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Summary

We develop several formal models for comorbidity be-
tween multifactorial disorders. Based on the work of
D. N. Klein and L. P. Riso, the models include (i) alternate
forms, where the two disorders have the same underlying
continuum of liability; (ii) random multiformity, in which
affection status on one disorder abruptly increases risk
for the second; (iii) extreme multiformity, where only
extreme cases have an abruptly increased risk for the
second disorder; (iv) three independent disorders, in
which excess comorbid cases are due to a separate, third
disorder; (v) correlated liabilities, where the risk factors
for the two disorders correlate; and (vi) direct causal
models, where the liability for one disorder is a cause
of the other disorder. These models are used to make
quantitative predictions about the relative proportions of
pairs of relatives who are classified according to whether
each relative has neither disorder, disorder A but not B,
disorder B but not A, or both A and B. For illustration,
we analyze data on major depression (MD) and general-
ized anxiety disorder (GAD) assessed in adult female MZ
and DZ twins, which enable estimation of the relative
impact of genetic and environmental factors. Several
models are rejected-that comorbid cases are due to
chance; multiformity of GAD; a third independent disor-
der; and GAD being a cause of MD. Of the models that
fit the data, correlated liabilities, MD causes GAD, and
reciprocal causation seem best. MD appears to be a
source of liability for GAD. Possible extensions to the
models are discussed.

Introduction

General Aims
The aims of this paper are to (i) describe several models
of comorbidity; (ii) derive formal mathematical models
under multifactorial theory; (iii) extend these models to
predict resemblance between and within disorders
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across relatives of different degree; and (iv) illustrate the
models with twin data on GAD and MD. For the most
part, we shall address the 10 models described in Klein
and Riso's (1994; hereafter referred to as KR) seminal
work. Our main goal is a set of models that quantify
the likelihood of observing patterns of comorbidity
within and between relatives, so that the models' pre-
dictive abilities may be statistically compared.

Significance of Comorbidity
When patients have two co-occurring disorders, we

refer to them as comorbid for these disorders (Feinstein
1970). Many studies have reported significant and sub-
stantial comorbidity for psychiatric disorders (Boyd et
al. 1984; Docherty et al. 1986; Maser and Cloninger
1990; Biederman et al. 1991, 1992; Caron and Rutter
1991; Gunderson and Phillips 1991; Brady and Kendall
1992; Kendler et al. 1992b); and this is true of physical
diseases as well (Carmelli et al. 1994). Some of the re-
ported comorbidity may reflect Berkson's or other biases
(Berkson 1946; discussed below), but genuine comor-
bidity raises several important research questions. Per-
haps the most fundamental issues are at the nosological
level: are the two disorders distinct, or do they reflect
an arbitrary division of a single syndrome? Conversely,
might persons comorbid for disorder A and B actually
have a third disorder independent from A and B? These
taxonomic questions form the basis of critical hypothe-
ses in both research and clinical practice. For example:
(i) Do "risk factors" correlate with disorder A because
of comorbidity with B? (ii) Is it appropriate to give the
same treatment for two disorders on the basis of their
comorbidity? And (iii) what information about the etiol-
ogy of the disorders can be gleaned from the study of
their comorbidity? These questions identify co-occur-
rence of disorders as one of today's most important
areas for methodological and substantive research.
One explanation for the appearance of two disorders

within the same individual is simply chance. If the two
disorders are independent, with prevalences p and q,
then comorbid cases should arise with frequency pq. As
will become clear, this statistical independence model is
a submodel of many of the models we shall describe.
Under this model, individuals with one disorder do not,
on average, have any increase in risk to the second disor-
der. It is possible for both disorder A and disorder B to
be familial within themselves, so that, for example, the

935



Am. J. Hum. Genet. 57:935-953, 1995

rate of disorder A is elevated in those with relatives who
have disorder A. No increase in risk for A would be
seen in those with relatives with disorder B. This purely
random origin of comorbidity is KR model 1.
When subjects are ascertained through hospital re-

cords or other "enriched" sources, several types of sam-
pling bias may adversely affect results. Perhaps the most
well-known bias is Berkson's (Berkson 1946), whereby
subjects with more than one disorder are more likely to
be part of a clinical sample. This will occur when either
disorder may merit clinic attendance, but not all subjects
are referred. Thus, rates of comorbidity may be arti-
factually increased when assessed using clinically ascer-
tained samples. A second potential source of bias-less
frequently mentioned but probably quite common-is
that clinical samples do not consist of a random sample
of those who meet criteria within the population. Indi-
viduals with a greater number and severity of symptoms
would be more likely to receive treatment and thus be
part of an enriched sample. Furthermore, some symp-
toms (e.g., suicidal ideation or attempts) might be more
likely to elicit treatment than others. To the extent that
different symptoms can be differentially familial, or
more or less longitudinally stable, clinical samples are
not ideal for epidemiological research. Nonrandom sam-
pling of even one of the disorders can lead to bias in the
estimation of comorbid rates. While we recognize that
for rare disorders there may be no alternative but to
use clinical samples, and that such samples can increase
power (Neale et al. 1994b), for etiological study it seems
wise to use representative epidemiological samples
wherever possible. A joint strategy-using both epide-
miologic and clinical cases-may be beneficial (Kendler
et al., in press) if the epidemiological sample is large
enough to provide good estimates of population rates
and a basis for comparison of the pattern of symptoms
in the two samples. The methods we describe may
readily be extended to cover such analyses. By restricting
ourselves to studies that include epidemiological sam-
ples, we exclude sampling bias (KR model 2) as a source
of comorbidity.
A third source of apparent comorbidity may be popu-

lation stratification. The argument goes like this: if disor-
ders A and B have non-overlapping sets of risk factors,
but these risk factors both tend to be more common in
certain strata of the population, then significant comor-
bidity may be observed across the sample as a whole.
Such stratification would be expected to have effects on
a classical twin study. If members of a twin pair occupied
the same stratum-regardless of their zygosity-then
evidence for common environmental factors (c2) in the
comorbidity between disorders should be found. That
stratification can inflate the estimate of c2 might seem
to be disadvantageous. However, one might consider
this finding to be informative nonetheless, because when

neither the particular risk factors nor the nature of the
strata have been identified, it is not possible to directly
test for their effects. Yet this method is weak because it
relies on knowledge of the extent and origin of familial
resemblance for the stratification variables. A much
stronger approach is to measure the putative stratifica-
tion variable and analyze it jointly with the disorders
in question. If stratification is wholly responsible for
comorbidity, there should be no comorbidity within
strata. This hypothesis could be tested by splitting the
sample into subgroups according to the stratification
variable. Methods for fitting models to multiple groups
are well known, and we have described elsewhere their
application within structural equation modeling of twin
data (Neale and Cardon 1992). The models we develop
in this article could take advantage of measured stratifi-
cation variables, should they be available.

Fourth, there is the possibility that comorbid cases
are more common than would be expected by chance
because of symptom overlap. As Klein and Riso (1994)
point out, several symptoms are common to two disor-
ders, e.g., major depression (MD) and borderline per-
sonality disorder. In this paper we shall restrict ourselves
to fitting models to data at the level of diagnoses, rather
than the constituent symptoms or items used to form
them. However, it would seem appropriate to bring the
full psychometric tool kit to bear on these more basic
issues. For example, we might consider a latent-factor
model with two diagnostic "traits," which cause varia-
tion in the observed symptoms, and test for comorbidity
by assessing the significance of the covariance between
the factors. Alternatively, the diagnoses could be speci-
fied as dependent variables and the symptoms as inde-
pendent variables. Comorbidity beyond that due to
shared symptoms would then be evident in the correla-
tion between the residuals of the diagnoses. If data on
relatives are available, it is possible to discriminate be-
tween these models empirically (Neale et al. 1994a). Yet
further models could be devised to match the particular
method used to derive diagnoses; some discussion of the
a priori relative merits may be found in Bagozzi and
Hetherton (1994). Both latent-class analysis and item-
response theory have been extended to exploit informa-
tion collected from relatives by Eaves et al. (1987, 1993),
and these methods would seem useful at the fundamen-
tal diagnostic level. Though important, these methods
are outside the main focus of the present study and will
not be discussed further.

