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Abstract

The Hardy–Weinberg principle, one of the most important principles in population genetics, was originally
developed for the study of allele frequency changes in a population over generations. It is now, however, widely
used in studies of human diseases to detect inbreeding, populations stratification, and genotyping errors.
For assessment of deviation from the Hardy–Weinberg proportions in data, the most popular approaches
include the asymptotic Pearson’s chi-square goodness-of-fit test and the exact test. The Pearson’s chi-square
goodness-of-fit test is simple and straightforward, but it is very sensitive to small sample size or rare allele
frequency. The exact test ofHardy–Weinberg proportions is preferable in these situations. The exact test can be
performed through complete enumeration of heterozygote genotypes or on the basis of the Markov chain
Monte Carlo procedure. In this chapter, we describe the Hardy–Weinberg principle and the commonly used
Hardy–Weinberg proportions tests and their applications, and we demonstrate how the chi-square test and
exact test ofHardy–Weinberg proportions canbe performed step-by-step using the popular software programs
SAS, R, and PLINK, which have been widely used in genetic association studies, along with numerical
examples. We also discuss recent approaches for testing Hardy–Weinberg proportions in case–control study
designs that are better than traditional approaches for testing Hardy–Weinberg proportions in controls only.
Finally, we note that deviation from the Hardy–Weinberg proportions in affected individuals can provide
evidence for an association between genetic variants and diseases.
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1. Introduction

1.1. What Is the Hardy–

Weinberg Proportion?
The Hardy–Weinberg principle, derived independently by Castle
(1), Hardy (2), and Weinberg (3), is one of the most important
principles in population genetics (4). The Hardy–Weinberg princi-
ple states that, in the absence of natural selection, mutation, migra-
tion, nonrandom mating, random genetic drift, gene flow, and
meiotic drive, the genotypic frequencies and the allele frequencies
of a population remain constant from one generation to the next,
and furthermore, the genotypic frequencies can be expressed as a
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simple function of allele frequencies (5). The Hardy–Weinberg
principle is now more commonly used in human studies to detect
inbreeding, population stratification, and genotyping errors.

Consider a simple case of two alleles, A and a, at a single locus.
If the allele frequency of A is denoted as p, then the allele frequency
of a is (1 � p). If the Hardy–Weinberg principle holds, the expected
frequencies of the three possible genotypes, AA homozygotes, Aa
heterozygotes, and aa homozygotes are the products of allele fre-
quencies p2, 2p(1 � p), and (1 � p)2, respectively (Table 1). The
expected genotypic frequencies are called Hardy–Weinberg propor-
tions. Whether the observed genotypic frequencies conform to the
expected frequencies in a study sample is the very first question in
population genetics. The departure from the Hardy–Weinberg
proportion is tested by comparing the differences between
observed and expected genotypic frequencies. This test is com-
monly referred to as the Hardy–Weinberg equilibrium test, but it
is more accurate to refer to it as the Hardy–Weinberg proportion
test, because Hardy–Weinberg equilibrium refers to a state of equi-
librium with unchanged allele frequencies and genotypic frequen-
cies over generations, whereas the Hardy–Weinberg proportions
are the genotypic frequencies achieved in onegeneration.Therefore,
we consider the terminology “departure from Hardy–Weinberg
proportion” in a sample themost appropriate for genetic association
studies and use it throughout this chapter.

1.2. Why Test

for Deviation from

the Hardy–Weinberg

Proportion?

Deviations from Hardy–Weinberg proportions can result from
evolutionary forces such as inbreeding, assortative mating, and
small population size. Inbreeding is mating between close relatives,
which can cause a decrease in heterozygosity across the genome in
the population, that is, an increase in the number of homozygous
genotypes in the individuals (5). In a simple two-allele situation
with inbreeding, the inbreeding coefficient F (6, 7) can be calcu-
lated as one minus the ratio of the observed number of heterozy-
gotes and the expected number of heterozygotes under the
assumption of Hardy–Weinberg proportions. If the observed and
expected numbers of heterozygotes are the same in the population,
F will be equal to zero. Therefore, in this case, the tests for the

Table 1
Punnett square for inferring genotypic frequencies from
allele frequencies under assumption of the Hardy–Weinberg
principle

A(p) a(1 � p)

A(p) AA(p2) Aa[p(1 � p)]

a(1 � p) Aa[p(1 � p)] aa[(1 � p)2]
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deviation fromHardy–Weinberg proportions and for the inbreeding
coefficient F ¼ 0 are equivalent, and the deviation from Hardy–
Weinberg proportions can indicate inbreeding in the population
while a nonzero F statistic can indicate either an excess of hetero-
zygotes (negative F statistic) or an excess of homozygotes (positive
F statistic) compared to the expectedHardy–Weinberg proportions.
Assortative mating, with a mate who has a similar (positive assorta-
tive mating) or dissimilar (negative assortative mating) phenotype,
can also increase homozygosity for the genes associated with the
phenotype. The relationship between the degree of assortative mat-
ing in parents, measured by using a weighted covariance, and the
degree of the deviation from Hardy–Weinberg proportions in off-
spring has been presented in the studies of Price (8) and Shockley
(9). Small population size can also increase homozygosity in the
population (10). When a population is small, the allele frequencies
can drift from generation to generation, a process known as genetic
drift. Therefore, the Hardy–Weinberg principle can be violated due
to the random change of genotypic frequencies resulting from
genetic drift.

In addition to serving as an indicator of evolutionary forces, such
as inbreeding, the test for deviation from Hardy–Weinberg propor-
tions can also be applied in studies of population genetics to indicate
population stratification, admixture, or cryptic relatedness. It has
been shown that the unrecognized population structure and cryptic
relatedness (unknown to the investigators) might inflate the false-
positive rates in genetic association studies (11), and therefore,
Hardy–Weinberg proportions need to be carefully investigated
before undertaking genetic association studies. Cryptic relatedness
occurs when apparently unrelated individuals in a sample actually
have a close kinship relationship. The related individuals will increase
the homozygosity in the sample, which can lead to deviations from
Hardy–Weinberg proportions across the entire genome (12).

