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clusion:  The mHWP exact test using a mixture sample is a 
better HWP test for case-control genetic association studies 
than the traditional HWP in controls or the likelihood-based 
approach, and it will improve our ability to keep causal SNPs 
in the case-control genetic association studies. 
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 Introduction 

 Assessment of the Hardy-Weinberg proportion (HWP) 
in control subjects has been widely used as a quality con-
trol measure for identifying questionable genotypes in 
case-control association studies  [1–8] . Consider a simple 
situation with two alleles,  A  and  a , at a single locus. If the 
allele frequency of  A  is  p  and the allele frequency of  a  is 
(1 –  p ), then the expected genotype frequencies of  AA ,  Aa,  
and  aa  are  p  2 , 2 p  (1 –  p ), and (1 –  p ) 2 , respectively, assum-
ing HWP in the population. In a case-control study, the 
deviation from HWP in controls, which is assessed by 
comparing the difference between observed genotype 
frequencies and the corresponding expected frequencies 
 [7] , is used to identify potential genotyping errors. Using 
only controls for HWP assessment is reasonable when as-
suming a rare disease in the study. However, when the 
disease of interest is common, controls might not repre-
sent the general population, as cases account for a rela-
tively large portion of the general population. Therefore, 
it would be problematic to use only controls when evalu-
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 Abstract 
  Objectives:  Assessment of the Hardy-Weinberg proportion 
(HWP) in controls has been widely used as a quality control 
measure in case-control association studies. However, when 
the disease being studied is common, controls might not 
represent the general population, which could result in inac-
curate  HWP  test  results.  Such  results could lead investiga-
tors to discard important single-nucleotide polymorphisms 
(SNPs) that could potentially be causal. In this paper, we 
showed the inappropriateness of the HWP test in controls 
and proposed a mixture HWP (mHWP) exact test using a mix-
ture sample that mimics the general population.  Methods:  
The mHWP exact test estimates HWP in a mixture sample 
that is a combination of both cases and controls proportion-
al to the prevalence of disease. We implemented a re-sam-
pling procedure to construct mixture samples and then ob-
tained the empirical p value of HWP in the general popula-
tion. Simulation studies were performed to investigate the 
performance of the proposed mHWP exact test. The method 
was also applied to a genetic association study of obesity. 
 Results:  The results showed that the mHWP exact test is 
more likely than either the traditional HWP method in con-
trols or the likelihood-based approach to keep causal SNPs 
for further analysis when the disease is more common.  Con-
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ating the expected genotype frequencies in the general 
population. In these situations, using the HWP test in 
controls might lead to discarding important single-nu-
cleotide polymorphisms (SNPs) that could potentially be 
causal SNPs of the disease.

  In this paper, we first show the inappropriateness of 
using the HWP test in only controls and then propose an 
improved HWP test, called the mixture HWP (mHWP) 
exact test, using a mixture sample that mimics the gen-
eral population for the case-control genetic association 
study. The mHWP exact test estimates HWP in a mix-
ture sample that is a combination of cases and controls. 
The cases and controls in the mixture sample were se-
lected randomly, and the number of cases in the mixture 
sample was proportional to the prevalence of the disease 
of interest. We implemented a re-sampling procedure to 
obtain empirical p values for the mHWP test. For each 
step of re-sampling, we constructed a mixture sample 
and obtained an HWP p value. Non-parametric density 
estimation (kernel density estimation) was used to esti-
mate the density function of the empirical p values based 
on mixture samples. The maximum likelihood estimator 
(MLE) of this empirical density was then evaluated as the 
p value of HWP in the general population. We compared 
our mHWP exact test with the traditional HWP exact 
test in controls and with the likelihood-based approach 
recently proposed by Li and Li  [4] . A recent study of Yu et 
al.  [9]  proposed a likelihood ratio test for HWP that is 
similar to the likelihood-based approach proposed by Li 
and Li  [4] . The results from our simulation studies showed 
that, when there is no genotyping error, the mHWP exact 
test is more likely to keep causal SNPs for further analysis 
in a case-control association study when the disease of 
interest is more common. We also applied the proposed 
mHWP exact test to the real case-control genetic asso-
ciation study of obesity.

