
The concept of identity by descent (IBD) was 
classically quantified1 following Wright’s 
work on the coefficients of relationship2,3 
and is used to indicate two homologous 
alleles that have descended from a common 
ancestor. This fundamental concept has 
many uses in genetics, including predicting 
genotype frequencies4, mapping genes5,6, 
estimating genetic variance7 and predicting 
inbreeding depression8. The probability that 
two alleles are IBD has to be defined with 
respect to a base (reference) population; 
that is, the two alleles are descended from 
the same ancestral allele in the base popula-
tion. Traditionally, the probability that two 
alleles are IBD was most often calculated 
from a known pedigree and so the individu-
als at the top of the pedigree (the founders) 
form a natural base population. However, it 
is becoming common to use data on genetic 
markers such as SNPs to estimate the prob-
ability of being IBD without reference to a 
known pedigree (for an example see Ref. 9) 
and, in this case, there is no obvious base 
population. Moreover, the concept of IBD 
seems to conflict with the well-established 
coalescence theory10–12 in which all alleles are 
descended from a common ancestor but 
at different times in the past. In practice, 
this conflict has been ignored by using IBD 

concepts for recent common ancestors and 
coalescence analysis for distant common 
ancestors; however, the two categories of 
ancestor merge, especially when using dense 
SNP or DNA sequence data.

The lack of a consistent definition of 
IBD probabilities based on genetic mark-
ers can lead to several practical problems. 
For instance, popular methods6 to estimate 
IBD probabilities report that the relation-
ship between many pairs of individuals is 
zero9,13. However, all individuals are related 
if traced back far enough and some pairs 
of individuals are more closely related than 
others despite all being called ‘unrelated’. 
Consequently, this approach loses much  
of the information contained in the data 
and leads to incorrect conclusions with 
respect to the estimation of relatedness 
between pairs of individuals and the  
estimation of genome-wide inbreeding 
for individuals. Furthermore, using these 
SNP-derived estimates in combination 
with phenotypes will lead to imprecise and 
biased estimates of genetic variance and of 
inbreeding depression.

Most of the uses of IBD implicitly involve 
predicting the probability that alleles at 
an unobserved site are identical by state 
(IBS); that is, whether they ‘look’ the same. 

Consequently, we argue and demonstrate 
that methods of estimating the probability 
of IBD should be designed to estimate the 
probability that alleles at an unobserved 
locus are IBS. This provides a logical basis 
for deriving IBD probabilities and unifies 
this approach with that of coalescent analy-
sis. The recognition that we need to estimate 
the probability that individuals carry alleles 
that are IBS at unobserved sites also leads to 
a new and unbiased method for estimating 
genetic variance and can provide an estimate 
of the genetic variance that is not captured 
by a panel of SNPs (termed the “missing 
heritability”14,15).

In this Opinion we first define the prob-
ability of IBD (F), and point out the equiva-
lence of this probability to the correlation 
between the alleles carried by two different 
gametes. Then we show that by expressing 
this correlation relative to the current  
population instead of relative to some  
past population, we can overcome the  
practical problem of an undefined base 
population. With this definition of IBD,  
F becomes a convenient parameter for 
predicting the probability that two gam-
etes carry IBS alleles at an unobserved site. 
Finally, we review methods for estimating F 
from SNP data and the use of IBD in gene 
mapping, estimation of genetic variation  
and prediction of inbreeding depression.

IBD theory
We first provide a clear definition of the 
probability of IBD and show how this  
measure is related to IBS at unseen loci.

Defining IBD, relationships and inbreeding 
at a single locus. We can use the symbol F to 
denote the probability that at a single site in 
the genome, homologous alleles in two differ-
ent gametes are IBD with respect to a defined 
base population. This probability is also called 
the gametic relationship of the gametes. If the 
two alleles are in the same diploid individual 
then F is the inbreeding coefficient of the 
individual at this locus. If we consider two 
diploid individuals, each with two alleles at 
a locus, then there are four pairs of gametes 
(taking one from the first individual and one 
from the second). The co-ancestry of the two 
individuals (that is, the expected inbreeding 
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Box 1 | Illustration of the concepts of identity by descent and coalescence

Here we illustrate the concepts of identity by descent (IBD), identity by state (IBS) and coalescence 
at a single nucleotide and at a chromosome segment. The figure depicts an ancestral allele at a 
locus, representing the point of coalescence for alleles in the current population (C1–C5). At the 
point of coalescence (the most recent common ancestor) this locus carries a copy of a G allele that 
is subject to a mutation event (G→T; lightning symbol) leading to a G/T polymorphism.