Multifactorial Models of Comorbidity

In this section we develop models of comorbidity un-
der multifactorial theory. To define the models with sta-
tistical rigor, we use some basic calculus and probability
methods that some may find hard to read. As far as
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Table I

Summary of Threshold Models and Their Relationship to Those of Klein and Riso (1994)

KLEIN AND RISO 1994

MODEL PRESENT ARTICLE Model Number Name

1 ... Chance 1 Chance
2 ... Sampling biasa 2 Sampling bias
3 ... Population stratification 3 Population stratification
4 ... Alternate forms 9 Alternative forms or phases
5 ... Random multiformity 7 Heterogeneity
6 ... Extreme multiformity 7 Heterogeneity of severe form
7 ... Submodelsb of 3 and 4 5 One disorder encompasses the other
8 ... Submodelsb of 3 and 4 6 Multiformity of one disorder
9 .. Three independent disorders 8 Third independent disorder
10 ... Correlated liabilities 11 Overlapping etiological processes
11 ... Causal model 10 One disorder is risk factor for the other
12 ... Reciprocal causation ... Extension of KR 10

NoTE.-Models 1-3 are artifactual sources of comorbidity; 4-9 are ordered from closest to most distant relationship; and 10-12 are
models in common use prior to this article.

a Sampling bias may be excluded by design or statistically controlled.
b Submodels where multiformity is of one disorder.

possible, we have tried to state in words and diagrams
the essential features of the models so that the less tech-
nically oriented reader may still appreciate the underly-
ing concepts without struggling through the algebra.
To help put the methods in context, we have summa-

rized our models and their relationship to those of KR
in table 1. The difference between KR models 5 (one
disorder encompasses the other) and 6 (multiformity) is
subtle at best, and does not yield different empirical
predictions for familial or longitudinal data. As will be-
come clear, we treat both KR 5 and 6 as restricted ver-
sions of our random and extreme multiformity models.
In their full forms, our multiformity models are variants
of KR model 7, heterogeneity.
The Threshold Model
Common to all the models in this paper is the idea

that disease liability arises from the independent action
of a large number of factors, each of small effect, which
give rise to a normal distribution of liability. In the basic
threshold model (Pearson and Lee 1903; Falconer
1965), individuals above an abrupt threshold have the
disorder, whereas those below do not. We shall be elabo-
rating on this model to address the alternative explana-
tions of comorbidity. For now, we note that a normal
distribution of liability may be quite closely approxi-
mated by relatively few factors (Kendler and Kidd
1986). Models for comorbidity within an individual will
be presented first and followed by those for pairs of
relatives.
Notation
The expressions for probabilities involve multiple in-

tegrals of the multivariate normal distribution, which

we shall write with simplified notation. In the models
that follow, individuals may be at the lower (L), middle
(M), or upper (U) part of the distribution with respect
to the thresholds. Thus,

Lt
L = f O(R)dR

0X

rt2
M = f q(R)dR

U=f (R)dR.

(1)

(2)

(3)

For all models except extreme multiformity, t1 = t2 so
M = 0, and we require only L and U to define the
models. Subscripts A, B, and AB are used to denote the
dimension being truncated. For the correlated liability
models, we require joint probabilities that are computed
by integrating over the bivariate normal. For example,
individuals above threshold on dimension A but below
threshold on dimension B would be written ULAB.

Models for Comorbidity within an Individual
Alternate forms.-Perhaps the closest relationship be-

tween disorders arises when there is one underlying di-
mension of liability, which gives rise to both disorders.
Figure 1 illustrates this model in a modified path dia-
gram. At the top is the latent liability or risk distribution
R (normally distributed with zero mean and unit vari-
ance) which is then "filtered" through the threshold sys-
tem to give rise to the phenotypes. The parameters in
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Therefore, we assume that diagnostic information cov-
ers a period of time during which both disorders have
the opportunity to appear.
The probabilities of belonging to the four combina-

tions of disease state (neither A nor B; A but not B; B
but not A; and both A and B) are

P(A, B) = L + (1 -p)(1 - r)U (4)

P(A, B) = p(l - r)U (5)

P(A, B) = (1 - p)rU (6)

P(A, B) = prU, (7)

R - Risk factors
A - Disease A

~ Threshold Filtration process

Figure I Alternate-forms model of individual comorbidity for
diseases A and B. Individuals above threshold on RA express disease
A with probability p and disease B with probability r. Probabilities p
and r are independent, so comorbid cases arise with frequency pr.

curly braces, {p} and {r}, are not path coefficients, but
represent the probability that individuals in the above-
threshold part of the distribution will manifest the disor-
der. These probabilities may feed into the shield-shaped
symbol (used in electrical engineering) which represents
the "or" operation. Individuals do not display disorder
A if they are (i) below threshold or (ii) above threshold,
but asymptomatic (probability 1 - p). Implicit in the
diagram is the zero probability that those below thresh-
old will manifest the disorder due to this particular
threshold trait; the zero probability path has been omit-
ted. We assume that the manifestation of A or B or both
is entirely random, given that an individual has liability
above threshold.
We make no a priori assumption about the alternation

between the two disorders. They might be expressed at
the same time in the same individual (e.g., agoraphobia
and MD) or they might alternate (e.g., mania and de-
pression in bipolar illness). If diagnoses were made at a

particular instant in time, it would be impossible to iden-
tify any comorbidity in the latter case-individuals
would express one disorder or the other but not both.

where, e.g., P(A, B) denotes the probability of individu-
als having A but not B; p and r are the probabilities that
individuals above threshold t manifest A and B respec-
tively; and L and U are the probabilities of being below
or above threshold, as defined above. This model corre-
sponds to KR model 9 (the pure and comorbid condi-
tions are different phases, or expressions of the same
disorder). Two disorders with a single underlying di-
mension of liability are very closely related indeed. This
model implies that comorbid cases are no different in
mean liability than those who have only one of the disor-
ders.
Random muftiformity.-Under this model, excess comor-

bidity occurs when some cases of B are epiphenomena
of disorder A. By epiphenomena, we mean that having
disorder A can itself generate the symptoms of disorder
B. These symptoms arise because of disorder A and are
entirely unrelated to liability for disorder B. We can
specify this model with two independent dimensions of
liability, called RA and RB, and allow the epiphenome-
non process to be symmetric. Thus, for example, those
above threshold on the MD dimension may exhibit
symptoms of general anxiety disorder (GAD), and those
above threshold on the GAD dimension may exhibit
symptoms of MD. We call this model random multi-
formity because we assume that the probability of dis-
playing the symptoms of disorder B as an epiphenome-
non of disorder A is flat. Those who are only slightly
above threshold for A have exactly the same probability
of displaying disorder B's symptoms as the most extreme
cases have. This assumption will be modified in the ex-
treme multiformity model below.

Figure 2 shows a graph of this model, which includes
both the shield-shaped "or" operation and a spade-
shaped "and" operation. Individuals with disorder B
may be either above threshold for the pure form of B,
or one of a proportion p of those above threshold for
A who meet criteria for B. Tracing up from B, we see
that to be free of disorder B requires that one is below
threshold for B and either below threshold for A or

938



Neale and Kendler: Models of Comorbidity

R - Risk factors

A - Disease A

- Threshold Filtration process

Or operation: A arises when LA or with probability r if LB is

above threshold

And operation: not A arises when LA is below threshold and

LB are above threshold

Figure 2 Random-multiformity model of liability to diseases A
and B. Disorder A arises if individuals are above threshold on RA or
with probability p if they are above threshold on RB. Disorder B arises
if individuals are above threshold for RB or with probability r if they
are above threshold for RA.

above threshold for A but not showing B as an epiphe-
nomenon of A (probability 1 - p).
The four possible classes of affection status with re-

spect to these criteria have the following probabilities:

P(A, B) = LA-LB (8)

P(A, B) = (1- r)LA UB (9)

P(A, B) = UA (1 - P)LB (10)

P(A, B) = UA (UB + PLB) + rLA UB' (11)

where r is the probability of expressing disorder A as
an epiphenomenon of disorder B.

In its full form, this model represents a variant of
KR model 7 (heterogeneity of the comorbid condition).
When the probability of becoming a comorbid case is
set to zero for one of the dimensions, the model is a
variant of KR model 6 (multiformity), which encom-
passes their model 5 (one disorder is encompassed by
the other). In common with the alternate-forms model,
comorbid cases that arise because they are above thresh-
old for disorder A and are part of the epiphenomenon
set have the same average liability to disorder A as those
with the pure form of A. However, these individuals
have much lower average liability to disorder B than
those with the pure form of B.

