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eTregs is shown to be effective in

suppressing HRD tumors in multiple

mouse models.
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SUMMARY
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-
ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor
microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell re-
ceptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer
(HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy
with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per
RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key re-
sponders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly
terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upre-
gulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in
HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without
observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other
HRD-related tumors.
INTRODUCTION

As a major driver of genomic instability, homologous recom-

bination deficiency (HRD) occurs frequently in human

cancers (e.g., �50% in ovarian cancer).1–3 It has attracted
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wide interest because of synthetic lethality, wherein this

defect renders tumors vulnerable to poly (ADP-ribose) poly-

merase (PARP) inhibition.4,5 Multiple PARP inhibitors have

been approved for the treatment of ovarian, breast, pros-

tate, and pancreatic cancers, and many more are being
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developed for or tested in various solid and hematological

malignancies.6,7 Although recent studies have started to

shed light on the interplay between HRD and the tumor

microenvironment (TME) of human cancers,8–10 including

ovarian cancer,11 it remains a top priority to decode the

interaction effects of HRD and PARP inhibition on the

TME. Practical hurdles to such characterizations, including

prior treatment exposures and heterogeneous patient popu-

lations, impede a deeper understanding of TME plasticity

and the development of novel, effective cancer therapies.

Because high-grade serous ovarian cancer (HGSOC) has

the highest prevalence of HRD and often requires neoadju-

vant therapies to achieve optimal debulking,12,13 it exem-

plifies an archetypal disease for characterizing the effect of

HRD on treatment-naive TME and subsequent changes

induced by PARP inhibition.

Efforts to address this knowledge gap would have crucial

implications for understanding why in HGSOC evidence

of therapeutic benefits by immune checkpoint inhibitors

(ICIs) is lacking.14 Across phase III clinical trials, the addition

of PD-1/PD-L1-targeting agents, including nivolumab,15 ave-

lumab,16,17 and atezolizumab,18,19 to chemotherapy and/or

targeted therapy (e.g., bevacizumab) failed to confer a survival

benefit in a variety of disease settings. Combining nivolumab

with CTLA-4-targeting ipilimumab resulted in significantly

improved progression-free survival than nivolumab alone

but in a smaller cohort.20 Importantly, PD-L1 positive score

as a classical ICI biomarker did not show consistent

trends with the response rate (RR) in the trials mentioned

above. These clinical observations suggest a complex immu-

nomodulatory landscape in HGSOC beyond the PD-1/PD-L1

signaling, calling for a comprehensive search of critical im-

mune factors.

Here, we leveraged a large number of samples from a clinical

study to evaluate neoadjuvant PARP inhibition in HRD HGSOC

(NCT04507841).21 In parallel, we collected samples from pa-

tients receiving neoadjuvant chemotherapy (NACT). Single-cell

and bulk multimodal profiling of these samples yielded valuable

data that enabled us to delineate the TME divergence between

HRD and homologous recombination-proficient (HRP) tumors

as well as their phenotypic evolution following the neoadjuvant

therapies.
Figure 1. Study design and dataset overview

(A) Flowchart of patient enrollment and treatment.

(B) Percentage change in GCIG CA125 level from baseline. Dashed black line rep

CA125 response. A CA125 value below the reference level further indicates CR.

(C) Patient response according to GCIG CA125 response criteria stratified by HR

(D) Cross-site sampling of tumor and blood samples for single-cell and bulk multi

patient count and sample count, respectively.

(E) Genomic alterations of a panel of homologous recombination repair (HRR) gen

dotted black line indicates a GIS threshold of 42 for HRD approved by the US Food

Germline mutations are highlighted with the ‘‘+’’ sign. Silent mutations with clear

(F) Uniform manifold approximation and projection (UMAP) embedding of all cell

(G) Major cell type composition and clinical metadata for each sample.

FIGO, The International Federation of Gynecology and Obstetrics; HRD, homolo

BRCAm, mutated BRCA1/2; BRCAwt, wild-type BRCA1/2; GIS, genomic instabil

complete response; PR, partial response; NR, non-response; RR, response rate

also Figure S1 and Tables S1 and S2.
RESULTS

A single-cell atlas of the HGSOCTMEunder neoadjuvant
treatment
To investigate the effects of HRD, neoadjuvant therapies, and

their interactions on the TME, we recruited treatment-naive pa-

tients with newly diagnosed unresectable HGSOC in our phase

II clinical trial (NCT04507841) (Figure 1A; Table S1). We deter-

mined the response to neoadjuvant niraparib monotherapy

(NANT) or NACT for each patient according to the Gynecologic

Cancer InterGroup (GCIG) CA125 response criteria22,23 (Fig-

ure 1B; Table S1). Dynamically and effectively monitoring overall

tumor burden within a short period, especially for patients with

non-measurable lesions, GCIG CA125 response was suited for

longitudinal quantitative analysis of TME correlates. Among 53

HRD patients who received NANT, 14 (26.4%) achieved com-

plete response (CR) and 25 (47.2%) reached partial response

(PR), resulting in a GCIG CA125 RR of 73.6% (62.5% per

RECIST v.1.1) (Figure 1C). Six HRD patients chose to receive

NACT and exhibited an RR of 100.0%, including three patients

with CR and three patients with PR (Figure 1C). In parallel, 21

HRP patients received NACT. Six patients yielded CR, and 12

patients acquired PR, resulting in an RR of 85.7% (Figure 1C).

In total, 80 patients who underwent either neoadjuvant treatment

displayed a GCIG CA125 RR of 78.8% (Figure 1C). Overall, the

safety profile of NANT was manageable, and no new safety

signal was observed, with hematologic toxicities as the most

common treatment-related adverse events. These results indi-

cate that NANT is an effective treatment option for controlling

disease progression for HRD patients with HGSOC.

From 34 patients in the trial cohort, we obtained 67 tumor sam-

ples (39 pre-treatment and 28 post-treatment), including 24 site-

matched pre- and post-treatment pairs as our main cohort for

single-cell RNA sequencing (scRNA-seq) (Figure 1D; Table S1).

These patients had a balanced distribution of HRD status and

genomic aberrations, as surveyed by our HRD assay (Figure 1E;

Table S2). The scRNA-seq data were processed through a

rigorous quality control (QC) and preprocessing pipeline

(Figures S1A–S1D). We observed consistent high quality across

samples, with low ambient contamination (Figure S1A), high per-

cell unique molecular identifier (UMI) and gene count, and

low mitochondrial DNA UMI and ribosomal UMI proportions
resents a �50% change in GCIG CA125 level from baseline, indicating a GCIG

Otherwise, PR is documented.

D status and treatment cohort.

-omic profiling from ovarian cancer patients. Numbers in parentheses indicate

es across 34 patients in the main cohort. Top, genomic instability scores (GISs);

and Drug Administration. Right, sample count with a mutated gene of interest.

functional consequences are highlighted with the ‘‘*’’ sign.

s in the main cohort with major cell types annotated.

gous recombination deficiency; HRP, homologous recombination proficiency;

ity score; ISD, individualized starting dose; TC, paclitaxel and carboplatin; CR,

; GCIG, the Gynecologic Cancer InterGroup; CA125, cancer antigen 125. See
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Figure 2. Tregs are enriched in pre-treatment HRD tumors and suppressed by neoadjuvant treatment

(A and B) Cell-state annotations of CD4+ (A) and CD8+ (B) T lymphocytes. Zoom-in boxes indicate marker genes, signatures, or reference projections.

(C) Differential abundance testing of 97 cell states across 10 major cell types. Left, dendrogram showing cell-state transcriptional similarities. Middle, scaled log2
FC of cell-state abundance in each comparison (two-sidedMann-Whitney U test for the HRD status comparison; two-sided pairedWilcoxon rank-sum test for the

treatment comparisons). Differences with a raw p > 0.05 are masked in the heatmap. Right, cell count of each state. Four cell states with significant abundance

changes across comparisons are highlighted.

(legend continued on next page)
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(Figure S1E). Finally, we computationally integrated >620,000

post-QC cells and assigned them to 10 major cell types based

on the expression patterns of well-established marker genes

(Figures 1F and S1F–S1H). All samples contained the 10 cell

types and showed a balanced distribution of cell counts, indi-

cating a comprehensive and robust sampling of the HGSOC

TME (Figure 1G). In addition to this main cohort, we performed

single-cell T cell receptor sequencing (scTCR-seq), multiplex

immunohistochemistry (mIHC), flow cytometry, and bulk TCR-

seq for additional tumors and patient-matched peripheral blood

samples (Figure 1D; Tables S3, S4, S5, and S6). Together, this

rich, multimodal, and high-quality dataset represents a unique

resource to elucidate how tumor-intrinsic HRD status and real-

world therapies affect the TME of ovarian cancer.

HRD-tumor-enriched eTregs underlie the TME response
to neoadjuvant therapies
IntertumoralTMEheterogeneityestablishedbefore therapeutic in-

terventions often portends diverse patient outcomes.24,25 At the

level of major cell types, we observed a trend toward an increase

of lymphocytes and endothelial cells while a decrease of epithelial

cells and myeloid cells in pre-treatment metastatic tumors (Fig-

ure S2A), in line with previous studies,11,26,27 albeit not reaching

statistical significance except for B cells. Similarly, no major cell

types showed a significant difference between pre-treatment

HRD and HRP tumors (Figure S2B). For the effects of NACT and

niraparib, we identified mast cells and endothelial cells to be

significantly enriched in post-treatment tumors, respectively

(Figures S2C and S2D), which merits further investigation.

These results prompted us to examine the impact of HRD and

neoadjuvant therapies at a finer scale. For this purpose, we first

built a cell-state hierarchy that covered all major cell types

through an extensive search of the literature for transcriptional

evidence supporting the identities of 97 cell states (Figure S3;

STAR Methods). For example, our annotation revealed 15 and

12 states in the CD4+ and the CD8+ T cell compartments,

respectively (Figures 2A and 2B). We then compared cell-state

proportions between HRD subtypes and treatment phases,
(D) Correlation of cell state log2 FC between niraparib therapy and chemotherap

(E) Overlap between top hits of the three differential abundance tests.

(F) Difference in eTreg proportion among all CD4+ T cells between pre- and post

(G) Difference in log2 ratio of the geometric FPKM average of an eTreg signature to

HRP samples, n = 293 HRD samples).

(H) Log2 FC of either expression levels or expression level ratios in FPKM across T

by an asterisk sign.

(I) Representative fields of view for pseudocolor (top), cell identity (middle), or the p

and one HRD tissue. Scale bars, 200 mm.

(J) Difference in proportion of FOXP3+, FOXP3+TNFRSF9+, and FOXP3+PD-1+

samples, n = 34 HRD samples) or between pre-nira and post-nira samples (

measurements.

(K) Difference in distribution of panCK+-FOXP3+TNFRSF9+ (left) or panCK+-FOX

Vertical lines indicate the median nearest-neighbor distance.

(L) Representative flow cytometry plots of a CD25+CD127low population in all CD

(M) Difference in the proportion of CD25+CD127low and CD25+CD127lowCCR8+

cytometry results (n = 8 HRP samples, n = 21 HRD samples for CD25+CD127low

FC, fold change; Rs, Spearman rank correlation coefficient. FPKM, fragments per

the box is the mean, the bottom and top of the box are the first and third quartile

upper quartiles, respectively. p values were calculated using a two-sided pairedW

(M). *p < 0.05, **p < 0.01, ***p < 0.001. See also Figures S2, S3, and S4 and Tab
identifying a wide range of cell-state shifts (Figure 2C). Interest-

ingly, many cell states showed concordant abundance changes

in chemotherapy and niraparib treatment (Figure 2D).

To focus on the most convergent signals, we identified four

overlapped cell states out of the three comparisons, namely

interferon (IFN)-responding myofibroblastic cancer-associated

fibroblasts (myCAFs), effector regulatory T cells (eTregs), and

proliferative CD4+/CD8+ T cells (Figures 2C, 2E, and S2E–

S2G), all of which had higher abundance in the treatment-naive

HRD TME while decreased in post-treatment HRD tumors. The

Treg is the most abundant T cell population in our dataset, and

its eTreg subset is well known for immunosuppressive func-

tions.28,29 We thus focused on validating the related observa-

tions. First, we analyzed a published scRNA-seq cohort,30 under

amatched T cell annotation scheme (Figure S4), to recapitulate a

dramatic decrease of eTregs but not resting Tregs in post-NACT

HGSOC tumors (Figure 2F). Second, we observed through a

signature-based analysis of the TCGA HGSOC cohort that

eTregs had a significantly higher infiltration level in HRD tumors

(Figure 2G), which, when extended to contrast with other non-

Treg T cell-state marker genes, further revealed the unique

enrichment of eTregs (Figure 2H). Third, we performed mIHC

of 85 HGSOC tumors (Table S3) and confirmed total Tregs and

eTregs showing a significantly higher abundance in HRD tumors

while markedly reduced after niraparib treatment (Figures 2I

and 2J). Importantly, cancer cells (panCK+) and eTregs resided

nearby in HRD tumors, implying a more frequent functional inter-

action (Figures 2I and 2K). Lastly, we quantified the proportion of

total Tregs and eTregs in another 35 treatment-naive tumors us-

ing flow cytometry (Table S4) and confirmed their stronger pres-

ence in the HRD TME (Figures 2L and 2M). These results show

that the marked reduction of HRD-enriched eTregs represents

the most robust change upon neoadjuvant therapies.

