
2012; doi: 10.1101/pdb.top068163Cold Spring Harb Protoc 
 
Cathryn M. Lewis and Jo Knight
 
Introduction to Genetic Association Studies

Service
Email Alerting  click here.Receive free email alerts when new articles cite this article - 

Categories
Subject Cold Spring Harbor Protocols.Browse articles on similar topics from 

 (10 articles)Genome Wide Association Studies (GWAS)
 (97 articles)Genome Analysis

 (130 articles)Bioinformatics/Genomics, general

http://cshprotocols.cshlp.org/subscriptions 
go to: Cold Spring Harbor Protocols To subscribe to 

© 2012 Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on June 6, 2012 - Published by http://cshprotocols.cshlp.org/Downloaded from 

http://cshprotocols.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/pdb.top068163&return_type=article&return_url=http://cshprotocols.cshlp.org/content/10.1101/pdb.top068163.full.pdf
http://cshprotocols.cshlp.org/cgi/collection/bioinformatics_genomics_general
http://cshprotocols.cshlp.org/cgi/collection/genome_analysis
http://cshprotocols.cshlp.org/cgi/collection/genome_wide_association_studies
http://cshprotocols.cshlp.org/
http://www.cshlpress.com


Topic Introduction

Introduction to Genetic Association Studies

Cathryn M. Lewis and Jo Knight

Genetic association studies are used to find candidate genes or genome regions that contribute to a
specific disease by testing for a correlation between disease status and genetic variation. This article
provides a broad outline of the design and analysis of such studies, focusing on case–control studies
in candidate genes or regions.

INTRODUCTION

Genetic association studies test for a correlation between disease status and genetic variation to identify
candidate genes or genome regions that contribute to a specific disease. A higher frequency of a single-
nucleotide polymorphism (SNP) allele or genotype in a series of individuals affected with a disease can
be interpreted as meaning that the tested variant increases the risk of a specific disease (although
several other interpretations are also valid; see the following sections). SNPs are the most widely
tested markers in association studies (and this term will be used throughout), but microsatellite
markers, insertion/deletions, variable-number tandem repeats (VNTRs), and copy-number variants
(CNVs) are also used.

Association studies are a major tool for identifying genes conferring susceptibility to complex
disorders. These traits and diseases are termed “complex” because both genetic and environmental
factors contribute to the susceptibility risk. Extensive experience in genetic studies for many complex
disorders (such as diabetes, heart disease, autoimmune diseases, and psychiatric traits) confirms that
many different genetic variants control disease risk, with each variant having only a subtle effect.

Associations with polymorphisms in candidate genes have been confirmed in many different dis-
eases (Lohmueller et al. 2003), and genome-wide association studies (GWAS) are identifying many
novel associations in genes that had not been strong a priori candidates for the disease under test
(Wellcome Trust Case Control Consortium 2007). However, the modest increase in risk implies
that large well-designed and analyzed studies are required to detect and confirm signals for association.

This article outlines the design and analysis of genetic association studies, but it focuses specifically
on case–control studies in candidate genes or regions. Even in this era of genome-wide studies, case–
control studies still form the majority of published reports. We illustrate the importance of quality
control in performing these studies, describe basic analytical strategies for a SNP, and point the
reader toward methods for analyzing haplotypes or multiple markers. We also highlight some of
the pitfalls of performing powerful, accurate association studies and discuss how these challenges
are reflected in the contradictory literature for many disease–gene investigations. In addition to
GWAS, other approaches to genetic association studies include family-based association studies and
quantitative trait locus studies; these approaches are not addressed in any detail here.

Adapted from Genetics of Complex Human Diseases (ed. Al-Chalabi and Almasy). CSHL Press, Cold Spring Harbor, NY, USA, 2009.
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INTERPRETING SIGNIFICANT GENETIC ASSOCIATION

Significant genetic association may be interpreted as either (1) direct association, in which the geno-
typed SNP is the true causal variant conferring disease susceptibility; (2) indirect association, in which
a SNP in linkage disequilibrium (LD) with the true causal variant is genotyped; or (3) a false-positive
result, in which there is either chance or systematic confounding, such as population stratification.