This model represents a quite novel idea about comor-
bidity. If an individual is affected with disorder A, then
affection status per se gives rise to increased risk for
disorder B. It is very different from liability models,
which are homoscedastic; that is, the relationship be-
tween the disorders is constant across the whole range
of liabilities.

Extreme multiformity.-This second variant of multi-
formity also models a process where some of those af-
fected with one disorder show the symptoms of the
other. In contrast to random multiformity, we suppose
that the atypical form arises at the extreme of the distri-
bution of liability, which we model by imposing two
thresholds on the liability continuum. Considering the
liability for A, those below the first threshold are free
of risk for A from this source; those above the first but
below the second threshold manifest disorder A only;
and those above the second threshold manifest both A
and B. We allow the same two-threshold process to op-
erate for the liability to disorder B. Therefore, comorbid
cases may arise in three distinct ways: above the second
threshold on either RA or RB, or between the first and
second threshold on both dimensions.
The model is illustrated in the modified path diagram

shown in figure 3. The "or" operator in this case has
three inputs; if any one is active then the outcome will
be affected status. Note that we assume that the liability
for A is independent of liability for B-comorbidity
arises primarily from the extremes of the two dimen-
sions. A number of submodels of this model are note-
worthy: (i) if the second threshold in dimension A is set
to +00, then excess (i.e., greater than chance) comorbid-
ity arises solely from those above the second threshold
in dimension B; (ii) the converse of (i), that is, excess
comorbidity arises solely from those above the second
threshold of A; and (iii) if t2A and t2B are both set to
+00, then comorbid cases arise only by chance.
The probabilities of the four outcomes for an individ-

ual are

P(A, B) = LA*LB
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suggests that there is something about affected status
that gives rise to a sharply increased risk to a second
disorder. The key difference between extreme and ran-
dom multiformity is that under extreme multiformity
the abrupt change in risk only applies to those cases with
high liability (above the second threshold). Therefore,
comorbid individuals have a higher mean liability than
do those with the pure form.

Three independent disorders.-Alternate forms might be
regarded as the closest relationship between disorders,
and three independent disorders might be regarded as
the most distal. Not only are A and B entirely indepen-
dent distributions, but comorbid cases arise from a third
independent dimension, AB. An individual has disorder
A if either RA is above threshold or RAB is above thresh-
old. Likewise, an individual is affected with disorder B
if either RB > tB or R"> tAB. The model is shown in
figure 4; the "or" operation combines the two possibili-
ties for affected status.
The probabilities for the four classes of affected sta-

tus are

R - Risk factors
A- Disease A

7 Iu - Threshold Filtration process

Or operation: A arises when LA is above thresbold 1 or if LB is

above threshold 2

4pd operation: not A arises when LA is below threshold I and

LB is below threshold 2

Figure 3 Extreme-multiformity model of liability to diseases A
and B. Disorder A arises if individuals are above either threshold on
RA or above the second threshold on RB. Disorder B arises if individu-
als are above either threshold for RB or if they are above the second
threshold for RA.

P(A, B) = LA*MB (13)

P(A, B) = MA*LB (14)

P(A, B) = UA + UB - UA UB + MA*MB * (15)

In its full form, this model is a variant of KR model 7.
When the upper threshold of one of the dimensions is
set to +00, no comorbid cases arise from high liability
on this dimension. This asymmetric form of the model is
a variant ofKR model 6 (multiformity), which subsumes
their model 5 (one disorder is encompassed by the
other).
As with the random-multiformity model, this model

R - Risk factors

A - Disease A

G il Threshold Filtration process

< } Or operation: A arises when LA or LAB are above threshold

z tA nd operation: not A arises when LA and LAB are below threshold

Figure 4 Three-independent-disorder model for an individual's
liability to diseases A and B. Disorder A arises when individuals are
above threshold on either RA or RAB. Disorder B arises when individu-
als are above threshold on either RB or RAB. All paths below the filter
process carry probability 1.

940



Neale and Kendler: Models of Comorbidity

P(A, B) = ULAB

P(A, B) = UUA,B .

R - Risk factors
A - Disease A A - No disease A

7 * - Threshold Filtration process

Figure 5 Correlated liability model of individual comorbidity
for diseases A and B. Individuals have disease A if they are above
threshold on LA and disease B if they are above threshold on RB.
Comorbidity arises when r, the correlation between the risk factors
RA and RB, is >0. Paths in curly braces indicate probabilistic functions:
those from the shaded portion of the filter are affected with probabil-
ity 1.

P(A, B) = LAW LAB- LB (16)

P(A, B) = LA*LAB' UB (17)

P(A, B) = UA* LAB LB (18)

P(A, B) = UA -LAB * UB + UAB. (19)

This model corresponds to KR model 8. Though some-

what implausible, it is the only model that specifies that
excess comorbidity is due to some quite separate process

from those that give rise to the pure forms.
Correlated liability.-Finally, we consider comorbidity

that arises because the liability (or risk factors) correlate,
as illustrated in figure 5. Given two states, with (A) and
without (A) disorder, there are four possible combina-
tions for any person, with respect to two disorders, A
and B. If the liabilities (R) to these disorders have a joint
distribution function O(RA, RB), then the probability of
the four states may be written

P(A, B) = LLAB (20)

P(A, B) = LUA,B

The correlation in liability is the key feature of this
model; it corresponds to KR model 9, correlated risk
factors. Under certain circumstances (described below
in the section "Models for genetically informative data")
pairs of relatives may give information to resolve a spe-
cial form of this model, where one disorder causes the
other (KR model 10). The chance model is a submodel
of correlated liability, where the correlations are fixed
at zero.

We assume that 4), the joint liability to disorders A
and B, is bivariate normal, and that there is an abrupt
threshold above which individuals are affected. These
assumptions reflect an arbitrary choice of model and
could be replaced by other distributions and other rela-
tionships between liability and disorder.

Models for Pairs of Relatives
Given cross-sectional data collected from unrelated

individuals, there is almost no information to discrimi-
nate between different models of comorbidity (e.g., the
one-, two-, and three-disorder variants shown in figs.
1-5). However, when we extend these models to data
from relatives, the information on comorbidity rates
across family members may resolve the different origins
of comorbidity. Therefore, in this section we derive anal-
ogous formulas for pairs of relatives, in whom there
are 16 possible combinations of affected and unaffected
status for the two disorders. For notation we refer to
relatives as 1 or 2, so that the pair status AlBlA2B2
would indicate that relative 1 is comorbid for A and B
but relative 2 has only disorder A. Fortunately, this
4 X 4 table is symmetric across the diagonal (e.g.,
P(AlBlA2B2) = P(A1B1A2B2)), so we only need derive
and compute 10 integrals.
We shall not offer proofs of the equations that follow,

as this would add much tedium in return for little in-
sight. The reader who wishes to check the predicted
frequencies may do so with a little applied logic, which
we illustrate in appendix A.

Notation for pairs.-We expand the L, M, U notation
to deal with pairs of relatives. When considering one

liability dimension with one threshold, pairs may be
concordant for being below threshold (LL), discordant
(LU or UL) or concordant for being above threshold
(UU). For the extreme multiformity model, there are

nine possible configurations of pairs, being every pair-
wise combination of L, M and U with L, M and U. In
the present treatment, the thresholds are set equal for
the first and second relative, so only six of these combi-
nations are distinct:

(22)

(23)
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CtlA tlA
LLA = J OJ4(RA1, RA2)dRA2dRAl (24)

_x _00

rtlA rt2A
LMA = p q¢(RA1, RA2)dRA2dRAl (25)

-XtlA~

LUA = J 4P(RA1, RA2)dRA2dRAl (26)
_x t2A

MMA = J J1 (RA1, RA2)dRA2dRAl (27)
tlA tlA

Ct2AIO
MUA = J J 4(RA1, RA2)dRA2dRAl (28)

tlA tlA

UUA = JJ O(RA1, RA2)dRA2dRAl A (29)
t2A t2A

where 4(RA1, RA2) is the bivariate normal probability
density function. In all models other than extreme multi-
formity t1 = t2, and LMA = MMA = MUA, so the proba-
bilities may be expressed using LLA, LUA, and UUA
alone.