Tregs and Texs among tumor-reactive T cell populations
coordinated by HRD
Our systematic analysis across nearly 100 cell states revealed

that three out of the final four top candidates were T cell
y for HRD samples only.

-chemotherapy tumors based on data from GSE165897 (n = 11 patients).

CD4 FPKMbetween HRP and HRD ovarian cancer samples from TCGA (n = 61

cell marker genes. Entries with a statistically significant difference are marked

roximity of PanCK+-CD4+FOXP3+ phenotype pairs (bottom) for one HRP tissue

cells among CD4+ T cells between HRP and HRD samples (left, n = 18 HRP

right, n = 21 pre-nira samples, n = 15 post-nira samples) based on mIHC

P3+PD-1+ (right) nearest-neighbor distance between HRP and HRD samples.

4+ T cells and a CCR8+ population in all Tregs.

cells among CD4+ T cells between HRP and HRD samples according to flow

cells; n = 5 HRP samples, n = 19 samples for CD25+CD127lowCCR8+ cells).

kilobase of transcript per million mapped reads. For boxplots, the middle line in

s, and the whiskers extend to the 1.53 interquartile range of the lower and the

ilcoxon rank-sum test for (F) and a two-sided unpaired t test for (G), (H), (J), and

les S3, S4, and S7.
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populations, including the eTreg (Figure 2E), suggesting a domi-

nant role of eTreg-centric T cell-state shifts mediating HRD and

treatment effects. In further investigating this phenomenon, we

identified a cluster of CD4+ and CD8+ T cell states co-occurring

with eTregs and recapitulated the pattern in an independent

HGSOC cohort (Figure 3A). Notably, almost all of these T cell

populations were enriched in HRD tumors and showed elevated

JAK-STAT signaling (Figure 3A). Given that HGSOC tumors with

HRD are known to harbor higher tumor mutational burden

(TMB)3,31 and potentially produce more neoantigens,32 this

observation suggested a commonly activated state among the

T cells responding to accrued tumor antigens. Indeed, in addition

to eTregs,33,34 this cluster contained several populations known

to be enriched for tumor-reactive T cells, such as exhausted

CD8+ T cells (Texs)35,36 and CXCL13+PD-1+CXCR5� peripheral

T helper-like (‘‘Tph-like’’) cells (Figure 3A).37,38 Accordingly, us-

ing mIHC, we validated that eTregs and Texs co-occurred and

both had a stronger presence in HRD tumors (Figure 3B).

Next, we provided multiple lines of evidence of their tumor

reactivity, specifically in our HGSOC context. First, most of the

reactive populations showed a uniquely heightened gene

expression signature36 derived from T cells bearing validated

neoantigen-specific TCRs (Figure 3C). Second, proliferative

CD4+ and CD8+ T cells expressed Treg and Tex programs,

respectively, at a level almost on par with non-proliferative Tregs

and Texs (Figure 3D), suggesting that Tregs and Texs bore

remarkable proliferative potential. Third, using our paired

scRNA-seq/TCR-seq data (Table S5) of enriched tumor-infil-

trating T cells, we identified Treg, Tex, Tph-like, and proliferative

T cells as the most expanded populations (Figure 3E). Impor-

tantly, these expansions were universally strong across all sur-

veyed samples (Figure 3F), demonstrating their robust activation

in the HGSOC TME. Finally, Tregs and Texs showed intertumoral

co-expansion, again pointing to functional coordination poten-

tially orchestrated by varying tumor antigen burdens (Figure 3G).
Figure 3. HRD drives co-occurring hyper-expanded tumor-reactive T c

(A) Abundance co-variation between CD4+ and CD8+ T cell states across treatme

(upper triangle). A cluster of highly correlated cell states containing eTregs is highl

of cells within a cell state with a positive JAK-STAT activity score and in color gra

gradient the log2 FC of cell-state abundance in HRD over HRP tumors. Square

change.

(B) Correlation between the proportion of CD4+FOXP3+TNFRSF9+ cells among C

samples based on mIHC (n = 18 HRP samples, n = 34 HRD samples). Representa

cells and CD8+PD-1+ cells. Scale bars, 200 mm.

(C) UMAP embeddings of CD4+ (left) and CD8+ (right) T cells showing tumor-rea

(D) Average gene expression levels of state marker genes across CD4+ (left) and C

cell state where a gene expression is non-zero.

(E) UMAP embeddings of CD4+ (left) and CD8+ (right) T cells with colors denoting

clone size (bottom).

(F) Expansion magnitude of CD4+ (top) and CD8+ (bottom) T cell states across 1

(G) Correlation between the proportion of expanded Tregs and that of expanded

(H) Difference in TCR clonotype expansion proportions of eTreg (left), CD8+ Temra

12 pre-nira samples, n = 6 post-nira samples for eTreg; n = 6 pre-nira samples, n

samples for terminal Tex).

(I) Difference in total clonal diversity between pre- and post-niraparib blood or tu

normalized Shannon-Wiener index (n = 12 patients).

For boxplots, themiddle line in the box is themean, the bottom and top of the box

range of the lower and the upper quartiles, respectively. Rs, Spearman rank corre

test for (A), a two-sided unpaired t test for (H), and a two-sided pairedWilcoxon ran

Figure S5 and Tables S5 and S7.
Although the co-existence of immunosuppressive eTregs

with other activated, reactive T cell populations in HRD tumors

presented a well-regulated balance of anti- and pro-tumor

forces, the neoadjuvant therapies specifically counteracted

eTregs, Treg-like proliferative CD4+ T cells, and Tex-like prolif-

erative CD8+ T cells (Figure 2C), securing an anti-tumor net ef-

fect. To further study the treatment effect from a T cell clonal

expansion standpoint, which is an axis of tumor reactivity inde-

pendent of transcriptional phenotypes, we turned back to our

treatment-experienced main scRNA-seq cohort to delineate

the longitudinal TCR repertoire dynamics using the TCR

repertoire utilities for solid tissue 4 (TRUST4) algorithm (Fig-

ure S5A).39 Supporting the validity of the inferred data, we

found that the TCRs (1) were exclusively enriched in transcrip-

tome-defined T cells (Figure S5B), (2) formed clones with

extremely high privacy (Figures S5C and S5D), and (3) recapit-

ulated Treg dominance in the CD4+ population and overall

stronger CD8+ expansion, with Tex among the top (Figures

S5E and S5F). With these data, the only observed treatment-

induced differential expansions after niraparib treatment

happened in eTregs and CD8+ effector memory re-expressing

CD45RA (Temra) cells, with the former suppressed while the

latter elevated. By contrast, Tex expansion was not changed

by niraparib treatment (Figure 3H). We thus reasoned that the

suppression of eTregs by NANT in the HRD TME, both abun-

dance-wise and clonal-expansion-wise, should lead to even

more heightened tumor reactivity. Indeed, longitudinally

sequenced bulk TCR repertoires of 60 tumors and matched pe-

ripheral blood mononuclear cells (PBMCs) from 23 patients in

the NANT trial revealed a tumor-restricted significant decrease

in TCR diversity and an increase in clonality in most patients

(Figure 3I). Together, these results unraveled the complex ki-

netics of HRD-dependent and therapy-perturbed tumor-reac-

tivity landscape of tumor-infiltrating T cells wherein the key

immunoregulatory role of eTregs was highlighted.
ell populations

nt-naive samples for in-house data (lower triangle) and data from GSE165897

ighted. Circles on both sides of the main heatmap denote in size the proportion

dient the mean JAK-STAT activity score. The leftmost squares denote in color

s with a statistically significant difference are marked by an asterisk. FC, fold

D4+ cells and that of CD8+PD-1+ cells over CD8+ cells across treatment-naive

tive cell identity maps highlight the co-occurrence of CD4+FOXP3+TNFRSF9+

ctivity score. Cell states with uniquely high scores are labeled.

D8+ (right) T cell states. The circle size denotes the proportion of cells within a

cell-state annotations (top) or color grade representing log-transformed TCR

0 samples.

Texs across 10 samples.

(middle), and terminal Tex (right) between pre- and post-niraparib samples (n =

= 7 post-nira samples for CD8+ Temra; n = 8 pre-nira samples, n = 4 post-nira

mor TCR repertoire, as measured by clonality, Gini coefficient, D50 index, and

are the first and third quartiles, and the whiskers extend to the 1.53 interquartile

lation coefficient. p values were calculated using a two-sided Mann-Whitney U

k-sum test for (I). ns, non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. See also
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Intra-Treg/Tex cell-state shifts driven by HRD and
neoadjuvant therapeutic responses
Analysis of tumor-infiltrating Tregs40–42 and Texs43–45 has re-

vealed high intra-population heterogeneity for both. However,

it remains unclear to what extent Texs behave similarly to and

potentially coordinate with their terminally differentiated CD4+

counterparts, eTregs, on a finer scale. Our scRNA-seq data

captured >20,000 Tregs and �10,000 Texs, thereby allowing

a deep interrogation into the Treg and Tex sub-states

(Figures 4A–4P). We were able to further classify eTregs into 9

sub-states, and along with resting Tregs, we identified 10 sub-

states of Tregs in total (Figure 4A); in parallel, we identified 5

sub-states of Texs (Figure 4H). For Tregs, we observed a clear

differentiation gradient supported by RNA velocity, with the

resting population as the starting point and the terminal effector

one as the endpoint (Figure 4B). Texs showed a similar progen-

itor-to-terminal trajectory by RNA velocity, although with a

greater level of complexity (Figure 4I). In Tregs, resting cells

highly expressed known T cell naiveness/memory markers

such as CCR7, LEF1, and KLF2, while the terminal cells were

enriched for Treg markers like TNFRSF18, CCR8, and LAG3

(Figure 4C). Similarly, Texs showed a state separation based

on enriched expressions of progenitor markers such as GZMK

or CMC1 and terminal exhaustion markers such as ENTPD1 or

LAYN (Figure 4J). Additionally, both terminally differentiated

Tregs and Texs showed the strongest suppression/exhaustion

and tumor-reactivity signatures (Figures 4D and 4K). Gene reg-

ulatory networks constructed through single-cell regulatory

network inference and clustering (SCENIC)46 revealed state-

specific transcription factor activities in Tregs and Texs. Regu-

lons of known lineage drivers, such as TCF7 and NR3C1 for

T cell memory and BATF and NFKB1 for Treg maturation,

were specifically overrepresented in cells of matched Treg

states (Figure 4E). Likewise, Texs exhibited TCF21 and IFZF1

activities in the progenitor state, while NFKB1, REL, CEBPB,

and JUN were present in the terminal state (Figure 4L). Beyond

their transcriptional states, we recapitulated a clear resting/pro-

genitor-to-terminal trajectory by integrating RNA velocity and

clonal expansion in our scRNA-seq/TCR-seq cohort, with the

terminal domains enriched for the most expanded clones (Fig-

ures 4F and 4M). These state transitions were again confirmed

by differential expression patterns of canonical marker genes

(Figures 4G and 4N).
Figure 4. The dynamics of fine-grained Treg and Tex subsets under H

(A) UMAP embedding of Tregs with colors indicating cell-state annotations.

(B) UMAP embedding of Tregs of the same color annotations in (A) overlayed wi

(C) UMAP embeddings of Tregs showing gene expression patterns of cell-state

(D) Difference in gene signature scores across Treg cell states.

(E) SCENIC results showing the activities of transcription factor regulons in each

names of cell-state-specific representative transcription factors are highlighted.

(F) UMAP embeddings of Tregs with color grade representing TCR clone size an

(G) UMAP embeddings of Tregs showing expression patterns of cell-state gene

(H–N) Same as (A)–(G) but for Texs.

(O) UMAP embedding of TregswithMilo differential abundance testing results ove

FC between HRD and HRP samples (left) or between pre- and post-treatment s

correspond to the number of cells in each neighborhood. Areas with strong enric

(P) Same as (O) but for Texs.

