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SUMMARY

Genetic data collected from surveys such as the Third National Health and Nutrition Examination Survey
(NHANES III) enable researchers to investigate the association between wide varieties of health factors
and genetic variation for the US population. Tests for trend in disease with increasing number of alleles
have been developed for simple random samples. However, surveys such as the NHANES III have com-
plex sample designs involving multistage cluster sampling and sample weighting. These types of sample
designs can affect Type I error and power properties of statistical tests based on simple random samples.
In order to address these issues, we have derived tests of trend based on Wald and quasi-score statistics,
with and without assuming a genetic model, that account for the complex sampling design. The finite-
sample properties of the proposed test procedures are evaluated via Monte Carlo simulation studies. We
make recommendations about the choice of the test statistic depending on whether or not the underlying
genetic model is known. Proposed test statistics are applied to NHANES III data to test for associations
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between the locus ADRB2 (rs1042713) and obesity, between VDR (rs2239185) and high blood lead level,
and between TGFB1 (rs1982073) and asthma.

Keywords: Complex sampling; F-version of Rao–Scott second-order correction; Quasi-score test; Survey data;
Trend test.

1. INTRODUCTION

The Third National Health and Nutrition Examination Survey (NHANES III) provides national cross-
sectional estimates of the health and nutritional status of the US civilian noninstitutionalized population.
During the second phase of NHANES III, blood lymphocytes were collected from 7159 participants aged
12 years and older in anticipation of advances in genetic research. Linkage of the NHANES III phenotype
data with this genetic information provides the opportunity to investigate the association of a wide variety
of health factors with regard to genetic variations at the US population level (National Center for Health
Statistics, 2008a).

National surveys like the NHANES III employ complex sampling plans that have stratified
multistage cluster sample designs, which add at least 2 complexities to the data analyses. First, cluster
sampling may induce correlation between individual observations within sampled clusters. The standard
errors can be underestimated if this correlation is ignored. Second, varying selection probabilities used
to sample individuals produce different sample weights for surveyed subjects. If these sample weights
are correlated with the characteristics of research interest for the observations, then an analysis that
does not take this into account can be biased (Korn and Graubard, 1999). Test procedures developed
for simple random samples are generally unsuitable for the analysis of data from these complex sample
designs.

For simple random samples, the Cochran–Armitage trend test (Armitage, 1955) or efficient score
trend test has been used to evaluate the association between a candidate gene and a disease using a case–
control design (Morton and Collins, 1998; Slager and Schaid, 2001; Freidlin and others, 2002; Zheng and
Gastwirth, 2006; Epstein and others, 2007). Recently, Ryckman and others (2008) proposed a prevalence-
based association test for a case–control study. These tests can also be applied to cross-sectional studies
with simple random samples such as surveys where prevalent disease cases and nondisease (controls)
individuals are sampled together. When these tests are applied to the data from cross-sectional surveys
that have complex sample designs, they need to be modified to take account of the sample design. Our
objective in this paper was to develop appropriate test procedures for the association between a candidate
gene and disease in surveys that have complex samples.

2. METHODS

2.1 Cochran–Armitage trend test

Under simple random sampling, the association of a candidate gene with a disease can be evaluated with
the Cochran–Armitage trend test. Assuming that allele A of the candidate gene is the allele of high risk and
allele a is any of the other alleles, the genotype data obtained from a case–control study or a cross-sectional
study can be represented as the following: ri and si for i = 0, 1, and 2 are the sizes of cases and controls
with the number i of allele A, r and s are the sample sizes of cases and controls, and r + s = n. Given the
case and control status, (r0, r1, r2)T and (s0, s1, s2)T follow trinomial distributions with parameter vectors
of (p0, p1, p2)T and (q0, q1, q2)T for cases and controls, respectively. Denote K as the disease prevalence,
f = ( f0, f1, f2)

T as the penetrances of genotypes (aa, a A, AA), and γ = (
1, f1

f0
, f2

f0

)T = (1, γ1, γ2)
T as
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the relative risks. We have K = ∑2
i=0 fi gi = f0

∑2
i=0 γi gi , pi = fi gi

K , and qi = (1− fi )gi
1−K for i = 0, 1, and

2, where g = (g0, g1, g2)
T are the population genotype frequencies (Slager and Schaid, 2001; Freidlin

and others, 2002; Zheng and Gastwirth, 2006).
Let x = (x0, x1, x2)