Afternate forms in pairs.-This model is based on a single
underlying dimension of liability combined with proba-
bilistic expression of A or B or both. The liabilities of a
pair of relatives may correlate, so we require double
integration to express the probabilities of observing each
pair type. No subscript is needed for the LLILUIUU
notation, because there is only one dimension per indi-
vidual. The pairwise probabilities are

P(Al, B1, A2, B2) = LL + 2(1 - p)(1 - r)UL

+ (1 - p)2(1 - r)2UU

P(Al, I, A2, B2) = r(l - p)LU

+ (1 - p)2r(1- r)2UU

P(A1, B1, A2, B2) = p(l - r)LU

+ p(l - p1 r)2UU
P(Al, Bi, A2, B2) = prLU

+ p(l - p)r(l - r)UU

P(Al, Bi, A2, B2) = (1 - p)2r2UU (34)

P(A1, Bl, A2, B2) = p(l - p)r(l - r)UU (35)

P(Al, B1, A2, B2) = p(l - p)r-UU (36)

P(AllRi, A2, R2) = p2(1 - r)2UU

P(Al, Bl, A2, B2) = p2r(1 - r)UU

P(Al, Bl, A2, B2) = p2r2UU.

(38)

(39)

Under this model, the concordant disorder-free pairs
comprise several types, whereas only one configuration
leads to concordant comorbid pairs.
Random multiformity in pairs.-When we examine a dis-

order with heterogeneous comorbidity in pairs of rela-
tives, the predicted probabilities become more complex.
This is because there are alternative processes that may
give rise to the disorders. The pair of relatives is the unit
of observation, so the total number of alternatives is
the product of the number of alternatives for the two
relatives. The probabilities under this model are

P(A1,B1,A2,B2) = LLA*LLB (40)

P(AlBi,A2,B2) = LLA (1 -r)LUB (41)

P(A1,B1,A2,B2) = (1 - p)LUA-LLB (42)

P(Al,BlA2,B2) = LUA* (PLLB + LUB)

+ LLA rLUB

P(Al,Bi, A2,B2) = LLA (1 - r)2UUB

(43)

(44)

P(Al,BlA2,B2) = (1 - p)LUA (1 -r)LUB

P(Al,BlA2,B2) = (1 - r)LUA* (pLUB+ UUB)
+ LLA rLLB

P(A1,R1,A2,52) = (1 - p)2UUA*LLB

P(AlB1,A2,B2) = UUA (p(l -P)LLB
+ (1 - p)LUB)
+ (1 -p)LUA*rLUB

P(Al,Bl,A2,B2) = P2UUA LLB

+ 2pUUA*LUB
+ UUA*UUB
+ LUA 2rUUB
+ 2PLUA * rLUB
+ LLA-r2UUB.

(45)

(46)

(47)

(48)

(49)

Concordant comorbid pairs are thus a heterogeneous
collection of various ways to become affected, whereas
the concordant normal pairs are of a single type. This
is the reverse of the situation for alternate forms.
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Extreme multiformity in pairs.-Expressions for the ex-
treme multiformity model are complicated by the
two-threshold model. For a single individual, we can
cross-tabulate the three possible locations (below first
threshold, between first and second, and above second
threshold) on the A dimension with the three locations
on the B dimension, giving nine possible types. Cross-
tabulating these with the nine possible types to which a
relative may belong yields 81 possibilities, which are
then partitioned and summed to form the probabilities
for the pair types. This model offers several ways for an
individual to be comorbid; concordant comorbid pairs
arise from 36 of the 81 cells. Although it would be
simple to obtain this last cell by subtraction, we prefer
to compute it to verify that the probabilities of the 16
pair types sum to unity. The probabilities are

P(A1, l1, A2, B2) = LLA*LLB (50)

P(A1,5 , A2, B2) = LLA*LMB

P(Al, B1, A2,5 2) = LMA*LLB

P(A1, B1, A2, B2) = LUAU (LLB

+ LMB + LUB)
+ LMA'(LMB + LUB)
+ LLA-LUB

P(A1, B1, A2, B2) = LLA*MMB

P(A1, B1, A2, B2) = LMA-LMB

(51)

(52)

(53)

(54)

(55)

+ MUA + MMA (MMB (59)
+ MUB + MUB)
+ LMA*MUB
+ LUA (LUB + MUB)
+ LMA*MUB.

The constitution of the different pair types is similar in
pattern to the random multiformity model.

Three independent disorders in pairs of relatives.-This
model is similar to the multiformity models in that only
two-dimensional integrals are required to specify comor-
bidity across pairs of relatives. However, complexity
arises when one or both of the individuals is co-
morbid for A and B, because of the two possible causes
of comorbidity-being above threshold on both A and
B or being above threshold on AB.
The probabilities are

P(A1,5 , A2,) 2) = LLA-LLAB*LLB

P(Al,B, A2, B2) = LLA*LLAB *LUB

P(Al, El, A2,5B2) = LUA*LLAB *LLB

P(A1, l, A2, B2) = LA*LLABLLB

+ LUA*LLAB*LUB

P(Al, Bi, A2, B2) = LLA*LLAB* UUB

(60)

(61)

(62)

(63)

(64)

P(Al, Bl, A2, B2) = LUA*LLABLUB (65)

P(Al, Bl, A2, B2) = LUA* (LMB

+ MMB + MUB)
+ LMA * (MMB + MUB)
+ LLA*MUB

P(A1,Bl, A2, B2) = MMA*LLB

P(Al, Bi, A2, B2) = MUA (LLB

+ LMB + LUB)

+ MMA*(LMB + LUB)

+ LMA*LUB

P(A1, Bl, A2, B2) = UUA + UUB

- UUA*UUB
+ MUA - (LMB + LUB

+ MMB + MUB + MUB)

+ LUA * (LUB + MUB)

P(A1, Bl, A2, B2)

(56)

(57)

(58)

P(Al, El, A2, B2)

= LAXLUAB UB
+ LUA LLAB UUB

(66)

(67)

= LA*LUAB LB

+ UUA LLAB*LUB

P(Al, Bl, A2, B2) = UUA + UUA LLAB UUB

+ 2UA*LUAB* UB.

(68)

(69)

There are several ways to become a concordant comor-

bid pair under this model, and only one way to be a

concordant normal pair.
Correlated liabilities in pairs.-Under the correlated liabil-

ity model for an individual, the liability to A correlates
with the liability of B, so the likelihood involves two-
dimensional integration. When we extend the model to
cover pairs of relatives, we must integrate over four
dimensions: the liabilities for A and B in both members

P(A1,B13, A2, B2) = UUA*LLAB * LLB
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of the twin pair. Assuming multivariate normality, we
can express each of the 16 cells of the contingency table
as a quadruple integral, with only the limits of the inte-
grals changing from one cell to the next. For example,

P(A1, B1, A2, B2)
- UUUUA1,BlA2,B2 (70)

4(RA15 RB1, RA2, RB2)

x dRB2dRA2dRBldRAl

is the probability that both relatives are comorbid.
Perhaps the most striking aspect of this model is its

simplicity; it makes very few assumptions about the na-
ture of comorbidity and familiality. Liability to the two
disorders in pairs of relatives is assumed to be multivari-
ate normal, which is most commonly assumed when
analyzing familial resemblance for either qualitative or
quantitative traits. Despite this simplicity, the model is
able to predict a wide variety of patterns of comorbidity.
This predictive power comes from varying the four cor-
relations: within-person across traits; across relatives
within trait A; across relative within trait B; and across
relatives across traits. One drawback is that it is tedious
to compute with current hardware and software.

Models for Genetically Informative Data
We note that every liability dimension is amenable to

variance partitioning when genetically informative data
are available. Thus in a classical twin or adoption study
we can partition trait variance into additive genetic (G),
common environment (C) and specific environment (E)
components (Neale and Cardon 1992). This partitioning
is achieved through appropriate parameterization of the
model so that, for example, additive genetic variance
makes MZ pairs correlate twice as highly as DZ pairs,
whereas common environment variance increases MZ
and DZ resemblance equally. Specific environmental
factors are unique to each individual (and subsume mea-
surement error) and thus contribute only to within-per-
son variance. A large proportion of specific environment
variance implies low twin correlations. Figure 6 shows
path diagrams for MZ and DZ twin resemblance on the
basis of this simple structural equation model. The
model is fitted to both data groups simultaneously, a
procedure that we have described in detail elsewhere
(Heath et al. 1989; Neale and Cardon 1992).
The alternate-forms model specifies a single dimen-

sion of liability, so the correlation between liabilities in
pairs of MZ or DZ twins relatives can be derived from
a simple univariate model. In the multiformity models
there are two dimensions (for liability to A and B) but
they are independent of each other, so two univariate

Figure 6 Path diagram of a univariate model of resemblance
for MZ and DZ twins, T1 and T2. Variation in the observed pheno-
types (PT1 and PT2) is caused by additive genetic factors (G), environ-
mental factors shared by members of a twin pair (C), and environmen-
tal factors unique to each twin (E). Parameter a is fixed at 1.0 for
MZ twin pairs and at .5 for DZ.

models can be used for genetically informative data from
relatives. Similarly, the liabilities in the three-disorders
model are assumed to be independent so three univariate
models are needed.
Only in the correlated liabilities model do we need

apply a bivariate model of resemblance between rela-
tives. Such bivariate genetic analysis would typically be
carried out using summary statistics such as polychoric
correlations and their asymptotic weight matrices
(Browne 1984; Joreskog and Sorbom 1989; Neale and
Cardon 1992). However, we cannot use that approach
for the other models described in this paper, so we use
this more computationally intensive method to obtain
fit statistics on the same scale. Another advantage of our
chosen method is that it is, in principle, simple to modify
for nonrandom samples, such as relatives of probands.

