .180
C-alpha-A 065 .076 .092 .097 .110 - - - - - C-alpha-A .076 .093 .084 .092 .118 - - - - -
C-alpha-P 050 .049  .062  .057  .048 | .629 .650 .668 .607 .598 C-alpha-P 0535 .065  .043  .050 047 | .669 .585 .504 .472 .340
RBT 047 0 .039 036 .060 .056 | 374 343 386 .37 279 RBT 057 059 .049 .042 054 | .376 .285 .188 .141 .097




Challenges in RV Analysis

Additional Issues with Rare Variant Analysis

» Sequencing and Genotyping Errors

* Phasing and Diplotypic Effects

» Stratification

» The Use of In Silico Controls (e.g., 1000 Genomes Data)
* Moving Window vs. Annotation-Based Analyses
 Imputation

» Multiple Comparisons

* Properties of Methods in Different Scenarios!



Functional Annotation, Predication

Functional Annotations: Bioinformatic Predictions
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Figure 11.2 The anatomy of a gene. This figure illustrates some of the key regulatory regions
that control the transcription, splicing and post-transcriptional processing of genes and tran-
scripts. Polymorphisms in these regions should be investigated for functional effects

Plumpton and Bames. “Predictive Functional Analysis of F - An Overview.” in for Geneticists. Wiley, 2007

We have developed methodology and tools for comprehensive bioinformatic WGS annot
(Schork, Torkamani and colleagues: Bioinformatics 2008, 2009; Cancer Research (2009), Nat Gen Rev (2010), Genomics (2011))

Functional Annotations: The Limits of Conservation
Torkamani, Kannan, Taylor, Schork. PNAS 105:9011-9016; 2008

Positions (residues/amino acids) of ~1000 disease causing variants in kinase proteins
contrasted with the positions of ~1000 kinase variants not known to cause disease

"I Torkamani, Schork
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protein kinase

* Review: Lahiry, Torkamani, Schork, Hegele. Nature Reviews Genetics 11; 2010
* Cancer Predictions: Torkamani, Schork. Cancer Research 68; 2008

Functional Annotations: Non-Coding Regions
Torkamani and Schork. Bioinformatics 24(16):1787-92; 2008

ENCODE features of the positions of 102 known disease-causing variants contrasted
with the positions of 1049 non-disease-causing

1
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hitp:/igenomics scripps edu/ADVISER/Home jsp

Some features non-assay dependent; e.g., proximity to a TF start or end site

Tools for In Silico Functional Prediction of Variants

+ Model actual biophysical processes (e.g., protein structure, TF binding)

+ Build classifiers using sequence information about the variants

Table 1
Example tools for human variant annotations.

Tool e/reference

UCSC genome browser
dbSNP

« Statistical RANKING algorithms are need to prioritize variants in a study



Population Issues in NGS Data Analysis

e Common variants — found in >5% of people in many

populations

e Rare variants (<5% in the world population) comprise
the bulk of genetic variants and disproportionately

important.
e RVs tend to be population specific.

For example, in people with Native South
American ancestry, a particular variant of a
protein that transports cholesterol into cells
is common and is strongly associated with
low levels of high-density lipoprotein choles-
terol, obesity and type 2 diabetes. European,
Asian and African populations do not have
this variant®.

e |ssues in using reference sequence

Ref:14JULY2011|VOL475|NATURE|163

Conversely, in dozens of studies in Euro-
pean populations, researchers have found
19 common single-nucleotide changes that
are strongly associated with type 2 diabetes.
In a further study of 6,000 people including
European Americans, African Americans,
Latinos, Japanese Americans and Native
Hawaiians, 13 of these polymorphisms
continue to be strongly associated with the
disease’. Yet 5 of the 19 variants seem to
have different effects in the different ethnic
groups, and the role of one variant is unclear.



SOURCE: REF. 5

Population Issues in NGS Data Analysis

COMPARING THE UNCOMPARABLE Ref:14JULY2011|VOL475|NATURE|163

The rarer a genetic variant is within a population, the less likely it is to be found in
all ethnic groups. One hundred people were sampled from each population.

