
Ann. Rev. Biophys. Bioeng. 1978. 7:253-86 
Copyright @ 1978 by Annual Reviews Inc. All rights reserved 

STATISTICAL MODELING AND 

ANAL YSIS IN HUMAN GENETICS 

R. C. Elston 

.9113 

Department of Biostatistics and the Genetics Curriculum, University of North Carolina at 
Chapel Hill, Chapel Hill, North Carolina 27514 

D. C. Rao 
Population Genetics Laboratory, University of Hawaii, Honolulu, Hawaii 96822 

INTRODUCTION 

Soon after the rediscovery of Mendel's work at the turn of the century, a rift 
developed between two opposing schools of thought. On the one hand were those 

who stressed the qualitative nature of genetic inheritance, as had been demonstrated 
by Mendel; on the other hand were the "biometricians," who noted that most 
human variation is quantitative, rather than qualitative, and therefore amenable 
to correlation and regression analysis. In 1918, Fisher (39) demonstrated that 
the rift was more apparent than real; by supposing that the genetic contribution 
to any quantitative trait is made up of the sum of many small independent additive 
effects, each controlled by a Mendelian factor, Fisher theoretically derived exactly 
what the biometricians were finding empirically. This unification of statistical and 
genetic findings le,d, in the half century to follow, to a period in which the develop­
ment of statistical theory and knowledge in human genetics advanced hand in 
hand. Throughout this period, however, a practical rift remain,ed in human genetics: 
statistical methods for the analysis of qualitative traits were largely developed in 
terms of one- and two-gene models, whereas those for the analysis of quantitative 
traits were for the most part based on the assumption of a model in which many 
genes act additively. As late as 1960 it was necessary for Edwards (24) to point 
out that consideration should be given to polygenic models for qualitative traits; 
and as late as 1970 it was suggested that to fit a one-gene model to a quantitative 
trait, the trait should first be changed to a simple dichotomy, with each individual 
classified according to whether his trait value is above or below some threshold 
value (105). 

The past decade has seen a burst of activity in the development of statistical 
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254 ELSTON & RAO 

models for human genetic analysis. This has resulted both from the widespread 
availability of the computer technology necessary for advanced methods of analysis, 

and from the increasing relative importance of genetic diseases in man, now that 

environmental agents such as bacteria and viruses are coming more under control. 
Furthermore, the human gene map is no longer largely a desert; we now know 
which specific chromosome carries each of over 200 loci (69). In this review we 
describe the various models, developed mostly over the last decade, for the purposes 
of genetic counseling and analysis. We do not consider the many models that 
have been developed to study population or evolutionary genetics. 

Genetic Counseling vs Analysis 

Genetic counseling requires several kinds of expertise, but here we are concerned 
only with the statistical modeling aspects. The question to be answered is this: 

given that we know the genetic mechanism that underlies the transmission of a 
disease, together with appropriate values for all the parameters involved, what is 
the probability that a certain individual, on the basis of what we know about 
this individual and/or his relatives, should have the disease? More generally, we 
can ask what the probability is that he should have a particular phenotype. (The 

individual for whom this question is asked may be as yet unborn, as when a 
couple wishes to know the probability of their having a child with a particular 
disease.) This problem can be thought of as the mirror image of the problem 

posed in genetic analysis; given that we know the phenotypes of a set of individuals 
with respect to some trait, what is the genetic mechanism that underlies that 
trait, and how do we estimate the parameters involved? It is far easier to answer 
the genetic counseling question than the analysis question; in fact it can be shown 
that in the absence of certain kinds of data, the analysis question is virtually 
unanswerable. Therefore, we start in Section 2 by answering the counseling question 
for certain models, restricting ourselves to the situations in which at most two 
individuals are involved; this enables us to introduce some basic genetic mechanisms 
before considering the problem of analysis. 

Terminology and Symbols 

TERMINOLOGY The terminology we use is that mostly used by human geneticists. 
The normal chromosomal complement in man comprises 22 pairs of homologous 

autosomes, or autosomal chromosomes, and two sex chromosomes-XX in females 
and XY in males. Genes occur at loci in linear sequence along the chromosomes. 
At each autosomal locus two genes occur, one on each of the homologous chromo­
somes. Different gene!; that occur at the same locus are termed alleles. Each parent 
transmits one of his two genes at any given locus independently to each offspring. 
(This, essentially, is Mendel's first law, or the "law of segregation.") However, 
the X and Y chromosome in males do not constitute a homologous pair: males 
transmit their X chromosome to each of their daughters and their Y chromosome 

to each of their sons. Loci on the X chromosome are called X-linked. 
The two genes that an individual has at a given locus comprise his genotype 
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HUMAN GENETICS 255 

at that locus. An observed characteristic on an individual is his phenotype or 
phenotypic value; the phenotype may be qualitative (e.g. color of eyes) or quantita­
tive (e.g. height). 

If the genes that cause differences in a phenotypic trait are all at the same 
locus, the trait is called monogenic. Since there must be at least two different 
genes involved for genetic differences to occur, it would be more logical to call 
such a trait unilocal; the term monogenic, however, is used far more commonly. 
Although any one individual can have at most two different genes at a locus, 
more than two different genes can occur at that locus in the population at large; 
if this occurs, the locus is termed multiallelic and such a genetic system is still 
monogenic. 

If the phenotype is controlled by the segregation of genes at many loci in any 
one family, it is termed polygenic-though the term multilocal would be more 
logical. Later we see that the usual model for polygenic inheritance is a very 
special case and, as is often implicitly assumed in the literature, this special case 
is taken to be the definition of polygenic inheritance. 

The term multifactorial is often used as a synonym for polygenic, but should 
more properly have a broader connotation. A monogenic trait is multifactorial if 
environmental influences are also involved in determining the phenotype. Further­
more, although any trait in which many loci are involved is multifactorial, the 
term polygenic is usually restricted to models in which normality is assumed, as 
described in Sections 2 and 4. 

SYMBOLS Within each of the major sections of this review a consistent symbolism 
is used; each symbol has only one meaning. However, to help the reader go back 
to the original literature, some of the original symbolism has been kept; for this 
reason the symbolism is not exactly the same in each section. Throughout the 
paper, however, we consistently use the following abbreviations: P(A), probability 
of the event Aj E(x), expectation or mean of Xj �x) = E[x - E(x)P, variance of 
x ;  Cov (x,y) = E{[x - E(x)] [y - E(y)]J, covariance of x and y; C/J(z,a2) = 
(21T02)-¥.!exp[-�(z/0)2], ordinate at z of a normal density function with mean 
o and variance 02; <I>(x) = f .!"t/J(u,l)du, cumulative standardized normal distri­
bution; N(1l, a2), normally distributed with mean 11 and variance a2; and O;i' Kro-

_ {I if i=j 
necker delta: oij - 0 if i 1= j" 

2 DICHOTOMOUS TRAITS-RANDOM INDIVIDUALS AND 

RELATIVES OF AFFECTED INDIVIDUALS 

Statistical models in human genetics can be classified according to various criteria: 
the genetic mechanism (e.g. monogenic, polygenic); the kind of phenotype (e.g. 
qualitative or quantitative, univariate or multivariate); the kinds of individuals 
sampled (e.g. unrelated individuals, related pairs, nuclear families, large pedigrees); 
and the purpose of the model (genetic counseling or genetic analysis). In principle 
we can consider every possible cell in such a multiple classification, but in practice 
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256 ELSTON & RAO 

not all of these possibilities have been explored in depth. The models we consider 
in this section assume that, at most, pairs of related individuals are involved. 
We also restrict ourselves to a dichotomous phenotype (which we can take to be 
affected vs unaffected), and in such a situation there are only limited possibilities 
for genetic analysis, e.g. for determining whether the mode of inheritance is mono­
genic or polygenic (53, .58). For this reason we consider only the genetic counseling 
problem, asking for each genetic model what the probability is that a random 
member of the population is affected, i.e. what is the prevalence of the disease 
in question, and what the probability is that a particular relative of an affected 
individual is affected. 

Monogenic and Oligogenic Models 

BASIC AUTOSOMAL LOCUS For simplicity we consider a locus with just two alleles, 
A and a, random mating, and no selection or mutation. If the frequency of the 
allele A in the population is p, and that of a is q = 1 - p, then the genotypic 
frequencies are p2 for AA, 2pq for Aa, and q2 for aa. If jj is the probability that 
a random individual of genotype i (i = AA, Aa, aa) is affected, then the answer 
to the first question, namely the prevalence of the disease in the population, is 
simply 

1. 

To answer the second question, we use the stochastic matrices developed inde­
pendently by Geppert & Koller (4Oa) and by Li & Sacks (66), but with the notation 
introduced by Campbell & Elston (5). These matrices are [I 0 0] [P q 0] til 2pq q2 ] 

1= 0 I 0, T = YJ.p YJ. YJ.q, U= p2 2pq q2 . 
o 0 l O p q p2 2pq q2 

Let Yand Z be two individuals, and order their possible genotypes 1 = AA, 2 = Aa, 
and 3 = aa. Then in each matrix the element in the ith row and jth column is 
the probability that Y has the jth genotype given that Z has the ith genotype, 
where Yand Z have the appropriate relationship. The matrix I gives these probabili­
ties when Y and Z are monozygotic twins, or more generally, conditional on 
both of Y's genes being identical by descent (i.b.d.) with Z's genes: T gives these 
probabilities when Y is a parent or child of Z. or more generally, conditional 
upon Y and Z sharing just one gene i.b.d.; and U gives these probabilities when 
Y and Z are unrelated, i.e. conditional upon their sharing no genes i.b.d. 