  Methods 

 For  our  studies,  we  assumed a diallelic locus, with  A  as the 
risk allele and  a  as the normal allele. We denoted the three geno-
types –  aa ,  Aa , and  AA  – as a categorical random variable,  X  = (0, 
1, 2). This coding assumed an additive model, but different coding 
for representing a dominant or recessive model was also used in 
the simulations. We defined another categorical random variable, 
 Y  = (0, 1), to indicate the case-control status, with 0 representing 
controls and 1 representing cases.

  mHWP Exact Test 
 Given a dataset of observations of random variables  X  and  Y  

corresponding to the genotypes of a SNP and the case-control 

status, respectively, and the known prevalence of the disease, we 
first constructed a mixture sample to represent the general popu-
lation.

  Consider a case-control study with  n  individuals,  n  =  n  0  +  n  1 , 
where  n  0  is the number of controls and  n  1  is the number of cases. 
Denote  n  m   !   n  as the sample size of the mixture sample. Let  f̂   be 
the estimated prevalence of the disease of interest in the general 
population. To represent the general population, the number of 
cases in the mixture sample should be ë n  m   !  f̂   û and the number 
of controls should be ë n  m   !  (1 –  f̂  )û (online suppl. fig. 1, www.
karger.com/doi/10.1159/000289597). It should be noted that ë n  m  
 !     f̂    û  ̂    n  1  and ë n  m   !  (1 –  f̂  )û  ̂    n  0 ; therefore,  n  m   ̂   min( ën  1 /   f̂    û , 
ë n  0 /(1 –  f̂  )û). One could choose  n  m  = min(ë n  1 /       f̂    û , ë n  0 /(1 –  f̂  )û) to 
achieve the largest possible mixture sample size. We randomly 
sampled ë n  m   !  f̂ û   individuals from the cases and ë n  m   !  (1 –  f̂  )û 
individuals from the controls. This mixture sample should rep-
resent the general population. In the mixture sample, we calcu-
lated the counts of the three genotypes,  aa ,  Aa , and  AA . The ex-
act HWP test was then applied to the mixture sample  [7] . To allow 
for variability in the mixture sampling, we repeated the proce-
dure to obtain the mixture sample  L  times and then obtained  L  
HWP exact p values. The empirical distribution-based non-para-
metric density was constructed based on  L  mixture sample p val-
ues (see details of kernel density estimation in Appendix 1). Then 
the MLE of this empirical distribution was obtained as the final 
estimate of p value for HWP in the general population. We con-
ducted simulations to decide the number of mixture samples  L . 
We found that when  L   6  500, the empirical distributions and the 
corresponding MLEs approach stability. Therefore, we selected
 L  = 500 in our study.

  Simulation Studies 
 We performed simulation studies to compare three approach-

es for HWP testing for case-control association study: (i) the pro-
posed mHWP exact test; (ii) the likelihood-based approach pro-
posed by Li and Li  [4] , and (iii) the traditional HWP exact test 
using controls. We considered two independent SNPs at two dif-
ferent genetic loci: SNP 1  and SNP 2 . In addition to the genetic risk 
factors, we also accounted for environmental risk or protective 
factors, such as sex, ethnicity, physical activity, and age, in the 
simulation models. The case-control status was simulated based 
on a logistic model. We defined all the odds ratios (ORs) and prev-
alences of the genetic and environmental factors for the purpose 
of the simulation studies, as listed in  table 1 . We assumed SNP 1  is 
a causal SNP of the disease (OR = 1.5) and SNP 2  is non-causal 
(OR = 1.0). We simulated genotypes of both SNPs under the as-
sumption of HWP as in the general population.

