
Introduction

• There are a wide variety of population-based association 
study designs, including candidate gene studies and 
whole genome association studies.
• Ascertain samples of unrelated affected cases and unaffected 

controls.  Important to collect data on exposure to potential non-
genetic (environmental) risk factors.

• Basic analyses utilise standard epidemiological tools, 
regardless of study design, rather than specialised 
methods that have been developed for analysing more 
traditional pedigree and family studies.
• Single-locus tests (contingency table analysis; logistic regression 

modelling).
• Multi-locus methods (logistic regression modelling; haplotype-

based analysis.



Genotype-based single-locus tests

• Assuming the sample to be typed at a 
SNP marker of interest, we can 
represent genotype data in a 2 x 3 
contingency table.

• The usual    test for independence of 
rows and columns in contingency tables 
can be applied to test the null 
hypothesis of no disease-marker 
association

where

• X2 has    distribution with 2 degrees of 
freedom under null hypothesis.

Cases Controls Total

MM n2A n2U n2·

Mm n1A n1U n1·

mm n0A n0U n0·

Total n·A n·U n··
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• Odds ratio for genotype MM
relative to mm 

• Affected individual times
more likely to have marker
genotype MM than mm.
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• The test can be generalised to multi-allelic markers, with 
g-1 degrees of freedom, where g is the number of 
observed genotypes.  However, with many genotypes, 
we encounter the usual problems of sparse data in 
contingency tables and a lack of power.

• Possible solutions:
• Use prior information for associated genotypes from previous 

studies.
• Pool together all but the most frequent genotypes.
• Sequential pooling – successively grouping together genotypes 

that are at high-risk or at low-risk of disease.
• Alternatively, we can assume that alleles have 

independent effects on disease penetrance, i.e. a 
multiplicative disease model using the 
Cochran-Armitage trend test.  Power is very often 
improved as long as the penetrance of the Mm genotype 
is intermediate between the two homozygote 
penetrances.
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Single-locus Cochran-Armitage trend tests

• Assuming the sample to be typed at a 
SNP marker of interest, we can 
represent genotype data in a 2 x 3 
contingency table.

• The Cochran-Armitage trend test of 
association between disease and the 
marker SNP is given by

where

• X2 has    distribution with 1 degree of 
freedom under null hypothesis.

Cases Controls Total
MM n2A n2U n2·

Mm n1A n1U n1·

mm n0A n0U n0·

Total n·A n·U n··
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• Odds ratio for allele M relative to
allele m 

• Affected individual times more
likely to have marker genotype MM
than mm, and         times more likely
to have genotype Mm than mm.
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Allele-based single-locus tests

• Each individual now contributes two
counts to the contingency table, one for 
each allele in their marker genotype.

• Assuming the sample to be typed at a 
marker SNP of interest, we can 
represent genotype data in a 2 x 2 
contingency table.

• To test the null hypothesis of no 
disease-marker association

where

• X2 has      distribution with 1 degree      
of freedom under null hypothesis.

Cases Controls Total

M n1A n1U n1·

m n0A n0U n0·

Total n·A n·U n··

  
  

 




10

2
2

, ,i UAj ij

ijij

nE
nEn

X

 



n
nn

nE ji
ij

• Odds ratio for allele M relative to m 

• Allele M is times more likely to be
carried by an affected individual than
allele m.

• Assumes multiplicative disease risks
and Hardy-Weinberg equilibrium at
SNP in cases and controls.
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Interpretation

• Marker locus is causative, 
directly influencing disease 
risk: needs to be established 
via functional studies.

• Alleles at marker locus are 
correlated with alleles at the 
disease locus, but do not 
directly influence disease risk: 
linkage disequilibrium.

• Population substructure not 
accounted for in the analysis, 
with different disease and 
marker allele frequencies in 
each subpopulation.

• False positive signal of 
association.

M Disease

M D Disease

M DiseasePop’n

A significant result in a test of disease-marker association may imply:



Example: type 2 diabetes T2D

• PPARGamma Pro12Ala 
polymorphism is a strong candidate 
for T2D.