For any particular relationship between Y and Z. let Cr be the probability that 
they share both genes i.b.d., Cr the probability that they share one gene Lb. d., 
and Cu the probability that they share no genes i.b.d. at an autosomal locus. It 
follows that the appJl"Opriate matrix for this relationship is R = C[ I + Cr T + 
Cu U. The coefficients can be derived from Mendel's first law. For the grandpar­
ent"grandchild relationship, for example, C[ = 0, Cr = YJ., and eu = YJ., so that 
R = YJ.T + YJ.U. 
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HUMAN GENETICS 257 

Premultiplying R by a diagonal matrix D whose ith diagonal element is the 
frequency of the ith genotype in the population, we obtain the joint genotypic 
distribution for Yand Z Thus, if we let f be a column vector with transpose f' 
whose ith element is fl, the joint probability that both Y and Z are affected is 
f'DRf. It follows that the answer to our second question, the probability that Y 
is affected given that his relative Z is affected, is f'DRf/11, where R is appropriate 
for the relationship between Yand Z 

We have assumed in this development that the same f is applicable to both Y 
and Z, but only trivial changes are required if this is not so. For example, f 
may be age or sex dependent. By using Y and Z as subscripts to denote for 
which individual the parameters should be appropriate, the more general expression 
for the probability that Y is affected given Z is affected is fiDzRyzfy/7}z. The 
extension to a multiallelic locus is also quite simple (40, 66). 

BASIC X-LINKED LOCUS Again we consider just two alleles, A and a, random 
mating, and no selection or mutation; we further assume that the gene frequency 
is the same in both sexes. For females, just as in the autosomal case, the prevalence 
of the disease is as given in equation 1. For males, who only have one X chromo­
some, it is convenient to represent the Y chromosome by a dot. Thus the two 
genotypes that are possible are A. and a., with frequencies in the population P 
and q, respectively. We need to define h. and Ia. analogously as before, and then 
the prevalence of the disease among males is 

Tld = Ph. + qla.· 2. 

If fa. :::: laa :::: 1 and h. :::: fAA :::: ha :::: 0, the disease is caused by a simple recessive 
X-linked gene; in this situation we see from equations 1 and 2 that the prevalence 
of the disease in females is the square of the prevalence in males. Conversely, if 
Ia. = laa = 0 and h. = fAA = ha :::: 1, the disease is caused by a simple dominant 
X-linked gene; in this situation, in the limit as p .. 0, the prevalence in females is 
twice the prevalence in males. Thus a sex difference in the prevalence of a disease 
may suggest X-linked inheritance as a possible cause for that disease. 

The probability that Y is affected given that Z is affected can again be expressed 
as fiDzRyzfy/11z, but with appropriate redefinitions (40a, 66). 

LESS RESTRICTED MONOGENIC MODELS Multiallelic loci can easily be allowed 
for under the general procedures just given. Allowing for nonrandom mating, 
mutation, and selection, however, poses problems. Much is known about the equilib­
rium genotypic frequencies, for both autosomal and X-linked loci, under various 
systems of assortative mating and inbreeding, and under mutation and selection 
pressures (e.g. 15, 65). With this information, and the appropriate f, it is easy to 
express the prevalence of a disease as a function of the various genetic parameters. 
Very little general theory, however, has been developed for determining the proba­
bility that the relative of an affected individual is affected under these less restrictive 
conditions. 

In an infinitely large popUlation undergoing random mating, consanguineous 
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258 ELSTON & RAO 

matings (i.e. matings between relatives) do not occur; this has been tacitly assumed 
to be the case in our development so far. In a finite population, however, consan­
guineous matings do occur, even under random mating. Since the presence of 
consanguineous mating:. can have a large effect on the probability that the relative 
of an affected individual is affected, this situation is important for genetic counseling, 
and a general theory for it is available. Consider four objects that may be pairwise 
identical or not identicld, with the relation "identical" being symmetric and tran­
sitive. There are 15 possibilities or identity states (42, 80). If these four objects 
are the genes of two individuals at an autosomal locus, and the relation is Lb.d., 
it is found that 9 of these 15 states are genetically distinct; and in 6 of these 9 
genetically distinct states the two genes of one or both of the two individuals 
are i.b.d. Thus only three genetically distinct states exist if we assume an individual 
cannot have two genes Lb.d., and these states correspond to I, T, and U. 

To allow for consanguineous matings it is necessary to consider nine, rather 
than three, distinct states for an autosomal locus. Furthermore, it is found during 
the development that R cannot be expressed as a linear combination of nine matrices 
with scalar coefficients, since some of the coefficients depend upon the row of 
the matrix. Thus each genotype of Zis considered separately, and then the genotype 
distribution of Y conditional on Z's genotype is obtained as a linear combination 
of row vectors. Details of the method are given by Jacquard (52) for a multiallelic 
autosomal locus, but this paper contains a small error (31). The coefficients in 
the linear combinations can be found, for any relationship whatsoever, by an 
algorithm developed by Nadot & Vaysseix (80). 

OLIGOGENIC MODELS The case where a few loci are involved (which would more 
logically be termed paucilocal models) can be handled, when the genes at different 
loci segregate independently, by the use of Kronecker products of the matrices 
I, T, and U defined above (5). However, genes at different loci on the same chromo­
some tend to be transmitted together, rather than independently, provided the 
loci are not too far apart on the chromosome. This phenomenon is termed genetic 
linkage, and extends Mendel's second law, the "law of independent assortment," 
which holds good only for genes on nonhomologous chromosomes or genes at 
loci on homologous chromosomes that are far apart. The derivation of R for 
two linked autosomal loci is dealt with by several authors (5, 20). 

Polygenic Model 

The basic polygenic model for dichotomous traits is described here under the 
following restrictive assumptions: all the genes involved are autosomal, with addi­
tive effects; there is random mating and no mutation or selection; and all environ­
mental effects are completely independent-Leo the familial nature of the disease 
is due to genetic causes alone. Some of these assumptions are relaxed in Section 
3, when we discuss quantitative traits. The model has been developed by two 
different approaches that, although seemingly different, are mathematically equiva­
lent. Furthermore, it is possible to parametrize the model in two different ways 
since without loss of generality one of the parameters can arbitrarily be set equal 
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HUMAN GENETICS 259 

to a constant. We give both approaches to the model, but restrict ourselves to 
the parametrization (but not the notation) used by Curnow ( 16, 17). 

THE RISK FUNCTION APPROACH Consider a locus at which two types of genes 
occur, which we call O-genes and I-genes. In the polygenic model we suppose 
that there are many such loci, and that the risk to an individual of being affected 
depends only on the proportion of his genes at these loci that are I-genes. In a 
population of randomly mating individuals, as the number of these loci that are 
independently segregating increases, this proportion will tend to be normally distrib­
uted. Thus under this model the dependence of risk on genotype can be replaced 
by the dependence of risk on a normally distributed random variable, G say, 
called genetic liability. Since we never actually measure G, we assume without 
loss of generality it is N(O, l). We now assume that the risk function takes the 
form of a cumulative normal with mean fJ and variance u2, i.e. the probability 
that an individual with genetic liability G is affected is <1>[( G - fJ)/u). Thus, analo­
gous to equation 1, but integrating over the continuous variable G rather than 
summing over a finite number of genotypes, the prevalence of the disease in the 
population is 

11 = f.:: cP (G,I) <1>[( G- fJ)/u) dG= <I>[-fJ/(1 + U2)li). 3. 

It should be noted that the assumption that G is normally distributed over 
the population is not a strong one; provided it is continuous, it can always be 
transformed to be normally distributed. Similarly, the assumed form of the risk 
function is not, by itself, very restrictive. Although individually not important. 
when taken together these assumptions, for which there is little biological justifica­
tion, become very strong. A further assumption now needed to apply this model 
to pairs of relatives is that the distribution of G among such pairs over the population 
is bivariate normal; the correlation p in this distribution is the expected proportion 
of genes the two relatives share i.b.d., i.e. 

Denote this standardized bivariate normal density with correlation p, for a partic­
ular pair of relatives Yand Z. cJ>( Gy, Gz, p); this corresponds to the matrix DR 
in the monogenic case. Then the joint probability that both Yand Z are affected, 
analogous to f'DRf (which is a double summation over the joint distribution), is 

f.:J.:: <1>[( Gz - fJ)/u)cJ>( Gy, Gz, p)<I>[( Gy - fJ)/u)dGydGz. 4. 

This quantity, divided by the prevalence 11 given in equation 3, is then the probability 
that Yis affected given that Z is affected. We have assumed the same risk function 
for Y and Z in this development, but as before for f, there is no difficulty in 
allowing the two risk functions to be different. Figure 1 gives a pictorial representa­
tion of this model: two risk functions are shown, with differing values of 8: 81 
and 82• 
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260 ELSTON & RAO 

Curnow (16) has shown that expression 4 is equal to 

t;,¢(u, l){ c:f>[-(8 + p*112u)/(1 + a2 - p*)]j2du, 
where p* = p(l + a2), which is an easier form to evaluate computationally. Approx­
imations to this expression, of varying degrees of accuracy, also exist (36, 70, 
99). 

Finally it should be noted in passing that the same model can be used for 

counseling without the necessity of assuming that the familial nature of the disease 
is due to genetic causes only, by allowing Gto contain an environmental component 
(16, 18, 1(0); but then there is no way to derive p from genetic principles alone. 

THE THRESHOLD APPROACH The original approach to the polygenic model for 
a dichotomous trait was quite different (13, 36, lIS). Assume the existence of a 
normally distributed random variable L, which we call total liability. (This variable 

.5 

OL-------�-------------��----�--�--��------
Figure 1 Pictorial repn:sentation of the risk function approach to the polygenic model 
for a dichotamous trait; the abscissa is genetic liability G. (a) Density function of G, N{O,l); 
(b) risk function <I>[(G- (1)/a]; (c) risk function <I>[(G-8 2)/a]. The risk function is the 
probability that an individual with genetic liability G is affected. 