  In this paper, we studied minor allele frequencies (MAFs) of 
10, 30, and 50% (from rare to more common) for both SNPs. By 
defining different intercept coefficients of the logistic model, we 
considered different levels of prevalence, ranging from 19–36%, 
which can represent different common diseases. For example, the 
prevalence of current smoking was about 20% in the U.S. in 2004 
 [10] , the prevalence of obesity among adults in the U.S. was about 
32% in 2004  [11] , and the prevalence of overweight in the U.S. was 
about 66%  [11] . We did not study the scenarios of rare diseases 
because we, as well as Li and Li  [4] , have found that the tradition-
al approach of testing HWP only in controls works well in this 
situation. Meanwhile, we also studied three different genetic 
models: dominant, additive, and recessive. The type I error prob-
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abilities reported in the results section were based on 10,000 rep-
licates, which included 1,000 cases and 1,000 controls. For the 
mHWP exact test, the significance of each replicate was deter-
mined on the basis of 500 re-sampling-based mixtures. The sam-
ple size of the mixture samples  n  m  was set to be 1,000 in the simu-
lation studies. We compared the type I error rates of the tradi-
tional HWP exact test in controls, the likelihood-based approach 
 [4] , and our mHWP exact test in the mixture sample. For the 
likelihood-based approach, we applied the ‘fminsearchcon’ func-
tion  [12]  in Matlab to implement the simplex algorithm when 
maximizing the likelihood, as suggested by  [4] .

  In order to assess the ability of the three approaches to detect 
genotyping errors, we introduced genotyping errors into the sim-
ulation studies using the GLHO genotyping error model de-
scribed by Gordon et al.  [13–15]  and the ‘empirical’ error model 
used in Fardo et al.  [16] . The GLHO model introduces errors for 
each allele independently, with probabilities of  �  1  and  �  2 , respec-
tively, where  �  1  is the probability of allele  A  incorrectly coded as 
allele  a , and  �  2  is the probability of allele  a  incorrectly coded as 
allele  A . In our study, we assumed that  �  1  =  �  2  =  � . Therefore, the 
probabilities of a homozygous genotype being miscoded as the 
other homozygous genotype or a heterozygous genotype are  �  2  
and  � (1 –  � ) + (1 –  � ) �  = 2    � (1 –  � ), respectively, while the proba-
bility of a heterozygous genotype being miscoded as a homozy-
gous genotype is  � (1 –  � ). The expected genotyping error rate is 
2 �   –   �  2 (1 +   2 p  – 2 p  2 ). When using the GLHO model, we assumed 
that  �  = 0.5 or 2.5%, so the expected genotyping error rate in our 
simulation was approximately 1 or 5%. On the other hand, the 
‘empirical’ error model is based on a real genome-wide associa-
tion data in which errors were estimated based on re-sequencing. 
According to this model, the genotyping error rate is very high 
( � 12%)  [16] .

  Relative Rejection Probability 
 In order to compare the different approaches for testing HWP 

in a case-control genetic association study, we measured the rela-
tive probability of one approach rejecting HWP in causal or non-
causal SNPs, which were assumed in HWP, compared to the other 
approaches at a given significance level  �  and called this the rela-
tive rejection probability (RRP). Consider two methods for testing 
HWP in a case-control study, M 1  and M 2 . The RRP of M 1  com-
pared to M 2  at significance level  �  is defined as the following  [17] :

RRP =
[P(reject HWP hypothesis using M 1  at  �  � HWP) – P(reject 
HWP hypothesis using M 2  at  �  � HWP)]/P(reject HWP 
hypothesis using M 2  at  �  � HWP),

where  P ( � ) is the probability. Note that if RRP is positive, using M 1  
is more likely to result in rejection of SNPs than using M 2 , when 
the SNPs are in HWP.

  Results 

 Simulation Study Results 
 We first studied the models without any genotyping 

errors. We reported the observed type I error rates of the 
three approaches for testing HWP at the defined signifi-

cance of 0.05 for all the scenarios based on 10,000 rep-
licates. We reported the RRPs for the likelihood-based 
approach versus the mHWP exact test in the mixture 
sample. The results of SNP 1  (causal SNP) and SNP 2  (non-
causal SNP) are reported in  table 2  and  3 , respectively. 
Both tables are organized into two panels with respect to 
type I error rates and RRPs.