If a population is formed from multiple subpopulations,
deviation from the Hardy–Weinberg proportions can be observed
in the admixed population, even if all the subpopulations are in
Hardy–Weinberg proportion (13–17). For example, consider two
subpopulations, each having 1,000 individuals. Also, let us assume
that the counts for three genotypes, AA, Aa, and aa, are 160, 480,
and 360, respectively, in the first subpopulation and 10, 180,
and 810, respectively, in the second subpopulation. Then, the
A allele frequency is 0.4 and 0.1 in the two subpopulations, respec-
tively. It can be seen that both subpopulations are in perfect Hardy–
Weinberg proportion (P -value ¼ 1.0 in both). However, when the
two populations are combined, the observed counts of the three
genotypes AA, Aa, and aa will be 170, 660, and 1,170, respectively,
and the allele frequency of allele A is now 0.25. The expected
counts of the three genotypes can be calculated as 125,
750, and 1,125, respectively. The chi-square test of departure
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from Hardy–Weinberg proportions gives a highly significantP -value
of 8 � 10�8, which implies the admixed population deviates from
Hardy–Weinberg proportions. The combined population can deviate
fromHardy–Weinberg proportion evenwhen the allele frequencies in
the subpopulations are not too far apart. For example, if in the first
subpopulation, the genotypic counts are 190, 480, and 330, respec-
tively, giving a minor allele frequency of 0.43, and in the second
subpopulation, the genotypic counts are 120, 420, and 460, respec-
tively, giving aminor allele frequencyof0.33, both subpopulations are
in Hardy–Weinberg proportion, with chi-square-based P -values of
0.5105 and 0.1124, respectively. However, the chi-square test of the
combined population provides a significantP -value of 0.0442; there-
fore, the combinedpopulation is not inHardy–Weinberg proportion.

Most commonly, the Hardy–Weinberg proportion test is used
as a quality control tool for identifying errors in genotyping before
analysis (5, 18–28). Many genotyping errors can cause deviation
from Hardy–Weinberg proportions. For example, a mistaken allele
due to DNA contamination and allelic dropout due to low quantity
or quality of DNA (29) might cause an increase in homozygotes in
individuals, and therefore, cause deviations from Hardy–Weinberg
proportions. Genotyping errors will result in inflated type I and
type II error rates for genetic association studies (30). The Hardy–
Weinberg proportion test is considered an essential procedure in
genetic case–control association studies (19, 21, 31–33). However,
theHardy–Weinberg proportion test has very low power for detect-
ing genotyping errors, especially when the genotyping error rate is
low and the minor allele frequency is not rare. This is because when
the genotyping error rates are small, the observed genotype counts
will not be significantly different from the expected genotype counts
under Hardy–Weinberg proportions and, therefore, any test that
attempts to detect such errors based on proportion testing will have
very little power (26, 34).

For example, suppose in a sample of 1,000 individuals without
genotyping error the observed counts for the three genotypes AA,
Aa, and aa are 85, 418, and 497, respectively (Fig. 1). Without
genotyping error (panel A), the genetic variant is inHardy–Weinberg
proportion (P -value of Hardy–Weinberg proportion exact test
¼ 0.8790). For the purpose of demonstration, we assumed three
genotyping error models. In the first error model (panel B) (27),
the genotyping error is that bothhomozygous genotypes (AAand aa)
are miscoded as the heterozygous genotype (Aa) with equal proba-
bility (i.e., AA ! Aa and aa ! Aa). In genotyping error models two
and three (panels C and D), we considered the miscoding only from
rare homozygotes to heterozygotes and from heterozygotes to rare
homozygotes (i.e., AA ! Aa or Aa ! AA). In Fig. 1, we demon-
strate the variations in P -values of the Hardy–Weinberg proportion
test with respect to increased miscoding probabilities of 1, 2.5, and
5%. The P -values were obtained with the use of the exact test of
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Hardy–Weinberg proportions (5). Given a significance level of 5%, all
the P -values of Hardy–Weinberg proportion tests are nonsignificant,
implying that the sample is in Hardy–Weinberg proportion in all the
scenarios of all the error models. Even when the overall probability of
miscoding is 2.9% in the first error model, the observed genotypic
counts are 81, 447, and 472 for AA, Aa, and aa, respectively. The
Hardy–Weinberg proportion exact test gives a P -value of 0.0862,
and thus, the test cannot identify the genotyping errors.
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(497) 0.4067

2.5%

AA
(106)

Aa
(397)

aa
(497) 0.0520

5%

AA
(85)

Aa
(418)

aa
(497) 0.8790(A)

AA
(84)

Aa
(424)

aa
(492) 0.6488

1% 1%

AA
(81)

Aa
(447)

aa
(472) 0.0862

5% 5%

AA
(83)

Aa
(432)

aa
(485) 0.3655

2.5% 2.5%
(B)

AA
(84)

Aa
(419)

aa
(497) 0.8190

1%

AA
(83)

Aa
(420)

aa
(497) 0.7030

2.5%

AA
(81)

Aa
(422)

aa
(497) 0.5413

5%

(C)

(D)

P -values

Fig. 1. The Hardy–Weinberg proportion test has poor power to detect genotyping errors
when the genotyping error rates are low. P -values were obtained from Hardy–Weinberg
proportion exact tests. (A) Model without genotyping error; (B) Genotyping error model
with some homozygous individuals miscoded as heterozygotes; (C) Genotyping error
model with some rare homozygous individuals miscoded as heterozygotes; (D) Genotyp-
ing error model with some heterozygous individuals miscoded as rare homozygotes.
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With recent advancements in genotyping techniques, the
genotyping error rates are quite small (i.e., 0.01% using human
GWAS SNP—Illumina). Therefore, the Hardy–Weinberg propor-
tion test will not be a powerful tool for detecting genotype errors.
However, the current sequencing technologies have high error
rates, which will lead to the higher probability of errors in calling
individual genotypes, particularly for rare and novel variants. The
relationship between genotyping error and the Hardy–Weinberg
proportion test has been studied in the literature (26, 34–39).

In genetic association studies, the genetic variants that deviate
from Hardy–Weinberg proportions are usually considered to be
genotyping errors and are removed from further analysis. However,
such conclusions should be reached with great caution because a
departure from Hardy–Weinberg proportions can also be evidence
of an association between genetic variants and the disease of interest
(12, 16, 17, 27, 28, 33, 40–46).

1.3. How to Test

for Deviation from

the Hardy–Weinberg

Proportion?

To test the deviations from Hardy–Weinberg proportions in a
population, the null hypothesis, H0, is that there is no significant
difference between the observed and the expected genotypic
counts under Hardy–Weinberg proportions; the alternative
hypothesis, Ha, is that there is a significant difference between the
observed and expected genotype counts. The commonly used
approaches for Hardy–Weinberg tests include the asymptotic Pear-
son’s chi-square goodness-of-fit test and the exact test.