See also Table S7.
Armed with these finest cell-state maps, we next investigated

how the interaction between HRD and therapies was manifested

through cell-state perturbations within Tregs and Texs. Graph-

based differential abundance testing using Milo47 pinpointed

the terminal states of Tregs and Texs as significantly enriched

in HRD tumors while depleted after treatment (Figures 4O and

4P). We thus revealed an intriguing consequence of neoadjuvant

therapies to be the reversal of Treg and Tex differentiation

gradients.

Differential intratumoral and peripheral clonal origins of
Tregs and Texs
To further understand how these differentiated and reactive

populations were instituted in the TME under HRD and later per-

turbed by treatment, we interrogated their clonal origins using

our scRNA/TCR-seq data. Associating the cell states by their

TCR repertoire overlaps, we found CD8+ states to be more

extensively exchanged among each other, while CD4+ state ex-

changes were largely confined to a few cases (Figure 5A). Inter-

estingly, effector Tph-like cells and Tregs had many shared

clones, and both showed little overlap with the other CD4+

states. The exception was with the proliferative population,

again indicating a tumor-reactive convergence constantly re-

plenished by a proliferative pool (Figures 3A, 3C, and 5A). By

contrast, the Tex repertoire in the CD8+ compartment had large

overlaps with all effectors as well as the resident memory and

the proliferative populations (Figure 5A). There was limited

sharing of Texs with central memory cells and Temras, suggest-

ing a differentiation path diverging from the rest of the lineage

(Figure 5A).

We then traced Treg and Tex clonal evolution across all indi-

viduals by assessing the extent these clones could be found in

other populations in the private lineage history of each patient.

Tregs showed moderate clonal kinship with proliferative CD4+

T cells inmost samples andwith Tph-like cells in several samples

(Figure 5B). For Texs, besides their strong connection with

GZMK+ progenitors, tissue-resident memory (Trm) and several

effector subsets provided a possible source as well (Figure 5B).

Notably, a TCR repertoire overlap does not necessarily indicate a

directional evolutionary relationship between two populations.

But overall, our clonal tracing results implicated intratumoral

non-Treg and non-Tex populations as the predecessors in the

Treg and Tex differentiation trajectories, respectively.
RD and neoadjuvant treatment

th streamlines denoting RNA velocity.

markers.

cell. Colored bars on top of the heatmap indicate cell-state annotations. The

d streamlines indicating RNA velocity.

markers.

rlayed in color grade. Nodes are neighborhoods, colored by the abundance log2
amples under chemotherapy (middle) or niraparib therapy (right). Node sizes

hment signals are highlighted with a black dashed circle. FC, fold change.
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Several studies have suggested, outside of the induction from

conventional CD4+ T cells, a possibility of peripheral replenish-

ment of tumor-infiltrating Tregs, albeit in a context-specific

manner.42,48 To gauge how frequently tumor and blood TCR

repertoire engaged in crosstalk in HGSOC, we first calculated

the blood-tumor repertoire overlap across patients using our

bulk TCR-seq data (Table S6). The proportion of shared clones

varied greatly across individuals and was independent of nira-

parib treatment (Figures 5C–5E). Importantly, for most individ-

uals, overlapped clones showed a strong co-expansion pattern,

indicating an effective clonal supplement from the circulation

(Figures 5F and 5G).

Since bulk TCR-seq data lacked a cell-state resolution, we

directly searched for the peripheral presence of intratumoral

Treg clones by profiling bulk TCR repertoires of purified blood

CD4+ T cells from the same patients in our scRNA-seq/TCR-

seq cohort (Table S6). Surprisingly, this analysis revealed

negligible clonal exchanges between the two compartments

(Figure 5H). Few CD4+ cell states had >5% of their TCR

clones found in the periphery blood, and Tregs showed the

weakest signals with an average overlap of <1% (Figure 5I).

Thus, Tregs seemed to possess a strong but tumor-restricted

self-expansion capability through a constant exchange with

the CD4+ proliferative pool. By contrast, highly expanded

Texs could converge from multiple effector CD8+ subsets.

IFN-induced MHC class II expression in HRD tumor cells
potentially contributes to eTreg enrichment
To understand where terminal eTregs or terminal Texs, two pop-

ulations of the utmost interest based on our previous analyses,

were positioned in a hierarchical and coordinated TME

response, we examined TME-wide the cell states they co-occur

with. Interestingly, such cell states were commonly marked by

the activation of IFN signaling (Figures 6A and 6D). These

included M1-like macrophages, IFN-responding myCAFs, IFN-

responding cancer cells, and THY1+ pericytes (Figures 6A and

6D). Importantly, the direction and magnitude of these co-varia-

tions were strictly aligned with the Treg/Tex differentiation gradi-

ents (Figures 6B and 6E). Additionally, they remained significant

when we switched the calculation of cell-state proportion to one

level above, namely eTregs over CD4+ T cells and Texs over

CD8+ T cells (Figures S6A–S6F).

Behaviors of cancer cells are fundamental driving forces of

the TME and are often the direct targets of chemotherapy and

targeted therapies such as niraparib.49 Among the three major

cancer cell populations in our dataset, the IFN-responding pop-

ulation strongly co-occurred with terminal eTregs (Figure 6C)
Figure 5. Tracing Treg/Tex origins in the TME and the circulation

(A) TCR repertoire overlaps between CD4+ (top) and CD8+ (bottom) T cell states

(B) Fraction of Treg clonotypes found in non-Treg cells (top) or of Tex clonotype

(C and D) Number of TCR clonotypes shared between matched PBMC and tum

(E) Difference in blood and tumor repertoire overlap between pre- and post-nirapa

significant).

(F and G) TCR repertoire co-expansion between PBMC and patient-matched tum

(H) Number of CD4+ TCR clonotypes shared between matched PBMC and tumor

respectively.

(I) Fraction of intratumoral TCR clonotypes observed in sample-matched PBMC

See also Tables S5 and S6.
and, to a lesser extent, with terminal Texs (Figure 6F). To under-

stand how IFN-responding cancer cells would specifically

contribute to Treg enrichment, we first evaluated the differential

antigen-dependent Treg interactions among cancer cell states

by comparing their antigen presentation machinery expres-

sions. Interestingly, IFN-responding cancer cells, enriched in

HRD tumors (Figure 6G), had significantly upregulated major

histocompatibility complex (MHC) class II expressions. MHC

class I genes already had a strong presence at baseline in

non-IFN-responding states andwere of even higher abundance

in the IFN-responding population (Figure 6H). This reflected a

well-established role of IFN in upregulating both MHC class I

and MHC class II gene expression through activating the mas-

ter regulators, CITA and CIITA.50,51

Epithelial cells, especially those lining the intestine, have long

been known to possess MHC class II-dependent Treg-promot-

ing capabilities.52,53 However, only recently have several lines

of evidence emerged to support a similar model in tumor con-

texts.54,55 In our data, IFN-responding cancer cells did not ex-

press CD80/86 genes at all and had minimal expressions of

most alternative co-stimulatory molecules (Figure 6H). This

was in sharp contrast to canonical antigen-presenting cells

such as dendritic cells and macrophages, which not only

possessed a full set of MHC class I/MHC class II complexes

but had a strong presence of co-stimulatory genes (Figures

6H and S6G). We further observed that even in the other cancer

cell populations not typified by enhanced IFN signaling, HRD

had a strong positive contribution to elevated MHC class II

gene expressions, based on a transcriptome-wide pseudobulk

analysis (Figure 6I). This close connection between HRD and

MHC class II activation is well aligned with HRD-driven

genomic instability being a major activator of the cyclic GMP-

AMP synthase (cGAS)-stimulator of interferon genes (STING)

DNA sensing pathway.56,57 Conversely, the expression level

of MHC class I genes showed no difference between HRD

and HRP cancer cells in all three states (Figures S6H and

S6I). To validate these findings, we experimentally demon-

strated the MHC class II responsiveness to IFN treatment or

BRCA1/2 deficiency in multiple ovarian or breast cancer cell

lines (Figure 6J). Therefore, interacting with MHC class II-posi-

tive cancer cells for CD4+ T cells may lead to a Treg phenotype

through aberrant stimulation of the TCR signaling without

essential subsequent co-stimulatory signals.58,59

Besides passively sequestering T cells into regulatory

and dysfunctional states, cancer cells may actively propagate

suppressive signaling through the upregulation of co-inhibitory

molecules.58,60 Indeed, our sample-level analysis showed
.

s found in non-Tex cells (bottom) across samples.

or samples for pre- (C) or post-niraparib (D) patients based on bulk TCR-seq.

rib samples (n = 12 patients, two-sided pairedWilcoxon rank-sum test, ns, non-

or across pre- (F) and post-niraparib (G) samples.

samples for treatment-naive patients based on bulk TCR-seq and scTCR-seq,

across CD4+ T cell states.
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strongly increased expressions of many co-inhibitory molecules

in IFN-responding cancer cells (Figure 6K), including factors with

established roles in favoring Texs and/or Tregs, such as PD-

L1,61,62 Galectin-9,63,64 indoleamine 2,3-dioxygenase (IDO),65,66

and ICOSL.67,68

Treg depletion as an effective therapeutic strategy to
suppress HRD tumors
Our systematic analyses highlighted the abundant enrichment of

immunosuppressive eTregs in HRD tumors and their marked

post-treatment reduction, which may be a key contributor to

the HRD-dependent clinical benefits of PARP inhibition in

HGSOC patients. Indeed, eTregs appeared as one of the periph-

eral immune subsets significantly reduced by maintenance

PARPi in epithelial ovarian cancer patients in a recent transla-

tional study.69 In our NANT trial, the post-treatment CA125 level

across patients showed a strong positive correlation with the

proportion of tumor-infiltrating terminal eTregs (Figure 7A). This

link between patient response and remaining eTregs prompted

us to hypothesize that directly targeting eTregs in combination

with niraparib would achieve an improved tumor-suppressing ef-

fect in the HRD context.

To test this hypothesis, we utilized a humanized therapeutic

monoclonal antibody (mAb), ZL-1218, currently being tested

to treat advanced solid tumors in a phase I clinical trial

(NCT05859464), to target a well-established phenotypic and

therapeutic eTreg marker, CCR8.70–72 To evaluate its efficacy,

we first constructed an orthotopic HGSOC mouse model

through intrabursal injection of ID8-Luc cells with CRISPR-edi-

ted Trp53 and Brca1 into CCR8-humanized (hCCR8) mice.

These HRD Trp53�/� tumors harbored a significantly higher pro-

portion of eTregs and terminal Texs than their HRP counterparts,

demonstrating human HGSOC relevance (Figure 7B). We then

administered niraparib and/or CCR8 mAb to tumor-bearing

mice after about 2weeks of transplantation (Figure 7C). Although

tumor progression was attenuated by niraparib or CCR8 mAb

alone, their combination indeed showed a significantly more pro-

nounced inhibitory effect (Figures 7D–7F). Importantly, the

development of hemorrhagic ascites, a lethal hallmark of ovarian

cancer,73,74 was dramatically curbed by the combination ther-
Figure 6. IFN-responding cancer cells contribute to Treg induction thr

(A) Ranking of cell types and cell states by abundance co-variation with termina

(B) Abundance co-variation between top IFN-responding cell states and all Treg

(C) Abundance co-variation between IFN-responding cancer cells (among all can

(D–F) Same as (A)–(C) but for terminal Texs (F, n = 38 samples).

(G) Difference in cancer cell-state proportion between pre-treatment HRD and HR

line in the box is the mean, the bottom and top of the box are the first and third qu

the upper quartiles, respectively.

(H) Average expression levels of MHC class I and MHC class II genes (left) or of p

(top) and DC (bottom) cell states. Circle size denotes the proportion of cells with

common protein names.

(I) Pseudobulk (sample-average) expression levels of MHC class II genes in prolife

the HRD status of each pre-treatment sample. Colored dots on the right indicate

size denotes statistical significance.

(J) Change of log-transformed MHC class II MFI in IFN-treated (left) or BRCA1/2

(K) Difference in pseudobulk gene expression Z scores of co-inhibitory molecule

same sample. Labels in parentheses are common protein names.