  When the SNP was associated with the disease (SNP 1 ), 
the type I error rates for the traditional approach (using 
controls only) were inflated dramatically as MAFs and 
prevalence of disease increased, when the dominant or 
recessive model was assumed. For example, for the dom-
inant model, when the MAF was 0.1 and the prevalence 
of disease was 19.56%, the type I error rate for the tradi-
tional approach was 0.051, and when the MAF was 0.5 
and the prevalence of disease was 34.12%, the type I error 
rate increased to 0.152, which is about three times the 
nominal significance level (0.05). We observed a similar 
trend for the recessive model. The traditional approach 
could control the type I error rate when the additive mod-
el was assumed; however, in reality, one would not know 
the real underlying genetic model, so the traditional ap-
proach evaluating HWP using only controls would lead 
to inflated type I error in many situations. On the other 
hand, the likelihood-based approach and the mHWP 
 exact test could control type I errors in all scenarios in the 
simulation studies. For example, when the dominant 
model was assumed, MAF was set as 0.3, and prevalence 
was 32.20%, the type I error rate of causal SNP 1  was 0.111 
using the traditional approach in controls, but the type I 
error rates were 0.050 and 0.033, respectively, using the 
likelihood-based approach and mHWP exact test, which 
agree well with the nominal value of 0.05.

Table 1.  Parameters for simulation studies

Factors Coefficients of
logistic model

Prevalence, %

Intercept –3.4/–2.5/–1.9
SNP1 0.4055 (OR = 1.5) 10/30/50
SNP2 0 (OR = 1) 10/30/50
Sex 0.6931 (OR = 2) 50 (male)
Ethnicity 0.4055 (OR = 1.5) 75 (Caucasian)
Physical activity –0.4055 (OR = 0.67) 50 (yes)
Age

0–30 years 0.4055 (OR for additive
model = 1.5)

36

31–50 years 39
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  Although both the likelihood-based approach and the 
mHWP exact approach can control type I error rates, the 
mHWP exact test proposed in this paper is more likely to 
keep causal SNPs than the likelihood-based approach, 
according to the RRP results shown in  table 2 . Consider-
ing the dominant model, with MAF being 0.3 and preva-
lence being 21.58%, the type I error rates for the likeli-
hood-based and mHWP approaches were 0.053 and 
0.044, respectively, at significance 0.05, and the RRP of 
the likelihood-based approach compared to the mHWP 
exact test for SNP 1  was 0.203, which means that the like-
lihood-based approach is 20.3% more likely to reject the 
causal SNP 1  than the mHWP exact test. Because the 
RRPs of the likelihood-based approach versus the mHWP 
exact test in all the scenarios reported in  table 2  are posi-
tive, we can conclude that the likelihood-based approach 
is more likely to reject causal SNPs, or in other words, the 

mHWP exact test is more likely to keep the causal SNPs 
for analysis. For a fixed MAF, as prevalence of the disease 
increases, we observed that the mHWP exact test is even 
more likely to keep causal SNPs.

  When the SNP is non-causal (SNP 2 ,  table 3 ), all three 
approaches control type I error well. The mHWP exact 
test has a type I error rate very similar to that of the tra-
ditional approach, while the likelihood-based approach 
has a slightly inflated type I error rate. For example, when 
MAF was set as 0.1 and prevalence was 19.21%, the ob-
served type I error rates of non-causal SNP 2  at 0.05 sig-
nificance  were  0.041,  0.052,  and  0.040  for  the  tradition-
al, likelihood-based, and mHWP exact test approaches, 
respectively. The corresponding RRP for this scenario, 
comparing the likelihood-based approach to the exact 
mHWP approach, was 29.6%. As all the RRPs were posi-
tive, the exact mHWP approach was still better than the 
likelihood-based approach for keeping non-causal SNPs.