Distinguishing between direct and indirect association is challenging and may require resequen-
cing of the candidate region, dense genotyping of all available SNPs, or functional studies to confirm
the role of a putative mutation in disease.

FINDING DIRECT ASSOCIATION

Case–Control Study

The simplest study design used to test for association is the case–control study, in which a series of
cases affected with the disease of interest are collected together with a series of control individuals.
The specific choice of phenotype for the cases may define the exact hypothesis to be tested, and apply-
ing strict clinical criteria for ascertainment is necessary to ensure a homogeneous set of cases. Two
standard methods are used for collecting controls: the use of either a series of individuals who have
been screened as negative for presence of the disease or of controls randomly ascertained from the
population, whose disease status is unknown. Both control sets form a valid test for association,
and they will have similar power for a rare disease. For a more common disease, a study with screened
unaffected controls (often termed “supernormal” controls) will have higher power to detect associ-
ation compared with a study using population-based controls, and the increase in power is notable
for diseases with high prevalence. For some diseases, screening controls for the presence or absence
of the disease may be difficult, and using a larger sample of unscreened controls may be more efficient.

Statistical Analysis of Case–Control Study

The genotypes of a single, biallelic SNP on a set of cases and controls can be summarized in a 2 × 3
contingency table of the genotype counts for each group, as shown in Figure 1. For a SNP with
alleles G and T, we tabulate the number of cases and controls with each genotype GG, GT, and
TT. Several different statistical analysis methods can be applied to this table. We will focus here on
goodness-of-fit tests, rather than likelihood-based or regression methods. Pearson’s chi-square test
is used to assess departure from the null hypothesis that case and controls have the same the distri-
bution of genotype counts. This test statistic has a chi-square distribution with two degrees of
freedom on this 2 × 3 table.

This approach provides a valid statistical analysis of the data presented, but uses no genetic infor-
mation. We have illustrated the data on a table with genotypes ordered as GG, GT, TT, with the
inherent supposition that disease risk may increase (or decrease) as the number of T alleles increases.
However, column order is not used in the test statistic, and reordering the table as GG, TT, GT gives
the same value of the test statistic and p value. Other analysis methods that correspond to the under-
lying genetic models we expect to be acting in complex diseases may be preferred. First, the table may
be decomposed from genotypes into alleles, with cell counts of the number of G alleles, and the
number of T alleles carried by cases and controls (regardless of the genotype combination in which
these alleles were carried) (Fig. 1A, upper left). This test is valid under the null hypothesis of no associ-
ation, or when the true model of association is multiplicative (or log additive), so the genotype relative
risks for GG, GT, and TT genotypes can be modelled as 1, r, and r2, with relative risk increasing by a
factor r for each T allele carried (Sasieni 1997). An alternative test for this model is the Cochran–Armi-
tage test for trend (CATT) (Fig. 1A, upper right), which, as its name implies, tests for a trend in differ-
ences in cases and controls across the ordered genotypes in the table. This test is asymptotically
equivalent to the allele test described previously, although it is more robust to departures from
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Hardy–Weinberg equilibrium (HWE) (see the following) (Sasieni 1997). Further tests can be used to
test specific genetic hypotheses—for example, that the SNP alleles increase disease risk under a domi-
nant or a recessive model (Fig. 1A, bottom). Assuming T is a high-risk allele, these tests compare GG
genotypes to CT + TT genotypes (dominant model), or CC + CT to TT genotypes (recessive model).

Although the tests described previously are all valid methods for analysis of an association study,
any such study should have a prespecified analysis plan because applying all tests will increase the
probability of a false-positive result. Candidate gene association studies most commonly test for a
difference in allele frequency. The allele frequencies in cases and controls provide useful, direct
summary statistics for the data. The CATT has become popular in GWAS (e.g., O’Donovan et al.
2008). Other test statistics, such as analyzing under a dominant or recessive model, may also be
applied to ensure that interesting findings are not missed because of the specific analysis method
used. These tests are rarely a primary analysis tool for complex genetic disorders, but may be used
as secondary analyses to explore the potential mode of inheritance of an associated SNP, or to test
a prespecified hypothesis. When several analysis methods are used, a correction for multiple testing
should be applied. This is not straightforward owing to the correlation between test statistics, and
simulation studies may be required.