IBD at the polymorphic locus among individuals (C1–C5) can be defined with respect to a base 
population (B1–B4) in which individuals are assumed to be unrelated (shown by the differently 
coloured chromosome segments). Then the G alleles in C1, C2 and C3 are IBD to each other as all 
three descend from the G allele in B1. The T alleles in C4 and C5 are IBS but not IBD as they descend 
from different alleles in the base population.

The whole chromosome segments C1 and C2 are IBD because they descend from a common 
ancestor (B1) without recombination, but chromosome segment C3 is not IBD to C1 and C2.
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of their offspring) is the average of these 
four F values and their numerator relation-
ship (A)16 is twice their co-ancestry16,17. The 
relationship of a gamete with itself is 1, so the 
numerator relationship of a diploid individual 
with itself is 1 + F, in which F is the inbreeding 
coefficient of the individual.

Defining IBD at a chromosome segment. 
If we consider a segment of a chromosome 
instead of a single point in the genome, it is 
possible to define IBD slightly differently. 
We define two homologous chromosome 
segments as IBD if they descend from a 
common ancestor without either of them 
experiencing a recombination18. In this  
definition of ‘chromosome segment IBD’ 
there is no need for a base population.

IBS and IBD. We define alleles as being IBS 
if neither allele has experienced a mutation 
since their last common ancestor. Coalescent 
theory treats all alleles at a locus as being 
IBD and models the probability of mutation 
causing them not to be IBS10–12,19. This leads 
to tension between coalescent theory and 
both pedigree and marker IBD methods, 
which are based on the framework that all 
loci are independent in the base population. 
BOX 1 illustrates the concepts of IBD for sin-
gle sites and for chromosome segments and 
a coalescent tree for the single site.

predicting genotype probabilities using F
If there are two alleles (for example, G and T) 
with allele frequencies q and p in the base 
population, then the genotype probabilities 
for diploid individuals are as outlined in 
equation 1:

GG GT TT (1)q2 + pqF 2pq (1 – F) p2 + pqF

In this equation F is the probability that 
the alleles are IBD with respect to the base 
population16. F can also be described as the 
correlation between the gametes (BOX 2). 
In fact, the choice of a base population is 
arbitrary and in BOX 2 we describe how the 
base population, to which IBD coefficients 
are expressed, can be changed. It is conven-
ient to choose the current population as the 
base because we can easily estimate allele 
frequencies in the current population but it 
may be difficult to estimate them in a base 
population that has a more ancient ancestry.

If the base is the current population and if 
mating is at random then the mean F is zero 
and the genotypes show Hardy–Weinberg 
frequencies over the whole population. 
However, even in a randomly mating popula-
tion some mates are more closely related than 

others and so F varies between individuals.  
If F < 0 this indicates an individual that is less 
homozygous than the average. Negative F 
values cannot be interpreted as a probability, 
but they can still be interpreted as a cor-
relation and so equation 1 still applies. The 
frequencies of genotypes given by equation 1  
can also be interpreted as the frequencies of 
pairs of gametes even if they are not in the 
same individual. Thus, equation 1 describes 
a model for predicting whether two gametes 
carry alleles that are IBS (both G or both T) 
or not (one G and one T).

We can use this model with data on 
observed genotypes to estimate F (as 
described in BOX 3) or we can use this model 
to predict the probability that two alleles are 
IBS when predicting genotypes at an unob-
served locus. The assumption of the model is 
that the same F applies in both cases so that 
F can be estimated from SNP data and then 
used in applications such as gene mapping. 
Several applications are described in the  
following sections.