1.3.1. Chi-Square

Goodness-of-Fit Test

Pearson’s chi-square goodness-of-fit test is the most commonly used
approach for testing the departure from Hardy–Weinberg propor-
tions (5, 16). If we consider a sample with n individuals, and denote
the observed genotypic counts of AA, Aa, and aa at a single locus as
nAA, nAa, and naa, respectively (see Table 2), the test statistic of
Pearson’s chi-square goodness-of-fit test is given as (5):

w2 ¼ P
genotypes

Observed counts�Expected countsð Þ2
Expected counts

¼ nAA�np̂2
Að Þ2

np̂2
A

þ nAa�2np̂A 1�p̂Að Þ½ �2
2np̂A 1�p̂Að Þ þ naa�n 1�p̂Að Þ2½ �2

n 1�p̂Að Þ2
;

Table 2
Observed and expected genotypic counts for a diallelic locus
in a sample with n individuals

Genotype AA Aa aa

Observed counts nAA nAa naa

Expected counts np̂2A 2np̂Að1� p̂AÞ nð1� p̂AÞ2

p̂A: the estimated A allele frequency from the data
nAA, nAa, and naa: observed genotypic counts for three genotypes
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where p̂A is the A allele frequency estimated from the sample data,
and p̂A ¼ 2nAAþnAa

2n . The w2 test statistic asymptotically follows a
chi-square distribution with one degree of freedom. For a multi-
allele locus with m alleles, the degrees of freedom is calculated as

the number
m
2

� �
(the number of independent parameters under

the alternate hypothesis minus the number of independent
parameters under the null hypothesis). In Fig. 1, panel A, when
there are no genotyping errors, nAA ¼ 85, nAa ¼ 418, and naa
¼ 497, giving a total sample size of n ¼ 1,000. The estimated
allele frequency of A can be evaluated as p̂A ¼ 0:294. Therefore,
the expected counts are 1;000� p̂2A ¼ 86:44,

1;000� 2p̂Að1� p̂AÞ ¼ 415:13, and 1;000� ð1� p̂AÞ2 ¼ 498:44
for genotypes AA, Aa, and aa, respectively. Using the formula
above, we can obtain the following value of the w2 statistics:

w2 ¼ ð85� 86:44Þ2
86:44

þ ð418� 415:13Þ2
415:13

þ ð497� 498:44Þ2
498:44

¼ 0:048:

Compared to the chi-square distribution with one degree of
freedom, the P -value is 0.8268, which is not statistically significant
at a significance level of 5%. Therefore, we do not reject the null
hypothesis and can assume that this locus is in Hardy–Weinberg
proportion. Also, since the genotypic counts are discrete, the Yates
continuity correction of 0.5 can be used (5, 47):

w2 ¼
X

genotypes

jObserved counts� Expected countsj � 0:5ð Þ2
Expected counts

:

In this scenario, the P -value obtained here using the asymp-
totic chi-square test is 0.8733. It needs to be noted that the test
statistic w2 follows a chi-square distribution asymptotically when
the sample size is large. This asymptotic assumption of a chi-square
distribution could fail when the sample size is too small or there are
not enough genotype counts per cell. A locus with a rare minor
allele could also have an impact on the performance of Pearson’s
chi-square test, even if the total sample size is large, because the
expected counts of possible genotypes can still be low or close to
zero owing to rare allele frequency, and therefore, can greatly inflate
the test statistics. It has been suggested that the asymptotic Pear-
son’s chi-square test for Hardy–Weinberg proportions should not
be used if the expected count of a particular genotype is less than
some specified number, which is typically five (5, 16). In this
situation, the exact test is preferable (5).

1.3.2. Hardy–Weinberg

Exact Test

In the exact approach, a test is performed by computing probabil-
ities under the null hypothesis of all possible genotype combina-
tions that have the same allele frequency and total sample size as the
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observed sample. Then, the sum of all probabilities of events less
or equally probable to the observed event probability is the exact
P -value, and the null hypothesis is rejected if it is smaller than a
prespecified significance level (5, 48). Consider the notation from
Table 2 with n diploid individuals. For the genotypes at a single
locus, the conditional probability of observed genotypic counts
nAA, nAa, and naa, given the observed allele frequencies, can be
expressed in terms of the probability of heterozygote counts nAa
conditional on observed counts of the A allele under the assump-
tion of Hardy–Weinberg proportions and sample size. The condi-
tional probability is given as follows (5, 49, 50):

Pr nAajn; nAð Þ ¼ n!nA!na!2
nAa

nA � nAað Þ=2½ �!nAa! n � nA þ nAað Þ=2½ �!ð2nÞ! ;

where nA ¼ 2nAA + nAa is the observed count for allele A, n is the
sample size, and na ¼ 2n � nA. One can evaluate the conditional
probabilities for all possible genotypes consistent with the observed
data and order the counts of heterozygotes nAa according to these
probabilities. The summation of the conditional probabilities that are
less than or equal to the conditional probability of observed geno-
types is then calculated as the P -value of the exact test (49, 51, 52).

The exact test is more desirable than Pearson’s chi-square test
because it is valid for any sample size and minor allele frequency.
The exact test can provide an exact P -value for the test of Hardy–
Weinberg proportions if one completely enumerates all possible
genotypes, as described in the study by Louis and Dempster (53).
However, the number of possible genotypes given the same sample
size and allele frequencies increases exponentially with the number
of alleles (54). Therefore, in practice, it might not be feasible to
perform complete enumeration for large samples involvingmultiple
alleles. Efficient algorithms have been proposed to improve the
efficiency of the full enumeration algorithm (17, 51, 55, 56). In a
recent study (51), Engels presented a new algorithm for full enu-
meration using recursion, and improved the efficiency by about two
orders of magnitude. However, even using the recursion algorithm,
complete enumeration is still not practical in some situations. Engels
showed that the total number of possible genotypes is 2 � 1056 for
the data from the human Rh locus (51). In this situation, complete
enumeration would certainly be computationally inefficient.

Alternative approaches to full enumeration that are based on
permutation or resampling for testing Hardy–Weinberg propor-
tions have been extensively developed (17, 54, 57, 58). The con-
ventional Monte Carlo test of Hardy–Weinberg proportions was
first proposed by Guo and Thompson (54). For the Monte Carlo
test, one can randomly generate a large number of independent
possible genotypes based on the observed allele counts and sample
size. Guo and Thompson (54) also adapted the Markov chain
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algorithm to the Monte Carlo test by using the Markov chain to
approximate the distribution of the test statistic. It has been shown
that, when the sample size is relatively large, the Markov chain
Monte Carlo (MCMC) algorithm is faster than the direct Monte
Carlo algorithm (54). Other improvements to the Monte Carlo- or
MCMC-based tests of Hardy–Weinberg proportions have been
proposed (57–59). The MCMC-based tests are usually referred to
as “exact tests” in the literature and software. However, it should be
noted that these approaches are actually not “exact” because they
do not enumerate the entire space of possible genotypes. However,
compared to complete enumeration, the MCMC-based tests per-
form favorably and offer enormous improvement in computational
time; therefore, they have been extensively applied when complete
enumeration is not feasible.