DC, dendritic cell; MFI, median fluorescence intensity; Rs, Spearman rank correla

(G) and (J) and a two-sided paired t test for (K). ns, non-significant, *p < 0.05, **p
apy (Figure 7G). PD-1+ Treg frequency was significantly reduced

by all therapies, with the largest reduction seen in the combina-

tion treatment group, as measured independently by flow cy-

tometry (Figure 7H) and IHC (Figures 7I and 7J). In addition to

CCR8 targeting, we explored another Treg-depleting therapy

and observed similar anti-tumor effects in conjunction with

PARP inhibition. Specifically, niraparib and CD25 mAb together

(Figure 7K) significantly slowed tumor progression (Figures 7L

and 7M), prevented hemorrhagic ascites (Figure 7N), and damp-

ened PD-1+ Tregs (Figure 7O) in the same orthotopic model but

without the humanized CCR8. Exhibiting broader applicability,

the combination regimen had its superior anti-tumor effect reca-

pitulated in two orthotopic breast cancer mouse models, namely

hCCR8 mice bearing Brca2-deficient EO771 cells (Figures 7P–

7R) or wild-type (WT) mice bearing Brca1-deficient EO771 cells

(Figures 7S–7U), both at the inguinal mammary fat pad. Notably,

the non-response to single-agent niraparib in the Brca2�/�

breast cancer model stood in contrast to responses in the

Brca1�/� models, likely because BRCA1 and BRCA2 mutations

differentially reshaped the TME in different cancer contexts.

Finally, we evaluated the potential toxicities induced by different

therapies with routine blood and biochemical examinations in

mice. Notably, there was no significant myelosuppression

(Figures S7A and S7B) or tissue damage (Figures S7C and

S7D) in mice treated with the combination therapy compared

with those receiving the monotherapy or control. Thus, the

depletion of eTregs by combining niraparib and CCR8/CD25

mAbs represents a promising intervention strategy for tumors

harboring HRD. Further investigations are merited to determine

whether the combination therapy can provide long-termmemory

responses and survival benefits.

DISCUSSION

Through comprehensive profiling of a neoadjuvant trial cohort,

our studywas endowedwith a unique ‘‘window of opportunity’’75

to investigate for the first time the interaction effects of HRD and

PARP inhibition on the TME of treatment-naive HGSOC tumors.

Although previous in vitro and preclinical studies showed that

PARP-1 deletion or inhibition promotes Treg differentiation and
ough MHC class II

l eTregs (among all Tregs) across all samples.

cell states (among all Tregs).

cer cells) and terminal eTregs (among all Tregs) (n = 48 samples).

P samples (n = 12HRP samples, n = 25HRD samples). For boxplots, themiddle

artiles, and the whiskers extend to the 1.53 interquartile range of the lower and

rimary and secondary co-stimulatory T cell ligand genes (right) across cancer

in a cell state where a gene expression is non-zero. Labels in parentheses are

rative (left) and non-proliferative cancer cells (right). Heatmaps on the top show

pseudobulk DESeq2 results where the color denotes log2 fold change, and the

-deficient (right) cells (n = 3 replicates).

s among cancer cell states (n = 67 samples). Lines connect data points of the

tion coefficient. p values were calculated using a two-sided unpaired t test for

< 0.01, ***p < 0.001, ****p < 0.0001. See also Figure S6.
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suppressive functions in non-cancer contexts,76–79 our observa-

tion of eTreg depletion by PARPi is the net effect of a series of

complex TME events, succeeding a collective emergence of

eTregs and Texs in response to heightened TMB induced by

HRD. In searching for an underlying mechanism, we identified

a group of HRD-enriched IFN-responding cancer cells bearing

aberrantly high expressions of MHCmolecules and co-inhibitory

ligands while lacking co-stimulatory molecules, thus potentially

reinforcing the presence of Tregs/Texs.

Although IFN signaling has traditionally been deemed as an

essential stimulator of anti-tumor immunity, recent studies

have revealed its central role in immune surveillance and

escape through both tumor-intrinsic and microenvironmental

mechanisms.80–84 The net effect of IFN on the TME may heavily

rely on the location, timing, and duration of exposure. Depending

on the tissue context and progression status of a tumor, these

parameters can drastically vary among cancer patients. Consid-

ering this, chronic IFN signaling underlying adaptive immuno-

suppression is particularly relevant in HGSOC because most

HGSOC tumors are diagnosed at an advanced stage with

widespread affected areas.85,86 A long latency period as such

allows HGSOC tumors with genomic instability to produce IFN

persistently.

In our data, rampant IFN signaling leads to widespread immu-

noediting within the TME, manifested through the delicate bal-

ance where the emergence of immunosuppressive eTregs

goes hand in hand with the surge of tumor-reactive effector

T cells. Echoing a recent study by Oliveira et al. that established

tumor-reactive Tregs to be a major mediator of immune evasion

in high-TMB melanoma,54 our study hints at, in the absence of

direct evidence supporting Treg tumor reactivity, a similar ma-

neuver adopted by HGSOC and potentially HRD tumors in

general. Accordingly, when the anti-CCR8 mAb was used to

directly and highly specifically deplete eTregs, HRD tumors

were effectively suppressed in multiple syngeneic mouse
Figure 7. eTreg depletion combined with PARP inhibition reduces HGS
(A) Correlation between the CA125 level of post-niraparib patients and the propo

correlation coefficient.

(B) Difference in the proportion of terminal Texs among CD8+ T cells (left, n = 6–7 m

group) between Trp53�/� Brca1�/� and Trp53�/� ID8 tumors.

(C) Schematic illustration of Trp53�/�Brca1�/� ID8 cells transplanted intoCCR8-h

niraparib (i.g.) and/or CCR8 mAb (i.p.) (n = 6 mice/group).

(D) Bioluminescent images of all mice in each group.

(E) Dynamics of tumor burdens at 3, 4, and 5 weeks of treatment, as monitored

(F–H) Difference in the weight of surgically resected tumors (F, n = 6 mice/group),

mice/group), or the proportion of PD-1+ Tregs among CD4+ T cells in the tumor

(I) Representative immunofluorescent images showing FOXP3 (green), PD-1 (red),

(J) Difference in the density of FOXP3+ (left) or FOXP3+PD-1+ (right) cells among tre

each slide to obtain an average count.

(K) Schematic illustration of Trp53�/� Brca1�/� ID8 cells transplanted into wild-ty

(i.g.) and/or CD25 mAb (i.p.) (n = 7–8 mice/group).

(L–O) Same as (D) and (F)–(H) but for niraparib (i.g.) and/or CD25 mAb (i.p.) in wi

(P) Schematic illustration of Brca2�/� EO771 cells transplanted into the inguinal m

CCR8 mAb (i.p.) (n = 6 mice/group) after the tumor volume reached �50 mm3.

(Q) Change in tumor volumes at multiple time points among treatment groups (n

(R) Images of surgically resected Brca2�/� EO771 tumors at endpoint among tre

(S–U) Same as (P)–(R) but for niraparib (i.g.) and/or CD25 mAb (i.p.) in WT mice (

i.g., intragastric administration; i.p., intraperitoneal administration. Data are shown

test except for (Q) and (T) where two-way analysis of variance (ANOVA) was use
models. Our strategy highlighted a focus on removing the domi-

nant immunosuppressive force to secure a net gain of anti-tumor

effects. However, HRD is a unique genomic feature whose defi-

nition and utility are largely restricted to a few cancer types (e.g.,

ovarian cancer, breast cancer, and prostate cancer). The extent

to which the effect of HRD on the TME can be generalized to

other cancer types with different kinds of genomic instability is

a key question in future research.

In summary, our in-depth analysis of patient samples from a

well-controlled trial cohort together with mechanistic interro-

gations in highly relevant preclinical models (1) revealed can-

cer-cell-extrinsic mechanisms underlying HRD as a valuable

biomarker; (2) confirmed the potential of niraparib as a candi-

date for chemo-free neoadjuvant therapeutics; and (3) unrav-

eled a rational realm of eTreg-centered immunotherapeutic

opportunities in HGSOC. Future efforts are warranted to

take this potential to transform the current treatment land-

scape where well-established ICIs have failed to generate

promising responses.

Limitations of the study
Our study has several limitations regarding data collection, anal-

ysis, and interpretation. First, we heavily relied on scRNA-seq

data to derive cell type/state proportions, which may obscure

the measurements of certain populations due to sampling and

processing bias. However, for our major focus, the T lympho-

cytes, mIHC and flow cytometry analyses on a large number of

tumor samples validated the findings regarding Treg enrichment

in HRD and reduction after treatment. Second, previous studies

have demonstrated intratumoral or site-specific TME heteroge-

neity by profiling multiple tumor sites within a patient. Our anal-

ysis did not consider this factor, mainly due to ensuring and

maximizing patient well-being in obtaining pre-treatment diag-

nostic laparoscopic biopsies to avoid additional trauma and

bleeding. Also, maximizing the patient count per cohort ensured
OC burden
rtion of terminal eTregs (among all Tregs) in their tumors. Rs, Spearman rank

ice/group) or CCR8+/PD-1+ Tregs among all CD4+ T cells (right, n = 5–7 mice/

umanized (hCCR8) mice via intrabursal injection 2 weeks before treatment with

by luminescence intensity (n = 6 mice/group).

the percentage of mice with hemorrhagic or non-hemorrhagic ascites (G, n = 6

(H, n = 3–5 mice/group) at endpoint among treatment groups.

and nucleus (blue). White arrowsmark FOXP3+PD-1+ cells. Scale bars, 100 mm.

atment groups (n= 3–6mice/group). 4 fields of viewwere randomly selected for

pe (WT) mice via intrabursal injection 2 weeks before treatment with niraparib

ld-type (WT) mice (M, n = 7 mice/group; O, n = 6–7 mice/group).

ammary fat pad of hCCR8mice and the administration of niraparib (i.g.) and/or

= 6 mice/group, two-way analysis of variance, *p < 0.05).

atment groups. Scale bars, 1 cm.

T, n = 6 mice/group; U, scale bars, 1 cm).

as mean values ± SEM. p values were calculated using a two-sided unpaired t

d. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S7.
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sufficient statistical power for inter-tumor comparisons, which is

a focus of our study. Third, we used computational methods to

infer key biological processes from our scRNA-seq data, such

as longitudinal TCR repertoire dynamics and Tex differentiation

trajectory. Although these inference data cannot replace direct

measurements, subsequent multifaceted analyses validated

good inference quality and led to important discoveries that

would otherwise be masked.
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PerCP/Cyanine5.5 anti-human CD4 BioLegend Cat# 300529; RRID: AB_893328

Brilliant Violet 785� anti-human CD4 BioLegend Cat# 300554; RRID: AB_2564382

APC anti-human CD8a BioLegend Cat# 300912; RRID: AB_314116

FITC anti-human CD8a BioLegend Cat# 300905; RRID: AB_314109

FITC anti-human CD19 BioLegend Cat# 302206; RRID: AB_314236

PE anti-human CD45 BioLegend Cat# 368510; RRID: AB_2566370

PE anti-human HLA-DR BioLegend Cat# 307606; RRID: AB_314684

APC anti-mouse CD198 (CCR8) BioLegend Cat# 150310; RRID: AB_2629602

Brilliant Violet 785� anti-mouse CD279

(PD-1)

BioLegend Cat# 135225; RRID: AB_2563680

Brilliant Violet 510� anti-mouse CD25 BioLegend Cat# 102042; RRID: AB_2562270

Anti-mouse PD-1 Cell Signal Technology Cat# 84651; RRID: AB_2800041

Anti-human PD-1 Cell Signal Technology Cat# 86163; RRID: AB_2728833

Anti-human TNFRSF9 Cell Signal Technology Cat# 19541

Anti-human CD4 Abcam Cat# ab133616; RRID: AB_2750883

Anti-human CD8a Abcam Cat# ab237709; RRID: AB_2892677

Anti-human/mouse FOXP3 Abcam Cat# ab215206; RRID: AB_2860568

Anti-human Pan-Cytokeratin Abcam Cat# ab7753; RRID: AB_306047

InVivoPlus anti-mouse CD25 (IL-2Ra) Bioxcell Cat# BP0012

In vivo anti-human CCR8 Zai Lab (Shanghai) Co., Ltd. ZL-1218

Library preparation and sequencing reagents

Tumor Dissociation Kit, human Miltenyi Biotec Cat# 130-095-929

Tumor Dissociation Kit, mouse Miltenyi Biotec Cat# 130-096-730

Red Blood Cell Lysis Solution (10x) Miltenyi Biotec Cat# 130-094-183

Dead Cell Removal Kit Miltenyi Biotec Cat# 130-090-101

Tissue Storage Solution Miltenyi Biotec Cat# 130-100-008

gentleMACSTM Octo Dissociator with

Heaters

Miltenyi Biotec Cat# 130-096-427

Chromium Next GEM Single Cell 3’ Gel

Bead Kit v.3.1

10x Genomics Cat# 1000122

Chromium Next GEM Single Cell 3’

GEM Kit v.3.1

10x Genomics Cat# 1000123

(Continued on next page)
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Chromium Next GEM Single Cell 3’ Library