Example of a Statistical Analysis

PTPN22 is associated with several autoimmune phenotypes, with the strongest association seen at
R602W. Table 1 shows the genotypes at this variant (SNP rs2476601, C1858T) in a study of

FIGURE 1. Analysis methods for single SNP associ-
ation studies, testing under the assumption of
specific genetic models for (A) arbitrary genotype
counts and (B) the rheumatoid arthritis case–
control study in Table 1.
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London rheumatoid arthritis (RA) cases and randomly ascertained controls (Steer et al. 2005).
Genotypes for both cases and controls were in HWE, with p values of 0.060 and 0.267, respectively.
The genotype counts show that cases have a higher frequency of both CT and TT genotypes compared
with controls. In RA cases, the frequency of allele T (15.9%) is higher than in controls (8.4%). Ana-
lyzing the allele counts contingency table shows strong evidence for association at this SNP (p =
0.00003) (Fig. 1B). Significant evidence for association is also found using the CATT (p = 0.00004)
(Fig. 1B).

A summary measure of the effect of this SNP on risk for RA can be obtained through calculating
odds ratios (ORs). These can be calculated separately for CT and TT genotypes by comparing each to
the baseline CC genotype, which is most common in the population. For the CT genotype, the OR is
the odds of the CT genotype compared with the CC genotype in cases, divided by the same quantity in
controls: (72/218) / (61/312) = 1.69. Confidence intervals on the OR can be calculated using theWoolf
method: the standard error of ln(OR) is approximately

����������������
1

a
+ 1

b
+ 1

c
+ 1

d

√
,

in which a, b, c, and d are the entries in the relevant genotype subtable. The OR, or genotype relative
risk, for CT and TT genotypes compared with CC genotypes confirm that both these genotypes have
an elevated risk of RA (because neither confidence interval contains 1), although the confidence inter-
val for TT genotypes is very wide because only a single TT control individual is observed (Table 1).
Examination of ORs (1.69 and 17.2) suggests that a gene dosage model is acting, with much higher
risk in mutation homozygotes (TT) than the heterozygotes (CT). The increase in risk from CT to
TT is higher than would be expected under a multiplicative model, in which estimates from the
allele count table give an OR of 2.06 for each T allele carried, implying an approximately fourfold
increase risk for TT individuals. However, for an association of this strength, analyzing the genotype
counts assuming a multiplicative model still results in highly significant evidence of association.

Using Quantitative Measures

Some complex phenotypes, such as high blood pressure, height, and obesity, are better characterized
by quantitative rather than qualitative measures. Several options are available for the analysis of such
data. The quantitativemeasure can be tested for association in a linear regression framework, assessing
whether the genotypes (as an explanatory variable) predict trait value. Similar to the analysis options
described in case–control studies previously discussed, genotypes may be coded as a three-level factor,
or as a count of T alleles carried (0, 1, 2), or as a dominant or recessive model. Quantitative measures
may be analyzed in a case–control framework by dichotomizing the sample. However, this method
may result in a loss of power because all information on the distance of an individual’s observed
phenotype from the dichotomizing threshold is lost. The power of a quantitative trait association
study may be increased by ascertaining individuals only from the extremes of the distribution
(Slatkin 1999).