Other approaches for testing Hardy–Weinberg proportions
have been proposed, including unconditional exact tests, likelihood
ratio tests, a confidence-limit-based approach, and Bayesian
approaches (5, 60–65). Some considered the Hardy–Weinberg
proportion test from a different point of view and proposed an
equivalence test (66). In practice, however, the most popular tests
of Hardy–Weinberg proportions remain Pearson’s chi-square
goodness-of-fit test and the exact tests (complete enumeration or
MCMC-based). Although the derivations and examples in this
chapter are based on two alleles, both tests can be extended to
multiple alleles (5). Many commonly used programs and software
(some available at no cost) can perform these two approaches. In
Subheading 2, we demonstrate step-by-step how these two tests
can be performed using popular software programs that have been
widely used in genetic association studies, SAS (67), R (68), and
PLINK (69, 70), along with numerical examples. The chi-square
test has wider usage than the exact test because it is simpler and
more straightforward. However, as we show in Subheading 2, the
chi-square test is very sensitive to small expected counts in one cell
and, therefore, provides more liberal P -values when the allele is rare
or the sample size is small. Therefore, we recommend using the
exact test when assessing Hardy–Weinberg proportions.

In the next section, we discuss recent approaches for testing
Hardy–Weinberg proportions in case–control study designs that
are better than traditional approaches for testing Hardy–Weinberg
proportions in controls only. We also note that deviation from the
Hardy–Weinberg proportions in affected individuals can provide
evidence for an association between genetic variants and diseases.
Some investigators have used the Hardy–Weinberg proportion test
in cases to identify disease susceptibility genetic loci while others
have combined this information with the standard genetic associa-
tion tests. We would like to discuss these recent approaches briefly
in this chapter. But no practical guideline for performing these
approaches is provided. For readers who are interested, please

6 Testing Departure from Hardy–Weinberg Proportions 85



refer to the related papers for the details. In this chapter, we focus
on demonstrating how to use the software programs SAS, R, and
PLINK to perform the traditional tests of Hardy–Weinberg pro-
portions (i.e., chi-square and exact tests).

1.4. Hardy–Weinberg

Proportion in Case–

Control Genetic

Association Studies

Case–control genetic association studies with unrelated individuals,
such as genome-wide association studies, have become a popular and
powerful approach for identifying genetic variants associated with
complex diseases. The test for the departure from Hardy–Weinberg
proportion plays important roles in case–control genetic association
studies. The most common usage is to assess the Hardy–Weinberg
proportion in control subjects as a quality control measure for identi-
fying genotyping errors. The relationship between genotyping errors
and the Hardy–Weinberg proportion test has been studied and dis-
cussed in previous studies (26, 34–39). These studies suggest that the
Hardy–Weinberg proportion test in controls has very low power for
detecting genotyping errors, especially when the genotyping error
rate is low and the minor allele frequency is not rare. However, the
Hardy–Weinberg proportion test is still considered an essential and
routine quality control tool in genetic association studies (19, 21, 31–
33).

In general, the Hardy–Weinberg proportion test assumes that
the genotypes are sampled from the general population, and there-
fore, the expected genotype counts in the test should be evaluated
from the general population. In a case–control genetic association
study, when the Hardy–Weinberg proportion test is performed in
control subjects, the observed genotypic counts in controls are
compared against the expected genotypic counts in controls. This
strategy might work if the disease under consideration is rare, where
the controls might well represent the general population. However,
when the disease is common in the population, it could be prob-
lematic to use only controls when evaluating the expected geno-
typic counts from the general population, as cases would account
for a relatively large portion of the general population. This might
lead to artificial departure from Hardy–Weinberg proportions,
especially for the markers associated with the disease, and to dis-
carding important SNPs that could potentially be causal SNPs
associated with the disease. It has been shown that the type I errors
can be inflated dramatically for Hardy–Weinberg proportion tests
on the disease-associated markers (23, 26). Moreover, if the geno-
typing is problematic, it might likely have an impact on both case
and control subjects (71). Therefore, the Hardy–Weinberg propor-
tions should be tested in the entire study population rather than
only in control subjects. Recently, several new approaches have
been proposed for assessing Hardy–Weinberg proportions using
both cases and controls for the case–control genetic association
(23, 26, 71).
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1.4.1. Hardy–Weinberg

Proportion Test for Case–

Control Study

Likelihood-Based Approach

Li and Li (23) proposed an approach for assessing Hardy–Weinberg
proportions based on a general likelihood ratio framework and
applied the approach to both case–control and family-based study
designs (see Note 1). They considered a di-allelic locus with the
three genotypes aa, Aa, and AA as g ¼ (0, 1, 2). The genotype
frequencies were denoted as P0, P1, and P2, respectively, where
P0 ¼ 1 � P1 � P2. The disease status D was defined as a binary
variable with 1 representing cases and 0 representing controls. Let
the penetrance of the disease conditional on genotypes be fg ¼ Pr
(D ¼ 1|g), then the prevalence of the disease can be written as
K ¼ f0P0 + f1P1 + f2P2. Therefore, given n unrelated cases and m
unrelated controls, the likelihood of the sample is given as:

L ¼ 1

Kn 1�Kð Þm
Y2
g¼0

f
ng
g 1� fg

� �mgP
ngþmg
g ;

where ng and mg are the numbers of genotypes in cases and con-
trols, respectively.

Under the null hypothesis of Hardy–Weinberg proportion,
P0 ¼ (1 � p)2, P1 ¼ 2p(1 � p), and P2 ¼ p2, where p is the allele
frequency of allele A. The likelihood ratio test compares the likeli-
hood that is maximized under the alternative hypothesis (departure
from Hardy–Weinberg proportions) with the likelihood that is
maximized under the null hypothesis (in Hardy–Weinberg propor-
tion). The likelihood ratio statistic follows an asymptotic chi-
square distribution with one degree of freedom under the null
hypothesis.

The likelihood ratio test of population Hardy–Weinberg equi-
librium proposed by Yu et al. (71) is similar to the one proposed by
Li and Li. In this approach, they fit models by minimizing the
deviation function, comparing the observed and expected numbers
of genotypes in cases and controls.

Mixture Hardy–Weinberg

Proportion Exact Test

Wang and Shete (26) proposed a mixture Hardy–Weinberg propor-
tion (mHWP) exact test, where a mixture sample that mimics the
general population is created and employed. The individuals in the
mixture sample are randomly selected from the original cases and
controls, and the number of cases in the mixture sample is propor-
tional to the prevalence of the disease. Consider a case–control
study with n0 controls and n1 cases. Let nm be the sample size of
the mixture sample, and let K be the estimated prevalence of
disease. One could choose nm ¼ minð n1=Kb c; n0=ð1�KÞb cÞ to
achieve the largest possible mixture sample size and then randomly
select nm �Kb c individuals from the cases and nm � ð1�KÞb c
individuals from the controls. The exact P -value of the Hardy–
Weinberg proportion test can be evaluated using the mixture sam-
ple. The procedure is repeated L times to allow for variability in the
mixture sampling, and L exact P -values are obtained (see Note 2).
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The empirical distribution-based nonparametric density can be
constructed based on L mixture sample exact P -values. The maxi-
mum likelihood estimator of this empirical distribution is estimated
as the final P -value for mHWP in the general population.