I �b 

91 92 
Figure 2 Pictorial representation of the threshold approach to the polygenic model for a 

dichotomous trait; the abscissa is total liability, L = G + E (a) Density function of total 
liability, N{O, 1 + a2); (b) threshold 81; (c) threshold (J2' Individuals whose tota1liability is 
greater than the threshold are affected. 
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HUMAN GENETICS 261 

is usually simply called liability.) An individual's total liability is the sum of two 
uncorrelated components: a genetic liability, the same G as before, and an environ­
mental liability, E, which is N(O, (J2) in the population. Let an individual be 
affected if and only if his total liability is greater than 8, in this approach called 
the threshold. Finally we assume that any correlation in L between pairs of related 
individuals is due solely to a correlation in G, i.e. the pairs of values of E are 
uncorrelated. As before, G is assumed to follow a standardized bivariate normal 

density among pairs of relatives over the whole population, with correlation 
p = c[ + Y.l Cr. It can be shown that this model results in the same expression as 
given in equation 3 and expression 4 above. Figure 2 illustrates this approach, 
with two different thresholds being shown. Figures I and 2 are two different ways 
of depicting the same model. 

Whichever approach is taken, �G) is arbitrary, in the sense that the model 
depends on �G) and �E) only through the ratio �G)lV(E), or alternatively 
through the ratio V( G)/[ V(E) + V( G)]. As is seen from its definition given below, 
this latter ratio is the heritability of the (total) liability to the disease, though it 
is often mistakenly called the heritability of the disease itself (25, 28). 

3 PATH ANALYSIS AND VARIANCE COMPONENTS 

In this section we deal with the analysis of quantitative traits under the assumption 
of multifactorial inheritance. The purpose of the methods described in this section 
is not so much to distinguish between various modes of genetic inheritance as to 
resolve genetic and environmental effects. There are basically two approaches to 
this problem, the methods of path analysis and variance components. Path analysis, 
whose primary purpose is to explain the interrelationships among variables, was 
originally developed for the analysis of correlations by Wright (114). The method 
of variance components, on the other hand, was developed as a natural extension 
of the analysis of variance, i.e. the analysis of the variance of a quantitative trait 
into component parts. In large samples, both these methods should give essentially 
identical results under similar assumptions; for the same model it is largely a 
matter of taste as to which method is chosen. Cavalli-Sforza & Feldman (10, 
38) have developed a model of cultural inheritance in which the phenotype of a 
child is determined by the parental phenotypes as well as by the child's own 

genotype. Although it has not yet been applied to any body of real data, the 
path analysis models have been shown to be capable of extracting the main features 
of such a model (90). 

Originally the variance component models included just additive gene effects, 
intralocus gene .interactions (dominance), and random environmental effects (39). 
The biometrical genetioists in Birmingham, led by Jinks & Eaves (54), have extended 
the model to allow a distinction between intrafamilial and interfamilial environmen­
tal effects; in addition, models that incorporate interlocus gene interactions (epista­
sis) have been developed for twin studies (11, 47,81). The method of path analysis 
was originally developed for linear additive systems (114), i.e. linear models with 
no statistical interaction effects, but it has recently been extended to allow the 
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262 ELSTON & RAO 

approximate treatment of dominance; epistasis, and genotype-environment interac­
tions (116). Models that incorporate indices of familial environment and a logical 
treatment of causal relationships between generations have been developed by Mor­
ton (74) and Rao et al (94, 95), making path analysis a powerful tool for the 
resolution of genetic and environmental inheritance (85). Among current models 
those developed for use with path analysis are more realistic, for traits in which 
the environment is important, than those developed for use with variance compo­
nents; for this reason we only briefly summarize the method of variance components. 

Basic Model 

. Throughout this section variables (causes and effects) are denoted by capital letters, 
and parameters are denoted by lower case letters, Greek or Roman. We restrict 
our attention to the following linear additive model: 

P=G+ C+ R, 5. 

where Pis the phenotype, value of the quantitative trait; G is the genotype, assumed 
polygenic; Cis the controllable environment, called common or family environment; 
and R is the random environment, unique to each individual, with Jl{P) = a�, 
Jl{G) = aa, Jl{C) = a�, Jl{R) = aA and COV(G,C) = aGe, COV(G,R) = 
COV(C,R) =0. 

Thus the total phenotypic variance is given by 

aj = a� + a� + 2aGc + a�. 6. 

Important underlying assumptions are that (a) a linear additive model exists 
for the quantitative trait, which assumes no dominance, epistasis, or genotype­
environment interactions, and (b) genotype-environment covariance is in equilib­
rium. Furthermore, when twins and adopted children are included in the data it 
is usual to assume that (c) the phenotypic similarity of twins due to common 
prenatal and postnatal environment, irrespective of zygosity, is no greater or less 
than for ordinary siblings, (d) adoptions are random, with no regard to genetic 
or environmental variables, and (e) true parents are assumed to exert no influence 
on the children either prior to or after their adoption. 

The terms in equation 6 are the commonly estimated variance components. In 
path analysis they are obtained, relative to the total phenotypic variance, as func­
tions of path coefficien.ts. 

HERITABILITY One of the fundamental parameters of multifactorial inheritance 
is heritability, which we denote h2; it is defined as the proportion of total phenotypic 
variance due to genetic factors: h2 = a�/al This definition holds regardless of 
any genotype-environment covariance (51). In the presence of dominance and 
epistasis the genetic variance is split into components, called additive genetic vari­
ance (a,D, dominance variance, and epistatic variance, and accordingly two types 
of heritability are defined: heritability in the narrow sense, h� = a1/a�; and herita­
bility in the broad sense, ht = a�/aft. When gene interactions are absent, 
h;' = h� = h2• 
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In path analysis the underlying model is depicted as a path diagram, which expresses 
as paths the relationships among the variables involved. These paths are either 
causal paths from causes to effects, indicated by single-headed arrows, or correla­
tional paths, indicated by double-headed arrows. Associated with each path is a 
path coefficient, formally defined as a standardized partial regression coefficient. 
Given a path diagram a simple calculus exists for deriving, as functions of the 
path coefficients, the correlation between any pair of variables in the diagram 
(64, 116). Effects that are used as imperfect measures of causes are called indices. 
Thus, two kinds of observable variables exist, effects and indices (1), and we 
indicate how data on these can be used to test hypotheses about the various paths 
in a diagram. First, we give details of a general model developed for path analysis. 
Following a recent convention (92), causes are denoted by ellipses and effects 
(including indices) are denoted by rectangles. 

NUCLEAR FAMILIES A general model that incorporates specific maternal effects, 
shown in Figure 3, has been proposed (D. C. Rao, N. E. Morton, C. L. Gulbrandsen, 

Figure 3 Marital and parent-offspring path diagrams. The subscripts F, M, and C denote 
father, mother, and child, respectively. G is genotype, P is phenotype, and C is common 
environment with index L Each effect (rectangle) has another path from an independent 

cause; these residual paths are not shown, since they do not contribute to the observed 
correlations among effects. 
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264 ELSTON & RAO 

Table 1 Path coefficients of the general model (Figure 3) 

Marital 

Environmental 

Genetic 

Indices 

Derived 

Symbol Definition 

m correlation between parental genotypes. 
u correlation between common environments of spouses. 
s correlation between common environment of an adult and 

spouse's genotype. 

c effect of common environment on child's phenotype. 

y ratio of the effects of common environment on adult's pheno-
type and on child's phenotype. 

iF effect of father's common environment on child's common 
environment. 

1M effect of mother's common environment on child's common 
environment. 

XF effect of father's (adult) phenotype on child's common 
environment. 

XM effect of mother's (adult) phenotype on child's common 
environment. 

h effect of genotype on child's phenotype (square root of 
heritability). 

z ratio of the effects of genotype on adult's phenotype and 
on child's phenotype. 

effect of child's common environment on child's index (a 
measure of adequacy of the index). 

iF effect of father's common environment on father's index. 
iM effect of mother's common environment on mother's index. 

a correlation between individual's genotype and common 
environment = [hz(1 + m) (XF + XM) + s(.fF + 1M + CYXF 
+ cyxM)]/[2 - (JF + 1M + CYXF + CYXM)].· 

• In the absence of maternal effects. XF= XM= 1<, JF =/M= f, and a= [Jw:(1 + m) + s(f+ cyx)]1 [1-
(f+ cyx)]. 

G. G. Rhoads, and A. Kagan, submitted for publication) for the analysis of data 
on nuclear families (pan:nts and their children). The model contains 14 functionally 
independent parameters, defined in Table 1; as indicated at the bottom of the 
table, parameter a. the correlation between an individual's genotype and common 
environment, is functionally dependent on the other parameters. We distinguish 
genetic and environmental effects in children and adults: h2 is the heritability in 
children, whereas it is h2z2 in adults; CZ is the proportion of the phenotypic 
variance due to common environment in children, whereas it is c2y2 in adults. 
Specific maternal effects are included through different effects of parental common 
environments, and phenotypes, on the common environment they provide to their 
children (IF, 1M' XF' X,II). Given phenotypes and environmental indices for both 
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parents and children, nuclear families generate 1 6  correlations in all, distinguishing 
paternal and maternal ones: the two parental phenotypes, two parental indices, 

and child's phenotype and index generate (�) == 1 5  correlations, and in addition 

there is the sibling correlation derived from the children. Methods for calculating 
these 16 correlations are known (41, 102), as well as the expected correlations 
derived from Figure 3 (88). Indices may be created by regressing the phenotype 

on relevant variables that are not themselves products of the genotype. The general 
model in terms of 1 4  parameters is overdeterminate in nuclear families, which 
leaves at least two degrees of freedom for testing the goodness of fit of the model. 