- Europeans® - Europeans & ChineseT - European & Africant

100 -

I @ )
= = =

)
=

Degree to which variants are shared
between populations (%)

Rare variants (1%) Commoeon variants (15%)
Frequency of variants

*Comparison of individuals of European descent in Utah and in Tuscany, Italy. T Han Chinese individuals from Beijing
compared with Utah sample I Yoruba individuals from Ibadan, Nigeria, compared with Utah sample.

Example Issues:
« Determining individual ancestry or locus/allele-specific ancestry
 Unmatched (based on ancestry) cases and controls in a GWAS-seq = false positives

» Reference panel for determining the ‘novelty’ of a variant involves different ancestry




Population Specific Alleles (Unique to Each Population)

Populations z-test p-values

Variant Type Label AFR EUR ASN AFR vs EUR AFR vs ASN EUR vs ASN
Total number of variants: 7614850 2024886 1294731

Nonsense SNPs rate 1 0.500 0.840 0.842 6.931E-09 6.329E-07 4.910E-01
Frameshift Structural Variants rate 2 1.663 3.008 2.989 1.597E-34  6.239E-25 4.621E-01
Frameshift Insertion rate 3 0.657 1.274 1.383 6.368E-19 1.089E-18 2.006E-01
Frameshift Deletion rate 4 0.879 1.417 1.352 3.877E-12 1.584E-07 3.102E-01
Frameshift Rearrangement rate 5 0.127 0.316 0.255 2.614E-09 2.228E-04 1.572E-01
Splicing Change Variants rate 6 1.707 2.514 2.379 4.655E-14  7.112E-08 2.223E-01
Probably Damaging nscSNPs rate 7 10.103 15.472 15.602 1.136E-91 4.578E-69  3.853E-01
Possibly Damaging nscSNPs rate 8 5.991 7.744 8.233 7.313E-19  3.064E-21  6.111E-02
Protein motif damaging Variants rate 9 4,104 6.311 6.581 2.612E-39  3.043E-35 1.726E-01
TFBS Disrupting Variants rate 10 2.793 4.173 4,063 7.493E-69  2.764E-42  1.785E-01
miRNA-BS Disrupting Variants rate 11 0.948 1.170 1.081 2.405E-03  7.715E-02  2.286E-01
ESE-BS Disrupting Variants rate 12 5.835 7.260 7.283 1.696E-13  2.840E-10  4.689E-01
ESS-BS Disrupting Variants rate 13 2.460 3.013 2.865 6.435E-06 3.539E-03 2.232E-01
Total Likely Functional Variant rate 14 23.718 34.906 35.436 8.999E-170 1.234E-132 2.128E-01

Frequencies of funct pop spec Highly significant AFR vs. non-AFR

variants: Greater in non-Africans

The rate of novel functional variants (not just homozygous) is significantly higher in non-Africans

The rate is uniformly higher across ALL functional classes, not just ns cSNPs

Selection has had less time to ‘purifiy’ the European and Asian population (i.e., replicated Lohmuller et al.)




Diploidy

Variants that cause dysfunction

Phasing

and Compound Heterozygosity (CH)

Heterozygosity

ATCGAGCT/CAGCGCGATAGCG/ACTAGCAT...
..ATCGAGCTAGCGCGATAGCGCTAGCAT.., Maternal
..ATCGAGCCAGCGCGATAGCGCTAGCAT... Ppaternal

Compensation

Both gene homologs
dysfunctional

or

..ATCGAGCCAGCGCGATAGCGCTAGCAT... Materal
..ATCGAGCTAGCGCGATAGCGCTAGCAT...

