Cox Approach		Other Methods

Non-nested Hypotheses Testing Methods Overview

Lerong Li

UTSPH

October 9, 2012

Non-nested Hypotheses Testing

Lerong Li

Review of LR

- LR: $\lambda(x) = \frac{\sup\{f(y|\theta, \theta \in \Theta_0)\}}{\sup\{f(y|\theta, \theta \in \Theta)\}}$
- Asymptotically, $-2\log\lambda(x)$ is χ^2 with df = reduction in the size of parameter space after imposing restriction.
- If non-nested, the parameter spaces and likelihoods are unrelated.
- Hard to figure out the distritution under null model.

Non-nested Model

Definition

Two Models, say H_f and H_g , are said to be non-nested if it is not possible to derive one from the other either by means of parametric restriction or limiting process.

- Strictly Non-nested
- Partially Non-nested(overlapping)

Example

$$\begin{array}{ll} H_{1}: & y = \beta_{1}x_{1} + \beta_{2}x_{2} + \varepsilon_{1} \\ H_{2}: & y = \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3} + \varepsilon_{2} \\ H_{3}: & y = \beta_{3}x_{3} + \beta_{4}x_{4} + \beta_{5}x_{5} + \varepsilon_{3} \\ H_{4}: & y = \beta_{4}x_{4} + \beta_{5}x_{5} + \varepsilon_{4} \end{array}$$

Introduction	Cox Approach		Other Methods
Example			

Example

(Cox, 1961, Unconditional Models)

$$H_f: f(y|\theta) = \frac{1}{y(2\pi\theta_2)} exp[-\frac{(logy-\theta_1)^2}{2\theta_2}]$$
 log-normal
 $H_g: g(y|\gamma) = \frac{1}{\gamma} exp(-y/\gamma)$ exponential

Example

æ

イロト イ理ト イヨト イヨト

Introduction	Cox Approach		Other Methods
Б			

Formal Definition

- Introduce a statistical measure of the "closeness" betweeen two models.
- Kullback-Leibler information criteria (KLIC)

$$\begin{aligned} & F_{fg}(\theta, \gamma) &= E_{f}[logf(y|\theta) - logg(y|\gamma)] \\ &= \int_{\mathcal{R}_{f}} log\{\frac{f(y|\theta)}{g(y|\gamma)}\}f(y|\theta)dy \end{aligned}$$

- $I_{fg}(\theta, \gamma)$ is KLIC measure of H_g w.r.t H_f
- Not a distance measure, just mean information for discrimination in favor of $f(y|\theta)$ against $g(y|\gamma)$.
- Invariant to transformation of θ and γ
- $I_{fg}(\theta, \gamma) \ge 0$ with "=" hold iff f = g
- Additive for iid sample.
- Assume the true model is H_h , θ_0 is true value under H_f , and γ_0 is true value under H_g
- Closeness measure of H_g to H_f is defined as $C_{fg}(\theta_0) = I_{fg}(\theta_0, \gamma_*(\theta_0))$ where $\gamma_*(\theta_0) = argmax E_f(logg(\gamma))$
- Similarly, $C_{gf}(\gamma_0) = I_{gf}(\gamma_0, \theta_*(\gamma_0))$ where $\theta_*(\gamma_0) = argmaxE_g(logf(\theta))$

Formal Definition

Definitions

- (Nested) H_f is nested within H_g iff $C_{fg}(\theta_0) = 0 \forall \theta_0 \in \Theta$ and $C_{gf}(\gamma_0) \neq 0$ for some $\gamma_0 \in \Gamma$.
- (Strictly Non-nested) H_f and H_g are strictly non-nested iff $C_{fg}(\theta_0), C_{gf}(\gamma_0)$ are both non-zero $\forall \ \theta_0 \in \Theta, \gamma_0 \in \Gamma$
- (Partially non-nested) H_f and H_g are partially non-nested if $C_{fg}(\theta_0), C_{gf}(\gamma_0)$ are both non-zero for some $\theta_0 \in \Theta, \gamma_0 \in \Gamma$.