When the marker is not associated with the disease, both
likelihood-based and mHWP approaches perform similarly to the
traditional test using controls only. When the marker is associated
with the disease, the traditional test using only controls inflates the
type I errors dramatically when minor allele frequencies and preva-
lence of disease increase (23, 26). However, the likelihood-based
approaches and mHWP exact test can still control type I errors well
for the disease-associated markers and, therefore, significantly out-
perform the traditional approach. If genotyping errors are absent,
the mHWP exact test provides a conservative approach for assessing
Hardy–Weinberg proportions relative to the likelihood-based
approaches. Therefore, the mHWP exact test is more likely to retain
causal SNPs for future analyses after the Hardy–Weinberg testing.
When the genotyping error rates are higher, the genotyping error
can generate extreme deviation from Hardy–Weinberg proportions
and, therefore, all approaches can have high power to detect geno-
typing errors. However, when the genotyping error rates are low,
likelihood-based approaches and the mHWP exact test are not
very sensitive for detecting genotyping errors. Therefore, one may
also consider a strategy of keeping all SNPs for the association
study, performing the Hardy–Weinberg test only among significant
markers.

1.4.2. Hardy–Weinberg

Proportion Test for Genetic

Association Studies

Researchers also suggest that deviation from Hardy–Weinberg
proportions among case subjects can provide additional evidence
for an association between genetic markers and the disease of
interest (28, 33, 40–42). There is increasing interest in using
deviation from Hardy–Weinberg proportions in patients as a tool
in genetic association studies for identifying disease-susceptibility
loci. Feder et al. (40) proposed to investigate the deviation from
Hardy–Weinberg proportions among cases to fine map disease-
susceptibility loci for an autosomal recessive disorder. In their
paper, the degree of the deviation from Hardy–Weinberg propor-
tions was measured by using the F parameter (known as the
inbreeding coefficient), which compares the observed homozygos-
ity and expected homozygosity under Hardy–Weinberg propor-
tions. The markers with higher F values are considered to be
closer to the disease susceptibility locus. Their method has been
reviewed and extended by subsequent researchers (13, 41–43).
Wittke-Thompson et al. (28) examined the directions of the differ-
ence between population and expected genotypic frequencies in
cases and controls, respectively, and developed a chi-square test
for determining whether the observed data in a case–control
study are consistent with a genetic disease model.
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Other researchers have proposed to combine the information of
the departure fromHardy–Weinberg proportions and the commonly
used measures of association tests (i.e., logistic regression, allelic
association test, and the Cochran-Armitage trend test) to create new
statistical genetic association tests (33, 44, 46). The set-association
method proposed by Hoh et al. (46) employs the information of
departure fromHardy–Weinberg proportions in both cases and con-
trols. They first use the departure fromHardy–Weinberg proportions
in controls as a trimming tool to eliminate markers with unusually
high statistical values, whichmight indicate genotyping errors. Then,
the departure from Hardy–Weinberg proportions in cases is com-
bined with the allelic association test, through the product of these
two test statistics, to form thenew test statistic. The significanceof the
test is obtained by permutation of the disease status. Song and Elston
(44) addressed the weakness of the approach proposed by Hoh et al.
anddevelopeda similar approach, calledweightedaverage statistic, for
fine-mapping disease susceptibility loci. This approach combines the
Cochran-Armitage trend test statistic and the Hardy–Weinberg dis-
equilibrium (HWD) trend test statistic, which is proposed in this
study to examine the difference between the HWD coefficients in
cases and controls. The linear function of the two test statistics using
appropriate weights is used to form the new test statistic. The
weighted average statistic for identifying disease susceptibility loci
has better power than the adjusted Cochran-Armitage trend test,
theHWD trend test and the product of these two tests, for all genetic
disease models investigated in the study.

Both approaches discussed above use the Hardy–Weinberg
proportion information from both cases and controls, and no covari-
ate is considered. Alternatively, Wang and Shete (33) developed a
new test statistic for genetic association studies that incorporates
evidence about deviation from Hardy–Weinberg proportions only
in cases into the regression-based models. With the use of regression
models, this approach can easily include covariates in the analysis. The
mean-based and median-based tail-strength measures (72) were pro-
posed to combine P -values from two different hypothesis tests: the
likelihood ratio test for association and the Hardy–Weinberg propor-
tion exact test in cases. The significance of the new test can be assessed
through analytic formulas as well as a resampling procedure. This
approach showed a significant increase in power for genetic associa-
tion studies and good control of type I errorswith the additive genetic
model. Wang and Shete (73) further pointed out that the analytic
formulas for evaluatingP -valuesmight cause inflated type I errors for
recessive and dominant genetic models, owing to the assumptions
underlying the development of asymptotic null distribution; there-
fore, they recommended using the resampling-based approach to
assess the significance of the new statistics. The computer program
“CSig” performs the proposed association test through analytic for-
mulas and is available at http://www.epigenetic.org/software.php.
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2. Methods

To demonstrate difference in P -values obtained using the Pearson’s
chi-square goodness-of-fit test and the exact test for testing the
departure from Hardy–Weinberg proportions, we considered di-
allelic SNPs at 18 different genetic loci in a sample of 1,000 indivi-
duals. The three genotypic counts for all the SNPs are listed in
Table 3. The minor allele frequencies of the SNPs vary from ~1%
(rare variants) to ~50% (common variants). We utilized three soft-
ware programs (SAS, R, and PLINK) to evaluate the P -values of
Hardy–Weinberg proportion tests for each SNP based on asymp-
totic and exact approaches.

2.1. SAS/Genetic

Software

The tests for the departure fromHardy–Weinberg proportions can be
performed by using SAS/Genetics software (67). Although the Pear-
son’s chi-square and Fisher’s exact tests might be conducted using
statistical procedures in SAS (e.g., PROC FREQ), the procedure
ALLELE in the SAS/Genetics software is specially developed
for analyzing genetic data, and it provides statistical tests for Hardy–
Weinberg proportions based on these two commonly used
approaches.

To examine the departure from Hardy–Weinberg proportions
of the markers listed in Table 3, we first create the input data file in
SAS format as below, based on the genotypic counts of the 18
markers.

. . . . . .
a a a a a a A a A A a a A a a a A a A a A a A a A a A A A a a a A a A A

a a A a a a a a A A a a A a a a a a A a A a A a A a A a A a A a A A A A

A A a a A A A a a a a a A a a a A a A a A a a a A a A a A A A A A a A a
. . . . . .

The input data include 36 columns, with the first two columns
representing the set of two alleles for the first SNP, the third and
fourth columns representing the set of alleles for the second SNP,
and so on. There are 1,000 rows of data, each representing one
individual. The following code reads the input data and conducts
Hardy–Weinberg proportion tests for the 18 markers:
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Alternatively, the input data can be read in a format of columns
of genotypes instead of columns of alleles. Using this format, there
is only one column for each marker. One can use different char-
acters or strings as delimiters (i.e., “/” or “-”), or even no delimiter,
to separate the two alleles for each marker (see below).