Figure 7 shows some of the possible bivariate models
for genetically informative data. The most general of these
is the Cholesky or triangular factor model, in which the
latent variables for trait A also affect liability for trait B.
This model is equivalent to allowing the latent factors of
trait A to correlate with their counterparts for trait B (e.g.,
CA correlates with CB). Of special note are direction-of-
causation models (Neale and Cardon 1992; Heath et al.
1993; Duffy and Martin 1994; Neale et al. 1994c), in
which one disorder may be specified as a cause of the
other, or the two may reciprocally interact. Some caution
is required with these models because they can produce
seriously biased results if the diagnostic instruments have
markedly unequal reliabilities (Heath et al. 1993). If the
reliabilities are equal, or if estimates of the reliabilities are
available, then these direction-of-causation models may be
used to assess the fit of KR model 10.
Model Identification

For the reader who has data on relatives, but not from
different classes of relative, most of the models presented

a

F fJ :tB JJ
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Figure 7 Three models for correlated liability that may be re-

solved with data from twins. Top, triangular decomposition or

"Cholesky" factor model for additive genetic (G), common environ-
ment (C), and specific environment (E) components of phenotypic
variation (P) in two traits (subscripts A and B). Middle, causal model
in which A is a cause of B. Bottom, reciprocal causation model in
which A and B are causes of each other in a feedback loop.

here could be used in a simplified form. Perhaps easiest
would be to fix additive genetic effects at zero, in which
case the common environment component would reflect
both genetic and shared environmental factors.

It is not simple to prove identification algebraically
when complex nonlinear functions of parameters are

used to form predicted statistics. This problem applies to
structural equation modeling in general and is especially
true in the models used here. Under these circumstances,
support for the hypothesis that the model is identified
may be obtained using the following procedure:
1. Select a random set of values of the parameters, 01
2. Generate predicted frequencies under the model us-

ing 01
3. Use the predicted frequencies from step 2 as data, and

begin optimization from a different set of parameter
values, 02

If optimization starting at 02 yields estimates that equal

01 (and therefore a perfect fit to the data) this is support
for identification of the model. If this procedure yields
a different set of parameters, but they fit the data equally
well, the hypothesis of identification is rejected. We car-
ried out this procedure several times for each of the
models described in this article, and obtained support
for the hypothesis that they are all identified.

Practical Model Fitting
A useful feature of these models is that the probabili-

ties of the 16 possible pairwise patterns of affected status
on disorders A and B may be reduced to 10 equations
because of symmetry. In the same way, the observed
frequencies may be expressed as 16 patterns and then
reduced to 10. Ordinarily, such a strategy would not be
recommended, because it ignores the asymmetry across
replicate statistics, which might indicate failure of the
statistical assumptions of the model. In this case, how-
ever, we are likely to be faced with relatively low cell
frequencies, which can cause departures from the ex-
pected behavior-of-fit statistics. We judge this latter
problem to be more important than the minor loss of
information incurred by combining equivalent observa-
tions.
The possibility of low observed cell frequencies also

guides our choice of fit statistic. Suitable fit statistics
include the negative log-likelihood, and minimum X2.
We might opt for the likelihood statistic because of its
well-known advantageous properties of minimum vari-
ance, invariance to transformation, and robustness
(Fisher 1925). Comparisons between models and sub-
models would be performed with the likelihood-ratio
test given by twice the difference in the negative log-
likelihood, which is asymptotically distributed as X2.
However, the approach to asymptote is slow when sam-
ple sizes are small, and minimum x2 has superior perfor-
mance in this respect (Agresti 1990). Therefore we com-
pute the function:

F
i=l Ei

where Oi is the observed cell frequency, Ei is the ex-
pected cell frequency (computed as NPi where N
= X.01 Oi and Pi is the predicted probability according
to the model in question). Although there is no built-in
fit function of this type in Mx, it is easy to custom-
design such functions in this package (Neale 1994). A
sample script to fit the extreme multiformity model is
given in appendix B. Scripts for this and the other mod-
els are available through the Internet (anonymous ftp to
opal.vcu.edu and look in -ftp/pub/mx/comorb).
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Application: GAD and MD

Subjects and Measures
As outlined in detail elsewhere (Kendler et al. 1992b),

as part of a longitudinal study of the genetic and envi-
ronmental risk factors for common psychiatric disorders
in women, we personally interviewed 2,163 female
twins from the population-based Virginia Twin Register
with a mean age (+SD) of 30.1 + 7.6 years, including
both members of 1,033 pairs. The refusal rate during
the personal interviews phase of this project, conducted
by interviewers with Master's degrees in Social Work or
at least 2 years clinical experience, was 8%. All individu-
als were interviewed by an individual blind to the psy-
chopathologic status of their co-twin. Zygosity was de-
termined by an algorithm based on questionnaire
responses, photographs, and, where these sources were
ambiguous, DNA polymorphisms, and yielded 590 MZ
pairs, 440 DZ pairs, and 3 pairs of unknown zygosity.

Lifetime diagnoses, using DSM-III-R criteria (Ameri-
can Psychiatric Association 1987) were made by one of
us (K.S.K.) on blind review of the interview protocols,
which included adapted sections of the SCID interview
(Spitzer et al. 1987) for MD and GAD. For MD, all
analyses conducted here use the DSM-III-R criteria. For
GAD, we modified the DSM-III-R criteria in two im-
portant ways. First, we reduced the required minimum
duration of illness from 6 mo to 1 mo, as originally
proposed in DSM-III (American Psychiatric Association
1980). Second, we eliminated criterion C ("The distur-
bance does not occur only during the course of a mood
disorder or a psychotic disorder") so that GAD was
diagnosed without a diagnostic hierarchy. The full
DSM-III-R criteria for GAD were not used, because they
produced very low prevalence rates in our sample, with
resulting low statistical power. In addition, multiple
threshold analyses suggested that 1-mo and 6-mo GAD
could be conceptualized as disorders on a single contin-
uum of liability (Kendler et al. 1992a). Furthermore, the
change from a 1-mo minimum duration of illness in
DSM-III (American Psychiatric Association 1980) to 6-
mo in DSM-III-R (American Psychiatric Association
1987) was made without strong empirical support, and
one previous study (Breslau and Davis 1985) suggests
that this change may have confounded rather than im-
proved the category's validity.

Results
The observed frequencies of the 16 cells of the contin-

gency table of GAD and MD diagnoses within MZ and
within DZ twin pairs are shown in table 2. Frequencies
in row and column ij were added to those of cell ji
for analysis, as described above. The data reflect the
somewhat high lifetime rates of GAD and MD in our
sample, and show substantial comorbidity.