Paternal

Phasing for Assessing ‘Dipionmics Fnenomerna

1] |

L1

Maternal haplotype

T [T 11
Paternal haplotype

Standard genotyping
or sequencing

T
(1

0111 | W 11100

Unphased genetic variants

Approaches to Resolving Phase

+ Sequencing parents/relatives

» Population-based phasing (and imputation)
+ Assembly of sequencing reads

+ Separate chromosomes prior to sequencing

Microfluidic device

Amplify maternal

5 XX v
AN Separala i }
'—,':" - chromosomes ?f v

=15 . :

W

Amplify paternal

After phasing all variants:

1. Annotate positions of all variants (Human Genome hg18)

2. Predict likely functional effect of variants using bioinfomatics pipeline

3. Assign disease risk alleles from association study databases

4. Explore regions of high heterozygosity/nuclectide content differences between

homologous chromosomes

Torkamani et al. (in review)

— [T

Retrieve DNA
and genotype
or sequence

— T T

[0 [
= o=

om o
[ami]

e Multiplex
sequencin

O OO 1

The next phase in human genetics

Vikas Bansal, Ryan Tewhey, Eric J. Topol & Nicholas J. Schork

T e
Assembly
_—

Pool 1
Pool 2

Pool 115 T O

Experimental haplotyping of whole genomes is now feasible, enabling new studies aimed at linking sequence

variation to human phenotypes and disease susceptibility.

VOLUME 29 NUMBER 1 JANUARY 2011
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Network-based

Genetic Networks and Network Analysis

NATURE | VOL 411 | 3 MAY 2001

Lethality and centrality in protein networks

H. Jeong*, S. P. Masonft, A.-L. Barabdsi*,
Z.N. Oltvait

Cell 144, March 18, 2011 ©2011
Interactome Networks and Human Disease

Network Centrality Measures

Marc Vidal,' 2" Michael E. Cusick,'2 and Albert-LaszIo Barabasi'®**

NATURE REVIEWS| GENETICS VOLUME 12 [JANUARY 2011 Degree Centrality ~ 3

Network medicine: a network-based *  Number of nodes connected to a given node L o e e

«  How well a node is connected; direct influence

approach to human disease

Albert-LdszI6 Barabdsi**S, Natali Gulbahce** and Joseph Loscalzo$

Closeness Centrality e O

*  Sum of shortest distance (path) to all other nodes i/ T @ '
+ Inverse measure of centrality Oany N
Betweenness Centrality e O

= Frequency that node=shortest path between 2 nodes s
* Control of communication between other nodes

Many other measures of node’s importance in a network...



Using Pathway Information

Whither Pathway Information?

What source of pathway definitions?: e.g., KEGG vs. wikipathway
How broad should Protein-Protein Interaction (PPI) networks be?

Degree Centrality

= Pulifimtion,

dlrnmanon
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Referring to the original slides (part 2)

Rare Variant Analysis

Michael C. Wu

Division of Public Health Sciences
Fred Hutchinson Cancer Research Center

http://research.fhcrc.org/wu/

Total 100 pages for the topic slides.
Total 59 pages for software demo slides.
Copy of the slides made available to the
pertinent audience.



Dr. Wu'’s slides

GWAS: Missing Heritability

@ GWAS focus on common variants (MAF > 5%) whose effects are
small with RR~1.2-1.5.

@ Missing heritability: Significant GWAS SNPs explain a small
proportion of disease heritability.

@ Possible reasons:

» GxG and GxE interactions?

» Many common causal variants: Each with a small effect?
» Epigenetics?

» Rare variants?



Dr. Wu'’s slides

Why rare variants’? e Functional variants tend to be rare.

¢ Most of human variants are rare NHLBI GO
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5 I -
_ g .
o -
z ° £
' S
c o -
o - o ©
o <.02% 02%-.1% A%=.5% 5%-2% 2%-10% 10%-50%
o —|_|_V_?—|ﬁ T—1— MAF
© | I | |
0.0001 0.001 0.01 0.1 A. MAF< 0.5 A. MAF< 0.05
o
S
MAF il S M
— un
5 g g ¥
g S & g -
2 S 2 S
g B - g S
[T R [ ‘c_> N
o — B o - | -
[ I I I I | [ [ I I I
00 01 02 03 04 05 0.00 0.02 0.04

MAF MAF



Dr. Wu'’s slides

Challenges: May Not “Observe” the Variant

@ Sample size necessary to observe a variant with MAF p with at

least chance 0:
In(1 —0)