TABLE 1. PTPN22 C1858T genotypes for rheumatoid arthritis (RA) case–control study

Cohort No. of individuals

Genotypes

Frequency of allele TCC CT TT

RA cases 302 218 (72.2%) 72 (23.8%) 12 (4.0%) 15.9%
Controls 374 312 (83.4%) 61 (16.3%) 1 (0.3%) 8.4%
OR (95% CI) 1 1.69 (1.15–2.48) 17.17 (2.22–133.06)

Data from Steer et al. (2005).
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FINDING INDIRECT ASSOCIATION

Linkage Disequilibrium

LD measures the correlation between SNP alleles at sites in the same region of the genome. Depen-
dence between SNPs arises because any novel SNP (e.g., a change from base pair C → A at a genomic
site) occurs on a background of fixed alleles at other SNPs in the region. For example, for five flanking
SNPs in each direction, the existing chromosomal haplotype may have been ACTCG-C-GGATC,
which becomes ACTCG-A-GGATC. The A allele at this SNP is fully correlatedwith theseflanking hap-
lotypes, so that initially all copies of allele Ahave alleleG at the neighboring SNP.As this chromosome is
transmitted through the generations, the length of this haplotype is diminished by recombination, and
different copies of the original A allele will have different recombination patterns, and be flanked by
different lengths of DNA from the original chromosome. Figure 2 illustrates this process, in which a
disease mutation D occurs in meiosis from generation 1 to generation 2, on a specific background
chromosome. Thismutation (if it is not lost to the population throughnontransmission) is transmitted
through the generations, with recombinations reducing the length of the original ancestral chromo-
some. However, all copies of this mutation D arising from the same mutation event will harbor
some portion of the ancestral chromosome, with the length of retained chromosome depending on
the pattern of recombination events through the generations.

LD is an important phenomenon in association testing because it induces correlation in short
regions of the genome. In Figure 2, mutation D occurs close to a polymorphic marker bearing the
M allele. In the current generation, most chromosomes carrying mutation D also carry allele
M. Thus, we have two opportunities to detect association with the disease, by genotyping either M
or D. Genotyping the true disease mutation D (direct association) should have higher power to
detect association, but where M and D are in strong LD, and sample sizes are adequate, significant
association should be detectable by genotyping M (indirect association).

Intuitively, LD measures the correlation between SNP alleles. Given a chromosome with a specific
SNP allele, how does this influence the probability distribution of alleles carried at other SNPs within
the same genetic region? Many different statistical measures to quantify LD between two SNPs have
been proposed (Devlin and Risch 1995), with D′ and r2 being most widely used. The International
HapMap Project is a valuable resource for study design, allowing researchers to investigate LD in a
region and to select an informative subset of available SNPs to be genotyped in an association
study (http://www.hapmap.org).

Analysis of Multiple Markers and Haplotypes

Although high-throughput genotyping has increased the number of SNPs it is feasible to genotype,
studies still consider only a subset of available SNPs and test for indirect association using such a
subset. In such circumstances, statistical analysis of individual SNPs (as described previously) may
not be the most effective strategy and may lack the ability to detect association at an ungenotyped

FIGURE 2. Association with disease through direct
association (D) and indirect association (M). Disease
susceptibility mutation D arises on an ancestral chromo-
some (white) close to a SNP marker, M. The ancestral
chromosome flanking D is lost through recombination
through the generations. Observing chromosomes in
the current generations shows that all copies of D
carry some region of the ancestral (white) chromosome
and many of these will also carry the marker allele M.

Cite this article as Cold Spring Harbor Protoc; 2012; doi:10.1101/pdb.top068163 301

Genetic Association Studies

 Cold Spring Harbor Laboratory Press on June 6, 2012 - Published by http://cshprotocols.cshlp.org/Downloaded from 

http://www.hapmap.org
http://www.hapmap.org
http://cshprotocols.cshlp.org/
http://www.cshlpress.com


SNP. The pattern of alleles at multiple markers is usually better able to predict the allele at an untyped
locus; hence, simultaneous analysis of multiple markers can improve the power of association studies
(de Bakker et al. 2005).

Perhaps themost obviousmethod for analyzingmultiple markers simultaneously is multiple logis-
tic regression. Logistic regression is an adaptation of linear regression in which a logit transformation is
used to allow for analysis of a binary outcome (i.e., case–control status). In the equation below, p is the
probability of having disease, β0 represents the intercept, β1 and β2 represent the main effect of each
marker on the trait, and β3 represents the interaction term. The variables x1 and x2 contain information
about the genotype at the two markers and can be coded in a number of different ways—for example,
–1, 0, and 1. The interaction term (x1

∗x2) can also be coded in a number of different ways:

logit(p) = ln
p

1− p
= b0 + b1x1 + b2x2 + b3(x1∗x2).