estimating relatedness from snps
estimating IBD coefficients from high-
density marker data is standard practice 
for many population-based studies (for an 
example see Ref. 9). Methods such as those 
of Milligan20 and Purcell et al.6 are useful for 
identifying cryptic relatedness21 or recent IBD, 

but they are not suited to estimating ancient 
IBD among distantly related individuals 
because they do not have a well-defined 
base population of unrelated individuals. 
equation 1 can be used as a model, and 
data on genetic markers such as SNPs can 
be used to estimate F. By defining the cur-
rent population as the base we can easily 
estimate the allele frequency q needed in 
equation 1. BOX 3 describes the formula for 
a single locus. Although we have described 
the relationship among gametes, the method 
is easily extended to diploid individuals (the 
formulae are given in BOX 3). The estimates 
from single loci can be simply averaged 
over the whole genome or over a part of 
the genome22. We call this estimator of the 
genome-wide relationship between indi-
viduals the raw unified additive relationship 
(raw uAr or Â). This estimate contains 
sampling error due to the finite number of 
SNPs that are used to estimate it; a better 
estimate can be obtained by regressing this 
raw uAr towards the identity matrix as 
explained in Yang et al.22 and in BOX 3. We 
call the regressed or shrunk estimate of the 
relationship matrix the adjusted uAr (Ã). 
The adjusted uAr is unbiased in the sense 
that E(A|Ã) = Ã.

To illustrate this method we simulated 30 
sets of sequence level data comprising 1,000 
‘unrelated’ individuals in a randomly mating 
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population23,24. relatedness coefficients were 
estimated from a subset of polymorphisms, 
representing a high-density genotype panel, 
using four methods: standard relationship  
coefficients from ten generations of  
pedigree data16; standard IBD estimates 
using PlINK6; raw uAr; and adjusted uAr 
(BOX 3; see Supplementary information S1  
(box)). The adjusted uAr provides an  
unbiased prediction of the numerator rela-
tionships (A) estimated from the pedigree as 
shown by the regression of A from pedigree 
on adjusted uAr being approximately 1.0. 
The raw uAr is slightly biased (regression  
coefficient = 0.97) owing to sampling error 
in the estimates of relationship. By contrast, 
the standard IBD function within PlINK 
(PlINK_IBD) estimates many of the rela-
tionship coefficients to be zero because  
it has no clearly defined base and therefore 
has difficulty estimating distant relation-
ships. The estimates of relationship by 
uAr are more highly correlated with the 
pedigree relationships than are the estimates 
from PlINK.

estimating genetic variance
Genetic variances and heritabilities for 
complex traits are traditionally estimated 
by using a relationship matrix that is calcu-
lated from a known pedigree. However, the 

relationship matrix can also be estimated 
from genome-wide genetic markers25. 
The genetic variance that is estimated is 
that assumed to have existed in the base 
population used to calculate the relation-
ship matrix. Thus, if an ancient base is used, 
the genetic variance will be estimated in an 
ancient base. As the current population is 
assumed to be more inbred than an ancient 
base (BOX 2), the genetic variance in the 
ancient base will be estimated to be larger 
than the genetic variance in the current pop-
ulation. This makes the estimated genetic 
variance difficult to interpret. Therefore it 
is convenient to estimate the relationship 
matrix with the current population as the 
base and hence estimate the genetic variance 
in the current population.

Ideally, the genetic variance would be 
estimated using the relationship matrix at 
the causal loci controlling the trait. As these 
are typically unknown, we would like to use 
an unbiased estimate of this relationship; 
that is, the expected value of the relationship 
conditional on the marker data.

If the causal variants are unaffected by 
natural selection (that is, they are neutral), 
the relationship matrix estimated from 
pedigree is unbiased in this sense, as is the 
adjusted uAr, but the raw uAr estimated 
from equation 3 in BOX 3 is not because the 

variance of the raw uAr is inflated by sam-
pling error due to the finite number of SNPs 
used in its calculation.

If causal variants are subject to selection,  
then relationships at these variants are 
systematically different to those at neutral 
markers. Although loci that harbour causal 
variants are typically unknown, we can 
investigate their properties by studying 
markers with different allele frequencies. 
For example, Yang et al.22 showed how the 
relationship at markers with low minor 
allele frequencies differs from the relation-
ship based on all markers. Consequently,  
if the causal variants had similar properties 
to low minor allele frequency SNPs  
the adjusted uAr underestimates the  
true heritability.