T be the score vector assigned to genotypes (aa, a A, AA) with x = (0, 0.5, 1)T

for additive model, x = (0, 0, 1)T for recessive model, and x = (0, 1, 1)T for dominant model (Sasieni,
1997; Freidlin and others, 2002), then the Cochran–Armitage trend test statistic for the null hypothesis of
no association between the candidate gene and the disease of interest, that is, H0: f0 = f1 = f2, can be
written as

TT = UT√
V̂ar(UT)

(2.1)

or T 2
T , where UT = 1

n

∑2
i=0 xi (sri − rsi ) and V̂ar(UT) = s2

n2 V̂ar
( ∑2

i=0 xiri
)+ r2

n2 V̂ar
( ∑2

i=0 xi si
)
. TT has

an asymptotic normal distribution with mean 0 and variance 1, and T 2
T has an asymptotic χ2

1 distribution
under the null hypothesis (Sasieni, 1997; Slager and Schaid, 2001; Freidlin and others, 2002; Zheng and
Gastwirth, 2006).

Surveys such as NHANES III are household surveys that have a stratified multistage sample designs,
where primary sample units (PSUs), for example, counties, are sampled from strata at the first stage of
sampling and additional stages of sampling are conducted within the sampled PSUs. At the last stage,
individuals are sampled from sampled households (for details about the NHANES III sample design, see
Ezzati and others, 1992). For each individual, the inverse of the product of the selection probabilities
across all the stages of sampling is their sample weight. Define the weighted analogies of n, r , s, ri ,
si , and ni as nw = ∑n

j=1 w j , rw = ∑n
j=1 w j y j , sw = ∑n

j=1 w j (1 − y j ), riw = ∑n
j=1 w j y j Gi

j ,

siw = ∑n
j=1 w j (1 − y j )Gi

j , and niw = riw + siw, where w j is the sample weight associated with the

j th individual, y j = 1 if the j th individual is case and 0 otherwise, and Gi
j =1 if the j th individual has

the number i of allele A at the locus of interest. The Cochran–Armitage trend test statistic for the null
hypothesis can be formed as

TTw = UTw√
V̂ar(UTw)

(2.2)

or T 2
Tw, where UTw = 1

nw

∑2
i=0 xi (swriw − rwsiw) = ∑2

i=0 xi
(
riw − rw

nw
niw

)
.

Denoting z j = ∂UTw
∂w j

, UTw can be approximated by
∑n

j=1 w j z j (Shah, 2004). An estimate of the
variance of UTw is

V̂ar(UTw) =
H∑

h=1

mh

mh − 1

mh∑
l=1

(z(hl) − z̄(h))2, (2.3)

where z(hl) is the weighted sum of z j in the lth PSU of the hth strata, z̄(h) = ∑mh
l=1

z(hl)

mh
, H is the total

number of strata, and mh is the number of PSUs within hth stratum (Korn and Graubard, 1999). Under
the null hypothesis, TTw has an asymptotic normal distribution with mean 0 and variance 1, and T 2

Tw has

an asymptotic χ2
1 distribution (Graubard and Korn, 1993). When f = ∑H

h=1 mh − H is not large, an F-

version of the test statistic FT 2
Tw = f −1+1

f T 2
Tw has an asymptotic F distribution with degrees of freedom

1 and f under H0 (Korn and Graubard, 1999; Li and Graubard, 2009).
UTw can be expressed as

∑n
j=1 w j x j

(
y j − rw

nw

)
, which is the pseudo-score function based on logistic

regression model. The test procedure proposed above is the same as the quasi-score test for a simple linear
logistic regression model proposed by Rao and others (1998).

 by guest on June 6, 2012
http://biostatistics.oxfordjournals.org/

D
ow

nloaded from
 

http://biostatistics.oxfordjournals.org/


Trend tests for genetic association 51

2.2 Quasi-efficient score test

Under simple random sampling, the log-likelihood function can be written as

� =
2∑

i=0

ri log(pi ) +
2∑

i=0

si log(qi ) + constant

=
2∑

i=0

ri log( fi ) +
2∑

i=0

si log(1 − fi ) − r log

(
2∑

i=0

fi gi

)
− slog

{
2∑

i=0

(1 − fi )gi

}
+ constant.