• Ardlie et al. (2002) typed the variant 
in 500 cases and 500 controls in 
two populations: Poles and US with 
North European ancestry.

• Significantly reduced frequency of 
C allele in T2D cases in Polish 
sample (p<0.0001).

• No evidence of association with 
T2D in US sample.

• Population substructure among 
Poles or greater genetic 
heterogeneity among US sample?

• More recent studies suggest no 
evidence of substructure in Poles, 
and replicate the association in a 
more homogeneous US sample.

Polish sample:

C G Total

Cases 124 (13%) 838 962

Controls 183 (20%) 743 926

US sample:

C G Total

Cases 96 (10%) 894 990

Controls 102 (10%) 890 992



Multiple testing

• A type I error occurs when we reject the null hypothesis 
of no association, when in fact the null hypothesis is true.

• Specify type I error rate – or significance level – at the 
design stage of the analysis.
• Lower type I error rate reduces the probability of detecting a 

false positive association, but with the penalty of reducing the 
power to detect association when it truly exists.

• If we choose a 5% significance level, if we test 20 
independent SNPs for association with disease, we 
expect one of them to show significant evidence of 
association, even if none of them are truly associated 
with disease.

• It is important to correct for multiple testing to maintain 
the type I error rate for the experiment overall (i.e. all the 
SNPs tested in the association study).

• Replication is necessary to confirm association.



• Bonferroni correction.  Treat each test as independent and adjust 
point-wise significance level to achieve overall experiment-wise type 
I error rate of 100α%.
• When testing N SNPs, use significance level of 100α/N% for rejecting 

null hypothesis at each SNP.
• Sidak p-value: 1-(1-p)N.
• Assumes all tests are independent, and thus will be conservative if there 

is linkage disequilibrium between SNPs.
• False discovery rate.  Expected number of false positive signals 

among significant associations.
• FDR using pointwise p-value of 100α% given by Nα/k, where k is the 

number of SNPs with p ≤ α.  
• Permutation procedures.  Generate the distribution of experiment-

wise test statistics under the null hypothesis of no association by 
creating permuted data sets by randomly exchanging case and 
control labels.
• Compare observed test statistics with maximum test statistic from each 

permuted data set.
• Bayesian approaches.  Assign prior probability that each SNP is 

associated with disease.
• Choice of prior probability is subjective.
• Can incorporate information about functional relevance of the SNP for 

the disease under investigation.



Multiple testing: example
• Hao et al. (2004) tested for 

association between preterm 
delivery and SNPs in 25 candidate 
genes.

• Using a Bonferonni correction for 25 
tests, only the strongest association 
(F5) remains significant at an 
experiment-wise 5% level.

• Using a pointwise p-value of 0.3%, 
genes F5 and OPRM1 are 
significantly associated with preterm 
delivery: we would expect 3.75% of 
these signals to be false positives.

• Posterior probability of association 
depends on prior probability 
assigned to each gene.

• Prior 1/25: testing only 25 candidate 
genes.

• Prior 1/100: testing first 25 of 100 
candidate genes.

• Prior 1/25000: expect only one 
associated gene in genome, and 25 
tested are not strong candidates.

Taken from Farrall and Morris (2005).



Power calculations

• The GENETIC POWER CALCULATOR can be used to 
calculate power of simple case-control studies.  Website 
found at http://statgen.iop.kcl.ac.uk/gpc.

• Specification of model parameters:
• Disease model: disease prevalence, disease allele frequency, 

disease genotype relative risks.
• Marker allele frequencies, linkage disequilibrium between 

disease locus and marker locus (D').
• Specify point-wise significance level and power, and 

case/control ratio to obtain required sample size.
• For low disease genotype relative risks, we can 

maximise power by matching marker allele and disease 
allele frequencies, with strong linkage disequilibrium 
between loci.

• Low power for rare disease variants, regardless of 
marker allele frequency and linkage disequilibrium. 



Design issues

• We can form internal control genotypes from the pair of 
alleles not transmitted from parents to affected offspring: 
matched analysis protects against population 
stratification.  However this approach requires more 
genotyping than unmatched analysis with unrelated 
population controls.