~ 2In( —p)

@ Foro = 99.9%, the minimum I’equil’ed Sample size is Cha”enges POWer Depends on A”ele Frequency
MAF 0.1 0.01 0.001 0.0001

Requiredn 33 344 3453 345337

— MAF=0.0005
MAF=0.001
MAF=0.01

—— MAF=0.05

30000
1

Required Sample Sizes
20000
1

10000
1
/

0
1
|
|

Odds Ratio



Dr. Wu'’s slides

Approach and Notation

General Approach
@ GWAS Analysis Unit: Individual SNP
@ Seqguencing Study Unit: region (e.g. gene, moving window, exons,
etc)

@ Operationally:

@ Test effect of variants within single region
©Q Correct for multiple testing

Then for a single region:
@ y, = trait value for person i
@ G, = vector of genotypes for the particular group of variants

@ Z; = vector of any additional covariates (e.g.
demographics/environment)

Goal: Test for association between y and G while adjusting for Z.



Dr. Wu'’s slides

Collapsing Tests

@ Aggregate rare variant information in a region into a summary
dose variable
» CAST
CMC
MZ (GRANVIL)
Weighted Sum Test

@ Most powerful if all rare variants are causal variants with the same
effect sizes (and association directions).

ryr

Burden Tests
e Collapse rare variants

Y G6,6G,G, C
1 1000 1
1 01 1

o
o
o
o
o
o

What is Burden test?

Burden test is a type of tests that
assess the cumulative effects of
multiple variants in a genomic
region.

Burden tests are based on
collapsing or summarizing the
rare variants within a region by a
single value, which is then tested
for association with the trait of
interest.

Ref:

12. Li, B., and Leal, S.M. (2008). Methods for detecting
associations with rare variants for common diseases:
application to analysis of sequence data. Am. J. Hum.
Genet. 83, 311-321.

13. Madsen, B.E., and Browning, S.R. (2009). A groupwise
association test for rare mutations using a weighted sum
statistic. PLoS Genet. 5, e1000384.

14. Morgenthaler, S., and Thilly, W.G. (2007). A strategy to
discover genes that carry multi-allelic or mono-allelic risk
for common diseases: a cohort allelic sums test (CAST).
Mutat. Res. 615, 28-56.

15. Li, B., and Leal, S.M. (2009). Discovery of rare variants
via sequencing: implications for the design of complex trait
association studies. PLoS Genet. 5, e1000481.

16. Price, A.L., Kryukov, G.V., de Bakker, P.I., Purcell, S.M.,
Staples, J., Wei, L.J., and Sunyaev, S.R. (2010). Pooled
association tests for rare variants in exon-resequencing
studies. Am. J. Hum. Genet. 86, 832-838.

17. Han, F., and Pan, W. (2010). A data-adaptive sum test
for disease association with multiple common or rare
variants. Hum. Hered. 70, 42-54.

18. Morris, A.P., and Zeggini, E. (2010). An evaluation of
statistical approaches to rare variant analysis in genetic
association studies. Genet. Epidemiol. 34, 188—-193.




Dr. Wu'’s slides

Collapsing Tests:

CAST: Binary Collapsing
Cohort Allele Sum Test

p
C;' = a"(Z G,}' > 0) —

{1 rare variants in the region for subject i
j=1

0 otherwise

Count Collapsing: (MZ, GRANVIL, ANRV, other names)

P
Ci= Z Gjj = # of rare variants observed in the region for subject i
j=1

Use the model:
¥i = B0+ BCi + a'Z;

andwe cantest Hp : 3 =0.
CMC test: extends these by collapsing (sub)groups of variants in a
region and testing the subgroups between cases and controls.

Supervised Collapsing Methods

Supervised: the outcome (phenotype or case/control status) is used to
estimate weights

@ Similar to the weighted collapsing, we can introduce weights that
adjust to the magnitude and direction of effect by introducing new
weights and then computing

Ci = w1Gjt + w2Gjp + - - - + WGp.