Table 3
Genotypic counts, estimated allele frequencies, and P -values obtained based on
Pearson’s chi-square goodness-of-fit test and exact test of Hardy–Weinberg
proportions by using three different software programs: SAS, R, and PLINK

SAS R PLINK

AA Aa aa p̂A p_chisq* p_exact{ p_chisq* p_exact{ p_chisq* p_exact{

3 15 982 0.0105 1.425501E-18 1.400000E-04 1.425501E-18 9.822870E-05 1.43E-18 9.82E-05

1 19 980 0.0105 6.767192E-03 1.006500E-01 6.767192E-03 1.006557E-01 0.006767 0.1007

0 20 980 0.0100 7.494065E-01 1.000000E+00 7.494065E-01 1.000000E+00 0.7494 1

20 50 930 0.0450 6.149249E-40 0.000000E+00 6.149249E-40 1.214089E-17 6.15E-40 1.21E-17

3 97 900 0.0515 8.218825E-01 7.437800E-01 8.218825E-01 7.425484E-01 0.8219 0.7425

3 95 902 0.0505 7.667648E-01 7.340400E-01 7.667648E-01 7.358119E-01 0.7668 0.7358

5 185 810 0.0975 1.053538E-01 1.468900E-01 1.053538E-01 1.471012E-01 0.1054 0.1471

15 155 830 0.0925 1.520538E-02 2.115000E-02 1.520538E-02 2.191775E-02 0.01521 0.02192

10 180 810 0.1000 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1 1

30 360 610 0.2100 7.195676E-03 7.350000E-03 7.195676E-03 7.435283E-03 0.007196 0.007435

50 250 700 0.1750 2.198160E-05 1.000000E-04 2.198160E-05 6.528187E-05 2.20E-05 6.53E-05

40 320 640 0.2000 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1 1

60 500 440 0.3100 9.450207E-08 0.000000E+00 9.450207E-08 5.864779E-08 9.45E-08 5.87E-08

100 420 480 0.3100 5.642284E-01 5.584000E-01 5.642284E-01 5.549472E-01 0.5642 0.5549

90 420 490 0.3000 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1 1

300 400 300 0.5000 2.539629E-10 0.000000E+00 2.539629E-10 2.299897E-10 2.54E-10 2.30E-10

200 500 300 0.4500 7.494065E-01 8.003600E-01 7.494065E-01 7.982999E-01 0.7494 0.7983

250 500 250 0.5000 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1 1

Note: the P -values obtained from R and PLINK are in their default format
p̂A: the estimated A allele frequency from the data
*P -values obtained using Pearson’s chi-square goodness-of-fit test without continuity correction
{P -values obtained using permutation-based Hardy–Weinberg proportion test
{P -values obtained using exact Hardy–Weinberg proportion test
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. . . . . .
a/a a/a a/a A/a A/A a/a A/a a/a A/a A/a A/a A/a A/a A/A A/a a/a A/a A/A

a/a A/a a/a a/a A/A a/a A/a a/a a/a A/a A/a A/a A/a A/a A/a A/a A/A A/A

A/A a/a A/A A/a a/a a/a A/a a/a A/a A/a A/a a/a A/a A/a A/A A/A A/a A/a

. . . . . .

When this alternative format is used, there will be only 18
variables and the options GENOCOL and DELIMITER¼ should
be included. The DELIMITER¼ option can be omitted in the
following example since “/” is the default.

The SAS code above generates a marker summary table (part of
the table is shown).

It provides chi-square test statistic values without continuity
correction, degree of freedom, P -values based on the chi-square
test, and P -values based on the exact test obtained using a permu-
tation approach. In addition, it provides population genetic mea-
sures such as the polymorphism information content,
heterozygosity, and allelic diversity. By default, the ALLELE proce-
dure performs a chi-square goodness-of-fit test for Hardy–Wein-
berg proportions and reports the asymptotic P -values. When the
PERMS¼number option is included in the procedure, the Monte
Carlo permutation test of Hardy–Weinberg proportions based on
“number” permutations is performed, and the P -value thus

The ALLELE procedure

Marker summary

Test for HWE

Locus Number of

individuals

Number

of alleles

PIC Heterozygosity Allelic

diversity

Chi-

square

DF Pr > ChiSq Prob exact

M1 1,000 2 0.0206 0.0150 0.0208 77.3589 1 1.425501E-18 1.400000E-04

M2 1,000 2 0.0206 0.0190 0.0208 7.3337 1 6.767192E-03 1.006500E-01

M3 1,000 2 0.0196 0.0200 0.0198 0.1020 1 7.494065E-01 1.000000E+00

M4 1,000 2 0.0823 0.0500 0.0859 174.9468 1 6.149249E-40 0.000000E+00
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obtained is provided. One can also use the EXACT¼number option
instead of PERMS¼number to perform the same permutation-
based exact test. The exact test conducted here is based on the
approaches proposed by Guo and Thompson (54). In this permu-
tation procedure, the alleles are randomly permuted to form new
genotypes. For each permutation, the conditional probability of
genotypic counts given the allele frequency and sample size is
evaluated. The P -value is obtained as the proportion of permuta-
tions where the conditional probabilities are less than or equal to
the observed probability. It is recommended that 10,000 or more
permutations be used for accuracy. Increasing the number of per-
mutations will provide more accurate P -values, but the execution
time will be longer (see Note 3). The SEED¼ option is used to
define the random seed for the random number generator for
permuting the alleles. It should be a nonnegative integer. If this
option is omitted, the computer clock will be used (see Note 3).
The exact P -values reported in Table 3 were based on 100,000
permutations. The ALLELE procedure can also deal with markers
with multiple alleles. If the option NOFREQ is omitted, two more
tables of allele frequencies and genotype frequencies will be gener-
ated. All the analyses performed in this section were conducted
using SAS/Genetics 9.2 (67).

2.2. R Software R is a free software environment for statistical computing and
graphics (68). Several functions or packages have been developed
for the purpose of testing Hardy–Weinberg proportions. We
first focus on the functions available in the population genetic
package, “genetics” (74), and also introduce several other pack-
ages developed specifically for the Hardy–Weinberg proportion
exact test.

The “genetics” package has two functions: HWE.chisq and
HWE.exact, for testing the departure from Hardy–Weinberg pro-
portions based on the chi-square and exact tests, respectively.
The syntaxes for the two tests are as follows:

HWE.chisq(x)

HWE.exact(x)

where x is the genotype data in object class “genotype,” which can
be obtained by using the genotype function also available in this
package. By default, HWE.chisq provides chi-square test statistics
without continuity correction and simulated P -values based on
10,000 iterations. If one wants the asymptotic P -value based on
continuity-corrected chi-square statistics, then one has to use the
option simulate.p.value¼FALSE. The function HWE.exact pro-
vides exact Hardy–Weinberg P -values. The algorithm for the exact
test used by this function is based on the approach proposed by
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Emigh (49). This function only works for genotypes with two
alleles. The following code performs the asymptotic and exact
Hardy–Weinberg proportion tests within the “genetics” package.