ADOPTED CHILDREN In the basic model P == G + C + R, G and C are not corre­
lated for adopted children, since G comes from the true parents whereas C comes 
from the adoptive parents. Thus the phenotypic variance of such children is less 
than that for true children. Let the phenotypic variance for adopted children be 
u�., so that, from equation 6, u� == u�. + 2oGe• Then, correlations that involve 
adopted children are multiplied by 0 or oz, depending on whether one or both 
the individuals involved are adopted, where 0 == up/op• (94). 

OTHER RELATIONSHIPS Rao et al (95) presented models for a variety of other 
biological and social relationships including twins, half-sibs, foster children, uncle­
niece, and first cousin. These models did not incorporate maternal effects nor 
different indices for children and adults; however, it is easy to introduce both 
these extensions. Data on such relationships can be added to data from nuclear 
families for tests of consistency as well as for increased power. 

ASSORTATIVE MATING As is seen in Figure 3, path analysis easily allows for 
assortative mating. Fisher (39) gave a comprehensive theory for assortative mating, 
which remains obscure to many in spite of several attempts to explain it (1 4, 71, 
1 0 9,1 1 0, l ll ,  1 1 2 ). Wright (1 l 6) gives an elegant treatment of the general theory, 
which is briefly explained here. There are four basic types of assortative mating. 

Type 1: genetic assortative mating The first type postulates that the only cause 
of marital correlation is genetic; related individuals, e.g. first cousins, marry. This 
is the special case of u == s= 0 in Figure 3. This corresponds to inbreeding or 
consanguinity. 

Type 2: environmental assortative mating Under type 2, environmental similarity 
of spouses is the only cause of marital correlation. This is the special case of 
m == s == 0 in Figure 3. This type of assortative mating may be appropriate for 
metabolic traits. 

Type 3: assortative mating based on a common social homogamy According to 
type 3, assortative mating for status, tastes, contacts, and other aspects of group 
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266 ELSTON & RAO 

Figure 4 Path diagram for assortative mating type 3. The subscripts F and M denote 

father and mother, respectively. H is social homogamy, G is genotype, and C is common 

environment. Residual paths are not shown. 

membership leads secondarily to a marital correlation (77, 78). Figure 4 presents 
the marital variables, which include social homogamy (9), which has a path 
coefficient Vm to genotype and Vu to common environment of the mates. This 
generates the following marital correlations: m = correlation between genotypes 
of mates; u = correlation between common environments of mates; and 
vmu = correlation between genotype and spouse's common environment. This 
corresponds to the special case of s = vmu in Figure 3. This type of assortative 
mating is most likely for behavioral traits such as I.Q. and is a special case of a 
model introduced by Wright (116). 

Type 4: phenotypic assortative mating Type 4 assumes that potential mates assort 
on the basis of their phenotypes alone; it is also called direct homogamy. This 
model is perhaps relevant to certain physical traits such as height, but it is unlikely 
that even for such traits assortment takes place only in terms of the phenotype. 
It has been developed in detail by Wright (116) and also by Li (65). When domi­
nance is introduced (116), this case corresponds to Fisher's treatment (39), except 
for the complications due to common environment and the approximation involved 
in treating dominance by path analysis. 

MAXIMUM LIKELIHOOD ANALYSIS Morton (74) and Rao et al (94) have proposed 
that analyses be based on Fisher's z-transformation of the correlation coefficients 
calculated between pairs of observed variables, since this has been shown to ap­
proach normality faster than the correlation coefficient (40). Let Zl' Zz • • •  z", 
be m z-transforms of observed and bias-corrected correlations (see 89, 94). If the 
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covariance between z; and Z:i is denoted by (Iij' and the covariance matrix is denoted 
by L, the log-likelihood of the observed data can be written, assuming multivariate 
normality for all the ;is, as 

InL � -X2/2 + constant, 7. 

where XZ:::: [z - Et::Z)],L-l[Z - Et::z)] and z is a column vector of the observed z 

transforms. The approximation in equation 7 arises from the fact that a power 
of I L I has been incorporated into the constant; empirically it is found that I L I 
hardly changes for different models. The elements of a.z) are expressed as functions 
of the path coefficients, estimated by maximizing InL or, equivalently, minimizing 
X2. To test hypotheses, let X�-«-u> be the minimum value of X2, with m-K-W 
degrees of freedom (df), when K + W parameters are estimated, and let Xfu-« be 
the minimum value, with m-K df when only K of the parameters are estimated­
with the W other parameters fixed at values that correspond to a null hypothesis. 
Then � = Xfu-« - xfu-«-u> is asymptotically distributed as chi square with W df 
under the null hypothesis, and thus it provides the likelihood ratio test of the 
null hypothesis. 

Specification of the covariance matrix L in equation 7 depends on how the 
data are obtained. If zl> z2 • • • Zm are independent (estimated from different 
samples), (Ii) "'" 0 (i"* j), and in this situation it is known that the asymptotic 
properties hold good from even small to moderate sample sizes. For this case, 
the X2 expression of equation 7 simplifies to 

8. 

If some or all correlations are estimated from the same sample, not all the covari­
ances (Iij are zero; in that case � should incorporate the asymptotic correlations 
between correlations (27). The variances are given by { l/(Ilj - 3), if Zj is the transform of an interclass correlation. 

V(Zj) = ati = 
l/(Ilj - 1.5), if z; is the transform of an intraclass correlation. 

When some correlations are estimated from independent samples and some are 
estimated from the same sample, the appropriate log-likelihood may be written 
as a sum of two components given by equations 7 and 8. 

Variance Components 

We now tum to the estimation of the variance components in equation 6. This 
has traditionally been done by equating observed and expected mean squares, 
and we illustrate this method by considering the analysis of twin data. Haseman 
& Elston (47) presented a comprehensive genetic model and theory for the estima­
tion of variance components solely from twin data. Their treatment is reparame­
trized here to conform to the general model in equation 5, which ignores dominance 
and epistasis. For two monozygotic (MZ) twins reared together, the phenotypes 
are written as PI = G1 + C1+ R1, Pz =G1 + C1 + Rz, so that PI and Pz differ 
only with respect to random environments. Similarly, the phenotypes for two 
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dizygotic (DZ) twins are PI = G1 + C1 + RJ, P2 = G2 + q + R2, in which the 
genotypes are different, as the random environments. Table 2 presents the analysis 
of variance table for n MZ and m DZ pairs. The phenotypic variances and covari­
ances are recoverable from the expected mean squares, as indicated at the bottom 
of the table. Not all the four parameters (aa, ab (J�, (]Ge) are estimable solely 
from twin data. Assume aGe = o. The least squares estimates of the three remaining 
parameters are then obtained by minimizing the sum of the four squared differences 
between the mean squares and their expected values, which results in the unbiased 
estimates «ta = AMZ - WMZ - ADZ + WDZ, «te = (WMZ - AMZ + 2 ADZ -
2 WDZ)!2, and an = (ADZ + WDZ + 3 WMZ - AMZ)/4. Haseman & Elston 

(47) also gave a weighted least squares solution and a likelihood analysis, assuming 
the phenotypes of a twin pair follow a bivariate normal distribution. 

Any analysis based on twin data alone is suspect (29). Eaves and his colleagues 
(21-23) have elaborated the biometrical genetical approach for many different 
types of relationships, confining themselves to the weighted least squares method 
of estimating variance components from pairs of relatives. On the other hand, 
Lange et al (63) have developed a method of obtaining maximum likelihood esti­
mates of the variance components and testing hypotheses about them, from pedi­
grees of arbitrary structure. The phenotypes of the members of the pedigree are 
assumed to follow a multivariate normal distribution whose covariance matrix is 
expressed as a function of an additive genetic variance, a dominance variance, 
and an environmental variance. Two advantages of this approach are that the 
variance components are estimable even from one large pedigree, and they adopt 
the most efficient method of analysis through maximum likelihood. If this method 
could be extended to include in the model assortative mating and the environmental 
paths of Figure 1, not only would there be the advantage of utilizing pedigree 
data, but also dominance would be accurately allowed for. It must be pointed 
out, however, that by any method of analysis dominance is largely confounded 

Table 2 Analysis of variance for n pairs of MZ and m pairs of DZ twins· 

Type of Source of Mean 

twins variation df squares 

MZ among pairs n-l AMZ 
within pairs n WMZ 

DZ among pairs m-l ADZ 

within pairs m WDZ 

• V(P) = [E(AMZ) + E( WMZ)I/2 = [E(ADZ) + E( WDZ)]/2. { [E{AMZ) - E{ WMZ)]12 for MZ 
COY (Ph P2)= 

[E{ADZ) -- E{ WDZ)]/2 for DZ 

Expected mean squares 

2a� + 2a� + 4aGc + a� 
a2 R 

3 - a�+ 2ot:+4aGC + a� 2 

!a2 +a2 2 G R 
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with environmental effects unless special relationships, such as MZ twins and 
adopted children, occur in the data. 

4 SEGREGATION ANALYSIS-NUCLEAR FAMILIES 

In the previous section we described models, and corresponding methods of hypoth­
esis testing, for analyzing a quantitative phenotypic trait into genetic and environ­
mental components. Those models, which are essentially based on the correlations 
or covariances between pairs of relations, can analyze the genotype variance into 
additive and other components; however, they do not permit a detailed analysis 
of the mode of inheritance of the phenotype. We use the term genetic analysis 
to indicate that the genetic mechanism is being analyzed, and such an analysis 
becomes more feasible once we utilize in the analysis the complete structure of 
nuclear families or larger pedigrees. The genetic analysis of quantitative traits 
has recently taken a leap forward, largely as a result of two developments in 
methodology: in one (76), the traditional approach of basing tests on the distribution 
of the offspring phenotypes conditional on the parental phenotypes is followed, 
whereas in the other, developed with large pedigree structures in mind (34), tests 
are based on the unconditional likelihood of all the phenotypes. In this section 
we only consider nuclear families, but to answer the genetic counseling question 
and to simplify the extension to larger pedigrees in Section 5, unconditional likeli­
hoods are considered first. 