@ Theoretical optimal weights: w; = ; the true LOR
@ EREC Test: w; = '{, + & where ?J, is an initial (hopefully good)
estimate for 3; and ¢ is a constant (usually 1 or 2)
@ Hanand Pan: w; = 1if 3 > 0and w; = 1if 3 < 0
@ Others...
Permutation or bootrapping MUST be used for significance.

Collapsing Tests: Early Weighted Methods
Weighted Collapsing: (Madsen & Browning)
@ For variant j, set w; = 1/,/q;(1 — g;) where g; is the MAF in
controls L
C,' = Z W * G{_;
j=1

@ Construct a wilcoxon statistic comparing between cases/controls
and use Permutation for significance

@ |dea: we want to up-weight rarer variants

Weighted Collapsing: (Unsupervised)
Set w; = 1/,/q;(1 — g;) where gj is the MAF in all samples

p
C,-:ZWJ,-*G@‘
Jj=1

Test using regression model again.




Dr. Wu'’s slides

Understanding Collapsing Methods

@ Count collapsing restrict to rare variants (with MAF < threshold)
and collapse rare variants (dose=C;).

e If all 5's in the regression model are the same, the model becomes
Yi=ao+ a'Zi+ 3C; + ¢

where C; = Gjy + Gj2 + - - + Gjp = number of rare variants in the

region. Burden Test: Mixed effect directions

When Collapsing Methods are Optimal:

. . . @ Lose power if variants have positive and negative effects.
@ ALL rare variants in a region are causal

Q@ All rare variant effects (3's) have SAME direction and magnitude

@ Similar ideas for other collapsing methods. Y 66,636, ¢
@ Is it realistic to anticipate all variants have same direction and 1 1000 1
(after weighting) magnitude? Perhaps not. 1 0100 1

0 0010 1
0 0001 1

= No Power !



Sequence Kernel Association Test (SKAT)

@ Intuition: Compare pair-wise similarity in phenotype between
subjects to pair-wise similarity in genotypes at the rare variants
@ Similarity in genotype is measured by way of a Kernel
» Kernel: K(Gj, G;;) measures similarity between subjects / and /'
» The Kernel determines the form of the underlying trait model

@ SKAT uses a score test to generate a p-value:

o2

where K as n x n matrix with i, /" term K(G;, G/)
» Asymptotics are used to get p-value analytically

@ Default version of SKAT is considerably simpler (new few slides)

Default version:
@ Earlier model:

Vi = ap + Z;O{ + 31 G,'1 + fﬁzejz + -+ ;B,OGip + &j

@ Goal: Test Hy : 1 =B =... =3, =0

@ Standard LR test requires p-df test (low power).

@ Instead: assume each j3; ~ distribution F(0, w;7) where w; is a
weight for variant j.

@ Then Hy : 54 :,82:...:,BPZO<Z>H02T:0

@ Can use a variance component score test via a connection with
mixed models.



Example of Weights

Weight

1.0

08

08

0.4

0.2

0.0

Weights Depend on MAF

Weights in the Sequence Kernel Association Test
(SKAT)

Upweight rarer variants
We assume weights w; = decreasing function of MAF ;.
Example: w; = Beta(r;; a1. a2), where Beta(-) is Beta function.

Optimal w; is an indicator for whether the j? variant is causal —
never known a priori!

Estimation of weights (e.g. EREC) would require permutation or
bootstrapping for significance.

gen
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SKAT Statistic

@ SKAT = weight sum of individual score statistics:

p

2

Qskar = Y_ wUj
=

where U; = Gi(y — y) is the score statistic for 3; in the model:

@ Calculations of Q only require fitting the NULL model — which is
the same for any region of the genome:

yi=ag+a'Zj+¢
so we only need to fit the model once!

SKAT: p-value Calculation

@ The SKAT statistic asymptotically can be written as

p
Qskar = Y NZF
j=1

where the Z; are N(0, 1) and the ); are mixture weights which can
be computed analytically.

@ p-value can then be calculated as a mixture of 2 using many
different methods: we choose the Davies approach.