These principles are illustrated in BOX 4, 
in which simulated data are used to estimate 
heritability. When the causal variants are 
simulated to have similar properties to the 
SNPs and adjusted uAr is used, the genetic 
variance in the current population is esti-
mated without bias. By contrast, using the 
relationships estimated by PlINK_IBD6 or by 
the raw uAr gives biased estimates (BOX 4). 
The additive genetic value of individu-
als can be predicted by using the adjusted 
uAr in place of the pedigree-defined 
numerator relationship matrix. This is a 
form of “genomic selection”26 used to pre-
dict breeding values in livestock27,28. The 
methods of calculating IBD probabilities 
described above can be used to calculate IBD 
probabilities over the whole genome, one 
chromosome or a small segment of chromo-
some and hence can be used to calculate the 
genetic variance due to a single chromosome 
or segment.

estimating variance explained by snps
estimating the genetic variance using the 
raw uAr as the relationship matrix (instead 
of the adjusted uAr) is equivalent to a 
model that fits the effects of all the SNPs26–31. 
Thus the genetic variance estimated when 
raw uAr is used is an estimate of the total 
genetic variance explained by the SNPs. 
This will tend to underestimate the full 
genetic variance, as shown in BOX 4, which 
is due to incomplete linkage disequilibrium 
(lD) between the SNPs and the causal  
variants. The statement that the relationship 
at the SNPs (raw uAr) is not a perfect  
estimate of the relationship at the causal 
variants is equivalent to the statement that 
the lD between the SNPs and the causal 
variant is incomplete. Thus the difference 
between the full genetic variance estimated 
using the pedigree-defined relationship  

 Box 2 | Changing the base population for identity by descent coefficients

Sometimes the appropriate base population to use is obvious. For example, if we have a 
population consisting of full sib families but with no knowledge of the relationships between  
the parents of these families, then it is convenient to define the parents as the base population. 
However, for some purposes it may be desirable to change the base population, for instance, to 
the ancestors of these individuals who were alive in 1800. We can do this if we know the average 
relationship of gametes in the recent base population (that is, the parents) with respect to the 
older base population (that is, individuals alive in 1800). Let this probability be F

st
, then the F 

between two gametes with respect to the old base population (F
old

) is F
old 

= F
new 

+ (1 – F
new

)F
st
, in 

which F
new 

is the relationship with respect to the new base population. This equation can be 
solved to obtain a formula for F

new 
(equation 2) so that it is possible to transform between base 

populations in either direction.

There is another interpretation of F. For a biallelic locus, arbitrarily label one allele as 0 and the 
other allele as 1, then the allele in gamete i can be given the value x

i
, in which this is either 0 or 1. 

Then F is simply the correlation between alleles taken from gametes with a relationship of F. 
Again this correlation is with respect to a base population. If the allele frequency in the base is p 
(which represents the mean of x in the base population), then E(x

i
 – p)(x

j
 – p) = F

ij
p(1 – p).

If the base population is old, genetic drift may mean that p is highly different from the allele 
frequency in the current population. It is possible to observe the allele frequency in the 
current population (u) but it may be extremely difficult to estimate p. However, we can define 
the ‘new’ base population as the current population with F

new 
as defined in equation 2.  

Then the correlation between alleles from two gametes with respect to the current population 
is F

new
 and E(x

i
 – u)(x

j
 – u) = F

new
u(1 – u). With this definition, the average value of F between 

alleles in the current population is per definition 0, and F between some pairs of gametes is 
negative. Consequently, this F cannot be interpreted as a probability; however, its 
interpretation as a correlation is straightforward.
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matrix and the variance explained by the 
SNPs estimated using the raw uAr is  
the missing heritability14,15. For instance, we 
recently showed that genotyped SNPs on a 
commercial array collectively explain about 
50% of the genetic variance for human 
height22. The SNPs have an apparent effect 
on the trait due to lD with causal variants. 
Therefore, if they only explain 50% of the 
variance, the lD between the causal variants 
and the SNPs is less than complete.

gene mapping
Mapping methods. All gene mapping meth-
ods can be described in the following way32,33: 
for the possible positions of the causal locus, 
calculate the probabilities that individuals 
are IBS. Then choose the position at which 
the IBS probabilities most closely match the 
observed similarities in phenotype.