1. Install and load the “genetics” package:

> install.packages("genetics")

> library("genetics")

2. Read the data for the 18 genetic markers (see Note 4), and
create genotype object using function genotype. Since the
genotype function only works for a single marker, we use a
marker in Table 3 as an example with genotypic counts for AA,
Aa, and aa of 5, 185, and 810, respectively.

> allmarker<-read.table('markers')

> onemarker<-allmarker[,7]

> genodata<-genotype(onemarker, sep¼"/")

3. Conduct asymptotic chi-square test for Hardy–Weinberg pro-
portions, and the asymptotic P -values can be obtained in
three ways (see Note 5):

> # to obtain chi-square test statistics without continuity
correction and P -value based on simulation one needs
to run default setting of the function

> t_chisq<-HWE.chisq(genodata)

> # to obtain asymptotic chi-square test statistics with conti-
nuity correction and associated P -value one needs to run
the following script

> t_chisq<-HWE.chisq(genodata, simulate.p.value¼FALSE)

> # to perform asymptotic chi-square test and associated
P -value without continuity correction

> t_chisq<-HWE.chisq(genodata, simulate.p.value¼FALSE,
correct¼FALSE)

4. Conduct exact test for Hardy–Weinberg proportions:

> t_exact<-HWE.exact(genodata)

For this marker, the asymptotic chi-square P -value obtained is
0.1107, based on simulation iterations. Alternatively, if one chooses
not to use the simulation to compute P -values (simulate.p.
value¼FALSE), the function computes the test statistic using
Yates’ continuity correction and uses the asymptotic chi-square
distribution to evaluate the P -value. The P -value obtained in this
way is 0.1499. We can further choose not to use Yates’ continuity
correction (correction¼FALSE), which results in a P -value of
0.1054. The exact P -value obtained from the HWE.exact function
is 0.1471 in this example.
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Several other R functions are available for the exact test of
Hardy–Weinberg proportions, such as the function HWExact in
the “GWASExactHW” package (75) and function hwexact in the
“hwde” package (76). Compared to the HWE.exact function in
the “genetics” package, these two functions directly deal with the
genotypic counts. Both functions were adapted from code by Wig-
ginton et al. (17). The approach proposed by Wigginton et al. (17)
uses the recurrent relationships from the previous study of Guo and
Thompson (54) and performs the exact test for SNPs in a compu-
tationally efficient manner for diallelic loci. Again considering
genotypic counts for AA, Aa, and aa of 5, 185, and 810, respec-
tively, the following codes can be used to obtain the exact P -values
based on those counts.

1. Use the function HWExact in the “GWASExactHW”
package:

> genocounts<-data.frame(nAA¼5,nAa¼185,naa¼810)

> p_exact<-HWExact(genocounts)

2. Use the function hwexact in the “hwde” package:

> p_exact<-hwexact(5,185,810)

Both functions provide, in this example, an exact P -value of
0.1471, which is the same as that obtained using the HWE.exact
function in the “genetics” package. The function hwexact is simpler
to perform than the function HWExact. However, by using the
data.frame function, the function HWExact can deal with a large
number of markers simultaneously (i.e., nAA, nAa, and naa can be
defined as arrays) and, therefore, is more favorable for large-scale
genome-wide association studies.

It should be noted that all the R packages/functions discussed
so far for the exact test of Hardy–Weinberg proportions only work
for markers with two alleles. The Hardy–Weinberg proportion
exact test for markers with more than two alleles can be conducted
using the function hwe.hardy in the genetic analysis package “gap”
(77). This function was adapted from the code by Guo (54).
Interestingly, for markers with only two alleles, this function cannot
be applied. All the analyses performed in this section were con-
ducted using R version 2.10.1 (68).

2.3. PLINK Software PLINK (69, 70) is a free software program providing a computa-
tionally efficient way of performing statistical analyses for large-
scale genome-wide association studies. As a basic summary statistic,
the Hardy–Weinberg proportion test can be conducted by using
one command line with the option --hardy in PLINK, using the
pedigree and map files (see Note 6). Both pedigree (PED) and map
(MAP) files are required as the standard input files for PLINK. We
first briefly introduce the formats of PED and MAP files and then
describe how the Hardy–Weinberg test is conducted.
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PLINK has detailed guidelines for the formats of PED and
MAP files. These files are in the standard “linkage format,” and all
the formats and coding must conform to these guidelines. The
PED file stores all the data for all the variables of all the individuals.
The columns refer to variables, and the rows refer to individuals.
The first six columns are mandatory: Family ID, Individual ID,
Father ID, Mother ID, Sex, and Phenotype. The combination of
Family ID and Individual ID needs to be unique to identify an
individual. Sex is coded as 1 ¼ male, 2 ¼ female, and other ¼
unknown. The Phenotype can be a quantitative trait or a case–
control status. If the Phenotype is a cases–controls status, it is
coded as 1 ¼ controls, 2 ¼ cases, and 0/�9 ¼ missing. Starting
from column seven, genotype data can be defined with two col-
umns representing one marker. The genotypes can be coded using
any numbers (1, 2, 3, and 4) or characters (A, B, C, and D) except
0, as 0 represents missing genotypes by default. TheMAP files store
additional information for markers, with each row describing one
single marker. By default, the MAP file has exactly four columns
(default settings): Chromosome (1–22, X, Y, or 0 if unplaced), rs#
or SNP identifier, Genetic distance (morgans), and Base-pair posi-
tion (bp units). For the detailed guidelines, the reader can refer
to the online PLINK manual (http://pngu.mgh.harvard.edu/
~purcell/plink/).

Once the example.ped and example.map files are created, the
Hardy–Weinberg proportion tests for all markers can be performed
using the following command line:

plink --ped example.ped --map example.map --hardy

By default, this command conducts the exact test of Hardy–
Weinberg proportions, described and implemented by Wigginton
et al. (17). To perform the asymptotic chi-square test, one can use
the option --hardy2 instead:

plink --ped example.ped --map example.map --hardy2

Two files are created from this command (1) plink.log file
captures all the information that should appear on the console,
including information about commands used, as well as information
about markers included, individuals used, cases and controls, male
and female, and the missing genotypes and individuals, etc.;
(2) plink.hwe provides the Hardy–Weinberg proportion test
P -value. The first line in the plink.hwe file includes headers.
The last column gives the Hardy–Weinberg P -value: asymptotic or
exact. For each marker, there are three rows with respect to Hardy–
Weinberg tests in three different samples (i.e., all data [ALL], cases
only [AFF], and controls only [UNAFF]) (see Note 7).
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Part of the resulting plink.hwe file based on the option --hardy
is shown below.