Kit v.3.1

10x Genomics Cat# 1000157

Dynabeads Myone Silane 10x Genomics Cat# 2000048

Dual Index Kit TT Set A 10x Genomics Cat# 1000215

SPRIselect Reagent Kit Beckman Coulter Cat# B23318

Chromium Next GEM Chip G Single Cell Kit 10x Genomics Cat# 1000120

Chromium Controller 10x Genomics Cat# 120270

Acridine Orange (AO) / Propidium Iodide (PI)

assay

DENOVix Cat# CD-AO-PI-1.5

GEXSCOPE� Single Cell RNA Library Kit

Tissue V2

Singleron Cat# 5180012

sCircle� Single Cell Full Length Immuno

TCR Library Kit Cell

Singleron Cat# 4153011

QIAamp DNA Mini Kit QIAGEN Cat# 51306

Multiplex PCR Kit QIAGEN Cat# 206145

Magnetic beads Beckman Coulter Cat# A63882

KAPA HiFi HotStart ReadyMix PCR Kit KAPA BioSystems Cat# KK2631

Agilent 2100 Bioanalyzer and the

DNA HS kit

Agilent Technologies N/A

Qubit fluorometer and the Qubit dsDNA HS

(High Sensitivity) Assay Kit

Invitrogen Cat# Q33231

Multiplex PCR Kit QIAGEN Cat# 206143

Reagents and Kit

DNeasy Blood &Tissue Kit QIAGEN Cat# 69504

Precision Human HRD Assay Precision Scientific N/A

Zombie NIR� Fixable Viability Kit BioLegend Cat# 423105

Ficoll TBD Science Cat# LTS1077

Human IFN-g Recombinant Protein PeproTech Cat# 300-02

Human IFN-b Recombinant Protein PeproTech Cat# 300-02BC

Human IFN-a Protein Acro biosystems Cat# IFA-H52H9

X-tremeGENE HP DNA Transfection

Reagent

Roche Cat# 6366236001

Polybrene YEASEN Cat# 40804ES76

Puromycin Selleck Cat# S7417

Blunt Simple Cloning Kit Transgen Cat# CB111-01

FastPfu Fly PCR SuperMix(-dye) Transgen Cat# AS231

Fixation/Permeabilization Solution Kit BD Biosciences Cat# 554715

Opal 6-Plex Manual Detection Kit Akoya Biosciences Cat# NEL81100KT

Reverse Transcription Kit Vazyme Cat# R323-01

Platinum� SuperFi II DNA Polymerase Thermo Fisher Scientific Cat# 12361010

Bortezomib Selleck Cat# S1013

Niraparib Zai Lab (Shanghai) Co., Ltd. N/A

DMEM Thermo Fisher Scientific Cat# 10566016

RPMI 1640 medium Thermo Fisher Scientific Cat# 61870036

MCDB 105 medium Sigma-Aldrich Cat# M6395-1L

199 medium Thermo Fisher Scientific Cat# 12340030

McCoy’s 5A medium Thermo Fisher Scientific Cat# 12330031

FBS Gibco Cat# A5669801

Penicillin-streptomycin solution Thermo Fisher Scientific Cat# 10378016

DAPI Thermo Fisher Scientific Cat# 62247

(Continued on next page)
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Lipofectamine� 3000 Thermo Fisher Scientific Cat# L3000001

TRI reagent Sigma-Aldrich Cat# T9424

SYBR Green Bio-Rad Laboratories Cat# 1725124

Experimental models: Cell lines

BT-549 ATCC Cat# HTB-122

MDA-MB-231 ATCC Cat# CRM-HTB-26

OV90 ATCC Cat# CRL-3585

SKOV3 ATCC Cat# HTB-77

HEK293T ATCC Cat# CRL-3216

A2780 Sigma-Aldrich Cat# 93112519

OVCAR8 MDACC’s Characterized Cell Line Core N/A

ID8 Sigma-Aldrich Cat# SCC145

EO771 ATCC Cat# CRL-3461

Experimental models: Organisms/strains

C57BL/6N mice Vital River Strain Code 213

C57BL/6Smoc-Ccr8em3(hCCR8)/Smoc Shanghai Model Organisms Center, Inc. Cat# NM-HU-2000054

C57BL/6-Ccr8tm1(CCR8)Bcgen/Bcgen Biocytogen Cat# 110096

Oligonucleotides

SiBRCA1 #1: CCACACGATTTGACGGAAA Ribobio N/A

SiBRCA1 #2: GCAGGAAATGGCTGAACTA Ribobio N/A

SiBRCA2 #1: GAAGAACAATATCCTACTA Ribobio N/A

SiBRCA2 #2: CATGGAATCTGCTGAACAA Ribobio N/A

Brca1 gRNA sequence #1:

GACTCCTTCCCAGGACAACT

Tsingke N/A

Brca1 gRNA sequence #2:

TGTCTACATTGAACTAGGTA

Tsingke N/A

Brca2 gRNA sequence #1:

TGCTTTGGCATATTATACGG

Tsingke N/A

Brca2 gRNA sequence #2:

TAGGACCGATAAGCCTCAAT

Tsingke N/A

Trp53 gRNA sequence #1:

TGAGCGCTGCTCCGATGGTGA

Tsingke N/A

Trp53 gRNA sequence #2:

AGTGAAGCCCTCCGAGTGTC

Tsingke N/A

BRCA1 forward primer:

CTGAAGACTGCTCAGGGCTATC

Tsingke N/A

BRCA1 reverse primer:

AGGGTAGCTGTTAGAAGGCTGG

Tsingke N/A

BRCA2 forward primer:

GGCTTCAAAAAGCACTCCAGATG

Tsingke N/A

BRCA2 reverse primer:

GGATTCTGTATCTCTTGACGTTCC

Tsingke N/A

GAPDH forward primer:

GTCTCCTCTGACTTCAACAGCG

Tsingke N/A

GAPDH reverse primer:

ACCACCCTGTTGCTGTAGCCAA

Tsingke N/A

Brca1 forward primer:

CTGAGTCCAAAGGTGACAGCT

Tsingke N/A

Brca1 reverse primer:

GTGTTGGAAGCAGGGAAGATC

Tsingke N/A

Brca2 forward primer:

GCCTTGGTCGTGGTGTCTG

Tsingke N/A
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Brca2 reverse primer:

TGCCCAAAGTCCCAGTTCA

Tsingke N/A

Trp53 forward primer:

ATCCACAGCCATCACCTCACT

Tsingke N/A

Trp53 reverse primer:

GAACTTTTGTCCCTCCCACTTT

Tsingke N/A

LentiCRISPRv2 plasmid Addgene Cat# 52961

psPAX2 Addgene Cat# 12260

pMD2.G Addgene Cat# 12259

Blunt Simple Cloning Kit TRANS Cat# CB111-01

Deposited data

Single-cell RNA-seq data from human

PBMC

Hao et al.87 GSE164378

Single-cell RNA-seq data from mouse

melanoma and colon adenocarcinoma

Andreatta et al.88 https://doi.org/10.6084/m9.figshare.

1247857

Single-cell RNA-seq data from multiple

human cancer types

Nieto et al.89 https://doi.org/10.5281/zenodo.4263972

Single-cell RNA-seq data from multiple

human cancer types

Zheng et al.90 GSE156728

Single-cell RNA-seq data from multiple

human cancer types

Qian et al.91 http://blueprint.lambrechtslab.org

Single-cell RNA-seq data from human ovary Han et al.92 GSE134355

Single-cell RNA-seq data from human

fallopian tube

Dinh et al.93 GSE151214

Single-cell RNA-seq data from human ovary Fan et al.94 GSE118127

Single-cell RNA-seq data from human

pancreas, intestine, and lung

Buechler et al.95 https://www.fibroxplorer.com/

Single-cell RNA-seq data from multiple

human cancer and tissue types

Mulder et al.96 GSE178209

Single-cell RNA-seq data from multiple

human cancer types

Cheng et al.97 GSE154763

Single-cell RNA-seq data from pre- and

post-chemotherapy ovarian cancer

patients

Zhang et al.30 GSE165897

Single-cell RNA/TCR-seq and bulk TCR-

seq profiles

This study GSE222557

Raw data for 10x single-cell RNA-seq

profiles

This study GSA for Human: HRA007180

Raw data for Singleron single-cell RNA-seq

profiles

This study GSA for Human: HRA007216

Raw data for Singleron single-cell TCR-seq

profiles

This study GSA for Human: HRA007181

Raw data for bulk TCR-seq profiles This study GSA for Human: HRA007230

Software and algorithms

Adobe Illustrator Adobe https://www.adobe.com/products/

illustrator.html

BioRender BioRender https://app.biorender.com/

CeleScope v.1.11.0b0 Singleron Biotechnologies https://github.com/singleron-RD/

CeleScope

CellChat v.1.5.0 Jin et al.98 https://github.com/sqjin/CellChat

cNMF v.1.4 Kotliar et al.99 https://github.com/dylkot/cNMF

decoupleR v.1.5.0 Badia-i-Mompel et al.100 https://github.com/saezlab/decoupleR
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DeepCell v.0.12.2 Bannon et al.101 https://www.deepcell.org/about

DESeq2 v.1.30.1 Love et al.102 https://github.com/thelovelab/DESeq2

dplyr v.1.1.4 Wickham et al.103 https://dplyr.tidyverse.org

DropletUtils v.1.10.3 Lun et al.104 https://bioconductor.org/packages/

DropletUtils

ggplot2 v.3.3.5 Wickham105 https://ggplot2.tidyverse.org

ggpubr v.0.6.0 Kassambara106 https://rpkgs.datanovia.com/ggpubr/

index.html

ggsci v.3.1.0 Xiao107 https://nanx.me/ggsci/index.html

GATK v4.1.0.0 McKenna et al.108 https://github.com/broadinstitute/gatk

harmonypy v.0.0.9 Korsunsky et al.109 https://github.com/slowkow/harmonypy

inferCNVpy v.0.2.1.dev20 Patel et al.110 https://github.com/icbi-lab/infercnvpy

Jupyter Notebook v6.5.6 Kluyver et al.111 https://jupyter.org/

kb_python v.0.27.0 Melsted et al.112 https://github.com/pachterlab/kb_python

maftools v.2.20.0 Mayakonda et al.113 https://github.com/PoisonAlien/maftools

matplotlib v.3.7.3 Hunter114 https://matplotlib.org

milopy v.0.0.999 Dann et al.47 https://github.com/emdann/milopy

MiXCR v4.0.0b Bolotin et al.115 https://github.com/milaboratory/mixcr

NumPy v.1.26.3 Harris et al.116 https://numpy.org/

pandas v.2.2.0 The Pandas Development Team117 https://pandas.pydata.org/

phenoptr v.0.3.2 Johnson118 https://akoyabio.github.io/phenoptr

Python v.3.10.13 Python Software Foundation https://www.python.org

pyscenic v.0.11.1 Aibar et al.46 https://pyscenic.readthedocs.io

QuPath v.0.4.3 Bankhead et al.119 https://qupath.readthedocs.io

R v4.3.2 The R Foundation https://www.r-project.org

Scanpy v.1.9.1 Wolf et al.120 https://scanpy.readthedocs.io

scipy v.1.12.0 Virtanen et al.121 https://github.com/scipy/scipy

Scirpy v.0.14.0 Sturm et al.122 https://scirpy.scverse.org

scrublet v.0.2.1 Wolock et al.123 https://github.com/swolock/scrublet

scVelo v.0.2.4 Bergen et al.124 https://scvelo.readthedocs.io

seaborn v.0.12.2 Waskom125 https://seaborn.pydata.org

Seurat v4.2.0 Hao et al.87 https://github.com/satijalab/seurat

scikit-learn v.1.4.0 Pedregosa et al.126 https://scikit-learn.org

symphony v.0.1.0 Kang et al.127 https://github.com/immunogenomics/

symphony

Triku Ascensión et al.128 https://triku.readthedocs.io

TRUST4 v.1.0.5 Song et al.39 https://github.com/liulab-dfci/TRUST4

UCell v.1.3.1 Andreatta et al.129 https://github.com/carmonalab/UCell

velocyto v.0.17 La Manno et al.130 https://velocyto.org/velocyto.py

Other

Code This study https://zenodo.org/doi/10.5281/zenodo.

10990093
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Han Liang

(hliang1@mdanderson.org).
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Materials availability
All unique/stable reagents generated in this study are available from the lead contact with a completedMaterials Transfer Agreement.