  When genotyping errors were introduced in the simu-
lation, we found that all three approaches worked in a 
very similar way. When the GLHO error model was used 
with low genotyping error rates (1 and 5%), all three ap-
proaches had low power (5  �  10% power at the 5% level 
of significance) to detect the errors. This is because when 
the genotyping error rates are small, the observed geno-
type counts will not be significantly different from the 
expected genotype counts under HWP and, therefore, 
any  test that attempts to detect such errors based on 
HWP testing will have very little power  [18] . On the oth-

Table 3. E stimated type I error probability and relative rejection 
probability of non-causal SNP2, at 0.05 significance level in simu-
lation studies based on 10,000 replicates, each replicate with 1,000 
cases and 1,000 controls

MAF Prev
%

Type I errors Relative
rejection
p robability

controls
only

likelihood-
based

mHWP like lihood
vs. mHWP

0.1 19.21 0.041 0.052 0.040 0.296
29.19 0.041 0.053 0.033 0.619

0.3 20.92 0.045 0.050 0.045 0.114
31.34 0.046 0.051 0.035 0.449

0.5 22.66 0.048 0.051 0.045 0.127
33.85 0.049 0.052 0.035  0.501

MAF  = Minor allele frequency; Prev = prevalence of disease; 
mHWP = mixture Hardy-Weinberg proportion.

Table 2. E stimated type I error probability and relative rejection 
probability of causal SNP1, at 0.05 significance level in simulation 
studies based on 10,000 replicates, each replicate with 1,000 cases 
and 1,000 controls

Model MAF Prev
%

Type I errors Relative
rejection
p robability

controls
only

likeli-
hood-
based

mHWP like lihood
vs. mHWP

Dominant 0.1 19.56 0.051 0.057 0.039 0.470
29.64 0.058 0.052 0.029 0.808

0.3 21.58 0.077 0.053 0.044 0.203
32.20 0.111 0.050 0.033 0.545

0.5 23.09 0.095 0.053 0.047 0.146
  34.12 0.152 0.054 0.035 0.551

Additive 0.1 19.64 0.036 0.053 0.033 0.613
29.73 0.041 0.052 0.026 1.031

0.3 22.25 0.047 0.049 0.041 0.197
32.99 0.049 0.050 0.031 0.604

0.5 24.96 0.056 0.054 0.045 0.205
  36.31 0.056 0.049 0.032 0.553

Recessive 0.1 18.43 0.041 0.052 0.037 0.403
28.20 0.041 0.051 0.030 0.678

0.3 18.93 0.080 0.052 0.046 0.144
28.84 0.115 0.051 0.037 0.393

0.5 19.94 0.095 0.048 0.045 0.060
  31.12 0.150 0.049 0.038 0.284

MAF  = Minor allele frequency; Prev = prevalence of disease; 
mHWP = mixture Hardy-Weinberg proportion.
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er hand, when the genotyping error rates are higher (as 
with the ‘empirical’ error model), the genotyping error 
can generate extreme deviation from HWP, and there-
fore, we found that all three approaches have almost 100% 
power to detect the genotyping errors. These results are 
consistent with previous studies of the relationship be-
tween genotyping errors and the HWP test  [18–21] .

  In the simulation studies, we assumed that the preva-
lence of the disease was known. However, in reality, prev-
alence is not known and is estimated from data. Here, we 
assessed the sensitivity of the mHWP exact test to the es-
timated prevalence of disease,   f̂   . We considered the mod-
els with MAF = 0.1, and the real prevalence  f  values used 
to simulate the data were 29.64, 29.73, and 28.20% for the 
dominant, additive, and recessive genetic models, respec-
tively. We evaluated the mHWP exact test p values using 
a range of prevalence centered on real prevalence [ f  – 2%, 
 f  + 2%]. All the results were very similar to those obtained 
with the use of the real prevalence. For example, consider 
the causal SNP 1 . When the dominant model was as-
sumed, the type I error rates of the mHWP exact test were 
0.029 using the real prevalence of 29.64%, 0.030 using the 
estimated prevalence of 27.64%, and 0.026 using the esti-
mated prevalence of 31.64%.

  Results of Real Disease Application 
 We also applied our approach to the real case-control 

genetic association study of adult obesity. We used the 
case-control data from an association study of a common 
variant in the FTO gene that is associated with obesity 
 [22] . In that study, the investigators found that the SNP 
rs9939609 predisposes individuals to diabetes through 
an effect on body mass index (BMI). Although BMI is a 
continuous measure, standard cut-off points can be ap-
plied to define the cases and controls. Therefore, for the 
case-control study of obesity, individuals with a BMI 
 6 30 were classified as cases (obesity) and individuals 

with a BMI  ! 25 were classified as controls (normal 
weight). The original study involved association studies 
in 13 cohorts, but for the purpose of our study, we select-
ed one United Kingdom (UK) cohort: UK Type 2 Diabe-
tes Genetics Consortium Collection Cases (UK T2D 
GCC Cases).