@ Allows for fast computation

Computational Speed
Assuming n = 1000 subjects and regions of 30kb:

Sequence Length | 300 Kb 3 MB 3Gb (Whole Genome)
Time 2.5sec 25sec 7 hrs

on a 2.33 GHz Laptop with 6Gb of memory.




C-alpha Test (Another Similarity-based Test):

@ C-alpha test:
» Based on Neyman's (1966) c(«) test for mixture of “biased” coins
(overdispersion)
» Requires permutation for significance
» Case-control traits only
» Like SKAT, C-alpha is better than collapsing methods when variants
are not unidirectional in effect

@ SKAT is a generalization of C-alpha test:

» C-alpha and SKAT (with a dichotomous trait and no covariates) are
the same if we set
K(G;.G;) = G/G;

(i.e. setting the weights to 1) and then use permutation to assess
significance.

SKAT vs. Collapsing

@ Collapsing tests are more powerful when a large % of variants are
causal and effects are in the same direction.

@ SKAT is more powerful when a small % of variants are causal, or
the effects have mixed directions.

@ Both scenarios can happen when scanning the genome.
@ Best test to use depends on the underlying biology.
— Difficult to choose which test to use in practice.

@ Questions:

e Which group of variants test? |.e. what is the threshold for “rare”?
e Which type of test should | use? Variance component or burden?

@ Truth is unknown: depends on the situation
@ Omnibus tests: work well across situation



SKAT-O: An Optimal Unified Strategy

@ We can also construct a score statistic for Collapsing analysis:

Qeollapse Simulations:
@ Unified test statistic:

Q = pQ +(1-p)Q , 0<p<i
opt(P) = PQeoliapse + (1 = p) Qsrar =P= @ Generate sequence data using a coalescent population genetics
@ Note: SKAT (p = 0) and collapsing (p = 1) are special cases! model.

@ |dea: Use data to adaptively estimate p to maximize power, e Most vatianls are ke Al A geng number Ve LD: lerexample,
. L . - in a 30kb region:
i.e. minimize p-value, and account for having p estimated.

# Variants MAF

SKAT-O: Key Features 626 true
@ Optimal: good for scenarios where SKAT works AND scenarios 159 (25%) <107*
where collapsing works well 441 (711%) <1072

o -2
@ Still permits analytical p-value computation. o911 (88%) =10

Simulations: Type | Error Rate (SKAT) Simulations: Power Results
B+/-=100/0

B SKAT
W SKAT-O

| k,
Jil

0e o8 10
08 a8 10
08 o8 1.0

Type | error at a = 10-° level

Pt

Total Sample Size Continuous Traits  Binary Trait

00 62 o
ap 02 o
0.0 0.2 04

500 59x 107 1.0 x 10°°®

1000 8.0x 107 23x 107 ot e Sz Bl Gt i L RPN,
2500 8.4 x 107 56x 107 B+/-=80/20

5000 8.8 x 107 7.0 x 107 Causal = 10% . Cawal=20% Gausal = 50.%

o
1.0

SKAT is known to be conservative for binary traits and small n. —
Note: Newer version can correct for this! ]

4 08 08 10
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Rare variant Meta-analysis Multi-Study Model

e Forthe k" study (k = 1....K),

e Meta-analysis is an effective approach to combine data from
» Genotype Gy = (Gkit, - - - Grip)'

multiple studies.
i — , Y
e Rare variant meta-analysis: desirable properties > ﬁl"‘;arl'ates Xii = (Xkit - - - » Xkigy )
C . > oael.
» Use summary statistics
y 9(ix) = Xyrog + G By

» Same power as mega-analysis (joint analysis)
» Account for varying levels of heterogeneity of genetic effects across

studies. » TestHo: B, =0(k=1.---  K)

Single study k

Input Summary Statistics for meta-analysis
e Score statistic of variant j

n

Sk =Y _ Gik(yj — i)/ ox
=1

o SKAT and Burden test statistics: e Input summary statistics from each study

2
p p
) » MAF
Qskar = Z(Wfkskj) + QBurden = (Z Wik S’U) » Syt score statistic of each marker
J=1 J=1 » Between-variant relationship matrix (p x p)
o SKAT-O (combined approach): @ G.P.G
k = G PGk,