Data and code availability
d Raw sequencing data have been deposited in the Genome Sequence Archive for Human at the National Genomics Data Center

with accession number HRA007180 for 10x scRNA-seq, HRA007216 for Singleron scRNA-seq, HRA007181 for Singleron

scTCR-seq, and HRA007230 for bulk TCR-seq. All records are under project PRJCA016620 (https://ngdc.cncb.ac.cn/

bioproject/browse/PRJCA016620), which will be provided for scientific research upon request complying with the law due

to human patient privacy concerns. Processed, de-identified scRNA-seq, scTCR-seq, and bulk TCR-seq profiles are publicly

available at the Gene Expression Omnibus (GEO) with accession number GSE222557. This study also utilized existing, publicly

available data, the accession numbers for which are listed in the key resources table.

d All original code has been deposited at Zenodo in the form of Jupyter Notebooks or R scripts (https://zenodo.org/doi/10.5281/

zenodo.10990093).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient recruitment and sample collection
Niraparib-based neoadjuvant therapy in HGSOC patients with HRD is a multicenter, prospective, single-arm, open-label, phase II

clinical study, and the comprehensive study design was described in our previous publication.21 We consecutively recruited patients

whowere newly diagnosedwith unresectable HGSOC (Fagotti scoreR 8 or upper abdominal computed tomography [CT] scoreR 3)

and would receive neoadjuvant therapies followed by interval debulking surgery (IDS) to be the candidate population betweenMarch

5, 2021, and July 18, 2023.

HRD testing was performed on tumor biopsy samples (tumor contentR 30%) using a customized and validated HRD assay131 that

profiles germline and somatic mutations in a panel of 36 DNA damage repair genes and calculates a genomic instability score (GIS) in

seven business days. Tumor samples with GISR 42 or with pathogenic or likely pathogenic BRCA mutations were defined as HRD,

and the remaining were designated HRP. Niraparib was administered to eligible HRD patients at a dose of 200 or 300 mg (body

weight R 77 kg and platelet countR 150000/UL) for 2 cycles, each lasting 28 days. Patients who were not interested in the clinical

study (HRP or subjective rejection) were given carboplatin AUC = 5 and paclitaxel 175mg/m2 every 3 weeks for 2–3 cycles. The re-

sponses to neoadjuvant therapies were determined according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1

and the Gynecologic Cancer InterGroup (GCIG) CA125 response criteria,22,23 as tumor burden changes and were categorized as

complete response (CR), partial response (PR), or non-response (NR). Patients with CR or PR would subsequently receive IDS.

The incidence of adverse events (AEs) at any grade during the treatment, surgery, and chemotherapy was estimated by Common

Terminology Criteria for Adverse Events (CTCAE version 5.0).

This study was approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology

([S122]-5) and strictly compliedwith the ethical principles in theDeclaration ofHelsinki, GoodClinical Practice, and applicable regulatory

requirements. All patients provided informed consent for the collection of tissue and blood samples for research and genomic profiling.

34 patients were enrolled in the main scRNA-seq cohort, 17 of which received niraparib treatment, and 17 received chemotherapy. For

these patients, weobtained a total of 67 tumor samples, including 24matched pre- and post-treatment specimenpairs (Table S1). Addi-

tional tumor and blood specimens were collected for mIHC (Table S3), flow cytometry (Table S4), scRNA/TCR-seq (Table S5), and bulk

TCR-seq (Table S6). Pre-treatment biopsies were collected via laparoscopic sampling before clinical enrollment. The site-matched

post-niraparib tumor samples were collected via open laparotomy IDS when the patients completed the 2 cycles of niraparib, and

anobjective response assessmentwas performed. For patientswith chemotherapy, the post-treatment sampleswere obtained through

surgical resection, according toNCCNguidelines. All the tumor samples were collected strictly according to clinical practice guidelines.

Animals
Wild-type (WT) C57BL/6 mice were purchased from Vital River, homozygous B-hCCR8 C57BL/6 mice (C57BL/6-Ccr8tm1(CCR8)/

Bcgen) were purchased from Biocytogen and hCCR8 C57BL/6 mice (C57BL/6Smoc-Ccr8em3(hCCR8)/Smoc) were purchased from

Shanghai Model Organisms Center, Inc. All the mice studies were performed in compliance with the guidelines of Institutional Animal

Care and the Ethics Committee of the Tongji Medical School, Huazhong University of Science and Technology (HUST, Wu-

han, China).

METHOD DETAILS

Sample collection and processing
Peripheral blood was collected from donors using Streck Cyto-Chex BCT (Streck, La Vista, NE, USA). PBMCswere isolated from the

peripheral blood with human PBMC separation liquid (Ficoll, TBD Science) and were re-suspended in 1 3 PBS for further
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immunostaining and T-cell sorting. Pre- and post-treatment tumor samples were site-matched and obtained as described above.

Fresh pre-treatment tumor samples were shipped in Mylteni Biotec� Tissue Storage Solution and maintained at 4 �C until process-

ing. An 8 cm3 (2 3 2 3 2 cm) tumor tissue derived from each patient was cut into three pieces: one was sent to Precision Scientific

laboratory for HRD testing, another was dissociated into a single-cell suspension for scRNA-seq, and the third was used to generate

paraffin-embedded samples for IHC staining. The post-treatment tumor samples were divided into two pieces for scRNA-seq and

IHC staining. To generate single-cell suspensions, tumor tissues were dissociated immediately after they arrived in the lab using the

gentleMACS� Dissociator with Heaters and the human tumor dissociation kit (Mylteni Biotec), as per the manufacturer’s instruc-

tions. Following dissociation, single-cell suspensions were filtered using MACS SmartStrainers (70 mm and 40 mm). They were

then treated with Red Blood Cell Lysis Solution and one or two rounds of dead cell removal using the Dead Cell Removal Kit, depend-

ing on the number of dead cells in each sample. Finally, cell pellets were re-suspended in 1 3 PBS for further scRNA-seq or

scTCR-seq.

HRD assay
Blood, formalin-fixed paraffin-embedded (FFPE) tissue specimens, and fresh tumor samples were collected for each participant.

Genomic DNA was extracted from blood samples using the DNeasy Blood & Tissue Kit (QIAGEN). Blood samples were lysed in Pro-

teinase K-supplemented lysis buffer. Buffering conditions were adjusted to provide optimal DNA-binding conditions, and the lysate

was loaded onto the DNeasy Mini spin column or the DNeasy 96 plate. During centrifugation, the DNA was selectively bound to the

DNeasy membrane, whereas contaminants passed through. The remaining contaminants and enzyme inhibitors were further

removed in two wash steps, and the DNA was then eluted in water or buffer. The collected FFPE tumor specimens were stained

with hematoxylin and eosin (H&E) to evaluate tumor purity. The process of HRD testing was only performed for samples with an esti-

mated tumor purity of > 30%. Genomic DNA was extracted from fresh tumor samples using the DNeasy Blood &Tissue Kit and the

above-mentioned protocol for blood samples. The purified DNAwas quantified on a Qubit 4.0 (Life) to confirm a sufficient amount for

downstream experiments. The extracted DNA from blood and fresh tumor samples was captured using the Precision Human HRD

Assay (Precision Scientific (Beijing) Co., Ltd.), which is a customized panel of probes against sites of nucleotide polymorphisms to

quantify GIS and genomic regions of 36 DNA damage repair genes for germline and somatic mutation calling. The captured DNAwas

sequenced on an Illumina NovaSeq 6000 NGS instrument.

scRNA-seq library preparation and sequencing
The scRNA-seq library was prepared with ChromiumNext GEMSingle Cell 3’ Reagent Kits v.3.1 from 10xGenomics according to the

manufacturer’s instructions. In brief, the single-cell suspensions dissociated from tumors (derived from P01-P34) were centrifuged

andwashed twicewith 13PBS, and then the single-cell pellets were re-suspendedwithin 13PBS supplementedwith 0.04%BSA at

a final concentration of 1 3 106 cells/mL. About 10 mL of cell suspensions (z10000 cells) were mixed with barcoded Single Cell 3ʹ
v.3.1 Gel Beads and Partitioning Oil to generate nanoliter-scale Gel beads in EMulsion (GEMs). Next, the GEMs were subjected to

reverse transcription PCR using a T100 Thermal Cycler (Bio-Rad) in a 125 mL volume (program: 53 �C for 45 min, 85 �C for 5 min, hold

at 4 �C) to obtain full-length cDNA with barcoding. After this, the first-strand cDNAs were incubated with Dynabeads Cleanup Mix to

purify them from the PCRmix and then amplified using the Amplification Reaction Mix on a T100 Thermal Cycler (Bio-Rad) (program:

98 �C for 3 min, 98 �C for 15 seconds, 63 �C for 20 seconds, 72 �C for 1 min [step 2 to step 4 for total 12 of cycles], and hold at 4 �C).
Subsequently, the amplified cDNA was used to generate a single-cell 3ʹ gene expression dual index library using Chromium Next

GEMSingle Cell 3’ Library Kit v.3.1 (10x Genomics). Finally, the well-prepared single cell 3ʹ gene expression libraries were sequenced

on an Illumina NovaSeq 6000 sequencer.

Flow cytometry and sorting for scTCR-seq and bulk TCR-seq
Single-cell suspensions were generated as described above. To sort CD3+ T cells from tumors, the single-cell suspensions were pre-

incubated with fixable viability dye (BioLegend) in 1 3 PBS for �30 min and then labeled with surface antibodies: CD45-PE

(BioLegend), CD3-APC (BioLegend), and CD19-FITC (BioLegend). To sort CD4+ T cells, PBMCs were preincubated with a fixable

viability dye and then stained with antibodies: CD4-PerCP/Cyanine5.5 (BioLegend) and CD8-FITC (BioLegend). After immunostain-

ing, cell pellets were resuspended in 200 mL 13 PBS supplemented with 0.5%BSA and EDTA. Sorting for scTCR-seq and bulk TCR-

seq was performed on a FACSAria (BD Biosciences).

scTCR-seq library preparation and sequencing
The scTCR-seq library was generated using the sCircle� Single Cell Full-Length Immunoreceptor Library Kit (Singleron) according to

themanufacturer’s instructions. In brief, the sorted CD3+ T cells from 10 patients were resuspended in cold PBS at a concentration of

� 3 3 105 cells/mL. Approximately 100 mL of homogenous cell suspension was injected into a prepared microchip via the inlet port

slowly and let stand for 5 min at room temperature, allowing the suspension to fully enter themicrowells. Following cell loading, 60 mL

of the barcode beads suspension was loaded onto the microchip and incubated for 1 min. After three washes with PBS, 100 mL of

prepared Lysis Mix was injected into the microchip to lyse the cells, leading to the released mRNA binding to the barcode beads.

Immediately following mRNA capture, barcode bead retrieval was performed with a Singleron Magnetic Rack and pre-chilled

wash buffer A (supplied by the Library Kit) to obtain the barcode beads with bound mRNA. The mRNA was reverse transcribed
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on a thermal mixer preheated to 42 �Cat 1300 rpm for 90min, followed by cDNA amplification using a T100 Thermal Cycler (Bio-Rad).

A portion of the purified cDNAwas subjected to scRNA-seq library preparation. The remaining cDNAwas used for scTCR-seq library

preparation and programmed at cDNA circularization, digestion, and purification initially. After three rounds of TCR enrichment, the

immune receptor enriched library was prepared through fragmentation, adapter ligation, purification of the adapter-ligated cDNA,

enriched library amplification, and purification and size selection of the amplified enriched libraries. Lastly, the prepared libraries

were sequenced on an Illumina NovaSeq 6000 Sequencer.

Bulk RNA isolation and TCR sequencing
DNA from CD4+ T cells was extracted using the QIAamp DNA Mini Kit (QIAGEN). To generate the template library for the T-cell reper-

toire, multiplex PCR amplification of CDR3 of the TCR b chain (TRB) was conducted, including PCR1 and PCR2 inclusively and semi-

quantitatively. Primersweredesigned to acquiremaximumcoverageof a heterogeneous set of target sequences of V and J familieswith

a minimal PCR bias. Primer sequences were filed as part of a Chinese patent (CN105087789A). During the first round, 10 PCR cycles

were used to amplify the CDR3 fragments using 32 forward primers for V genes and 13 reverse primers for J geneswith aMultiplex PCR

Kit (QIAGEN). Then, PCR1was performedwith 1 cycle of 95 �C for 15min, 10 cycles of denaturation at 94 �C for 30 sec, and 10 cycles of

annealing at 60 �C for 90 sec and extension for 30 sec at 72 �C. After a final extension for 5 min at 72 �C, the samples were held at 4 �C.
The target fragment of the multiplex PCR products was purified with Agencourt magnetic beads (Beckman Coulter). In the second

round, PCR2 was performed using universal primers with a KAPA HiFi HotStart ReadyMix PCR Kit (KAPA BioSystems) as follows:

one cycle at 98 �C for 1 min; 20 cycles of denaturation at 98 �C for 20 sec, annealing at 60 �C for 30 sec, and extension at 72 �C for

30 sec; and a final extension at 72 �C for 5 min. The samples were then held at 4 �C. Final PCR products were purified again. The tar-

geted fragments were retrieved using an E-Gel Power Snap Electrophoresis System (Invitrogen�). The library was assessed on an Agi-

lent 2100 Bioanalyzer and the DNA HS kit (Agilent Technologies) to estimate fragment size distribution, while the library concentration

was measured using a Qubit fluorometer and the Qubit dsDNA HS (High Sensitivity) Assay Kit (Invitrogen). Paired-end sequencing of

libraries was carried out with a read length of 100 bp using the DNBSEQ-T7RS sequencer (MGI) platform.