Let us briefly consider the genetic counseling problem. Once agai!! we wish to 
know the probability that an individual Y is (or will be) affected given that we 
know the affectation status of his relatives Zl' Z2 . . . , in the same nuclear 
family. Let y = 1 represent the event Y is affected, let y = 0 represent the event 
that Y is not affected, and let z represent the affectation status of the relatives. 
Then the probability we want is P (y = 1, z)/ P(z). But note that P(z) = P(y = 
I, z) + P(y = 0, z). Thus if we calculate the probability that all the family members 
have their respective phenotypes, including (a) Yassumed to be affected and (b) 
Y assumed to be unaffected, then the probability we want is the first of these 
two divided by their sum. More generally, we can consider the likelihood that Y 
has any particular phenotype, which may be a probability or a density function. 
We now build up the likelihoods for a nuclear family under some general models, 
for the most part following Elston & Stewart (34), assuming we have a random 
family (of fixed size) from the population. These can be used as just indicated 
for genetic counseling, so long as all the necessary parameters are known, without 
invoking Bayes' theorem as is usually done (79). We then discuss how these likeli­
hoods can be used for hypothesis testing and parameter estimation, and finally 
we take up the problem of nonrandom sampling. Unless otherwise stated we assume 
random mating. 

General Likelihood for a Nuclear Family 

OLIGOGENIC MODEL Denote the phenotypes of the father and mother zf and 
Zm, and those of their n offspring Zj U= 1, 2 . . . n). Let k be the number of 
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different genotypes that affect the phenotype. (If one or more X-linked loci are 
involved, k is dependent on the sex of the individual; for ease of exposition we 
do not explicitly allow for this here.) The genotypes can be arranged in some 
specific order, and so we can talk of the ith genotype, i =  1, 2 . . .  k Let the 
probability density function of z conditional on the ith genotype be gt(z). 

For reasons that become apparent in Section 5, we index the genotypes of the 
two parents So and to, and those of the children sl: each of these indices runs 
from I to k. Let PSOtosl be the probability that a child has genotype S1> given 
that his parents' genotypes are So and to. If only one locus is involved, pSotosl 
must take on one of the values 0, � ,  lh, or 1; if w independent loci are involved� 
it must be the product of w factors each of which is 0, � ,  lh ,  or 1. Given that 
the parents' genotypes are So and to, the likelihood for the jth offspring is 
L�I�IPsOtOSIg.1 (Zj). Now conditional on the genotypes of the parents, the genotypes 

of the offspring are independent of one another. We further assume that, conditional 
on their own respective genotypes, the phenotypes of the offspring are independent 
of one another; then the likelihood for the whole sibship, given that the parents' 
genotypes are So and to, is 

9. 

It is to be understood that the summation over SI in this expression is performed 
separately for each of the offspring, and the sums then are multiplied together. 
From now on we simply write symbols such as � and LSI' since the limits will 
be clear. 

Let 1/Ii b� the probability that a random individual from the population has 
the ith genotype, i.e. Vii, is the frequency of genotype i. Then the likelihood for 
the two parents can be written as 

10. 

where again we assume that, conditional on their respective genotypes, the pheno­
types of the two parents are independent. This is the sum of k2 terms, each term 
corresponding to a particular pair of genotypes So and to for the parents. Multiplying 

each term in this sum by the likelihood for the sibship conditional on So and to 
(expression 9), we arrive at the total likelihood for the whole nuclear family: 

1 1 .  

This expression assumes that, conditional on their genotypes, the phenotypes of 
all the family members are mutually independent. 

POLYGENIC MODEL Assuming a completely additive polygenic model, the likeli­
hood for a nuclear family can be expressed exactly as in expression 11, with the 
following changes. The genotypes are replaced by random variables and summations 
are replaced by integrations; the random variables are taken to be N(O, aa) in 
the population, where aa is the additive genetic variance of the phenotypic trait. 
Denote the random variables for the parents 00 and bo, replacing So and to, so 
that 1/Iso becomes C/>(Oo, aU) and 1/Ito becomes C/>(bo, a�). Similarly denote the random 
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variable for each offspring a1> replacing S1> and then PSOtosl becomes <I>[a1 -
!-2(1lo + bo), !-2 oa]. The likelihood for a nuclear family thus becomes, analogous 

to expression I I, 

i� <f>(ao, Oa)Kao(Zf)i� <f>(bo, oa)gb/z",)IIjr <I>[a1 - �(ao + bo), 
!-2oa1Ka/Zj)da1dbodao, 12. 

in which there is a separate integration over a1 for each of the offspring. 

MIXED MODELS The term mixed model has been used (76) to denote a model 
that incorporates both oligogenic and polygenic effects. The likelihood of a nuclear 
family under such a model, assuming the effects of the oligogenic and polygenic 
loci are additive, is developed quite easily by combining expressions 1 1  and 12 
to obtain: 

where giG (z) is the probability density function of z conditional on "oligogenotype" 

i and "polygenotype" G. i.e. the ith genotype at the oligogenic loci and the value 
G of the random variable that represents polygenic genotype. 

The likelihood expressions 11, 12, and 1 3  all assume that, conditional on their 
genotypes, the phenotypes of all the individuals in the family are mutually independ­
ent. We can allow for non-independence by assuming that Zm, Zf' and Zj, conditional 
on the genotypes of all the family members, follow a multivariate distribution. 
If we allow for too many arbitrary correlations, however, the models will lead 
to no meaningful analysis in practical situations. As a compromise, Morton & 
MacLean (76) have considered a mixed model in which just one extra parameter 
is added, to allow for a common environmental component among all members 
of the same sibship. Let C be a N(D, 02) random variable that takes on the same 
value for each member of a sibship. Then the likelihood under this more general 
model is the same as in expression 13, except that the factor in the second line 
is modified: 

where &la1c (Zj) is the probability density function of Zj conditional on the oligo­
genotype SI' the polygenotype aI' and the common environment C. Suppose 
&la1c(z) = <f>(/l + C- z, o�), where /l depends upon S1 and a1. Now f:"<f>(c' oD 

II <f>(/l + C - Zj, o�)dC is equal to the ordinate of an n-variate multinormal dis­
J�l 
tribution with a variance matrix whose diagonal elements are all 02 + o�, and 
whose off-diagonal elements are all 02. It follows that the likelihood expression 
14 is identical to the one that would be obtained if expression 1 3  were modified 
to allow the joint phenotypic distribution of the children, conditional on their 
genotypes, to be multinormal with this same variance matrix, i.e. in this special 
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case (76) the model allows for a common sibling environmental correlation equal 
to 0V(O� + oj). Thus the parameter o� can meaningfully take on negative values, 
provided it is greater than - oj/2. 

SPECIFICATION OF THE PHENOTYPIC DISTRIBUTIONS When the phenotypic trait 
z is quantitative, it is reasonable to assume that after transformation, if necessary, 
g(z) is a normal distribution. Thus we can put in expression 1 1, gl(z) = cJ>(JJ.i - z, 
ail; in expression 1 2, gG(z) = cJ>( G + 11 - z, aj); in expression 1 3, gdz) = 
cJ>(G+ JJ.i - z, aj); and in expression 14, gtac(z) = cJ>(G + C - z, aj). Thus, the ' 
parameters of g(z) are Ili, the mean of the ith oligogenotype, or the overall mean 
11 for the pure polygenic model, and the environmental variance' aj. Of course it 
is also possible to let the environmental variance oj depend upon genotype, but 
this increases the number of parameters. Similarly there is no theoretical difficulty 
in letting the means and/or variances depend upon other characteristics of the 
individual, e.g. sex, age, parity, or specific environment. 

When z is qualitative, g(z) is a multinomial distribution. In the simplest case, 
a monogenic model of two alleles A and a at an autosomal locus with z a dichotomy 
(0 or 1), g(z) takes on one of six values, dependent on just three penetrance 
parameters. If &a(z) = &A(Z), we say that A is dominant to a, or equivalently, 
that a is recessive to A. If ![Aa (1) = ![AA(1) = 1, where z = 1 indicates having a 
disease, we say the disease is due to a fully penetrant dominant gene; then if 
&la(1) = ° there are no sporadic cases. Conversely, if &la(1) = 1 and 8M 
(1) = &ta(l)  = 0, the disease is due to a fully penetrant recessive gene with no 
sporadic cases. For diseases that have a variable age of onset, models in which 
g(z) is dependent on age have been proposed (35). 

For the purely polygenic model, we can let g(z) be defined by a set of 
risk functions, as described in Section 2. For a dichotomy, we let gG(I) = 
I/>[(G - 8)/0], gG(O) == 1 ,- gG(l); for a trichotomy (96), we let z =  0, 1, 2 and 

gG(2) = I/>[(G - Oz)jo], gG(l) = I/>[(G - (1)/0] - cf>[(G - (2)/0], 
gG(O) = 1 - cf>[( G - (1)/0], 15. 

which is depicted in Figures 1 and 2; the extension to any polychotomy is clear. 
Note that, although in principle both 0 and 0 may depend on z, if the classes of 
z correspond to differences in disease severity it is probably only meaningful to 
let ° do so, since the curves <1>[( G - (1)/01] and <1>[( G - U2)/02], as functions of 
G, cross if 01 ::1= 02' Sex and/or age, however, could well be related to o. 