Coefficients βi can be estimated for each SNP as well as for interactions between them. Stepwise
regression can be used systematically to compare different genetic models and to investigate whether
multiple markers have independent effects on the trait or are simply in LDwith each other, with either
marker capturing evidence for association and no improvement in model fit when both markers are
included (Cordell and Clayton 2002).

An alternate analysis approach is to phase genotypes into haplotypes and use these as the unit of
analysis. This method is attractive because the haplotype is the functional unit of the gene. It is often
impossible to be certain about the combination of haplotypes carried by any one individual. However,
it is straightforward to determine all possible combinations, and techniques like the E–M algorithm
can be used to assign a probability to each haplotype pair (Excoffier and Slatkin 1995). Haplotype
effects can be estimated using regression techniques adapted to handle phase uncertainty—for
example, a weighted regression technique in which the likelihood function of a finite mixture re-
gression is a weighted sum over all possible haplotypes for each individual (Sham et al. 2004).

Interaction between Genes in Disease Risk

The previous discussion of analysis of multiple markers is focused on markers within a short genetic
region (and potentially in LD), but analysis of multiple markers across the genome is also important to
identify interaction between genes in disease risk. Interaction is most simply defined as the interde-
pendence of effects at two loci. If the disease risk conferred by the presence of risk alleles at two
markers can be inferred from the marginal effects of the presence of each risk allele individually,
then no interaction is present. When the joint effect of risk alleles at both markers is much larger
(or smaller) than implied by the marker-specific effects, then interaction exists. Statistical interaction
(as defined previously) may differ from biological interaction between two genes (Cordell 2002).

The presence of interaction between loci may make each locus more difficult to identify in single
SNP tests. Despite the increase in numbers of tests, regression techniques with interaction terms are
both computationally feasible and powerful for GWAS (Marchini et al. 2005). Another method for
analysis of interaction is multifactor dimensional reduction (MDR). This is a nonparametric approach
with a focus on overcoming low numbers of observations in high-order data sets (Ritchie et al. 2003).
This technique has been applied to several different traits but, as of this writing, none of the results has
yet been replicated independently (Milne et al. 2008).

ADDRESSING PROBLEMS IN ANALYSIS

Quality Control

One disadvantage of a case–control study design compared with family-based association studies is the
lack of an internal check on genotyping quality. Standard laboratory practice of assigning both cases
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and controls to each plate, checking for differences in genotype frequency across plates, and genotyp-
ing duplicate samples can help eliminate systematic errors. Testing for HWE in controls can also
identify problems with genotyping quality.

Hardy–Weinberg Equilibrium

Under HWE, alleles segregate randomly in the population, allowing expected genotype frequencies to
be calculated from allele frequencies. A comparison of the expected and observed genotype frequen-
cies provides a test of HWE (e.g., using a chi-square statistic). For alleles G and T, in which the fre-
quency of allele G is p and the frequency of allele T is q = (1 – p), the expected frequencies of genotypes
GG, GT, and TT are p2, 2pq, and q2. Allele frequencies (p, q) are usually estimated from the genotype
sample under test, rather than obtained from external genotyping data.

Departure fromHWE is generally tested for by using the Pearson chi-square test to assess goodness
of fit (of the observed genotype counts to their expectation under HWE). Table 2 shows the
step-by-step calculation with observed counts for genotypes GG, GT, and TT of a, b, c, and an appli-
cation to a data set of 100 control genotypes (GG: 60, GT: 30, TT: 10). The estimated frequency of
allele G is 0.75 (= [2 × 60 + 30]/200), noting the division by the number of alleles (2N) here, not gen-
otypes (N). The chi-square goodness-of-fit test statistic is then calculated from summing (O – E)/E2

across genotypes, giving chi-square = 4.0. Under the null hypothesis of no departure from HWE, the
test statistic has one degree of freedom (not two degrees of freedom, as implied by the table dimen-
sions), because the allele frequency p has been estimated from the observed data. In this test data set, a
p value of 0.046 is obtained, giving slight evidence of departure from HWE, with a deficit in the
number of observed heterozygotes.