T = ] ] ] L P K K
MiNo< <1 where P, = Vk - Vk 1xk(xf(vk ‘Xk)—‘X}(Vk 1

where F"JrJ is the p-value of

O_r) = (1 - f‘) Qswar + f’oBurden



Meta-SKAT: Homogeneous genstic effects Meta-SKAT: Heterogeneous genetic effects

Meta-SKAT assuming homogeneous genetic effects:

Assume genetic effects vary between studies

P /K 2
Qhom.meta.SKAT = Y (Z ijskj)

o > By, By areiid
o Meta-Burden: » E(0,) =0, var(3j) = wijT and cor(Sk k) = p-
5 i 5 e Multivariate score-based analog of the univariate random effect
model meta-analysis.
Qmeta.Burden = Z Z Wi; Skj y ,
=1 k=1 e P-values can be calculated analytically

Useful for meta analysis of studies of the same ethnicity or
different ethnicities.

Meta-SKAT assuming heterogeneous genetic effects:

Meta-SKAT-O:

L]

Ohom_mera(f ’) = (1 — f ’) Ohom_mera_SKAT 15 f’omera_Burden

Test statistics are essentially identical to those of the mega !
analysis SKAT and burden test Qhet. meta SKAT Z Z wij Sij)?
= As powerful as mega-analysis J=1 k=

P-values can be computed using the Davies method.
= Fast computation

e SKAT-O can be conducted with adaptively selecting p.

Meta-SKAT-O:

Ohom_mera(! ’) = (1 - P) Oher_mei‘a_SKAT T 'Ometa_Burden
Meta-SKAT for multi-ethnicities:

e Multi-ethnic studies:

» within-group homogeneity and between-group heterogeneity
» B3, = 3, for the same group and 3, L 3, for the different groups

* Meta-SKAT with B ancestry groups

p B Kb é
Qhet_meta_SKAT = Z L ( ¥ kaskj)

e Meta-SKAT-O:

Ohom-mera(.-‘-’) - (1 - P)Qher_mera.SKAT + pQmeta_Burden



Comments

@ Quality control:
» Are the observed variants really variants?
» Batch effects
» Some standard pipelines now in place
@ Population stratification:
» Common strategy: just use same PCs from common variant
analysis to correct for PS
» Some evidence that rare variants require special accommodation
(much larger number of PCs)

@ Accommodating common variants:

» What do you do with common variants?
» (a) Assess joint effect with rare variants
» (b) Adjust for effect of common variants

@ Prediction

» |In a new population (sample), we're unlikely to see the same
variants and we're likely to see a lot of variants not previously
observed

@ Prioritization of individual variants
» How to choose individual causal variants?
» Some work on variable selection methods, but no ability to control

type | error.
» Bioinformatics and functionality tools may be useful

@ Incorporation of functional information and other genomic data

@ Design Choices

>
>

>

Want to enrich for variants (extreme phenotypes)
Some of these designs require specialized methods
Stuck with the design chosen

@ Is rare variant analysis worthwhile?

-

v

v

v

A4

Huge sample sizes required to even observe the variant
Despite hypotheses, *relatively* few associations have been
discovered

Perfect confounding with environment?

What's the real public health impact?

Perhaps too early to tell.



SKAT Package

SKAT package has functions to:
1. test an association between SNP sets and
continuous/binary phenotypes and
2. compute power/sample size for future
sequence association studies.
Getting R and SKAT Package

~ Downloading R: Example Dataset

http://cran.r-project.org/

» Obtaining SKAT:

install.packages ("SKAT")

library (SKAT) library (SKAT)
data (SKAT.example)
names (SKAT . example)

SKAT package provides an example dataset (SKAT.example)

attach(SKAT.example)

hist (apply(Z,2,mean)/2, xlab = "MAF",
main = "MAFs of Variants")



SKAT: Simple Usage

To test an association, you first need to run SKAT Null Model
function to get parameters and residuals from the null model of no
association, and then to run SKAT to compute a p-value.