In the case ofthe mixed model we let ° (and/or 0) depend upon the oligogenotype. 
A simple way of doing this is to define parameters Ili for the oligo genotypes and 
let, for a dichotomy, 

in expression 13, gw(l) = <I>[(G + Ili - 8)/O] 1 
gw(O) = 1 - gw(1), 

in expression 14, gw(l)  = <1>[( G + Ili + C - 8)/0] 
16. 

with the extension to a polychotomy entailing SUbscripting 0, as in equation 15.  
But when z is solely qualitative, this leads to a redundancy in the parametrization: 
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without loss of generality we can assume, for example, "1:,j/J.i == 0 or "1:,z8z == o. Also 
if z is solely qualitative, when replacing g(z) in expressions 12, 13, and 14  by 
the above risk functions we can, as in Section 2, without loss of generality set 
a� == 1. Suppose, however, that z is quantitative for some individuals but qualitative 
for others. For example, in a study of diabetes we may have the quantitative 
result of a glucose tolerance test on some individuals, and on others we may 
only know whether or not they are clinically affected. In this situation we may 
use a normal distribution for g(z) when z is quantitative, and the risk function 
16 when z is qualitative, and then a� should be left in the model as a parameter. 
This is the same as assuming there is a total liability, distributed as a mixture of 
k normal distributions each with variance aa + a2, and an individual is clinically 
affected if and only if his total liability is greater than 8; this liability has variance 
".2 + a2, where 1"2 == a� + a� + "1:,j1/ltJlf- ("1:,t1/lj/J.i)2 and is linearly related to the 
quantitative measures z with correlation T2/Y(T2 + a2)(T2 + a1) (76). 

NONRANDOM MATING As is seen in Section 5, we can allow for consanguinity 
between the parents by considering the nuclear family to be part of a larger pedigree 
structure. Models for assortative mating, on the other hand, have not been well 
developed for the analysis of nuclear families. In the case of oligogenic models, 
assortative mating can be allowed for by making the genotypic frequencies 1/It 

o 
dependent on So in expression 11; the difficulty is how best to do this without 
introducing many more parameters. One possibility, for which some equilibrium 
theory has been developed in the monogenic case (60), is to assume that the 
probability of each of the k2 mating types s X t is given by 1/1. 1/It(1 + a&.t). Other 
models for assortative mating in the monogenic case have also been considered 
(56,98, 1 1 3). In the case of the polygenic models, it should be possible to incorporate 
the results of Section 3, but this has not been done; the model shown in Figure 
3 is the general model that can allow for a wide variety of possibilities. 

Testing Hypotheses and Parameter Estimation 

If we have data on a random sample of nuclear families from some defined popula­
tion, we can use the overall likelihood, i.e. the product of the likelihood for each 
family, to test any specified hypothesis by means of the asymptotic properties of 
the likelihood ratio criterion, analogous to the tests indicated in Section 3. Then, 
when we have found a parsimonious hypothesis that fits the data, the likelihood 
maximized under that hypothesis gives maximum likelihood estimates of all the 
necessary parameters. We do not dwell here on statistical and computational details 
of these procedures, but rather on the more fundamental questions of which likeli­
hood should be used and what are the relevant hypotheses to test. 

CONDITIONAL LIKELIHOODS Although we should naturally wish to start with 
the most general model possible, and hence use the likelihood 14, for practical 
reasons we are currently limited to either oligogenic models (35) or a mixed model 
in which the major gene part is monogenic (76). As indicated previously, however, 
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a choice has to be made between basing tests and parameter estimation on the 
complete likelihoods as developed above, or on the likelihood of the siblings' pheno­
types conditional on the parents' phenotypes. Traditionally tests of genetic hypothe­
ses in the simpler cases have been largely based on this latter distribution, though 
not by means of the likelihood ratio criterion (101). For oligogenic models this 
conditional likelihood for a family is equal to expression 1 1  divided by expression 
10; for the other models it can similarly be obtained by dividing each of the 
likelihoods 12, 1 3, or 14 by the corresponding likelihood for the two parents. 
Morton & MacLean (76) developed this conditional likelihood directly, rather 
than as the ratio of two likelihoods. 

Go et al (43) compared these two likelihoods in a simulation study of monogenic 
models and found that parameter estimation is appreciably more efficient when 
the unconditional likelihood is used. Both likelihoods have been simulated to study 
the robustness of models to detect major genes (43, 68), but the differences found 
between the two studies depend more on the precise hypotheses tested, rather 
than on whether a conditional or an unconditional likelihood was used. 

CHOICE OF HYPOTHESES FOR TESTING It is an unfortunate fact that any sample 
of data from a continuous distribution can be monotonically transformed such 
that it could reasonably have come from a normal distribution. Nevertheless, when 
a set of family data c1e.arly fits a bimodal distribution, one is immediately led to 
think that the bimodality is probably due to an underlying dichotomy, whether 
genetic or environmental. Therefore it is profitable to consider, for oligogenic mod­
els, the different ways of dividing the genotypes into two genetically meaningful 
sets. 

Consider two alleles at an autosomal locus, A and a. There are three genotypic 
dichotomies possibie, corresponding to a phenotypic equivalence of AA and Aa, 
i.e. 8AA(z) = &a (z), a phenotypic equivalence of aa and Aa, or a phenotypic equiva­
lence of AA and aa. The first two of these imply dominance and are hypotheses 
one would naturally test; however, they represent essentially the same genetic 
mechanism in that the difference between them is merely one of relabeling the 
alleles a and A instead of A and a. The third dichotomy is quite different and is 
unlikely to occur except for polymorphic traits that are correlated with Darwinian 
fitness. The fact that there are two distinct genetic mechanisms is summarized 
by saying that in diploid organisms two phenotypes and two alleles at one locus 
lead to two phenograms (12). 

Two phenotypes and two alleles at each of two loci lead to 50 phenograms 
(46), of which five are considered by Defrise-Gussenhoven (19) to be hypotheses 
that deserve special attention. There is little doubt that the rigorous testing of 
two-locus hypotheses under more general models deserves more attention. 

We consider in a little more detail the mixed model of one two-allele locus 
plus a polygenic component, since with it one can attempt to answer what possibly 
is the single most important question that concerns the inheritance of any character: 
is most of the genetic variation due to one locus, or are many gene loci necessarily 

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
en

g.
 1

97
8.

7:
25

3-
28

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

T
ex

as
 -

 M
.D

. A
nd

er
so

n 
C

an
ce

r 
C

en
te

r 
on

 0
6/

11
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



HUMAN GENETICS 275 

involved (34)? Assume gi(Z) ::::: cf>(lli - z, a�), the presence of a sibling environmental 
correlation, and that I/lAA, I/IAa, and I/Iaa depend on a single parameter, q, the 
gene frequency. The model then depends upon seven parameters: q, IlAA' IlAa' 
/laa, a�, aA, and al It follows that the null hypothesis q ::::: 0 and IlAA ::::: IlAa = /laa 
is true only if there is no major gene effect, and rejection of this null hypothesis 
has been used to test for the presence of such a major gene effect (41, 9 1). Under 
this hypothesis, however, the model requires the data to come from a normal 
distribution, and so this test is sensitive to non-normality, and in particular to 
skewness (68). Although this problem can be alleviated by the use of a power 
transformation (67), it can be avoided (33, 43) at the expense of adding three 
extra parameters, transmission probabilities, to the models: TAA A = P (an AA 
individual transmits A to offspring); TAa A = P (an Aa individual transmits A to 
offspring); Taa A = P (an aa individual transmits A to offspring). Functions of 
these three parameters replace PSOtOSl in the likelihoods, as follows: Ps t AA = Ts A 
Ts A, Ps t Aa = Ts A  (l - Tt A) + Tt A  (l - Ts A), and Ps t aa = (l - Tt A)(l - Ts A). 
Then, under the unrestricted model that allows the transmission probabilities to 
be anywhere from 0 to 1, we test the null hypothesis T AA A = 1, T Aa A = lh ,  T aa A = o. 
The advantage of this unrestricted model is that it includes the possibility that 
the transmission probabilities are all equal, T say, corresponding to no genetic 
transmission from parents to offspring. In fact it is recommended to test the null 
hypothesis that the transmission probabilities are equal, though this also implies 
that the offspring are distributed in the proportions T2 AA:2T{1 - T)Aa:{1- T)2 
aa; but this is no restriction if only two distinct phenotypic distributions exist, 
i.e. &!a(z) ::::: &tA(z) or &!a(z) ::::: &za(z). 

Nonrandom Sampling 

In the genetic study of rare diseases it is inefficient to sample families randomly 
from the population; most such families will contain only unaffected individuals, 
yielding no information at all about the kind of genetic segregation that underlies 
the disease. For this reason families are sampled for study, or ascertained, via 
probands, affected individuals who bring the family to the notice of the investigator; 
every family in the sample contains at least one proband. This corresponds to 
sampling from a subset of the original sampling frame (the whole population), 
and so the likelihood needs to be modified accordingly. 

Suppose all the probands are parents. If we base our analyses on the traditional 
likelihood conditional on the parents' phenotypes, no modification is necessary, 
since this likelihood automatically refers to the appropriate subset. But this likeli­
hood does need to be modified when the families are ascertained through the 
offspring: we need the likelihood of the sibship conditional on at least one child 
being a proband. 