Table 2

Observed Frequencies for Pairwise Diagnostic Data on MD and
in MZ and DZ Female Twins

TWIN 1

No MD MD

TWIN 2 No GAD GAD No GAD GAD

A. MZ Twins

No MD No GAD ......... 282 25 54 29
NoMD GAD ............... 19 3 3 9

MD No GAD ......... 31 10 8 18
MD GAD ............... 366 9 28

B. DZ Twins

No MD No GAD ......... 155 20 38 34
NoMD GAD ............... 224 1 9

MD No GAD ......... 38 8 11 13
MD GAD ............... 426 21 18

Table 3 shows the goodness-of-fit X2, df, probability,
and Akaike's information criterion (AIC = x2 - 2df)
for 13 models that we fitted to the data. These models
do not form an exhaustive set; we did not seek "better"
submodels by fixing parameters to equal zero. The
model with the largest negative AIC may be regarded
as the most parsimonious explanation of the data (Wil-
liams and Holahan 1994), although the differences here
are not large, and their confidence intervals overlap.
Model 1, chance (no comorbidity within or between

relatives other than by chance), is strongly rejected by
these data, which show considerable aggregation of
GAD and MD. The simple alternate-forms model
(model 2) fits somewhat poorly (the probability level
indicates that the observed frequencies significantly de-
part from those predicted by the model at the .05 level),
but by AIC it is ranked fifth and is not far behind the
best. Random multiformity (model 3) fits the data
slightly worse than model 2 and uses more parameters,
so it is considerably poorer by AIC. Its first submodel
(model 4), in which a random subset of those with MD
may exhibit the symptoms for GAD, but not vice versa,
fits the data almost as well, with one fewer parameter,
and is slightly more parsimonious. The converse model
(model 5; excess comorbid cases arise because those with
GAD exhibit MD) fits poorly. This same general pattern
is repeated for the extreme multiformity models (models
6-8), except that they all fit better than their random
multiformity counterparts, and the full extreme multi-
formity model (model 6) fits substantially better than
the multiformity of MD alone (model 7). The three-
independent-disorders model (model 9) is rejected by
the data; by AIC it is one of the worst.
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Table 3 Discussion

Fit Statistics Obtained for Various Models of Comorbidity
Applied to Data on GAD and MD in Adult Female Twins

Frr STATISTIC

MODEL NUMBER AND NAME X2 df p AIC

1 (Chance) ........... ................... 412.54 12 .00 388.54
2 (Alternate forms) .............................. 23.74 13 .03 -2.26
3 (Random multiformity) ......................... 25.59 10 .045.59
4 (Random multiformity of MD) ............. 26.19 11 .06 4.19
S (Random multiformity of GAD) ........... 40.89 11 .00 18.89
6 (Extreme multiformity) ......................... 16.51 10 .08 -3.49
7 (Extreme multiformity of MD) ............. 21.76 11 .03 -.24
8 (Extreme multiformity of GAD) ........... 37.02 11 .00 15.02
9 (Three independent disorders) ............... 39.77 9 .00 21.77
10 (Correlated liabilities) ......................... 12.23 9 .20 -5.77

11(MDcauses GAD) .............................. 14.79 11 .19 -7.21
12(GAD causes MD) .............................. 21.09 11 .03 -.91

13 (Reciprocal causation) ......................... 12.29 10 .27 -7.71

The model of correlated liabilities (model 10) fits best
by the x2 measure, but it is not the most parsimonious
according to AIC. MD as a cause of GAD (model 11)
fits somewhat less well, but uses two fewer parameters
to describe the relationship between the disorders and
is better by AIC. The converse hypothesis, that GAD
causes MD (model 12), fits much worse than the other
correlated liability models and is statistically rejected.
Allowing for reciprocal causation (model 13) improves
the fit, uses one fewer parameter than the correlated
liabilities model, and is thus superior by AIC.

Table 4 shows the parameter estimates for 13 models
and submodels that we fitted. Note that throughout
model fitting, we fixed the random environment parame-

ters eA and eB to unity. We did that because there is
no information to estimate both the threshold and the
underlying variance of the distribution when we are fit-
ting to binary data. Our approach was to fix the random
environment parameters, estimate the additive genetic
and common environment parameters, and then stan-
dardize the predicted covariance matrix. The estimates
we report are standardized to unit variance.
The findings of moderate heritable variance for GAD

and MD and no shared environment are in accord with
our previously published results by using other methods
(Kendler et al. 1992b). The strong genetic correlation
between these variables is also reproduced in the present
paper. In general, thresholds for GAD are higher than
those for MD, reflecting the lower rate of GAD in the
present sample. Perhaps the most counterintuitive find-
ing is the negative path from GAD to MD in the recipro-
cal interaction model. It is hard to conceive of high
liability to GAD causing reduced risk for MD in the
presence of such strong comorbidity.

Methodological Approach
The method we devised for comparing the alternative

models of comorbidity has several things to recommend
it. Model fitting has numerous inherent advantages,
which are at least partly responsible for its rapid growth
in many areas of science (Bollen 1989). First, there is a
measure of overall fit, in this case the x2 statistic, which
may be used to give a broad indication of whether a set
of data supports or rejects the model in question. Other
derived fit indices, such as AIC, are valuable tools for
assessing the relative efficiency with which different
models account for a set of data. The AIC has recently
been shown to be better than many other methods for
selecting the true model when the data were simulated
covariances derived from a structural equation model
(Williams and Holahan 1994). These results may extend
to the types of model and data summaries used in the
present study, but a simulation study is needed to test
this hypothesis. A second advantage of model fitting
is that the parameter estimates can be used to make
predictions about other data sets, not necessarily of the
same type. The estimates of heritability and common
environment effects allow us to predict comorbidity pat-
terns for other classes of relatives. Data on such pair
types as parents and offspring, spouses, cousins, adopt-
ees, and so on, would test the assumptions of our model
of familial resemblance. In the event that the new data
cause the model to fail, it could be revised to include
other factors such as nonadditive genetic effects. Taken
at face value, the approach allows us to make tentative
predictions about the nature of covariance between dis-
orders and putative risk factors. For example, if we
found support for the three-disorders model, then we
would not expect treatment of either disorder to sub-
stantially reduce the rate of comorbid cases. On the
other hand, if disorder A appeared to be a cause of
disorder B then we would expect treatment of A to have
benefits for A, B. and comorbid cases, whereas treatment
of B would likely be beneficial for B alone. Any approach
that discriminates between such models would have the
benefit of enabling such predictions to be made; the
advantage of the modeling approach used in the present
study is that the predictions can be quantified. Thus
we should be able to predict how much effect different
treatments should have on each of the two disorders. In
reality, treatment effects may be nonspecific, in which
case these predictions would fail. Nevertheless, the po-
tential to establish whether treatments or risk factors
are disorder specific is a useful one.

Previous work on comorbidity has focused on the
relative rates of disorder in various combinations of pro-
band and relative classes. Thus, Klein and Riso (1994)
tabulated the diagnosis in relatives against the ordering
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Table 4

Parameter Estimates Obtained for Various Models of Comorbidity Applied to Data on GAD and MD in Adult Female Twins

MODEL

1 2 3 4 5 6 7 8 9 10 11 12 13

C2
aMD ....... .46 - .45 .43 .40 .50 .42 .41 .40 .43 .46 .30 .46
AMD.......................... .00 .00 .00 .00 .00 .00 .00 .00 .18 .00 .01 .00
2
CLAD0 - .09 .05 .05 .00 .00 .00 .02 .05 .02 .00 .06
aDA. .55 - - - --- .42 .32 - --

CDA .......................... .01 .00.01

eDA.- .44 .58 .05 -

MD--GAD. .............- .73 .62
GAD-MD.. ............- .67 -.32
P ..... ........ - .68 .41 .45 (0) -
r .- .52 .16 (0) .60 - - -

t1MD ....... ...... .43 .09 .52 .48 .81 .67 0.48 .36 .82 .48 .48 .48 .48
tlGAD ........ ..... .61 1.12 1.21 .71 .68 1.20 .81 1.06 .71 .71 .71 .71
t2MD.. - - ..-.1.24 1.06 00 -

t2GAD ...................... - 1.72 00 1.06
tMA ............. - 1.21 - -

NOTE.-Parameters a, c, and e subscripted DA (for "Depression-Anxiety") refer to either model 2, the variance components for the single
liability distribution in the alternate-forms model; model 9, the variance components of the liability to be comorbid in the three-disorders
model; or model 10, the paths from the latent variables of MD to the liability of GAD in the Cholesky model. All estimates are standardized
to unit variance. Parameters eMDand eGAD may be obtained by subtraction, for example, eMD = 1- aMD-c-CD. A dash (-) indicates parameter
not used in this model.

of proband groups. Although this method can be a use-
ful heuristic device to get a sense of the different patterns
of proband and relative status under certain well-defined
conditions, it has its limitations. Most important, chang-
ing one or more of the parameters of the model can
change the patterns of rates in the proband groups. For
example, Klein and Riso report that under the heteroge-
neity model, the highest rates ofA only would be among
relatives of probands with A only, then AB comorbid,
then probands with B only, who should be as frequent
as control probands (C) with neither disorder. Although
true for certain rates of disorders A and B, certain rates
of heterogeneity, and certain levels of familial correla-
tion for the two underlying traits, the pattern is not
always the same when the thresholds or correlations in
liability are varied. Identifying such patterns seems to
be of limited use. In contrast, the model-fitting proce-
dure we have developed is not subject to these assump-
tions or limitations but is appropriate for all rates of
disorder and degrees of familiality.