# continuous trait
obj<-SKAT_Null_Model(y.c ~ X, out_type=”C”)
SKAT(Z, obj)$p.value

# dichotomous trait
obj<-SKAT_Null_Model(y.b = X, out_type="D")
SKAT(Z, obj)$p.value

SKAT-O: Omnibus (Combined) Test of
collapsing and SKAT
The test statistic of the combined test is
Q= (1-p)Qs + pQs,

where Qs is a test statistic of SKAT, and Qp is a score test statistic
of weighted burden test. Thus, p = 0 results in the original
weighted linear kernel SKAT, and p = 1 results in the weighted
burden test. You can specify p value using the r . corr parameter
(default: , r.corr=0).

SKAT(Z, obj, r.corr=0)$p.value
SKAT(Z, obj, r.corr=0.9)$p.value
SKAT(Z, obj, r.corr=1,
weights = rep(1, ncol(Z)))$p.value
summary(glm(y.b ~ apply(Z,1,sum)+X,
family = "binomial"))

SKAT-O: Optimal Adjustment

If method=* ‘optimal.adj’’, pis selected from a grid of eight
points p = (0,0.12,0.22,0.32,0.42,0.5,0.5, 1) to maximize the
power. If you want to use the original implementation of SKAT-O,
use method=‘‘optimal’’. We recommend to use
“‘optimal.adj’’, since it has a better type | error control in the
tail area.

SKAT(Z, obj, method="optimal")$p.value

SKAT(Z, obj, method="optimal.adj")$p.value

Combined test of rare and common variants

If you want to test the combined effects of common and rare
variants, you can use SKAT_CommonRare function.

# Combined sum test (SKAT-C and Burden-C)

SKAT_CommonRare(Z, obj)$p.value
SKAT_CommonRare(Z, obj, r.corr.rare=1,
r.corr.common=1 )$p.value

# Adaptive test (SKAT-A and Burden-A)

SKAT_CommonRare(Z, obj, method="A")$p.value
SKAT_CommonRare(Z, obj, r.corr.rare=1, r.corr.common=1,
method="A" )$p.value



Accommodating PLINK Formats

# note that "PlinkExample/" is a directory we download

# the data
#
# Create the MW File

File.Bed<-"./PlinkExample/Examplel.bed"
File.Bim<-"./PlinkExample/Examplel.bim"
File.Fam<-"./PlinkExample/Examplel.fam"
File.SetID<-"./PlinkExample/Examplel.SetID"
File.SSD<-"./PlinkExample/Examplel.SSD"
File.Info<-"./PlinkExample/Examplel.SSD.info"

# To use binary ped files, you have to generate SSD file first.
# If you already have a SSD file, you do not need to call this
Generate_SSD_SetID(File.Bed, File.Bim, File.Fam, File.SetID,

File.SSD, File.Info)

Running SKAT with PLINK

Now you can open SSD and Info file and run SKAT.

FAM<-Read_Plink_FAM(File.Fam, Is.binary=FALSE)
y<-FAM$Phenotype

# To use a SSD file, please open it first.
# After finishing using it, you must close it.

SSD.INFO<-Open_SSD(File.SSD, File.Info)

# Number of samples
S38D. INFO$nSample

# Number of Sets
SSD.INFO$nSets

obj<-SKAT_Null_Model(y ~ 1, out_type="C")
out<-SKAT.SSD.A11(SSD.INFO, obj)
out

Running SKAT with PLINK: Covariates

If you have a plink covariate file, you can use Read_Plink_FAM_Cov
file to read both FAM and covariate files.

File.Cov<-"./PlinkExample/Examplel.Cov"
FAM_Cov<-Read_Plink_FAM_Cov(File.Fam, File.Cov,
Is.binary=FALSE)

# First b rows
FAM_Cov[1:5,]

# Run with covariates
X1 = FAM_Cov$X1
X2 = FAM_Cov$X2
y<-FAM_Cov$Phenotype

obj<-SKAT_Null_Model(y ~ X1 + X2, out_type="C")
out<-SKAT.SSD.A11(SSD.INFO, obj)
out



