SURVEY REGRESSION

Stratification

Dividing the population into relatively homogenous groups (strata) and sampling a predetermined number from each stratum will increase precision for a given sample size

Clustering

Dividing the population into groups and sampling from a random subset of these groups (e.g. geographical locations) will decrease precision for a given sample size but often increase precision for a given cost.

Unequal Sampling

Sampling small subpopulations more heavily will tend to increase precision relative to a simple random sample of the same size.

Finite Population

Sampling all of a population or stratum results in an estimate with no variability, and sampling a substantial fraction of a stratum results in decreased variability in comparison to a sample from an infinite population.

Linear regression of Survey Data

- $Y = X\beta + \epsilon$
 - $\Box Y \to M \times 1$
 - $\Box X \to M \times K$
 - $\Box\beta \to K \times 1$
- In the standard linear regression model ϵ is generally $N(0, \Sigma)$ where $\Sigma = \sigma^2 I_M$
- This is not the case in survey regression

Data Structure

- Suppose a sample of size M is drawn from a population of size T.
- The population is divided into H strata.
- In each strata h, n_h clusters are randomly sampled.
- From each cluster(h_j) a random sample of m_{h_j} individuals is selected.

Sampling weights

- Each sample hji can be attributed to a strata h, a cluster j and the individual i.
- Based on the design let p_{hji} be the probability of the element appearing the sample.

Missing regressors

- What if the model is incomplete?
- This is not a problem in standard regression as its contribution is treated as random.
- But in survey regression these missing regressors may be related to the sampling weights and may not be truly random.
- $\blacksquare Y = X\beta + Z + E$

□Where Z contains the contribution from the missing regressors.

Estimation of β

The estimation of β is straight forward as it is the weighted least squares estimate.

 $\mathbf{\bullet}\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{Y}$

 \Box where W is the M \times M diagonal matrix of sampling weights

Better than OLS estimate

 $\bullet E(\hat{\beta}) = \beta + (X^T W X)^{-1} X^T W E(Z)$

- If E(Z)=0 i.e. no missing regressors both OLS and WLS would be unbiased estimators.
- However when $E(Z) \neq 0$ both the estimators are biased.
- But the bias of the WLS estimator falls sharply with sample size and is negligible for large sample sizes.

Variance Computation

Similarly the variance of WLS can be computed.

- Several estimates for the variance were proposed which had better asymptotic and robust properties than the WLS variance estimator.
- Variance estimates of WLS are typically higher than OLS.
- The bias-variance trade off.

National Health Interview Survey

- Nationally representative sample of the civilian, noninstitutionalized population of the United States
- Face-to-face personal interviews
- Continuously conducted since 1957
- Topics cover a broad range of health issues and provide information on both acute and chronic conditions

NHIS sample design

- Has a "complex" design (multistage design includes clustering, stratification)
- 428 primary sampling units (PSUs) drawn from approximately 1800 geographic areas covering the 50 states and the District of Columbia
- PSUs are individual counties or contiguous groups of counties and vary in size from a few hundred to several million.

Sampling geographic areas helps to control survey costs

NHIS sample design

Approximately 40,000 households containing almost 100,000 persons are selected from Census-defined tracts and block groups

Currently oversampling Blacks, Hispanics, Asians, and elderly minorities in these groups

Detailed health information collected from one sample adult and one sample child per household

NHIS sample weights

• Weights composed of three components:

The reciprocal of the probability of selection

- □A household nonresponse adjustment
- Post-stratification adjustment to the U.S. population by age, sex, and race ethnicity

Inverse Probability Example

- Suppose that there is a population of 100,000 people, and there is enough money in the grant to collect data from 1,000 people.
- ■20% indigenous population.
- The population is divided into two regions, (A and B).
- Region A has 25,000 people, 50% of whom are indigenous.
- Region B has 75,000 people, and 10% are indigenous.
- They will choose a 2% sample of people (n=500) from Region A and .67% (n = 500).from Region B from (n = 500).

- The likelihood of a person in Region A being selected is 500/25,000. Each person in Region A represents 50 people (25,000/500 = 50).
- The chance of a person in Region B being selected in 500/75,000. Each person in Region B represents 150 people (75,000/500 = 150).

Note that the weight for people in Region A are lower than those in Region B. People in Region A are overrepresented in the sample, and people in Region B are under-represented in the sample.

Non-response Weighting Example

- Question: Have you ever visited Houston? (Y/N)
- Population information available about age (18-30) (31-64) (65older)
- Comparison of respondents and population
 Weighting

Age	Resp	Popul	Weight
18-30	20%	30%	30/20=1.5
31-64	70%	50%	50/70=0.7
65+	10%	20%	20/10=2.0

Houston	18-30	31-64	65+	Unw	W*
Yes	20%	50%	10%	40%	33%
	(4)	(35)	(1)	(40)	(33)
No	80%	50%	90%	60%	67%
	(16)	(35)	(9)	(60)	(67)
Ν	20	70	10	100	100

Yes: 4*1.5 + 35*.7 + 1*2.0=6+24.5+2=32.5

No: 16*1.5 + 35*.7 + 9*2.0=24+24.5+18=66.5

Post Stratification weights

- Typically used to adjust for minor differences in nonresponse by demographic subgroup.
- Bring the sample proportions in demographic subgroups into agreement with the population proportion in the subgroups.
- Requires auxiliary dataset to use as a comparison.

	Sample Percent	Population Percent	Weight
Male	42%	49%	1.16
Female	58%	51%	.879

Survey Analysis for NHIS data

- Create a survey object
- svy<-svydesign(id=~PSU_P, strata=~STRAT_P, nest=TRUE, weights=~WTFA_SA, data=Y)</p>
- Logistic Regression
- svyglm(r1~AGE_P+SEX+..., svy, family="binomial")