Extensions of the models.-In principle, it is possible to
extend the methods in several different directions, al-
though practical constraints make some extensions eas-
ier than others. First, a true multivariate model would
be valuable when there are a number of simultaneously
comorbid conditions, such as is the case with MD, GAD,
phobias, bulimia, and alcoholism (Kendler et al. 1995b).
In practice, we need faster hardware and software to

handle the higher dimension normal distribution inte-
gration. For the alternate, multiformity, and three-inde-
pendent-disorder models we could add two more disor-
ders-requiring four-dimensional integration-and fit
models within a reasonable amount of time. The corre-
lated liability models would take longer; even one more
disorder would require a large amount of CPU time
to assess. If the relationship between the fit statistics
obtained using asymptotic weight matrices and those
used to fit directly to the contingency tables were known
precisely, then the correlated liability models could be
fit using this more efficient approach.
Another way to extend the models would be to allow

for multiple thresholds within each disorder, e.g., unaf-
fected, mild, and severe forms. We could expect consid-
erably increased complexity in the equations to describe
the greater number of cell types. Some automatic
method of generating the equations would be very use-
ful. A limitation with this approach would be the de-
crease in average cell frequency incurred with a constant
sample size, which could lead to inappropriate fit statis-
tics. Samples might need to be quite large to circumvent
this problem.

Designs that use pairs of relatives are only a start
in the genetic epidemiological study of any phenotype.
Many convenient samples contain larger groups of rela-
tives than pairs, but these would be difficult to handle
correctly with the current methods, as the number of
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dimensions of integration and the possible constellations
of joint affected status would increase. Instead, we might
select pairs of relatives that are independent of one an-
other, and fit the different pair types in a series of sepa-
rate groups, just as we did for the MZ and DZ twins in
this article, but with a wider variety of pair types. This
approach would be statistically correct but would be
wasteful of data. The other extreme would be to use
all possible pair types and recognize that the statistical
precision of parameter estimates obtained this way
would be overestimated.
The astute reader will have already noticed that there

is a more general type of multiformity model possible
than the two variants we used here. The random multi-
formity model says, "My chance of displaying symp-
toms of disorder B is zero if I am below threshold and
p if I am above it." The extreme multiformity model
says that my chances of spurious B are zero until I pass a
second threshold on the A dimension, where my chance
suddenly leaps to unity. We could imagine other func-
tional forms for the relationship between liability to A
and the chance of spuriously displaying B, e.g., a smooth
exponential. These functions could have parametric
forms, and we might be able to estimate parameters
describing their shape, as long as they are kept relatively
simple.
We have not considered the information that might

be obtained through multiple occasions of measurement.
Formally, pairs of relatives might be seen as equivalent
to pairs of measurement occasions, in which case the
models here could be used without modification. How-
ever, it seems likely that the valuable invariance of the
model parameters that may be assumed for pairs of rela-
tives (e.g., the comorbidity rate is the same for both
relatives) could not generally be made for one individual
measured on two occasions. Structural models for re-
peated measures are well known (Collins and Horn
1991), and these could be implemented for the corre-
lated liability model. The alternate forms, multiformity,
and three-disorder models are less obvious. Predictions
will vary according to the assumptions that we make
about which parameters of the model change over time.
Perhaps most informative would be the joint analysis of
data collected from relatives on more than one occasion
of measurement. Such models are beyond the scope of
the present article.
A valuable addition to the method would be to include

measured covariates. If these were continuous and nor-
mally distributed, then modeling them would require
extending the integrand to include the covariates, but
no further dimensions of integration would be required.
Since the measured covariate would render each pair
unique, it would be necessary to compute a separate
integral for each pair in the sample, but for all but the
largest of samples the method would remain practical.

Some modification of the Mx software is needed to im-
plement this extension. One form of measured covariate
would be genotypes assessed through DNA polymor-
phisms. Indeed, a form of genetic association analysis
could be performed with the alternate-forms model, if
the presence of a particular genotype were substituted
for one of the disorders. We could investigate major
gene effects on comorbidity if the model were extended
to multiple disorders.
Mx (Neale 1994) could be used to fit models to more

than two disorders at the same time. To extend the alter-
nate-forms model to multiple disorders would be
straightforward and would not be computationally de-
manding. The same is true of the multiformity and inde-
pendent-disorders models, but the correlated-liability
model would become increasingly intractable as the
number of dimensions of integration depends on the
number of disorders analyzed. Some "hybrid" models
for comorbidity across multiple disorders could be de-
vised, e.g., correlated liability for some disease pairs,
and multiformity for others. A limitation to this ap-
proach stems from the statistical properties of sparse
contingency tables. With low cell frequencies, such
goodness-of-fit statistics as minimum x2 or maximum
likelihood can be substantially biased. The number of
cells in the contingency table of disorder status for k
disorders is 22k, (16 in the bivariate case), which rapidly
increases with more disorders. The large number of cells
for k > 2 will lead to a low average cell frequency for
a given sample size. Investigation into the amount of
bias and the development of alternative-fit functions for
low cell frequencies would be useful.

Limitations.-Our methods are predicated on the lin-
earity and additivity assumptions inherent in the
threshold model. Clearly, these assumptions will be
more appropriate for some disorders than for others,
but often they will serve as a reasonable approxima-
tion. Note also that the assumptions are not strictly
necessary; further models that employ a "soft" thresh-
old whereby affected status is not a step function of
the underlying liability distribution (see, e.g., Martin
and Wilson 1982; Neale and Martin 1989) could be
implemented. Similarly, not all risk factors for a disor-
der would be expected to act additively. As nonaddi-
tive effects of specified risk factors become evident,
the comorbidity models could be fit to subgroups con-
sisting of subjects (or pairs) homogeneous for the risk
factors. This would allow examination of, for exam-
ple, comorbidity for alcoholism and depression in
those who have experienced parental separation ver-
sus those who have not. Quite possibly, the effects of
other environmental factors may be moderated by
such major environmental-or major genetic-ef-
fects.
The account given in this article does not allow for sex
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differences in thresholds, as we have taken advantage of
symmetry in several places to simplify the formulas and
their computation. Extension to allow for sex differ-
ences presents no practical problems, merely careful re-
specification of the equations.
A more difficult problem is variable age at onset. In

common with the vast majority of genetic analyses of
diagnoses, we have assumed that everyone has passed
the age of risk for first onset. If this is not the case, some
bias in the parameter estimates may occur if age at onset
is correlated between relatives. Although we have de-
scribed methods elsewhere for handling variable age at
onset (Neale et al. 1989), adapting them to the models
for comorbidity would appear difficult at best. Some
insight into the severity of the problem might be ob-
tained by age banding the sample and looking for sys-
tematic changes of the parameter estimates with age.

Etiology of GAD and MD
Our analysis of MD and GAD in this paper was pri-

marily for illustrative purposes, but it shed new light on
the relationship between these disorders. It seems that
there is genuine comorbidity between the conditions and
that they are best represented by two correlated-liability
distributions. Their correlation is quite substantial, so
that a model of alternate forms of a single underlying
dimension gives a much better fit than one that specifies
three independent disorders, MD, GAD, and MD with
GAD. Of course, a more complex explanation is possi-
ble-such as three correlated disorders, but Occam's
razor would seem to cut these from consideration at this
time, when the data do not reject the simpler models.
These results vindicate the treatment that we and others
have used in the bivariate genetic analysis of depression
and anxiety symptoms (Jardine et al. 1984) and diagno-
ses (Kendler et al. 1992b, 1995a, 1995b; Roy et al., in
press).
A possibility that was not tested in earlier articles is

that liability to MD is a risk factor for GAD. This model
gives the best fit of those tested in this paper, although
caution should be exercised because the differences in
fit were slight and the confidence intervals on the fit
statistics have considerable overlap. The superior fit of
models that placed MD as a cause of GAD rather than
the reverse was also found in the multiformity models.
Again, care must be taken with these results because
they may be influenced by the relative reliabilities of the
diagnoses of MD and GAD. As a rule, there is bias
toward giving greater support to a model in which the
more reliable variable is a cause of the less reliable one
than to the reverse (Heath et al. 1993). GAD is less
frequent than MD, and we know that the reliability
of tetrachoric correlations decreases as the thresholds
become more extreme (Neale et al. 1994b), so it is inher-
ently less reliable. The extent of this prevalence effect