Departures from HWE in control samples may be caused by the following:

1. Genotyping error. In many genotyping platforms, calling heterozygotic individuals is more chal-
lenging than homozygotic individuals, and a higher rate of missing individuals for this genotype
can distort HWE.

2. Assortative mating. HWE requires random mating for the SNP under test, which is reasonable for
a random SNP across the genome, but may be violated for SNPs that affect mate choice, such
as height.

3. Selection. Any genotype increasing the risk of fetal loss or early death is likely to be under-
represented.

4. Population stratification. Control samples that arise from a combination of genetically distinct
subpopulations may not be in HWE.

5. Chance. HWE p values for studies of more than one SNP should be corrected appropriately for
multiple testing.

Departures from HWE may be caused by any of these factors, but also by the genotyped SNP
playing a role in disease susceptibility. Case genotypes for a disease mutation will only be in HWE
if the genetic model is multiplicative, with genotype relative risks of 1, r, r2. However, for modest
effect sizes, the power to detect departures from HWE may be low in cases.

TABLE 2. Testing for departure from Hardy–Weinberg equilibrium

Genotype counts
Estimated frequency

of G alleleGG GT TT Total

General
Observed (O) a b c N = a + b + c p = (2a + b)/(2N)
Expected (E) Np2 2Np(1 – p) N(1 – p)2

Test data set
Observed (O) 60 30 10 100 p = (2 × 60 + 30)/200 = 0.75
Expected (E) 56.25 37.5 6.25
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No standard guidelines for rejecting SNPs that depart from HWE have been developed. In prac-
tice, all SNPs for which HWE p values decrease below a predetermined threshold should be checked
manually for genotyping quality. Investigators should also be aware of SNPs showing significant
association in which HWE p values are close to this threshold and unsupported by neighboring
SNPs in LD.

Missing Genotypes

Another indication of poor genotyping quality is low call rates, with many missing genotypes for each
SNP or each individual. This is a major issue in GWAS, but it is also applicable to candidate gene
association studies. Genotypes that are missing at random will not bias a test, but poor genotype
call rates may indicate nonrandom missingness, with one specific genotype (often heterozygotes)
having a lower call rate. This may bias tests of association. Differential rates of missingness
between cases and controls (for example, because of differences in DNA extraction and storage)
may also be a problem (Clayton et al. 2005).

Population Stratification

Population stratification arises in case–control studies when the two study groups are poorly matched
for genetic ancestry. Confounding then occurs between disease state (case, control) and genetic ances-
try, with a subsequent increase in false-positive associations. For population stratification to occur, the
underlying populationsmust differ in SNP allele frequency and be represented at different frequencies
in the case and control groups.Detecting and controlling for population stratification is important, par-
ticularly in GWAS, in which even subtle differences between cases and controls can have major effects
on the analysis. Severalmethods are available to detect and correct for population stratification, includ-
ing genomic control, the Cochran/Mantel–Haenszel test, and the transmission disequilibrium test.

Genomic control (GC) assumes that population stratification inflates the association test statistics
by a constant factor λ, which can be estimated from the median or mean test statistic from a series of
unlinked SNPs genotyped in both cases and controls (Devlin and Roeder 1999). Test statistics are then
divided by λ and compared with a chi-square distribution or an F distribution) to test for association
(Devlin et al. 2004). Genotypes at SNPs uncorrelated with disease status can also be used to infer
population ancestry, assigning the samples to distinct population groups, which can then be con-
trolled for in the analysis (Pritchard et al. 2000). In GWAS, population substructure can be identified
through a principal components analysis, which models ancestral genetic differences between cases
and controls and then corrects for this in the analysis (Price et al. 2006).