In the following, we develop quasi-efficient score test with mode of inheritance known or unknown.

Mode of inheritance is known. With simple random sampling, the null hypothesis H0, f0 = f1 = f2,
can be tested using a score test statistic

TS1 = US1√
V̂ar(US1)

(2.4)

or T 2
S1, where US1 = 1

f0
{(r2 − rg2) + x1(r1 − rg1)} − 1

1− f0
{(s2 − sg2) + x1(s1 − sg1)} is a weighted

score, V̂ar(US1) = 1
f 2
0
{r2 + x2

1r1 − r(g2 + x1g1)
2} + 1

(1− f0)2 {s2 + x2
1 s1 − s(g2 + x1g1)

2} is an estimate

of the variance, and score x1 equals 0 for recessive inheritance model, 1
2 for additive model, and 1 for

dominant model. The derivation is similar to that given by Li and others (2005). TS1 has an asymptotic
normal distribution with mean 0 and variance 1, and T 2

S1 has an asymptotic χ2
1 distribution under the null

hypothesis.
In a complex sampling setting, the quasi-efficient score test statistic for the null hypothesis can be

formed as

TS1w = US1w√
V̂ar(US1w)

, (2.5)

where US1w is the weighted analogy of US1, which can be derived from a pseudo weighted likelihood ap-
proach (Rao and others, 1998). To estimate Var(US1w), we first approximate US1w by its Taylor expansion
(Shah, 2004). Standard methods for survey sampling can then be used to estimate the variance, which has
an expression similar to (2.3). When f = ∑H

h=1 mh − H is not large, an F-version of the test statistic
FT 2

S1w = f −1+1
f T 2

S1w has an asymptotic F distribution with degrees of freedom 1 and f under H0 (Korn
and Graubard, 1999; Li and Graubard, 2009).

Mode of inheritance is unknown. For simple random sample, the score test statistic of the null hypothesis
can be expressed as

T 2
S2 = U T I −1U, (2.6)

where U = (
∂�
∂ f2

| f2= f1= f0 ,
∂�
∂ f1

| f2= f1= f0

) = ( 1
f0

(r2−rg2)− 1
1− f0

(s2−sg2),
1
f0

(r1−rg1)− 1
1− f0

(s1−sg1)
)

and

I =
⎛⎜⎝ ∂2�

∂ f 2
2
| f2= f1= f0

∂2�
∂ f2∂ f1

| f2= f1= f0

∂2�
∂ f1∂ f2

| f2= f1= f0
∂2�
∂ f 2

1
| f2= f1= f0

⎞⎟⎠
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52 D. SHE AND OTHERS

=
⎛⎝ 1

f 2
0
(r2 − rg2

2) + 1
(1− f0)2 (s2 − sg2

2) − rg1g2

f 2
0

− sg1g2
(1− f0)2

− rg1g2

f 2
0

− sg1g2
(1− f0)2

1
f 2
0
(r1 − rg2

1) + 1
(1− f0)2 (s1 − sg2

1)

⎞⎠ .

T 2
S2 has an asymptotic χ2

2 distribution under the null hypothesis.
In a complex sampling setting, a quasi-score test statistic T 2

S2w is obtained by incorporating the sample
weights in T 2

S2. This can be done because T 2
S2 is a quadratic test statistic (Graubard and Korn, 1993), that

is, T 2
S2w = U T

w I −1
w Uw, where Uw and Iw are the weighted analogies of U and I . T 2

S2w does not have an
asymptotic chi-square distribution because of correlation induced by cluster sampling and the sampling

weights. Graubard and Korn (1993) showed that (i)
√

nUw
D→ N (0, �) and (ii) T 2

S2w
D→ λ̄χ2(2), where λ̄

is the average eigenvalue of �� and 1
n I −1

w
P→ �.