could be explored with simulated data. If diagnoses are
made using some threshold on a quasi-continuous scale,
selecting broader or narrower forms of one of the disor-
ders to compensate for the difference in prevalence may
be helpful. However, it would incur the risk that the
disorder redefined in this way would not be a good
indicator of the true disorder. Our diagnosis of GAD
even when it occurred during an episode of MD (ignor-
ing the diagnostic hierarchy of DSM-III) generated a
higher prevalence of GAD than would normally be the
case. In the context of relative reliabilities, this proce-
dure might somewhat bias the results toward GAD
causes MD rather than the reverse. Yet reanalyses in-
cluding the diagnostic hierarchy (not reported here)
show very little change from the pattern of results re-
ported here.
These considerations notwithstanding, our results

suggest that the liability factors that give rise to depres-
sion-both genetic and environmental-increase liabil-
ity to anxiety. If the MD-causes-GAD model is correct,
the increased risk is transmitted via the underlying con-
tinuous liability to depression. That is, the same in-
creased risk to GAD occurs right across the range of
liability to depression. Diagnosis of depression does not
imply a sudden jump in the risk to GAD. Furthermore,
treatment of depression would seem likely to alleviate
anxiety to a greater extent than vice-versa. Clearly, treat-
ments are not often disorder specific, and perhaps espe-
cially not for psychiatric disorders, but, if our model
is correct, it would be difficult to find a treatment for
depression that did not simultaneously reduce risk for
GAD. These conclusions remain tentative at this point,
because the difference in fit between the extreme multi-
formity model and the causal model is not great. Repli-
cation with other samples would be valuable.
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Appendix A
Method Used to Derive Predicted Proportions

Here we illustrate a method to obtain the predicted
proportion of pairs where both have disease B and where
neither have disease A, i.e., P(A1R1A2B2) under the
alternate forms model (fig. 1). We recall from probabil-
ity theory that the probability of X and Y equals the
probability of X given Y multiplied by the probability
of Y, which we write as:
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P(X, Y) = P(XIY)P(Y) . (71)

Second, P(X, Y) can be "factored" with respect to an-
other variable, so that

P(X, Y) = P((X, Y)jZ)P(Z)
+ P((X, Y) Z)P(Z) .

We can apply this factorization for liabilities that may
be above or below threshold. Hence,

P(A, B) = P((A, B)IU)P(U) + P((A, B)IL)P(U) (73)

= P(AI U)P(9 U)P(U)

+ P(A L)P(B L)P(L)

=(1-p)rU+O1 L (75)

= (1 - p)rU. (76)

For the second relative, the same individual probabilities
hold, so the joint probability of the pair is

P(A1R1A2B2) = U1(1 - p)r n U2(1 - p)r (77)

= UU(1 - p)2r , (78)

where UU is the integral of the bivariate normal,
Ft f5t 4(X1 Xl)dx2dXl.

Appendix B

Mx Script for the Random Multiformity Model

The following is available through the Internet (anon-
ymous ftp to opal.vcu.edu and look in -ftp/pub/mx/
comorb):

Gi Calculation of MZ Correlation matrix for A factor
DA CALC NG=6
MATRICES
A Lo 1 1 Free
C Lo 1 1 Free
I id 1 1

begin algebra;
X = A*A';
Y = C*C';
end algebra;
COMPUTE II X+Y_
X+YII;

Option RS
End

G2 Calculation of DZ Correlation matrix for A factor
DA CALC
MATRICES
A Lo 1 1 =A1
C Lo 11 =C1
Hfu1 1

I id 11
begin algebra;
X = A*A';
Y = C*C';
end algebra;
COMPUTE IIH@X+Y_
H@X+Y II;

Matrix H .5

Option RS
End

G3 Calculation of MZ Correlation matrix for B factor
DA CALC
MATRICES
A Lo 1 1 Free
C Lo 1 1 Free
I id 11
begin algebra;
X = A*A';
Y = C*C';
end algebra;
COMPUTE IIX+Y
X+Y II;

Option RS
End

G4 Calculation of DZ Correlation matrix for B factor
DA CALC
MATRICES
A Lo 1 1 =A3
C Lo 1 1 =C3
H fu 1 1
id 1 1

begin algebra;
X = A*A';
Y = C*C';
end algebra
COMPUTE IIH@X+Y
H@X+Y II;

Matrix H .5
Option RS
End

Fit model to MZ Anxiety/Depression data
Data NI=1 NO=1
Matrices
A Full 2 2 =%E1 Corr between A factors as computed in Group 1
B Full 2 2 =%E3 Corr between B factors as computed in Group 3
I Iden 1 1
N Full 1 1 ! The scalar 2.0
O Full 10 1 ! observed data
P Full 1 1 free probability of being comorbid given A
R Full 1 1 free probability of being comorbid given B
T Full 1 2 Threshold for A
U Full 1 2 Threshold for B
W Zero 1 2 ! + + These are to control integral type

X Zi 1 2 ! +-
Y Full 1 1 ! for sample size
Z Unit 1 2 !- -

Begin Algebra;
D = \muln((A T T Z)); LL A obtained by calling multivariate normal function
E = \muln((ATjTX)) ; ! LUA
F = \muln((AT TW)) ; UUA
G = \muln((B U`UZ));! LLB
H = \muln((B U`U X)); LU B
J = \muln((BUU W)); UUB
Q I - P;
S I - R;
K = D.G ! put all expected proportions into a vector

N. D.H.S
N. E.Q.G
N. (E.(P.G + H) + D.H.R)
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D.J.S.S_
N. E.Q.H.S
N. (E.S.(P.H + J) + D.J.R.S) _
F.Q.Q.G_
N. (F.(P.Q.G + Q.H) + E.H.R.Q)
F.(P.P.G + N.P.H + J) + N.E.H.P.R + N.R.E.J + R.R.D.J;

L = Y@K; multiply expected proportions by total sample size
end algebra;
compute \sum((L-O).(L-O)%L); !_\sum(K)+\sum(L);
Matrix 0 File=admz.frq
Matrix Y File=admz.n
Option func=1.e-7 ! set the function precision to mulnor accuracy
Option user-defined RS
End

Fit model to DZ A/D data
Data NI=1 NO=1
Matrices
A Full 2 2 =%E2 Corr between A factors of DZ as computed in Group 2
B Full 2 2 =%E4! Corr between B factors of DZ as computed in Group 4
I Iden 1 1
N Full 1 1 =N5 The scalar 2.0
O Full 101 observed data
P Full 1 1 =P5 ! probability of being comorbid if you are A
R Full 1 1 =R5 probability of being comorbid if you are B
T Full 1 2 =T5 Threshold for A
U Full 1 2 =U5 Threshold for B
W Zero 1 2 + + These are to control integral type
XZi 12 !+-
Y Full 1 1 for sample size
Z Unit 1 2 ! --
Begin Algebra;
D = \muln((A_TTZ));
E = \muln((AT TX));
F = \muln((A TT W));
G = \muln((BUUZ));
H = \muln((B U U X));
J = \muln((B U U W));
Q I - P;
S = I - R;
K = D.G_
N. D.H.S
N. E.Q.G
N. (E.(P.G + H) + D.H.R)
D.J.S.S
N. E.Q.H.S
N. (E.S.(P.H + J) + D.J.R.S)
F.Q.Q.G
N. (F.(P.Q.G + Q.H) + E.H.R.Q)
F.(P.P.G + N.P.H + J) + N.E.H.P.R + N.R.E.J + R.R.D.J;
M= \sum(K);
L = Y@K;
end algebra;
compute \sum((L-O).(L-O)%L); !_\sum(K)+\sum(L);
Matrix 0 File=addz.frq
Matrix N 2
Matrix P .4
Matrix R .3
Specify T 8 8
Specify U 9 9
Matrix T .5 .5
Matrix U 2 2
Matrix Y File=addz.n
Bound -.5 .95 1 2 3 4
Bound .01 .99 5 6
Bound 0 3 7 8
Option func=1.e-7 nd=7 !diff=.001
Option user-defined RS mu
End

! save current solution to binary file
Save biepiace.mxs

! Now drop a parameter to fit multiformity of MD only
Drop 6
End

! read the full model solution back in again
Get biepiace.mxs
! Now drop a parameter to fit multiformity of GAD only
Drop S
End
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