If the pedigree is unknown, then standard 
linkage analysis cannot be used; another 
method must be found to estimate the 

probability that individuals carry the same 
variants at a specified position. For instance, 
genome-wide association studies estimate the 
apparent effect of the marker relying on  
the assumption that a marker will only have a 
strong association with the trait if it is in high 
lD with the causative polymorphism and 
that this will only happen if the marker and 
causative polymorphism are close together 
on the chromosome. In this case, the appar-
ent effect of the marker underestimates the 

Box 3 | estimating relatedness coefficients
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For any pair of gametes, genotyped at a biallelic locus, we can use equation 1 
as a model and use it to estimate F. If x

i
 is the allele carried by gamete i  

coded as either a 0 or 1, with allele frequencies in the base population of q 
and p, then the gametic relationship F between gametes 1 and 2 can be 
estimated by equation 3:

This is consistent with the expectation of F given in BOX 2. This is the  
minimum variance, unbiased estimate with sampling variance = 1, if true  
F ≈ 0. It is easy to calculate if we define the base as the current population 
because then p is the allele frequency in the current population. If genotype 
data exist on many loci for a pair of gametes, the  for that pair can simply 
be averaged over the loci yielding an estimate of the average F. In this way F 
can be estimated for the whole genome or a segment of the genome. Similar 
estimators have been used previously30,31,40,41. The sampling variance of  is 
then 1/m, in which m is the number of markers used.

 is unbiased in the classical sense that E( |F) = F. That is, if we sample 
many pairs of gametes with the same true F then the average value of  will 
be F. These estimates will be distributed around F with a variance of 1/m. 
However, unbiasedness in this sense is not the property that we want in an 
estimate of F42. We want to estimate F at unobserved loci and the best 
estimator of this is the expected value of F conditional on the markers data. 
That is, we want an estimate with the property E(F| ) = . Yang et al.22 showed 
how this can be empirically achieved by using the regression (β) of F on  to 
produce an estimate with the desired property  = β . That is,  is a ‘shrunk’ 
or ‘regressed’ version of .

To estimate the relationship between diploid individuals it is not necessary 
to divide the genotypes into haploid alleles. This estimator of relationship 
between two distinct diploid individuals (i and j) can easily be calculated 
from genotype data as outlined in equation 4, in which x is the sum of the 
two alleles within an individual.

For the relationship of an individual with itself, Â should be estimated as 
1 + , in which  is the estimate of the relationship between the two gametes 
constituting the individual. This estimate of A should be regressed in the 
same way as . We call the estimators Â and Ã the raw unified additive 
relationship (UAR) and the adjusted UAR, respectively. This estimator of F or 
A can be applied to the whole genome or to a segment containing one  
or more markers.

We simulated data on a SNP panel (described in Supplementary 
information S1 (box)) and calculated four estimates of the relationship 
between each pair of 1,000 individuals: pedigree relationship coefficients16; 
PLINK_identity by descent (IBD)6; raw UAR22; and adjusted UAR22. Further 
details of methods used to estimate the relatedness coefficients are given 
in Supplementary information S1. The results are presented here in the 
figure. A large proportion (0.49) of IBD coefficient estimates from  
PLINK_IBD are zero (a), leading to high regression (β) and low correlation 
(R2) coefficients. The adjusted UAR gives an unbiased estimate of pedigree 
relationship (β = 1) and the highest correlation with pedigree relationship. 
Correlations from both raw UAR (dark blue) and adjusted UAR (light blue) 
coefficient estimates are shown in (b).
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effect of the causal variant if the lD is not 
complete. An equivalent way to describe 
an association study would be to say that 
individuals carrying identical marker alleles 
are likely to carry identical causal alleles and 
therefore be similar in phenotype.

Alternatively, homozygosity mapping 
uses haplotypes that are IBS to imply that 
unobserved sites within the haplotype are 
likely to be IBS. An individual carrying 
two IBS haplotypes is therefore likely to be 
homozygous at additional sites within the 
haplotype that might contain a recessive 
allele for the trait under study34.