CHR SNP TEST A1 A2 GENO O(HET) E(HET) P

1 rs123456 ALL 2 1 3/15/982 0.015 0.02078 9.82E-05

1 rs123456 AFF 2 1 0/0/0 nan nan NA

1 rs123456 UNAFF 2 1 3/15/982 0.015 0.02078 9.82E-05

1 rs234567 ALL 2 1 1/19/980 0.019 0.02078 0.1007

1 rs234567 AFF 2 1 0/0/0 nan nan NA

1 rs234567 UNAFF 2 1 1/19/980 0.019 0.02078 0.1007

Since we assumed all the individuals were controls, no Hardy–
Weinberg test P -value was calculated for the cases (label AFF) for
all markers, and the results obtained using all data (ALL) and controls
(UNAFF) were exactly the same. For example, for the first SNP with
genotype counts 3/15/982, the exact P -value is 9.82 � 10�5,
which is the same as the one obtained in R using different exact test
functions (see Table 3). The asymptotic P -value based on the chi-
square test can also be calculated. PLINK does not provide values of
chi-square test statistics. Both the asymptotic and exactP -values from
PLINK are listed in Table 3. The Hardy–Weinberg proportion tests
available in PLINK can only deal with markers of two alleles. All the
analyses performed in this section were conducted using PLINK
version 1.07 (69, 70).

In Table 3, R and PLINK provide similar P -values for both
asymptotic and exact tests of Hardy–Weinberg proportions. By
default, SAS will provide results with only four decimals. For
the purpose of comparisons, we used a scientific notation for the
P -values obtained from SAS. The exact P -values from SAS are
slightly different from those obtained from R or PLINK because
the P -values are permutation-based. Even when the allele is com-
mon, asymptotic and exact P -values could be different. For exam-
ple, when the genotypic counts are 15, 155, and 830 for AA, Aa,
and aa, the minor allele frequency is 0.0925. The asymptotic and
exact P -values are 0.0152 and 0.0219, respectively. In this situa-
tion, the asymptotic P -value is liberal. Furthermore, when the allele
is rare, the asymptotic chi-square test is very sensitive and provides
more liberal P -values than the exact test. For example, when the
genotypic counts are 1, 19, and 980 for AA, Aa, and aa, the minor
allele frequency is 0.0105. The asymptotic P -value is 0.0068,
which is statistically significant at the 5% level and implies that this
marker deviates from the Hardy–Weinberg proportions, but the
exact P -value is 0.1007, which is not significant at the 5% level and
suggests that this marker is in Hardy–Weinberg proportion. With
18 markers in the data, the computation time for the analysis
is SAS>R>PLINK if the exact test is performed (the asymptotic
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chi-square test is always quick). Using 100,000 permutations, SAS
needs approximately 4–5 min to complete the analysis, R package
“genetics” needs about 2–3 s, and PLINK only needs about 0.03 s.
Therefore, the time it takes to perform the exact Hardy–Weinberg
proportion test for SNPs in a candidate region or at the genome-
wide level is less than a day. Given the liberal nature of the asymp-
totic-based chi-square test, we recommend that the exact test be
performed routinely.

2.4. Other Software Many other software/programs are also useful for testing the
departure from Hardy–Weinberg proportion:

SNP-HWE (http://www.sph.umich.edu/csg/abecasis/Exact/) (17)

HWtest (http://www.mathworks.com/matlabcentral/fileexchange/
14425-hwtest) (78)

Haploview (http://www.broadinstitute.org/mpg/haploview/)
(17, 79)

TFPGA (http://www.marksgeneticsoftware.net/)

3. Notes

1. Li and Leal (80) studied the departure from Hardy–Weinberg
equilibrium in a family-based study (i.e., parental and unaf-
fected sibling genotype data). They found that the pattern of
departure from Hardy–Weinberg equilibrium is different in
different groups of individuals, such as the parent group,
affected proband group, and unaffected sibling group.

2. The number of mixture samples L can be decided by conduct-
ing simulations. For example, given a data set, one can use
different numbers of L to evaluate the empirical distribution
of P -values and the maximum likelihood estimator. If the
empirical distribution and the value of the maximum likeli-
hood estimator are approaching stability when L is greater
than some number, one can use this number or a greater
number in the analysis.

3. We tried two different numbers of permutations, PERMS
¼ 10,000 and 100,000. In both cases, the exact P -values
show some variation if we conduct the ALLELE procedure
multiple times without the SEED ¼ option. If the multiple
tests are conducted using a fixed random seed number, the
exact same results can be replicated. The variations of exact
P -values are larger with PERMS ¼ 10,000 than with PERMS
¼ 100,000.These variationsmight nothave a significant impact
on the conclusions from the exact test (Hardy–Weinberg pro-
portion test is significant or nonsignificant), but we still recom-
mend more permutations for accurate results, if it is feasible.
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4. The input data are in a format of columns of genotype pairs.
One can use different delimiters to separate two alleles, such as
“A/a” and “A-a,” or use no delimiter between two alleles,
such as “Aa.” When creating genotypes using genotype func-
tion, the delimiter needs to be specified in the function with
the option sep¼"" (by default, sep¼"/"). One can also use 0,
1, or 2 to represent genotypes aa, Aa, or AA, and then use
function as.genotype.allele.count to convert them to genotype
pairs A/A, A/a, and a/a. If only the genotypic counts are
available, one can also create the genotype data and then
apply the genotype function:

> genocounts<-c(5, 185, 810)

>data<-c(rep("A/A",genocounts[1]), rep("a/A",geno-
counts[2]), rep("a/a",genocounts[3]))

> genodata<-genotype(data)

5. When using the HWP.chisq function based on the asymptotic
chi-square distribution (simulate.p.value¼FALSE), a warning
message might appear regarding the validity of chi-squared
approximation:Warning messages:1: In chisq.test(tab, . . .) :
Chi-squared approximation may be incorrect. This is probably
due to a small expected count in one cell. To check the
expected counts under the null, one can use results$expected,
where the “results” is the variable saving all the outcomes.

6. PLINK is a command-line program with no GUI interface.
All the command lines need to be written at the command
prompt (e.g., DOS window or Unix terminal). The basic
syntax of PLINK is as follows:

plink --ped file.ped --map file.map --option

The options --ped and --map indicate the input pedigree and
map data files. The --option specifies the analysis or methods
to be applied. All the results are saved in files with different
extensions according to the analyses performed.

7. The example data used the case–control status as the pheno-
type. For a quantitative trait, each SNP only has one row,
labeled as ALL(QT). By default, only founders are considered
in the Hardy–Weinberg proportion analysis. Instead, the
option --nonfounders can be used to indicate that all indivi-
duals will be included to perform an approximate test.
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