Let L(zJ . . . z,.) be the likelihood of the sibship conditional on the parents' 
phenotypes, and let 1r(Zi) be the probability that the ith child is a proband, i.e. 
is ascertained, given that his phenotype is z;. Then, assuming all children are 
independently ascertained, the likelihood we want is 
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L(ZI . . . z,,) P (at least one proband I Zl, Z2 • 
P (at least one proband) 

I - �z • • .  �z L(ZI ' . . z,,) { IIi[ 1  - 1T(zt)] I ' 1 n 

. z,,) 

17. 

with the summations replaced by integrations if z is qualitative. This is the tradi­
tional way of allowing for ascertainment via probands (73) and assumes that (a) 
the likelihood used is conditional on the parental phenotypes and (b) the values 
of 1T(zt) are known. If the values of 1T(zt) are unknown, but are functions of one 
or more parameters that need to be jointly estimated along with the other parame­
ters of the model, then the appropriate likelihood would be the joint likelihood 
of the sibship phenotypes and the probana status of each child, conditional on 
the parents' phenotypes and on at least one child being a proband. The effect of 
this difference is to replace I - IIi[1 - 1T(zt)] in the numerator of equation 17 by 
IIi[1T(zt)] bill - 1T(zt)]l-bi, where bi = I if the ith individual is a proband, 0 
otherwise. This is the approach taken by Elston & Yelverton (26, 35), except 
that they do not condition the likelihood on the parents' phenotypes. 

The interpretation of 1T requires caution (106). Historically, the special case 
where every affected child has the same probability 1T of being a proband, especially 
as 1T -+ 0 and 1T = 1 ,  has received much attention: 1T -+ 0 corresponds to the case 
where the probability that a family is ascertained is proportional to the number 
of affected children in the family; 1T = 1 corresponds to the case where the sample 
consists of every family in the population with at least one affected child, or a 
random sample of such families. Thus, for the likelihood 17 to be relevant, it is 
not necessary for 1T to be the probability that an affected individual brings his 
family into the sample for study; 1T is the probability that an affected individual 
brings his family into the (possibly conceptual) sampling frame from which a 
random sample of families is drawn for study. 

The case where the unconditional likelihood is used, and either parents or off­
spring can be probands, can be considered as a special case of the general pedigree 
li�elihood to which we now tum. 

5 SEGREGATION ANALYSIS-PEDIGREES 

If many nuclear families are pooled together for analysis, genetic heterogeneity 
from family to family may obscure the mode of inheritance. For this reason the 
study of single large pedigrees, which are more likely to be homogeneous, has 
for a long time been used by geneticists for detecting simple Mendelian diseases. 
It is only recently, however, that the rigor and generality of segregation analysis, 
as developed for nuclear families, has been introduced for pedigrees. This has 
come about from the development of a general method of expressing the likelihood 
of a pedigree (34), which can then be used for counseling and analysis in the 
same manner as described in Section 4. In this situation there is nothing comparable 
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to the likelihood conditional on the parental phenotypes, since a large pedigree 
can contain individuals who are at the same time parents and offspring of other 
individuals in the pedigree. Therefore all tests should be based on unconditional 
likelihoods, though with modifications if necessary for nonrandom sampling. We 
limit our discussion in this section to construction of the likelihood and considera­
tions of sampling. 

Likelihood for a Random Set of Pedigrees 

We shall now develop the general likelihood, under an oligogenic model, of any 
number of simple pedigrees, each of which contains no loops and starts with a 
single pair of original parents. In such pedigrees there are two types of individuals, 
and it is convenient to denote their phenotypes by two different letters. Persons 
related to someone in a previous generation have their phenotypes denoted x, 
and unrelated persons "marrying into" the pedigree have their phenotypes denoted 
y. In the case of the original parents of the pedigree, we arbitrarily use x for 
one of them and y for the other. 

We use subscripts on subscripts to denote the generation, starting with 0 for 
the original generation. Let the phenotypes of the original parents of the iQth 
pedigree be Xio and Yio; let the phenotype of their i1th child be Xioil ' and let his 
or her spouse's phenotype be YiOil; similarly let the phenotype of the izth child 
of this i1th child be Xioili2, and that of his or her spouse be Yioili2, and so on 
(Figure 5). 

Now let us rewrite expression 1 1 , for the ioth set of parents, by using this 
new notation. The result is 

18. 

and if this is producted over io the result is the likelihood of a set of nuclear 
families. Suppose now the offspring all have spouses; the likelihood of the set of 
nuclear families, together with the spouses of the children, is then 

IIioLsol/Isogso (xio)Lto I/Itogto (Yio) IIi, "J:.SlPsotoSl&l (Xioil) Lt,l/lt, gtl (yioil)' 19. 

If we now define the operator 

rj = IIij'£SjPSj_ltj_,SJgs/Xioi, . . .  ij)'£tjl/lt/!,t/Yioi1 . • •  i), 
where PSi-lti_lSi = I/Iso when j= 0, then expression 19 is identical to ro(rd; and 
the likelihood for a set of simple pedigrees of any number of generations can be 
simply written as the sequence of operations r o(r 1 (f z(r 3' . . . » ). 

In the same manner, we can define rj for the polygenic model (see expression 
12) as 

IIiia/p[aj - lh(aj-l + bi-1),lhabJga}Xioil '  . . ij)f b/f>(bj,ab)gb}Yij i2 . . .  i), 20. 

where the symbol fa indicates integration of everything following it with respect 
to a from minus infinity to plus infinity. The likelihood under the polygenic model 
is then also given by the sequence of operations rj, except that now, when j = 0, 
I/>[aj - lh(aj-l + bj-1), lh a�] is rephiced by I/>(aa, a�). 
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Figure 5 Illustration of the notation for the phenotypes of the members of a pedigree: 
this is the third pedigree (10 = 3) in a set of pedigrees. 

Just as expressions 1 1  and 1 2  are combined to give the mixed model likelihood 
for nuclear families, so can expressions 19  and 20 be combined to give the rj 
appropriate for the mixed model likelihood for pedigrees; and the modification 
in expression 14 to allow for a common environmental correlation can be similarly 
incorporated. 

EXTENSIONS FOR
· 

PEDIGREES OF ARBITRARY STRUCTURE The likelihoods just 
developed can be easily extended to allow for twins and half-sibships (35). To 
allow for an arbitrary pedigree structure, however, it is simplest to define an algo­
rithm by which the likelihood can be calculated; this has been done for the oligo­
genic model by Lange & Elston (61). Although the approach is different, the 
model that Lange et al (63) have used to estimate variance components from 
pedigrees is a generalization of the polygenic model, for arbitrary pedigrees, when 
the phenotype is normally distributed. Algorithms for the likelihood under other 
models, for completely arbitrary pedigrees, remain to be determined. 

It should be noted that in all the likelihoods considered here and in Section 
4, we can allow for missing phenotypes by setting g(z) = 1 if no value is available 
for individmil Z It follows that if we have a nuclear family in which we know 
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Figure 6 Pedigree containing a loop, in this case involving a mating between first cousins 
indicated by the double line. 

the parents are related, this can be considered a special case of a larger pedigree. 
If the parents are first cousins, for example, the nuclear family can be considered 
a four-generation pedigree with a loop, but one in which no information is available 

on members of the first two generations (Figure 6). Hence consanguineous matings 
can be allowed for by including the necessary pedigree structure. 

Nonrandom Sampling of Pedigrees 

As indicated at the beginning of this section, there are advantages to the study 
of individual large pedigrees. If we have a single pedigree with m members, we 
can look upon the data as a sample of size one from an m-variate population; 
however, because under our model the m X m variance matrix is structured, depend­
ing on relatively few parameters, if m is large enough the asymptotic properties 
of the likelihood ratio criterion can still be used for testing hypotheses (33). 

If the pedigree is ascertained via a single proband, the ascertainment probability 
1T cannot be simultaneously estimated. One could base the analysis on the likelihood 
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280 ELSTON & RAO 

ofthe pedigree conditional on the proband's phenotype, but this is hardly necessary. 
Little bias will result if the pedigree is analyzed as a random pedigree, provided 

caution is used in interpreting the results. Thus, if a monogenic model is found 

to fit in a pedigree ascertained via a proband with a rare disorder, in a large 
enough pedigree the only biases will be in the estimates of the gene frequencies 
and other functions dependent on them; this has been demonstrated in the analysis 

of a 195-member pedigree ascertained via as many as four probands (33). 
If pedigrees are pooled for analysis, with each pedigree containing at least one 

proband, we can (and unless the pedigrees are very large we should) estimate 
the ascertainment function. The solution to this problem given by Elston (26) is 
as follows. As before, let 1T (Zl) be the probability that an individual with phenotype 

Zj is a proband, and let hi = I if this individual is a proband, 0 otherwise. Suppose 
there are n individuals in the pedigree, with likelihood L(z/, . . . z,,) appropriate 

for a random pedigree from the population. With this definition, and assuming 
all the ascertainments are independent, the joint likelihood is given by equation 

17. This treatment, however, should be refined whenever possible to take account 
of the particular sampling scheme used to collect the data. 

TWO-STAGE ASCERTAINMENT SO far, we have assumed that a pedigree is included 

in the sampling frame if and only if it contains at least one proband. Frequently, 
however, a pedigree is analyzed because a trait appears to be familial in that 
pedigree. Here again, provided the pedigree is large enough, a genetic analysis 
that ignores that fact can still be meaningful, if carefully interpreted. For small 
pedigrees, however, it is essential to follow a precise sampling scheme and to 

allow for that method of sampling in the analysis (7). One possibility is to use a 
second stage of ascertainment, based on a definite criterion, to subsample from 

the sampling frame obtained after the initial ascertainment. Expressions for appro­

priate likelihoods in such cases have been derived (4). 

6 LINKAGE ANALYSIS 

The ultimate goal of all genetic analysis, whether statistical or biochemical, is to 
identify individual genes and what they do. In the absence of biochemical methods, 
we can go no further than the identification of individual genes and their positioning 
on the chromosomes. flJthough it is quite possible in certain situations for environ­
mental causes to simulate segregation, it is difficult to conceive of environmental 
factors that simulate genetic linkage between two phenotypes�specially when 
one of the phenotypes is known to be monogenic; thus linkage analysis may provide 
the ultimate statistical proof of a gene's existence. In this section we briefly review 
the classical problem of linkage between two loci and the building of linkage 
maps. 