DNA from patient-matched PBMC and tumor samples of ovarian cancer patients was extracted using the QIAamp DNA Mini Kit

(QIAGEN) following the manufacturer’s instructions. Multiplex PCR primers from Zhang et al.132 were used to amplify the rearranged

CDR3 regions of TCRb, including 30 forward V primers and 13 reverse J primers. The reaction mix was prepared as follows: QIAGEN

Multiplex PCRMaster Mix (QIAGEN), 0.53Q solution, 0.2 mMVbF pool, and JbR pool were combined in a 50 mL volume. The cycling

conditions were: 95 �C for 15 min, followed by 25–30 cycles at 94 �C for 30 sec, 60 �C for 90 sec, and 72 �C for 30 sec, with a final

extension at 72 �C for 5 min. After multiplexed PCR, single-stranded PCR products were produced via denaturation and then under-

went the circularization program. The replication of single-stranded circular DNAmolecules was achieved through rolling cycle ampli-

fication, resulting in the generation of a DNA nanoball (DNB) containing multiple copies of DNA. High-quality DNBs were then loaded

into patterned nanoarrays using MGISEQ 2000.

Flow cytometry for Treg quantification in human tumors
To determine Treg ratios in clinical specimens, fresh tumors derived from patients enrolled in the clinical trial were cut into pieces on

ice and dissociated into single-cell suspensions using a gentleMACS�Dissociator with Heaters and a Tumor Dissociation Kit, human

(Miltenyi Biotec), as per the manufacturer’s instructions. These single-cell suspensions were preincubated for �30 min with Fixable

Viability Dye (BioLegend) to stain dead cells and then labeled with surface antibodies, including CD45-PE (BioLegend), CD3-PC5.5

(BioLegend), CD4-BV785 (BioLegend), CD8-APC (BioLegend), CD25-BV510 (BDBiosciences), CD127-BV605 (BDBiosciences), and

CCR8-BV421 (BD Biosciences). The fluorescence intensity was determined using a Beckman Coulter Cytoflex. FlowJo was used for

data analysis.

Multiplex immunohistochemistry (mIHC)
For each clinical sample, a part of fresh tumor tissue was washed with PBS, fixed with formaldehyde, and embedded in paraffin.

Multiplex IHCwas performed on serial tissue slides cut from these paraffine-embed samples following themanufacturer’s instruction

(Opal 6-plex Manual Detection Kit, NEL81100KT, Akoya Biosciences). Slides were stained with CD4 (Abcam), CD8 (Abcam), PD-1

(Cell Signaling Technology), TNFRSF9 (Cell Signaling Technology), FOXP3 (Abcam), pan-cytokeratin (Abcam), and DAPI (Thermo

Fisher Scientific) in the order mentioned. All primary antibodies were incubated overnight in a cryogenic laboratory for more specific

antigen-antibody binding. Then, the slides were blocked with an antifade mounting medium and scanned by PHENO IMAGERHT

(Akoya Biosciences).

Cell culture and treatment
Human breast cancer cell lines (BT-549 and MDA-MB-231), ovarian cancer cell lines (OV90 and SKOV3), and HEK293T cells were

purchased from ATCC. Human ovarian cancer cell line A2780 was purchased from Sigma-Aldrich and OVCAR8 was obtained from

MDACC’s Characterized Cell Line Core. MDA-MB-231 and HEK293T cells were cultured in DMEM (Thermo Fisher Scientific) sup-

plemented with 10% FBS (Gibco) and penicillin-streptomycin solution (Thermo Fisher Scientific). BT-549, A2780, and OVCAR8 cells

were cultured in RPMI 1640 medium (Thermo Fisher Scientific) with 10% FBS (Gibco) and penicillin-streptomycin solution (Thermo

Fisher Scientific). OV90 cells were cultured in MCDB 105 medium (Sigma-Aldrich) and 199 medium (Thermo Fisher Scientific) with
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10% FBS (Gibco) and penicillin-streptomycin solution (Thermo Fisher Scientific). SKOV3 cells were cultured in McCoy’s 5A medium

(Thermo Fisher Scientific) supplemented with 10% FBS (Gibco) and penicillin-streptomycin solution (Thermo Fisher Scientific).

Mouse breast cancer cell line EO771 was purchased from ATCC and mouse ovarian cancer cell line ID8 was obtained from

Sigma-Aldrich. EO771 and ID8 cells were cultured in DMEM with 10% FBS (Gibco) and penicillin-streptomycin solution (Thermo

Fisher Scientific).

All cells were seeded in 12-well culture plates at a density of 13105 cells per well. Recombinant human IFN-a (Acro biosystems),

IFN-b (PeproTech), and IFN-g (PeproTech) were added to the wells at different final concentrations ranging from 0.1 ng/mL to 20 ng/

mL to stimulate the tumor cells for 48 h. Subsequently, these treated cells were harvested and subjected to flow cytometry.

Transfection of small interfering RNA (siRNA)
Control siRNA, BRCA1 siRNA, and BRCA2 siRNA were purchased from Ribo Life Science (custom service). These siRNAs were

transfected into tumor cells using Lipofectamine� 3000 (Thermo Fisher Scientific) according to the manufacturer’s instructions.

The sequences are as follows:

siBRCA1

#1 CCACACGATTTGACGGAAA

#2 GCAGGAAATGGCTGAACTA

siBRCA2

#1 GAAGAACAATATCCTACTA

#2 CATGGAATCTGCTGAACAA
Total RNA extraction and real-time PCR
Total RNA from tumor cells was extracted using TRIzol reagent (Sigma-Aldrich) and reverse transcribed using a Reverse Transcrip-

tion Kit (Vazyme) according to themanufacturer’s protocol. Real-time PCRwas performed using SYBRGreen (Bio-Rad Laboratories)

on a Bio-Rad CFX Connect instrument. The expressions were quantified using the comparative Ct (2–DDCt) method. The Ct value for

each sample was normalized to that of the GAPDH gene. The primer sequences for GAPDH, BRCA1, and BRCA2 are as follows:

GAPDH-F, GTCTCCTCTGACTTCAACAGCG

GAPDH-R, ACCACCCTGTTGCTGTAGCCAA

BRCA1-F, CTGAAGACTGCTCAGGGCTATC

BRCA1-R, AGGGTAGCTGTTAGAAGGCTGG

BRCA2-F, GGCTTCAAAAAGCACTCCAGATG

BRCA2-R, GGATTCTGTATCTCTTGACGTTCC
CRISPR/Cas9
The guide RNAs (gRNA) targeting Trp53 exon5, Brca1 exon 10, and Brca2 exon 3 were designed according to a previous publica-

tion.133 After being annealed in a thermocycler, these oligos were cloned into the LentiCRISPRv2 plasmid (Addgene). All plasmids

were sequenced to confirm successful ligation and the gRNA sequences are as follows:

Trp53 exon 5, TGAGCGCTGCTCCGATGGTGA and AGTGAAGCCCTCCGAGTGTC

Brca1 exon 10, GACTCCTTCCCAGGACAACT and TGTCTACATTGAACTAGGTA

Brca2 exon 3, TGCTTTGGCATATTATACGG and TAGGACCGATAAGCCTCAAT

For virus packaging, HEK293T cells were plated on 6 cmdishes at 3,600,000 cells per dish in antibiotic-free DMEMovernight. Cells

were co-transfected the following day with 6 mg of lentiviral transfer plasmid, 4.5 mg of psPAX2 (Addgene), and 3 mg of pMD2.G

(Addgene) packaging plasmids using HP DNA Transfection Reagent (Roche). The culture medium was refreshed 18 h after transfec-

tion and harvested 48 h later.

For the generation of Trp53- or Brca1/2-deficient cell lines, EO771 and ID8 cells were transfected with lentiviruses using polybrene

(2.5 mg/mL), selected under puromycin (2.5 mg/mL) for 72 h, and sorted into single wells for the single-cell clonal expansion. The

expanded single-cell colonies were used for mouse model generation after verifications with DNA sequencing.

To validate the status of mutation in these engineered cells, total DNA was extracted using the QIAamp DNA Mini Kit (QIAGEN)

according to the manufacturer’s instructions. PCR was performed using Platinum� SuperFi II DNA (Thermo Fisher Scientific) to

amplify the DNA strands spanning potential sites of deletion. These PCR products were cloned into Blunt Simple Cloning Vector

(TRANS) and subjected to Sanger sequencing to select clones with large fragment deletion or frameshift mutations in all alleles.

PCR primer sequences are as follows:

Brca1-F, CTGAGTCCAAAGGTGACAGCT

Brca1-R, GTGTTGGAAGCAGGGAAGATC
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Brca2-F, GCCTTGGTCGTGGTGTCTG

Brca2-R, TGCCCAAAGTCCCAGTTCA

Trp53-F, ATCCACAGCCATCACCTCACT

Trp53-R, GAACTTTTGTCCCTCCCACTTT
Mouse models
Mouse ovarian cancer model

To generate mouse orthotopic ovarian cancer models, mouse Trp53 and Brca1 double genetic knockout (KO) ID8 cells (33106/

mouse) were resuspended in 30 mL PBS mixed with Matrigel at a ratio of 1:1 and transplanted into hCCR8 or WT C57BL/6 mice

via intrabursal injection. After about 2 weeks of transplantation, the two types of tumor-bearing mice were randomly divided into

4 treatment cohorts, respectively: control, niraparib, anti-CCR8 or anti-CD25 monoclonal antibody (mAb), and niraparib combined

with anti-CCR8 or anti-CD25 mAb. hCCR8 C57BL/6 mice received niraparib (40 mg/kg, oral administration) 5 times a week and

anti-CCR8 mAb (3 mg/kg, intraperitoneal administration) twice a week. WT C57BL/6 mice received niraparib (40 mg/kg, oral admin-

istration) 5 times a week and anti-CD25 mAb (200 mg/mouse, intraperitoneal administration) once a week. The tumor volumes were

monitored every week and calculated as luminescence intensity per sec using an IVIS� Lumina III In Vivo Imaging System

(PerkinElmer). After 4 or 5 weeks of treatment, the presence of ascites and tumor weights were recorded, and the immune status

in tumors was accessed using flow cytometry and IHC staining.

Mouse breast cancer model

To generate mouse orthotopic breast cancer models, mouse Brca2 KO EO771 cells (53105/mouse) were resuspended in 100 mL

PBS mixed with Matrigel at a ratio of 1:1 and transplanted into 4th inguinal mammary fat pad of hCCR8 C57BL/6 mice. Mouse

Brca1 KO EO771 cells (53105/mouse) were also transplanted into the 4th inguinal mammary fat pad of WT C57BL/6 mice. The

tumor volumes were measured every day or every other day and calculated as L 3 W 3 W 31/2, where L is length and W is width.

Once the tumor volumes reached �50 mm3, the tumor-bearing hCCR8 mice were treated with niraparib (40 mg/kg, oral admin-

istration) 5 times a week and anti-CCR8 mAb (3 mg/kg, intraperitoneal administration) twice a week, Tumor-bearing WT mice were

treated with niraparib (40 mg/kg, oral administration) 5 times a week and anti-CD25 mAb (200 mg/mouse, intraperitoneal admin-

istration) once a week. The EO771 tumors were harvested, and their immune status was evaluated using flow cytometry and IHC

staining.