  The genotype counts of SNP rs9939609 in normal 
weight (controls) and obese (cases) individuals and all the 
resulting HWP test p values are listed in  table 4 . The prev-
alence of obesity among type 2 diabetes patients in UK 
was estimated as 52%  [23] . When using the HWP exact 
test with controls only, the p value was 0.018; when using 
the likelihood-based approach, the p value was 0.038; 
when using our approach, the p value was 0.054. There-
fore, at a 5% level of significance both the traditional and 
likelihood-based approaches will remove this SNP from 
further association analyses. On the other hand, our ap-
proach will retain this SNP in analysis. Furthermore, our 
mHWP approach allows for using multiple categories to 
make mixture sample, i.e. normal weight (BMI  ! 25), 
overweight (25 ̂   BMI  ! 30), and obese (BMI 630). Using 
prevalence of 14, 34, and 52% for normal weight, over-
weight, and obese individuals, respectively, our mixture 
approach resulted in a p value of 0.123. Importantly, the 
investigators kept this SNP in the analyses of BMI be-
cause originally this study was for the investigation of 
type 2 diabetes, and in the type 2 diabetes GCC controls 
the HWP test gave a p value of 0.83 for this SNP.

  Discussion 

 Traditional quality control methods test HWP using 
only controls and remove the SNPs that deviate from HWP 
as genotyping errors. However, when the disease is com-
mon, controls might not be representative of the general 
population, and the traditional approach may lead to the 

Table 4.  Genotype counts of SNP rs9939609 in normal weight (BMI <25) and obese (BMI ≥30) individuals and p values for three ap-
proaches of HWP test of case-control genetic association studies in UK T2D GCC cases

Cohort Genotype counts Prev p values

normal weight o bese controls
only

likelihood-
based

mHWP

TT AT AA TT AT AA

UK T2D GCC cases 113 174 37 524 818 321 0.52 0.018 0.038 0.054

Pre v = Prevalence of disease; mHWP = mixture Hardy-Weinberg proportion.



 Modified Hardy-Weinberg Proportion 
Test for Genetic Association Study 

Hum Hered 2010;69:212–218 217

removal of causal SNPs from further analysis. In this pa-
per, we have shown that this is indeed the case. When the 
prevalence of the disease is large (ranging from 19 to 36% 
in our simulation studies), the type I error probability of 
the traditional approach was inflated for the disease-asso-
ciated SNPs when either the dominant or recessive model 
was assumed. This range of prevalence is realistic for com-
mon diseases, such as smoking, obesity, and hypertension. 
Therefore, we developed an mHWP exact test based on a 
mixture sample that can represent the general population. 
In the mixture sample, a certain proportion was random-
ly sampled from cases proportional to the prevalence of the 
disease, and the rest was sampled from controls. A re-sam-
pling procedure was applied to obtain the empirical p val-
ues, and the MLE of the empirical distribution of re-sam-
pled p values was the HWP p value in the general pop-
u lation. The mHWP approach was compared to the 
traditional approach and the likelihood-based approach.

  On the basis of the results of our simulation studies, 
the mHWP exact test can effectively control the type I 
error probability in all scenarios examined, including 
models with causal or non-causal SNPs, different genetic 
models, and different MAFs and prevalence. Further-
more, on average, the mHWP exact test proposed in this 
paper is more likely than the likelihood-based approach 
to keep causal SNPs in the analysis when the disease is 
common. In genome-wide association studies, using the 
improved mHWP exact test in the discovery stage will 
increase the chance that causal SNPs will be carried over 
for replication. However, to achieve a more stringent sig-
nificance level (e.g. 10 –5  used in GWAS), more mixture 
samples will be needed to obtain robust MLE of the em-
pirical mHWP p value. We also considered smaller num-
bers of cases and controls (500 cases and 500 controls), 
and the results had a similar pattern. Therefore, we con-
clude that the mHWP exact test is better for testing HWP 
for case-control genetic association study than either the 
traditional HWP method using only controls or the like-
lihood-based approach. Furthermore, when data is avail-
able, the mHWP exact approach allows for using multiple 
categories to build the mixture samples, which could bet-
ter represent the general population.