The benefits of a unified approach. linkage 
analysis, single-marker association methods 
and haplotype methods all use the concept 
of IBS at unobserved putative gene positions 
but often do not attempt to estimate this 
probability formally. A unified approach to 
all gene mapping methods can be provided 
by formally calculating the probabilities that 
individuals carry IBS alleles at a putative 
site. Then the likelihood of the phenotypic 
data given this set of probabilities can be 
calculated and the site with the highest  
likelihood chosen33.

predicting inbreeding depression
Many traits, especially those related to fit-
ness, show a decline in the mean in inbred 
individuals, which is known as inbreeding 
depression8. This is thought to be largely due 
to increased homozygosity at loci in which a 
deleterious allele is at least partially recessive. 
In this case, the mean trait value declines in  
proportion to the inbreeding coefficient. 
The inbreeding coefficient can be calculated 
from the pedigree if it is known. In the 
absence of a known pedigree, the inbreeding 
coefficient can be calculated from genetic 
markers35,36. The inbreeding coefficient is the 
gametic relationship between the two gam-
etes forming the individual, so the methods 
for estimating it are the same as for estimat-
ing the relationships between individuals. As 
before, we can use a method that estimates 
inbreeding for each SNP, averages these  
estimates over all SNPs and regresses  
the estimate to allow for sampling error.

Homozygosity across the genome. However, 
it is homozygosity at the causal variants that 
show dominance that is important rather 
than the homozygosity at SNPs. Selection 
operating at these causal variants may affect 

the evolution of allele frequency at such 
loci so that the relationship at such sites is 
systematically different to that at common 
SNPs. For instance, if the mutant allele at 
such a locus is selected against, it is likely 
to be eliminated from the population after 
some generations. Consequently, mutants 
that are segregating in the population are 
likely to be evolutionarily young. This means 
that relationships based on an ancient com-
mon ancestor may be poor predictors of 
inbreeding depression because the mutation 
creating the causal variant will have occurred 
since the common ancestor. Chromosome 
segments that share a long common haplo-
type are likely to derive from a recent com-
mon ancestor and so be a better predictor of 
homozygosity at the relevant causal variants 
than relationships based on similarity at 
single SNPs36,37.There has been little research 
to discover how best to predict inbreeding 
depression, but the argument above shows 
that it involves the same concepts as the esti-
mation of the additive genetic relationship.

Homozygosity at specific sites. Inbreeding 
depression usually refers to the effect of 
homozygosity over the whole genome, but 
the same phenomenon applies to specific 
sites in the genome in which a recessive 
mutation is segregating38. logically these sites 
would be mapped using a method that esti-
mated the probability that an unseen locus 
was homozygous, but often informal meth-
ods such as runs of homozygosity (rOH) 
among genetic markers are used. rOH SNPs 
in individuals are used to estimate regions 
of the genome that are inherited from a 
common ancestor and subsequently to see 
whether these runs are correlated with a phe-
notype37,39. Such approaches are based on the 
idea that a long rOH implies recent inbreed-
ing and harmful recessives may be contained 
within the segment8. These analyses implic-
itly assume that runs of SNPs that are IBS are 
also IBD10,39. The appropriate question to ask, 
however, is whether the intervening, unob-
served chromosome stretches (for example, 
causal variants) within the rOH are also 
identical. To illustrate this principle we show 
the probability that unobserved SNPs within 
a rOH are homozygous (see Supplementary 
information S2 (box)). The illustration shows 
that the longer the rOH the higher the prob-
ability that unobserved variants within the 
segment are also homozygous.

Conclusions
IBD is a widely used concept in genetics but 
it requires the definition of a base population. 
Traditionally the probability that alleles were 

Box 4 | estimating heritability from marker-derived relationship coefficients

A relationship matrix, calculated from genetic 
markers, can be used to estimate the genetic 
variance and hence heritability of a complex 
trait. To obtain an unbiased estimate of 
genetic variance, the estimate of the 
relationship matrix should be unbiased in  
the sense E(A|Ã) = Ã22 as explained in BOX 1 
and illustrated in BOX 3.