Variance–covariance of Uw can be estimated using standard methods from survey sampling (Korn and
Graubard, 1999). Denoting �̂ as the estimated variance, we propose a Wald test statistic as the following:
T 2

S2wald = U T
w �̂−1Uw, which is asymptotically distributed as χ2

2 under H0. When f = ∑H
h=1 mh −

H is not large, an F-version of the Wald statistic, FT 2
S2wald = ( f − 2 + 1)/(2 f )T 2

S2wald, which has
an asymptotic F2, f −2+1 distribution under H0, is often used instead (Korn and Graubard, 1999; Li and
Graubard, 2009).

The first-order correction to T 2
S2w, that is, T 2

S2w(1) = T 2
S2w/ ¯̂λ, has an asymptotic χ2

2 distribution under

H0, where ¯̂λ is the average of the 2 nonzero eigenvalues of the matrix �̂ I −1(θ̂w0). A more accurate second-

order correction to T 2
S2w, that is, T 2

S2w(2) = T 2
S2w/

{ ¯̂λ(1 + â2)
}
, has an asymptotic χ2

2/(1+â2)
distribution

under H0, where â2 = (1/2)
∑2

i=1 (λ̂i − ¯̂λ)2/ ¯̂λ2 (Rao and Scott, 1984). A Satterthwaite F-version of
T 2

S2w is FT 2
S2w(2) = T 2

S2w(2)/{2/(1 + â2)}, which is asymptotically distributed as F2/(1+â2), f under H0,

where f = ∑H
h=1 mh − H (Thomas and Rao, 1987).

The quasi-efficient score tests require population parameters f0 and g. When established population
parameters are available, they will be used. Otherwise, f0 and g will be estimated from the survey data
that are used for testing the genetic association.

3. SIMULATION STUDIES

Three intraclass correlation structures are evaluated in our simulation: (1) no intraclass correlation in
case status and genotype, (2) intraclass correlation in case status but not in genotype, and (3) intraclass
correlation in case status and genotype. We generated cases and controls that are correlated within each
cluster with correlation coefficient of 0.09, and genotype data are generated with intraclass correlation
coefficient of 0.017 assuming Hardy–Weinberg equilibrium for the whole population and within each
cluster.

The Type I error rate and power of proposed test procedures are evaluated via Monte Carlo simula-
tion with a significance level of 0.05. Details of simulation are described in the supplementary material
available at Biostatistics online.

F-version test statistics that assume additive model or dominant model, that is, FT 2
Tw(0.5) and

FT 2
S1w(0.5) or FT 2

Tw(1) and FT 2
S1w(1), maintain the nominal level for various parameter settings. When

estimated f0 and g are used instead of true f0 and g, quasi-efficient score tests achieve virtually the same
Type I error rates with relative differences ranging from <1% to about 5%.

Compared to test statistics with varying sample weights, test statistics with common weights have
more power, which would be expected since weighting tends to increase variances (Korn and Graubard,
1999, pp 172–177). Test statistics have more power when there is no intraclass correlation in case status
and genotype compared to when case status and genotypes are correlated within each cluster. When a
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genetic model is assumed, the tests have greater power under the correct model than under an incorrect
model. When the data are generated using recessive or dominant models and incorrect genetic models are
used for testing the association, tests based on additive model, that is, T 2

Tw(0.5) test and T 2
S1w(0.5) test

and the corresponding F-version tests, are more powerful in general. All tests tend to have less power
for small minor allele frequency and/or when there is intraclass correlation. Using estimated f0 and g for
quasi-efficient score tests has minimal impact on power compared with the true f0 and g.

4. REAL DATA ANALYSIS

The proposed methods are applied to NHANES III genetic data for 3 loci, that is, ADRB2 (rs1042713),
TGFB1 (rs1982073), and VDR (rs2239185). Variances are estimated using pseudo-strata and pseudo-
PSUs supplied by National Center for Health Statistics, Centers for Disease Control and Prevention
(CDC).

There is disagreement in the literature whether or not there is an association between ADRB2
(rs1042713) and obesity. Some studies have shown that ADRB2 (rs1042713) is associated with obe-
sity, while a recent study suggests that there is no association between ADRB2 (rs1042713) and obesity
(see Jalba and others, 2008, for a meta-analysis). In our analysis, obesity is defined as BMI � 30, where
BMI is body weight in kilogram divided by height in square meters. There are 6930 individuals with
genotype information available for ADRB2. Among them, 1290 (18.61%) individuals have genotype AA,
3387 (48.87%) have genotype AG, and 2253 (32.51%) have genotype GG. About 1797 (25.15%) indi-
viduals have BMI �30. The age-adjusted prevalence of obesity is about 23% (National Center for Health
Statistics, 2008b).