Where individuals can be classified into known subgroups (e.g., by birthplace), analysis can be
performed within each subgroup and combined using a Cochran/Mantel–Haenszel test (Clayton
et al. 2005). The issue of population stratification can be avoided by using family-based studies.
The most widely used method is the transmission disequilibrium test (TDT) (Spielman et al.
1993), which tests for non-Mendelian transmission of SNP alleles from heterozygous parents to
affected offspring; overtransmission suggests that the SNP allele increases risk of disease.

PITFALLS AND PROBLEMS OF ASSOCIATION STUDIES

Amajor challenge in association studies of candidate genes has been nonreplication of significant find-
ings. For many diseases and genes, the literature contains papers with little consistent pattern in the
results obtained. Typically, this comprises an initial report showing significant association, with
follow-up studies showing little or no evidence of association. We discuss here reasons for these dis-
crepancies between studies.

False-Positive Finding

The initial report of association may have been a false-positive finding that arose by chance or sys-
tematic bias in the study. The “Quality Control” section discussed several problems that can lead
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to such results, and each of these should be checked (population stratification and genotyping errors).
False-positive results may arise through a failure to correct for multiple testing across the number of
genes, SNPs, statistical analysis methods, or phenotypic subgroups tested, although this can be diffi-
cult to determine from a publication. For independent tests (e.g., multiple genes that are not in LD), a
Bonferroni correction may be applied to the p values. Where tests are correlated, an appropriate cor-
rection may be difficult to determine, but permutation tests can be used to determine empirical levels
of significance. A noted phenomenon is that the first published study tends to overestimate the effect
size, with subsequent studies detecting more moderate contribution of the genotyped variant to
disease risk (Ioannidis et al. 2001).

Replication Study Lacks Power

Alternatively, replication studies may lack power to detect the true association. Most genes contribut-
ing to complex disorders confer only a very modest increase in disease risk, and to detect these with
high power requires large sample sizes. For example, for a SNP of 10% frequency, under a multipli-
cative model with heterozygote relative risk of 1.3, at least 1146 cases and controls are required to
obtain 80% power at a significance level of 5% with no correction for multiple testing (Purcell
et al. 2003). Including the multiple testing correction greatly increases the numbers needed. Many
association studies have used samples of hundreds, not thousands, of cases and controls, and therefore
lack the ability to detect such associations. Meta-analysis of published data provides a possible sol-
ution, and such studies have confirmed many associations that were unclear from individual study
reports (Altshuler et al. 2000; Ioannidis et al. 2001; Lohmueller et al. 2003).

Heterogeneity between Studies

Another problem is that heterogeneity between studies may validly lead to different conclusions about
the role of a SNP in disease risk. Sources of heterogeneity include the precise clinical criteria used in
case definition for each study, differences in disease severity, disease subtype, age of diagnosis, or dur-
ation of disease. If a genetic variant contributes predominantly to a specific subphenotype of disease,
then the mix of cases ascertained in different studies will substantially affect the power of each study to
detect association. Information from family or twin studies on heritability of different components of
disease definition can help refine the hypothesis to be tested, with some studies choosing to ascertain
cases likely to be more heavily genetically predisposed, for example, those with a family history of
disease, or early onset (Antoniou and Easton 2003).

Heterogeneity across Studies

Population heterogeneity across studies may also lead to differences in study outcomes. Variations in
SNP frequencies are seen across the major population groups because of random drift, novel
mutations, and (less commonly) selection. However, meta-analyses of replicated genetic association
studies suggest that even when the SNP frequency differs across populations, the effect size of
mutations remains approximately constant (Ioannidis et al. 2004). Some mutations may be absent
in specific population groups; for example, NOD2 mutations, which are present in >30% of
Crohn’s disease patients in European populations are absent in Asian populations (Mathew and
Lewis 2004).

CONCLUSION

This article has given a broad outline of the design and analysis of genetic association studies, as well
as the pitfalls of performing powerful, accurate association studies. These challenges are reflected in
the contradictory literature for many disease–gene investigations. However, consistent findings of
disease–gene associations have been detected, and the realization that most mutations confer only
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modest increases in risk has led to an improvement in study design. Larger studies are now being per-
formed and internal replication of significant findings is becoming standard practice.
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