For each of the simulated data sets 
described in BOX 3 we generated a 
quantitative phenotype based on genotypic data with heritability (h2) = 0.5. Random samples of 
500 SNPs were chosen to represent causal variants from the set of polymorphisms not included in 
the generated genotype panels of the simulated data. Causal variants were selected from two 
minor allele frequency (MAF) scenarios. The first scenario is randomly sampled causal variants 
from polymorphisms with MAF > 0.05. This leads to a causal variant MAF distribution similar to 
that of the SNPs in the genotype panel. The second scenario is randomly sampled causal variants 
from the SNPs with MAF < 0.05, which represents rare variants in a standard population genetics 
framework. Details of the methods used to generate phenotypic values are given in 
Supplementary information S3 (box).

Using the simulated phenotypes, we estimated h2 (details of estimating h2 are given in 
Supplementary information S3) using the relatedness coefficients described in BOX 3. Results are 
summarized here in the table. In the first scenario, using the raw unified additive relationship 
(raw UAR or Â) coefficients, we underestimate heritability owing to incomplete linkage 
disequilibrium (LD) between SNPs and causal variants (mean standard errors are shown in 
brackets). However, by correcting for sampling error caused by estimating genetic variance from 
a finite number of SNPs18 (see Supplementary information S2 (box)) we obtain an unbiased 
estimate of the genetic variance. In the second scenario, causal variants have lower MAFs than 
SNPs on average and less LD than between markers and causal variants, thereby leading to 
underestimation of h2 even when adjusted UAR (or Ã) is used. The use of Ã instead of Â corrects 
for the sampling error in Â, but it does not correct for systematic differences between SNPs and 
causal variants. Estimates of h2 using PLINK_IBD coefficients lead to a lower estimation of h2,  
with larger standard errors than those obtained from our unified method (UAR).

causal variant scenario

MAF > 0.05 MAF < 0.05

Raw UAR 0.435 (0.012) 0.412 (0.014)

Adjusted 
UAR

0.495 (0.011) 0.427 (0.012)

PLinK_iBD 0.362 (0.027) 0.315 (0.029)
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IBD was predicted from pedigrees and the 
base population consisted of the founders 
of the pedigree. However, using dense SNP 
data it is possible to estimate IBD prob-
abilities without knowledge of pedigrees. In 
many cases the most convenient base to use 
is the current population. The use of the cur-
rent generation as the base causes some of 
the relationships to be negative and so they 
cannot be interpreted as probabilities but 
they can be interpreted as the correlation of 
homologous alleles in different gametes.

The purposes to which IBD relationships 
are used rely on their ability to predict the 
probability that alleles at unobserved loci, 
such as those harbouring causal variants, are 
IBS. Thus methods to estimate IBD relation-
ships should in fact aim to estimate the prob-
abilities that gametes are IBS at unobserved 
loci. This Perspective eliminates the conflict 
between IBD methods and coalescent  
methods: coalescent methods are examples 
of methods that can be used to estimate the 

probability that gametes are IBS. The same 
methods for estimating IBD relationships 
can be used for gene mapping, for estimating 
genetic variance and for predicting inbreed-
ing depression, thereby leading to a more  
consistent approach and more accurate results.
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Glossary

Coalescence theory
A population genetics model of inheritance relationships 
among alleles at a given locus. The coalescence of two 
alleles is the most recent point (going back in time) at 
which they shared a common ancestor.

Cryptic relatedness
The presence of close relatives in a sample of ostensibly 
unrelated individuals. It is characterized by a recent 
common ancestry that can be revealed from marker-based 
relatedness coefficients.

Genome-wide association study
Analysis of the entire genome using association models to 
identify regions of the genome that contribute to genetic 
variation in a phenotype. These studies typically analyse 
data from high-density SNP arrays.

Heritability
The proportion of phenotypic variation in a population 
that is attributable to genetic variation among individuals. 
Statistical methods are used to estimate the relative 
contributions of differences in genetic and non-genetic 
factors to the total phenotypic variation in a population.

Identity by descent
(IBD). Two or more alleles are IBD if they are identical 
copies of the same ancestral allele in a base population. 
IBD can be estimated for alleles at single loci in a diploid 
individual or between individuals.

Identity by state
(IBS). Refers to two or more alleles that ‘look’ the same. 
for example, if two individuals both carry a ‘G’ allele at a 
specific locus.

Pedigree
A population of individuals in which the mating records for 
multiple generations are known. Pedigree information is 
typically available for livestock populations, in which 
controlled breeding has been implemented to maximize 
the response to genetic selection.
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