• We can achieve greater power by using multiple affected 
sibs from the same family than the equivalent number of 
unrelated population cases. 
• There is greater probability that related cases are affected due to 

shared underlying genetic factors.
• However, it is important to remember to allow for correlated 

observations in the analysis.

We may have nuclear family or pedigree data available from 
previous linkage studies.  Is it cost effective to make use of 
these individuals in a subsequent association study?



Logistic regression model

• We can model the case/control status of an individual 
within a logistic regression framework, parameterised 
in terms of log-odds of disease, β, for marker 
genotypes.

• Straightforward to incorporate covariates, x, which may 
include non-genetic risk factors, polygenic effects, or 
ancestrally informative markers to allow for population 
stratification.

• Let denote the probability that individual i is a case, 
given their genotype Gi.  The logit link function

where                                           , and γ denote 
covariate regression coefficients.
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• It is common to parameterise genotype effects in 
terms of additive effects (multiplicative 
contribution to disease risk), βA, and non-additive
effects (any non-multiplicative contribution to 
disease risk), βD.

• SNP genotype of individual i coded by two 
indicator variables, Z(A)i and Z(D)i, representing 
additive and non-additive effects.

• Log-likelihood for specified model given by 

where yi denotes the disease phenotype of 
individual i (yi = 1 if case and yi = 0 if control).

• Compare models by analysis of deviance, 
having approximate     distribution with degrees of 
freedom given by the difference in the number of 
parameters.

• Additive effect: 2[l(y|G,x,βA,β0,γ)-l(y|G,x,β0,γ)] 
• Genotypic effect: 2[l(y|G,x,βD,βA,β0,γ)-l(y|G,x,β0,γ)]  
• Non-additive effect: 2[l(y|G,x,βD,βA,β0,γ)-

l(y|G,x,βA,β0,γ)] 

Genotype Z(A)i Z(D)i

mm -1 0

Mm 0 1

MM 1 0
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• Affected individual is
exp[2βA] times more likely
to have genotype MM than
genotype mm.

• Affected individual is
exp[βA+βD] times more likely
to have genotype Mm than
genotype mm. 



Alternative association models

• May have evidence from previous linkage and/or 
association studies that disease risk can best be 
described by means of a recessive, dominant, or 
heterozygote advantage model.

• Set up indicator variables to represent these models, 
and perform single degree of freedom association test by 
comparison of deviance with the null model.

Genotype M Recessive M Dominant Heterozygote 
advantage

mm 0 0 0
Mm 0 1 1
MM 1 1 0



Quantitative traits

• The methodology described here generalises to 
quantitative (continuous) traits.  It is straightforward to 
compare the mean response for each marker genotype 
by analysis of variance, assuming a normally distributed 
trait, within the standard linear regression framework.

• A powerful strategy is to ascertain individuals from the 
extremes of the quantitative trait distribution: cases and 
hyper controls.
• We can analyse trait values by linear regression, although this 

leads to biased estimates of mean trait values for marker 
genotypes.

• We can ignore the trait values, and analyse as a standard case-
control sample. 

• Are hyper controls representative, or are there polygenic effects 
involved?

• This strategy may not be cost effective if phenotyping is 
expensive relative to genotyping.



Software

• Contingency table analysis and generalised linear 
modelling can be performed using standard statistical 
software.  
• Define indicator variables for specific genetic models from the 

observed SNP genotype data.
• Some statistical software packages include specific 

libraries of routines to perform genetic analyses (R, 
STATA)

• Specialised genetic analysis software: 
• PLINK.  Whole genome association analysis toolset designed to 

perform a range of basic, large-scale analyses.  Allows for data 
management and basic QC analyses.  Performs simple case-
control tests of association.

• SNPTEST.  Designed for analysis of whole genome association 
studies.  Allows for flexible single-locus analysis of genotype 
data allowing for covariates.



Multi-locus association models

• Typically, many SNPs will be genotyped in a candidate 
gene, or high-density SNPs will be genotyped in a whole 
genome association study.

• Single-locus tests may lack power to detect association 
with the disease:
• each individual SNP provides relatively little information about linkage 

disequilibrium with the disease variant;
• Bonferroni correction for multiple testing is likely to be conservative.