Example	Introduction	Cox Approach		Other Methods
Example				
	Example			

Example

(Cox, 1961, revisit: log-normal vs exponential)

- $\gamma_*(\theta_0) = \operatorname{argmax} E_f(\log g(\gamma))$ where $E_f(\log g(\gamma)) = E_f[-\log \gamma - \gamma/\gamma] = -\log \gamma - \exp(\theta_{10} + 0.5\theta_{20})/\gamma$
- $\implies \gamma_*(\theta_0) = exp(\theta_{10} + 0.5\theta_{20})$
- $\implies \log \frac{f(y|\theta_0)}{g(y|\gamma_*(\theta_0))} = -0.5\log(2\pi\theta_{20}) (\log y \theta_{10})^2/2\theta_{20} \log y + \theta_{10} + 0.5\theta_{20} + yexp(\theta_{10} + 0.5\theta_{20})$

•
$$\implies C_{fg} = E_f \{ \log \frac{f(y|\theta_0)}{g(y|\gamma_*(\theta_0))} \} = -0.5 \log(2\pi\theta_{20}) + 0.5 + 0.5\theta_{20} \neq 0$$

- Similarly to get $C_{gf} \neq 0$
- H_f and H_g are strictly non-nested

	Cox Approach		Other Methods
Cox Stat	istic		

Let y_i i = 1 : n be iid random sample with p.d.f. $f(y|\theta)$ under H_f and $g(y|\gamma)$ under H_g , where $f(y|\theta)$ and $g(y|\gamma)$ are non-nested model.

- Test: H_f : $y \sim f(y|\theta)$ vs H_g $y \sim g(y|\gamma)$
- Cox statistic (1961,1962):

$$T_{f} = \log \frac{L_{f}(\hat{\theta}|y)}{L_{g}(\hat{\gamma}|y)} - E_{f}[\log \frac{L_{f}(\hat{\theta}|y)}{L_{g}(\hat{\gamma}|y)}]$$

• Standardized cox statistic:

$$N_f = \frac{T_f}{\sqrt{var(T_f)}} \sim N(0,1)$$

	Cox Approach		Other Methods
Notes			

- N_f is for the test of H_f against H_g .
- N_g is calculated similarly as $\frac{T_g}{\sqrt{var(T_g)}} \sim N(0,1)$
- Decision rule:

Nf

		Reject	Accept
	Reject	$ N_f > C_{\alpha}; N_g > C_{\alpha}$	$ N_f \leq C_{\alpha}; N_g > C_{\alpha}$
Ng	Accept	$ N_f > C_{\alpha}; N_g \leq C_{\alpha}$	$ N_f \leq C_{\alpha}; N_g \leq C_{\alpha}$

- Difficulties of computation in expectation and variance.

 - Using KLIC to approximate expectation
 se: n⁻¹d'[I_n R(θ̂)[R'(θ̂)R(θ̂)]⁻¹R'(θ̂)]d
- Weakness or strength?

	Cox Approach		Other Methods
~			

Some related methods

- Comprehensive Approach
 - Consider a comprehensive model including H_g and H_f as special cases.
 - For example, $[f(y|\theta)]^{\lambda}[g(y|\gamma)]^{1-\lambda}$, test about $\lambda = 0$ vs $\lambda = 1$
- Encompassing Approach
 - Consider whether model H_f can explain one or more features of the rival model H_g .
 - Assume unknown true model H_h , and define pseudo-true values

$$\theta_{h\star} = argmaxE_h[logf(y|\theta)], \qquad \gamma_{h\star} = argmaxE_h[logg(y|\gamma)]$$

- Define H_f encompass H_g by $\gamma_{h\star} = \gamma_{\star}(\theta_{h\star})$
- $\sqrt{n}(\hat{\gamma}-\gamma_{\star}(\hat{\theta})) \sim N(0,V(f,g))$
- References(Pesaran, 1999)

	Cox Approach	Vuong's Approach	Other Methods
Motivation			

- What if both models are rejected or fail to be rejected?
- Select the best one.
- Test the hypothesis that models under consideration are equally close to the true model H_h .
- Closeness measure between hypothesis models and true model

$$C_{hf}(\theta_{h\star}) = E_h\{logh(y|.) - logf(\theta_{h\star})\}$$
$$C_{hg}(\gamma_{h\star}) = E_h\{logh(y|.) - logg(\gamma_{h\star})\}$$

	Cox Approach	Vuong's Approach		Other Methods
Vuong's 1 Null hy	test(1989) pothesis underlyin	ng Vuong's approa	ch is given by	
	H_V :	$C_{hf}(heta_{h\star})=C_{hg}(\gamma$	$'_{h\star}) \Longleftrightarrow$	
	$H_v: E_h\{lowntheta \}$	$pgf(heta_{h\star})\} = E_h\{log$	$gg(\gamma_{h\star})\} \iff$	
		(\circ)		

$$H_{v}: \quad E_{h}\{\log\frac{f(\theta_{h\star})}{g(\gamma_{h\star})}\}=0$$

Alternative hypotheses are

$$H_{f}: \quad E_{h}\{\log \frac{f(\theta_{h\star})}{g(\gamma_{h\star})}\} > 0 \qquad H_{f} \text{ is better}$$
$$H_{g}: \quad E_{h}\{\log \frac{f(\theta_{h\star})}{g(\gamma_{h\star})}\} < 0 \qquad H_{g} \text{ is better}$$