TGFB1 (rs1982073) is shown to be associated with severe asthma (de Faria and others, 2008). Phase
II of NHANES III has 6920 individuals with genotype information for TGFB1 (1452 CC , 3257 CT ,
and 2211 T T ) and has 509 (7.11%) individuals with asthma, which is consistent with a national asthma
prevalence of 7.2% estimated by National Center for Health Statistics (2008c).

VDR (rs2239185) has been found to modify lead toxic kinetics (Onalaja and Claudio, 2000) and may
be associated with blood lead level (BLL). Our analysis has 6794 individuals with genotype information
for VDR (1733 CC , 3245 CT , and 1816 T T ) and 199 (2.82%) individuals with BLL �10 µg/dl, which
is consistent with CDC’s estimate. According to CDC (1997), among those aged greater than or equal to
1 year, approximately 2.2% had BLLs greater than or equal to 10µg/dl (CDC, 1997).

Table 1 displays the P values of the proposed tests for associations between ADRB2 and obesity,
between TGFB1 and asthma, and between VDR and BLL. External f ′

0s discussed above, which are con-
sistent with the ones estimated from NHANES III, are used in our analysis. Since no external source of g
was found, genotype frequencies g are estimated from the survey data. No significant associations were
found between ADRB2 (rs1042713) and obesity, which is consistent with the finding of Jalba and others
(2008), and between VDR (rs2239185) and high BLL. TGFB1 (rs1982073) was found to be associated
with asthma at 5% level, which agrees with the finding of de Faria and others (2008).

5. DISCUSSION

NHANES III provides us a unique opportunity to investigate the association between a wide variety of
health factors and genetic variations at the US population level. In this paper, we examine trend test
statistics with and without assuming a genetic model that are suitable for complex samples, which utilize
multistage stratified cluster sample designs and sample weighting due to unequal probabilities of sample
selection.

The Type I error rate and power of all test statistics considered allow for sample weighting and are
evaluated via Monte Carlo simulations under noninformative sample weights with an alpha level of 0.05.
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Table 1. P values for association test for loci ADRB2, TGFB1, and VDR

ADRB2 TGFB1 VDR

Trend test (1 df) T 2
Tw(0) 0.743 0.099 0.375

T 2
Tw(0.5) 0.613 0.012 0.827

T 2
Tw(1) 0.363 0.022 0.711

FT 2
Tw(0) 0.745 0.113 0.385

FT 2
Tw(0.5) 0.618 0.020 0.829

FT 2
Tw(1) 0.372 0.031 0.715

Score test (1 df) T 2
S1w(0) 0.744 0.102 0.372

T 2
S1w(0.5) 0.616 0.013 0.827

T 2
S1w(1) 0.368 0.023 0.710

FT 2
S1w(0) 0.746 0.115 0.381

FT 2
S1w(0.5) 0.621 0.021 0.829

FT 2
S1w(1) 0.377 0.032 0.714

Score test (2 df) FT 2
S2w(2) 0.480 0.046 0.593

Type I error rates are well controlled for F-version test statistics that assume an additive model or a domi-
nant model. Test statistics with the correct genetic model achieve more power. When the genetic model is
incorrect, T 2

Tw(0.5) test, T 2
S1w(0.5) test, and corresponding F-version tests achieve more power in general.

When no genetic model is assumed, FT 2
S2w(2) test maintains the nominal level excepted for small minor

allele frequency. Quasi-score tests require population parameters f0 and g. Estimated f0 and g have min-
imal impact on Type I error rates and power compared to true f0 and g. We recommend to use FT 2

Tw(0.5)

and FT 2
S1w(0.5) to test the association between a disease and a candidate gene in complex sampling set-

ting when genetic model is unknown and to use trend test statistic with correct genetic model specified
when the genetic model is known. Since there is low power to determine if the sampling weighting is
informative or not (Korn and Graubard, 1999), our recommended test statistics use the sample weights for
testing for trend. There may be surveys that have highly inefficient weighting where modeling the sample
selection would offer an alternative approach but this would require further research.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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