• Greater power is expected by joint analysis of all markers in 
the same gene or region simultaneously by considering multi-
locus models of association. 

• We expect strong correlation between markers in the same 
gene due to linkage disequilibrium.  Consequently, the 
information at one marker may become redundant given the 
genotypes at additional loci, and the effects of linked markers 
may be strongly correlated with each other.



• The logistic regression framework provides a natural 
hierarchy of multi-locus association models, allowing for:
• main effects, reflecting differences in multi-locus genotype 

frequencies in cases and controls;
• interactions, reflecting differences in multi-locus genotype 

frequencies in cases and controls, over and above main effects.
• Additive and dominance main effects of each marker 

coded as for a single-locus analysis.
• Potentially four contributions to interaction between each 

pair of SNPs: additive and non-additive at each SNP.
• Indicator variables for each interaction term are given by the 

product of indicator variables for the corresponding main effects.  
For example, the additive-additive contribution to the interaction 
for individual i is coded by Z(A1)i*Z(A2)i.



• Consider two SNP markers: there are three distinct genotypes at 
each marker, and consequently nine two-locus genotypes.

• There is a natural hierarchy of allelic (A) and genotype (G) models, 
compared via analysis of deviance.

Multi-locus model Parameters
Null 0 β 0

Locus 1 only A1 β0, βA1

G1 β0, βA1, βD1

Locus 2 only A2 β0, βA2

G2 β0, βA2, βD2

Main effects A1+A2 β0, βA1, βA2

A1+G2 β0, βA1, βA2, βD2

G1+A2 β0, βA1, βD1, βA2

G1+G2 β0, βA1, βD1, βA2, βD2

Interaction A1*A2 β0, βA1, βA2, βA1*A2

A1*G2 β0, βA1, βA2, βD2, βA1*A2, βA1*D2

G1*A2 β0, βA1, βD1, βA2, βA1*A2, βD1*A2

G1*G2 β0, βA1, βD1, βA2, βD2, βA1*A2, βA1*D2, βD1*A2, 
βD1*D2



• For multiple markers, we can employ standard model 
selection techniques, for example forward selection, 
backward elimination, and stepwise selection.  However, 
this approach may increase the false positive error rates 
for testing for disease-marker association in the 
candidate gene.

• Alternatively, we can estimate additive and dominance 
main effects and interactions in a Bayesian model 
averaging framework, which takes account of 
uncertainty in the true underlying model.

• High-order interaction terms are likely to be difficult to 
estimate and complex to interpret in terms of genetic 
effects.

• To fit main-effects only models, we require marker locus 
genotype frequencies over the whole sample, rather than 
the multi-locus genotype of each individual.  As a result, 
we can utilise DNA pooling, reducing costs relative to 
standard SNP genotyping methods. 



Replication and multi-stage designs

• To confirm positive association signals from an initial study, it is 
essential to replicate the result in independent samples from the 
same and/or different populations.

• Important to define what is meant by replication:
• Association of same SNP or haplotype, with same high-risk variant(s) 

identified.
• Association of same SNP or haplotype, with different high-risk variants 

identified???
• Association of different SNP in the same gene???

• Replication of positive association signals has not proved to be 
easy: will depend on power of both initial and replication studies.

• For genome-wide association studies, multi-stage designs have 
been proposed as an efficient approach to allow for the possibility of 
replication.
• Initial screen of the whole genome to identify positive signals of 

association.
• Follow up the top K signals in an independent sample, reducing the 

number of tests performed: goal here is to identify which of the positive 
signals from the initial screen are false positives, and which might be 
carried forward for further testing.



Summary

• Standard statistical procedures available for the analysis 
of genotype data from genetic association studies.

• Logistic regression provides a flexible framework for 
modelling complex disease risk.
• Can incorporate multi-locus models of association and 

covariates to allow for non-genetic risk factors, polygenic effects, 
and indicators of population stratification.

• Multi-locus association models take account of the 
correlation between proximal SNPs due to background 
patterns of linkage disequilibrium.

• Adjustment must be made for multiple testing, either by 
means of simple correction factors, or via permutation 
procedures.