문 ▶ ★ 문 ▶

- Distribution of $E_h\{\log \frac{f(\theta_{h\star})}{g(\gamma_{h\star})}\}$ is unknown and depends on unknown true model H_h .
 - Can be consistently estimated by $\frac{1}{n} \log \frac{f(y|\hat{\theta})}{g(y|\hat{\gamma})}$
 - Under null, by CLT: $\sqrt{n}(\frac{1}{n}\log\frac{f(y|\hat{\theta})}{g(y|\hat{\gamma})} 0) \sim N(0,\hat{\omega}^2)$

•
$$\hat{\omega}^2 = v\hat{a}r(\log \frac{f(y|\hat{\theta})}{g(y|\hat{\gamma})}) = \frac{1}{n}\Sigma[\log \frac{f(y|\hat{\theta})}{g(y|\hat{\gamma})}]^2 - [\frac{1}{n}\Sigma\log \frac{f(y|\hat{\theta})}{g(y|\hat{\gamma})}]^2$$

- Adjustment of log f(y|\heta)/g(y|\heta) if the number of coefficients in two models are different.
- $LR_{adj} = \log \frac{f(y|\hat{\theta})}{g(y|\hat{\gamma})} [\frac{p}{2}\log(n) \frac{q}{2}\log(n)]$, where p and q are the number of estimated coefficients in models f and g respectively.

	Cox Approach	Bayes Factor	Other Methods
Review			

Parameters are random variables

- Parameter θ drawn from prior $p(\theta)$
- Data *D* garthered conditionally on some fixed θ
- Update the prior $p(\theta)$ with garthered data D

$$\mathsf{P}(heta|D) = rac{p(D| heta)p(heta)}{p(D)}$$

• Drop marginal p(D) since constant

 $p(\theta|D) \propto p(D|\theta) \times p(\theta)$

	Cox Approach	Bayes Factor	Other Methods
Model C	alaction		

- Model Selection
 - Instead of parameters, we consider models M.

$$P(M|D) = \frac{p(D|M)p(M)}{p(D)}$$
(1)

where $p(D|M) = \int_{\theta} p(D|\theta, M) p(\theta|M) d\theta$, marginalized over parameters space.

• Now Consider two models, M_f and M_g .From equation (1), we can have posterior odds in favor of M_f against M_g

• Often assume $p(M_f) = p(M_g) = 1/2$, prior odds=1, so Posterior odds = Bayes Factor

Decision Rule(Jeffreys, 1961)

- $K>1 \implies Null hypothesis supported$
- K<1 \implies Not worth more than bare mention
- K<1/ $\sqrt{10}$ \implies Evidence against M_f substantial
 - $K < 1/10 \implies Strong$
- $K < 1/10^{3/2} \implies very strong$
 - K<1/100 \implies Evidence against M_f decisive

Cox Approach	Bayes Factor	Other Methods

Notes

• Hard to evaluate

$$p(D|M) = \int_{\theta} p(D|\theta, M) p(\theta|M) d\theta$$

- Approximation
 - BIC (Schwarz, 1976)
 - MCMC (Smith, 1997)
 - Laplace approximation (Jeffrey, 1961)

Other Methods

- Distribution free test(Clarke,2003)
- Boostrap statistic

イロン イ理 とく ヨン く ヨン

	Cox Approach		Other Methods
Reference			

- D.R.COX, (1961)"Tests of separate families of hypotheses"
- D.R.COX, (1962) "Further results on tests of separate families of hypothese"
- QUANG H. VUONG (1989), "Likelihood ratio tests for model selection and non-nested hypotheses"
- M.H.Pesaran& M.Weeks (1999) "Non-nested hypothesis testing: An overview"
- Kevin A. Clarke (2001)"Testing Nonnested models of international relations: Reevaluating Realism"
- Kevin A. Clarke (2003) "A simple distribution-free test for non-nested hypotheses"

Cox Approach		Other Methods

THANKS

Non-nested Hypotheses Testing

æ

◆□▶ ◆圖▶ ◆温▶ ◆温▶