Linkage Between Two Monogenic Phenotypes 

As indicated in Section 2, linkage is the phenomenon whereby two genes at different 
loci on the same chromosome tend to be transmitted together, rather than independ-
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HUMAN GENETICS 281 

endy. Thus the appropriate model is an oligogenic one with transmission probabili­
ties that depend upon an individual's genotype at two loci. Consider two loci on 
the same pair of autosomal chromosomes, locus A with alleles Ai and locus B 
with alleles Bj (i, j =  1, 2, . . .  ). The possible pairs of genes, one from each locus, 
are thus AilJ.j; these gametes, one from each parent, pair to form the genotypes 
of the offspring. Denote the genotype of an individual who received the gamete 
AiEj from one parent, and the gamete AkEJ from the other, AiEjl AkBj; and let 
TA B ./A,/J J A B  be the probability that an individual with this genotype transmits 
th� Jgamete 'A:Bn to his offspring. Then for two linked loci, each segregating in 
a Mendelian manner, the transmission probabilities are 

where (), the recombination fraction, is the probability of an odd number of cross­
over events between the two loci at the time the gametes are formed (1). These 
transmission probabilities are multiplied together, one for each parent, and summed 
as necessary to obtain the elements Ps .-1 t .-1S .  appropriate for the oligogenic model 
likelihoods developed in Section 3. in gen�ral, () is dependent upon the sex of 
the individual with genotype AiBjI AkBJ in equation 21 ;  it can also be made depend­
ent on the age (32) or any other characteristic of that individual. 

As noted by Elston & Stewart (34), if this oligogenic model is used together 
with univariate phenotypic distributions g(z), expressions 1 1  and 19 are relevant 
for a single trait genetically determined by the action of genes at two linked loci. 
The more usual linkage problem, however, entails two linked loci, each of which 
determines independent traits. In this situation the phenotypic distributions are 
bivariate, but can be expressed as the product of two univariate distributions, 
each dependent on the genotype at one locus only. It is usually also possible to 
express each probability I/J as the product of two probabilities, again with each 
dependent on the genotype at one locus only; if this is not so, linkage disequilibrium 
occurs. Ott (82) has illustrated the calculation of a pedigree likelihood in detail 
for the usual linkage problem. Although other methods have been proposed (97), 
the use of likelihood methods for the detection and estimation of linkage between 
two known monogenic phenotypes has a long history (45, 72) and is now generally 
accepted. It should be noted that it is not necessary for the phenotypic distributions 
to be qualitative for linkage analysis (62, 84). 

Robust Methods of Detecting Linkage 

Brief mention is made of several methods that share a certain degree of robustness 
and are useful for testing for linkage between two traits when the genetic mechanism 
that underlies one of the traits is unknown. All these methods capitalize upon 
the fact that linkage between two traits leads to an intrafamilial, and especially 
intrasibship, correlation between the two traits. 

In Penrose's sib-pair method for two dichotomous traits (86), each sib-pair is 
classified into a 2 X 2 table according as to whether it is concordant or discordant 
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for each of the two traits. If there is linkage we expect an excess of the pairs to 
be concordant or discordant for both traits, and a dearth of pairs concordant 
for just one trait. Penrose (87) also developed a test for the case where one trait 
is quantitative, but it appears to be erroneous (2). 

Haseman & Elston (48) also developed a model for a quantitative trait linked 
to a known monogenic marker, with the possibility of utilizing parental information 
on the marker. Essentially, the test consists of testing for a correlation between 
the proportion of genes sib-pairs have i.b.d. at the marker locus and the absolute 
difference (or the square of the difference) between the sib-pairs' values for the 
quantitative trait. If there is linkage this correlation is expected to be negative; 
if no linkage exists it is expected to be zero. The extension of this model to sibships 
of size three, and the power of both tests, have been investigated; the evidence 
so far would suggest that it is valid to apply the sib-pair test to sibships of arbitrary 
size m, assuming the m(m - 1)/2 sib pairs to which it gives rise are independent 
(2). This shows that a great increase in power is to be expected from this type 
of analysis with increased sibship size. An alternative approach to the same problem 
has been developed by Hill (50), and a nonparametric method of detecting linkage 
with data on up to three generations has been developed by Smith (103). 

It is clear that these tests will have little power to detect linkage if the locus 
that controls the quantitative trait contributes little to the variance of the trait 
in the sample. Since it is a general principle that selecting the sample on the 
basis of one trait alone cannot invalidate a linkage analysis, selection of an appropri­
ate sample is to be encouraged. Thus Elston et al (30) used the Haseman-Elston 
test on dizygotic twin pairs in which at least one twin was affected with a rare 
disease. By giving affected individuals a phenotypic value of unity, and unaffected 
individuals a value of zero, the Haseman-Elston test reduces to testing whether 
or not the proportion of genes a twin pair have Lb.d. at the marker locus is the 
same for concordant as for discordant pairs. If there is linkage the proportion is 
expected to be less than a half for discordant pairs, and greater than a half for 
concordant pairs. 

Chromosome Mapping 

Once linkage is detected between several pairs of loci, the next problem is to 
construct a map that specifies the locations of these loci. Such a map, inferred 
from recombination frequencies between the pairs of loci, is called a genetic map. 
The distance between two loci on the genetic map is the map distance (d), defined 
as the mean number of crossover events between them. Map distances have the 
property of additivity whereas recombination fractions do not; therefore we need 
a mapping function that specifies the relationship between d and (). Different as­
sumptions give rise to different mapping functions, but the criterion for judging 
which is, better must depend on which fits the data better. Most mapping functions 
proposed so far differ in the extent to which they allow for interference, Le. the 
extent to which a crossover event tends to suppress the occurrence of other crossover 
events in its vicinity (1). Rao et al (93) have introduced the general mapping 
function 
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d= [p(2p - I)(l - 4p)ln(l - 28) + 1 6p(P - I)(2p - l )  tan-128 
+ 2p(1 - p)(8p + 2) tanh-128 + 6(1 - p)(1 - 2p)(1 - 4p)8]/6, 22. 

which involves one unknown parameter p, estimable under certain assumptions; 
p = 1 yields Haldane's function (44), p = � yields Kosambi's (57), p = � yields 
that of Carter & Falconer (9), and p = 0 corresponds to complete interference 
(d = 8). From the overall data on male meiosis, p was estimated as fi = 0.35 1 
with an approximate standard error of 0.007 (93). Assuming positive interference 
within a chromosome arm, one obligatory crossover event, and no interference 
across the centromere, Sturt (107) proposed the mapping function 

61 = � { l - (1 - d/L)exp[- d(2L - 1)/ L] j ,  23. 

where L is the total genetic length of the chromosome arm; this tends to Haldane's 
function (44) for large L. The underlying assumption that there is no interference 
across the centromere is doubtful (59), as is also the supposition of an obligatory 
crossover per chromosome arm. Also, although Carter & Falconer (9) have argued 
that the interference in Kosambi's function (57) is much too low, equation 23 
yields even less interference. 

For a given set of families with recombination data on a pair of loci, the joint 
likelihood function L(8) is traditionally converted into the lod score (72), 
z(8) = log[L(O)/L(!-2)] = log{ L[6I(d)]/L(!-2) } ,  displaying d as a parameter that 
can be estimated by maximizing z. The problem of mapping n loci whose map 
locations (unknown) are WI, W2 • • •  Wn can be solved as follows (75). Choose a 
set of starting values for WI • • . Wn and then for every observed pair of loci, 
convert the map distance d = IWi - lIjj into () by using an appropriate mapping 
function and calculate the lod score for this value of (). Let the total of all such 
lod scores, summed over all observed pairs of the n loci, be z(wi . . . wn); similarly, 
a small increment (A) in Wi would give rise to z( WI . • . Wi + A . . . wn). Thus 
by maximizing the total lod score over all pairs of loci, we obtain the maximum 
likelihood estimates of the n map locations relative to each other. Morton (75) 
also indicates a treatment when 61 is dependent on sex. 

7 CONCLUSION 

At the outset of this review, basic genetic models have been described that can 
be used for deriving probabilities relevant for genetic counseling, for those situations 
in which the genetic mechanism that underlies a phenotypic trait is known. This 
has been followed by more general models, under which specific environmental 
and genetic hypotheses can be tested and relevant parameters can be estimated. 
We have concentrated on the model and on deriving the appropriate likelihood 
in each situation, since likelihood theory provides a firm basis, albeit asymptotic, 
for testing hypotheses and estimation. 

We have for the most part avoided discussing algorithms and computational 
methods, whether for calculating the probabilities relevant for genetic counseling 
or for maximizing likelihoods over sets of parameters. This has been an active 
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area of research (e.g. 3, 6, 8, 49, 55, 83, 104, 108) and will undoubtedly continue 
to be so in the future. For example, we need an efficient algorithm for calculating 
the likelihood of a large pedigree under the mixed model, and we need an efficient 
method of applying to pedigrees the models that have been developed for path 
analysis, discussed in Section 3. 

Further research into the power and robustness of the various models, when 
used for the genetic analysis of data, is necessary. We also need to know more 
about how pedigree structure affects power; although sampling theory is a well­
developed discipline, very little rigorous research has gone into determining the 
best way to sample pedigrees for the different kinds of genetic analysis. 

At present the art of modeling and the theory of statistical analysis in human 
genetics are, as they should be, in advance of our computational capabilities. We 
can speculate that the development of new models and methods of analysis for 
multivariate traits will further help in the detection and identification of individual 
genes (1 1Oa). The most useful advances, however, can be expected to arise as a 
result of deficiencies noted in the application of current models in the analysis 
of bodies of real data, rather than as a result of model building divorced from 
data analysis. 
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