  In addition to simulation studies, we also applied the 
mHWP exact approach to the real case-control genetic 
association study of adult obesity. The comparison of the 
p values from three approaches show that the mHWP ap-
proach has higher likelihood to keep the SNP rs9939609 
for further analysis.

  The relationship between genotyping error and the 
HWP test has been studied in the literature  [16, 18–21] . 

These studies suggest that the traditional HWP test in 
controls has very low power for detecting genotyping er-
rors, especially when the genotyping error rate is low and 
the MAF is not rare. However, the HWP test is always 
considered an essential procedure in genetic association 
study and has been widely used as a quality control tool 
in genetic case-control studies  [1, 3, 24–26] . In this paper, 
our main purpose was developing an improved HWP test 
that is more likely to keep causal SNPs in the analyses. 
Like the traditional HWP test and the likelihood-based 
test, our test is not very sensitive for detecting genotyping 
errors when error rates are low. Furthermore, Fardo et al. 
 [16]  recently showed that genotyping errors will not in-
crease the false-positive rate for detecting associated vari-
ants. Therefore, one may also consider a strategy of keep-
ing all SNPs for the association study, performing the 
HWP test using our proposed approach only among sig-
nificant SNPs.

  The true prevalence of a disease in a population is not 
known with certainty, and Li and Li have shown, by using 
a sensitivity analysis, that the misspecification of disease 
prevalence would not inflate the type I error rate for their 
likelihood-based approach when the genetic effect size is 
moderate  [4] . We also evaluated the sensitivity of the 
mHWP exact test to the estimated prevalence and found 
that the prevalence misspecification would not inflate the 
type I error rate of our approach either.

  In conclusion, here in this paper, we proposed an im-
proved HWP exact test (mHWP exact test) using a mix-
ture sample, which is a better HWP test for case-control 
genetic association studies than the traditional HWP 
only in controls or the likelihood-based approach. This 
approach will improve our ability to keep causal SNPs in 
the case-control genetic association studies.

  Appendix 1 

 Kernel Density Estimation 
 We estimated the density function of the empirical distribu-

tion of the p values from re-sampling-based mixtures with kernel 
density estimators. Kernel density estimator is the most popular 
and most widely used nonparametric approach for estimating the 
unknown probability density function of a random variable  [27, 
28] . It has been shown that the kernel density estimator is able to 
make efficient use of the data  [27, 28] . The consistency of the ker-
nel density estimator has been well studied  [28–31] . Given a ran-
dom sample  X  1 ,  X  2 , …  X  N  from some density  g , the kernel density 
estimate of  g  is defined by 
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 where  K ( � ) is a kernel function and  h   1  0 is a smoothing param-
eter called the bandwidth. In order to estimate  g , the choice of  K ( � ) 
is not particularly crucial  [27]  and is usually taken to be a sym-
metric unimodal density centered at zero, such as the standard 
normal density. However, the bandwidth parameter  h  is extreme-
ly important to the performance of the estimator  [32] . Without 
loss of generality, we implemented kernel density estimation us-
ing the function ‘ksdensity’ in Matlab  [33]  with default settings, 
which are the standard normal kernel and optimal bandwidth 
suggested by Bowman and Azzalini  [34] . The optimal bandwidth 
is given as 

1/54 .
3

h
N

�

  �  ̂    is the median absolute deviation estimator defined as   �  ̂     = 
 median { �  X  i  –  û  � }/0.6745, where   û   denotes the median of the sam-
ple.  � ̂       defined here is a robust estimator compared to the usual 
sample standard deviation, which is not preferable as it is influ-
enced by long-tailed distributions and possible outliers  [35] . The 
MLE of this empirical distribution of p values based on re-sam-
pled mixture samples was then obtained as the final p value of 
HWP in the general population.
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