Flow cytometry for Treg and Tex quantification in mouse tumors
To determine the ratios of Tregs in mouse tumors, fresh tumors were cut into pieces on ice and dissociated into single-cell suspen-

sions using a gentleMACS�Dissociator with Heaters and a Tumor Dissociation Kit, mice (Miltenyi Biotec), as per the manufacturer’s

instructions. After incubation with Fixable Viability Dye (BioLegend) and surface protein antibodies, including CD45-PE-CY7 (BD Bio-

sciences), CD3-PC5.5 (BD Biosciences), CD4-FITC (BD Biosciences), CD8-BV610 (BD Biosciences), CD25-BV510 (BioLegend),

CCR8-APC (BioLegend), and PD-1-BV785 (BioLegend), the cells were fixed and permeabilized with a Fixation/Permeabilization So-

lution Kit (BD Biosciences) according to manufacturer’s instructions. The fixed cells were subsequently incubated with FOXP3-

BV421 antibodies (BD Biosciences) in 13 perm buffer for 1 h at 4�C. For the determination of Tex cells in mouse tumors, CD45-

PE-CY7 (BD Biosciences), CD3-APC (BD Biosciences), CD4-FITC (BD Biosciences), CD8-BV605 (BD Biosciences), TIM3-PE (BD

Biosciences), and PD-1-BV785 (BioLegend) antibodies were used. After three washes with PBS, the fluorescence intensity was

determined using a Beckman Coulter Cytoflex. FlowJo was used for data analysis.

Dual-target immunofluorescence for Treg quantification in mouse tumors
Treg density in mouse tumors was evaluated in FFPE tumor slide specimens using dual-target immunofluorescence. Briefly, antigen

retrieval, nonspecific antigen blocking, and incubation of primary and fluorescence-labeled secondary antibodies and DAPI were

sequentially performed. The following antibody combinations were used: anti-mouse PD-1 (Cell Signal Technology) and anti-hu-

man/mouse FOXP3 (Abcam).Whole slide scanswere acquired using the Pannoramic SCAN (3DHISTECH) digital pathology scanning

system.

HRD and mutation analysis
After mapping sequenced reads to the human reference genome (GRCh37), we first calculated the GIS using an in-house algo-

rithm.131 This algorithm estimated three genomic features, loss of heterozygosity, telomeric allelic imbalance, and large-scale tran-

sition. The GIS was the unweighted sum of the three values. We then called germline and somatic mutations using GATK

HaplotypeCaller and Mutect2,108 respectively. Non-silent somatic mutations (or somatic and germline mutations for BRCA1/2 and

TP53) with a prevalence of < 0.01 in cohorts of 1000 Genomes, ExAC, or gnomAD resources are summarized in Table S2 and

were visualized using oncoplot.113 Mutations were further manually curated to be pathogenic or likely pathogenic according to

the recommendations of the American College of Medical Genetics and Genomics (ACMG)134 and the AMP/ASCO/CAP Somatic

Variants Guideline135 in the interpretation of sequence variations. Finally, the HRD status of a sample was defined as positive if

the GIS was R 42 or if there were pathogenic/likely-pathogenic BRCA1/2 germline or somatic mutations.
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scRNA-seq data preprocessing and quality control
FASTQ files were processed using kallisto-bustools112 to obtain gene-level UMI counts for each droplet, with the GENCODE v37 hu-

man genome as the reference. The kallisto-bustools workflow was set to ‘‘standard’’ so that only exonic reads would be counted

towards the final UMI count. We then devised a biology-aware multi-layer workflow to process and quality-control these raw count

matrices to ensure a robust balance between the removal of low-quality droplets and the preservation of small-RNA-content cells.

This was an essential step tailored to scRNA-seq data generated from tumor samples where cell sizes of different populations can be

drastically different, and a universal hard-set threshold would thus not be suitable.

First, we focused on assessing the overall data quality of each sample and leniently removing empty droplets by visualizing a panel

of key droplet-level statistics. EmptyDrops in the DropletUtils104 package was used to calculate the probability of each droplet being

an empty droplet. The inflection point was used as a cutoff below which all droplets were deemed empty and would form an ambient

pool for the remaining droplets to be compared against. Then, plots depicting multiple key metrics and the interactions thereof were

inspected. These include (i) a scatter plot showing the relationship between UMI count and gene count in each droplet to evaluate the

level of sequencing saturation and detect clear outliers; (ii) a knee plot showing the log rank of droplets by UMI count to judge the level

of separation between empty droplets and cell-containing droplets; (iii) a knee plot showing the log rank of droplets by UMI count, the

same as above; (iv) a density plot showing the distribution of mitochondrial DNA (mtDNA) UMI count proportion to help assess the

magnitude of mitochondrial contamination; (v) a scatter plot showing the relationship between gene count and mtDNA UMI count

proportion to detect the segregation between a low-mtDNA high-transcriptome-diversity (i.e., with a high gene count) cluster and

a high-mtDNA low-transcriptome-diversity cluster; (vi) a scatter plot showing the relationship between UMI count and -log(empty

drop probability) to visualize the estimation by EmptyDrops of the probability of each droplet being a real cell-containing data point.

The samples that passed these criteria were retained, and within each sample, droplets that passed the EmptyDrops FDR threshold

of 1% were retained.

Second, we took into consideration the clustering information that would inform the collectively abnormal behavior of a group of

cells to further perform quality control on a reduced-dimension space. Scrublet123 was employed to calculate a doublet score for

each retained cell. We then followed the downstream analysis workflow implemented in Scanpy.120 Specifically, we (i) applied the

log1pCP10K normalization to the raw counts, (ii) selected highly variable genes using a dispersion-based method (the maximum

and minimum average expression of a gene were set to be 3 and 0.0125, respectively, and the lower expression dispersion cutoff

was set to 0.5) or through Triku,128 (iii) regressed out the effects of the total count per cell and the percentage of mitochondrial

gene count, (iv) scaled the normalized and regressed counts so that the data had unit variance and zero mean (any values above

10 were clipped), (v) calculated the first 50 principal components, (vi) reduced the data dimension through UMAP, and (vii) clustered

the single cells using an unsupervised graph-based clustering algorithm, Leiden. By overlaying the UMI count, mitochondrial and

ribosomal UMI proportions, doublet score, and EmptyDrops FDR values on top of the UMAP space, we identified clusters enriched

for low-quality cells to discard. For example, a cluster where most cells had a low UMI count, high mitochondrial UMI fraction, and

high empty droplet probability would most likely be apoptotic cancer cells and were filtered out. Importantly, this observation is usu-

ally not readily noticeable in the first layer of QC.

Third, we relied on prior biological knowledge to further investigate any aberrant entities in the dataset. Specifically, we built upon

the UMAP space in the second layer of QC, identified cluster-specific marker genes using Student’s t-test, and annotated the clus-

ters based on the expression patterns of literature-derived marker genes along with the annotations from the original studies. This

step helped us understand the presence/absence of biological identities that are common across cancer types or specific to ovarian

cancer and thus served as a further control for data quality.

Notably, these three QC phases were not conducted in a strictly sequential manner. Instead, every piece of new information

manifested in each stage could facilitate the clarification of unsolved situations in the other stages. For example, we may see a

small cluster in stage 2 that shows a significantly lower UMI count than the rest of the dataset and mark it as a potential ambient

droplet cluster. However, when QC stage 3 reveals that this cluster is annotated as T cells and that this sample is highly enriched in

tumor cells, we would then discard the mark and instead choose to retain these cells. This is because we would then understand

that this cluster being an outlier in terms of low UMI count reflects an authentic RNA content difference between immune cells and

cancer cells.

scRNA-seq data integration and annotation
After the preprocessing and QC of each sample as described above, we started over with the count matrices and followed the same

workflow in QC stages 2 and 3. Additionally, we applied Harmony109 to remove sample-level batch effects after calculating the prin-

cipal components and before conducting UMAP-based dimension reduction. We evaluated the effectiveness of data integration by

(i) a qualitative visual inspection of the UMAP plots before and after integration to confirm that the cells were clustered by cell type

instead of the sample source; (ii) a quantitative assessment of batch effect based on a sample-level silhouette coefficient across cell

types where a lower value after integration indicated a reduction in sample-driven cell clustering.

For cell type annotation, we first identified 10 major cell types based on the expression patterns of well-established marker

genes. These include MS4A1 and CD79A for B cells, EPCAM and KRT19 for epithelial cells, PLVAP and PECAM1 for endothelial

cells, COL1A1 and BGN for fibroblasts, TPSB2 and CPA3 for mast cells, AIF1 and LST1 for myeloid cells, MZB1 and DERL3 for

plasma cells, RGS5 and COL18A1 for pericytes, CD2 and CD3D for T cells and NK cells, and IRF7 and LILRA4 for plasmacytoid
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dendritic cells. Next, for each major cell type, we concatenated and reprocessed the count matrices using the same workflow

and parameters as described above. We then identified the subordinate cell states through an extensive search of the literature

and combined a set of complementary approaches to assign these states to each subpopulation (Figure S3), including

(i) examining the expression distribution of known gene markers across cell clusters. For example, the area within the CD4+

T cell space that is positive for both FOXP3 and TNFRSF18 would be annotated as eTregs. (ii) Calculating for every single

cell a score of a specific gene signature that was derived from the literature to mark a relevant cell state. For example, we an-

notated a cluster of CD8+ T cells as effector exhausted T cells because of their high scoring of the ‘‘CD8 dysfunction’’ signature

from a study by Li et al.136 We used UCell129 for signature scoring. All public cell state gene signatures used to score single cells

are listed in Table S7. (iii) Projecting the cells onto reference atlases that represent a comprehensive coverage of known cell

states within a major cell type and have high-quality annotation information. For example, we identified mesothelial antigen-pre-

senting cancer-associated fibroblasts based on a projected identity of these cells being ‘‘CALB2+ FIB’’ in a reference by Qian

et al.91 Symphony127 was used for reference construction and application. All public scRNA-seq datasets used to build refer-

ence atlases are cataloged in Table S7.

Because cancer cells uniquely have their cell states largely driven by underlying patient-specific somatic alterations, we employed

a different strategy to first distinguish malignant cells from normal epithelial cells and then their states. We first applied inferCNV137 to

compute a single-cell copy number variation (CNV) profile for all epithelial cells within each sample. Then, we used the CNV profiles

rather than the original gene expression profiles as the basis for dimension reduction and clustering. We found a significant agree-

ment between high-CNV-based cancer cell assignment and reference-projection-based secretory epithelial cell characterization

(known to be the cells of origin for most ovarian cancers138), enabling a robust separation between normal and malignant epithelial

cells. Finally, we used consensus non-negative matrix factorization (cNMF)99 to identify recurrent cancer cell states across patient

samples. This analysis led to a three-state annotation of cancer cells into an IFN-responding cluster, a proliferative cluster, and a

non-proliferative cluster.

scRNA-seq data analysis of T cells in an external cohort
For independent validation, we downloaded single-cell gene expression profiles of ovarian cancer samples from a recent study30 as

UMI counts from the Gene Expression Omnibus (GEO) under the accession number GSE165897. This published cohort contains 11

HGSOC patients who received NACT and had paired pre- and post-treatment samples collected for scRNA-seq. No QC was further

applied beyondwhat was already conducted by the original study. We first extracted T cells and then employed the same processing

workflow for this dataset as for our in-house dataset. To ensure a direct comparative analysis between the two datasets, we used the

same set of marker genes, signatures, and reference atlases to annotate the T cell states in this cohort under the same nomenclature

scheme.We further interrogated the all-cluster-by-all-cluster overlap of cell state marker genes to demonstrate a good concordance

between the two annotated T cell spaces.

Comparative and correlative analysis of cell state proportions
Annotated cell states were organized in a hierarchy supported by the literature. Differential abundance testing and correlation testing

were performed on the proportion of a specific cell state (the numerator) among its immediate preceding cell state or cell type (the

denominator). For example, the number of CD4+ T cells served as the denominator when testing for Treg abundance shift, while the

number of Tregs was the denominator when testing for terminal eTreg abundance shift. To avoid spurious testing results, we

removed samples in which the cell count of a cell state serving as the denominator was < 50.

Graph-based differential abundance testing
To detect cell-state abundance changes between different conditions in an annotation-free manner, in addition to the direct com-

parison based on population fractions, we performed differential abundance testing analysis using the milopy package.47 Specif-

ically, cell neighborhoods were first defined on a k-nearest neighbor (kNN) graph. Differential abundance testing was then performed

for each neighborhood using a negative binomial general linear model framework.

Inference of eTreg infiltration in bulk RNA-seq data
To obtain an eTreg signature, we combined the top 10 differentially expressed genes in eTregs derived from our scRNA-seq data. To

account for the infiltration level of total CD4+ T cells in a bulk tumor, we further calculated the ratio of the geometric FPKM average of

the eTreg signature over the FPKM of theCD4 gene. As FPKM values are of a linear scale, such ratios served as a proxy of the relative

abundance of eTregs to all CD4+ T cells in a bulk tumor profiled by RNA-seq, allowing us to compare it between HRD and HRP

HGSOC tumors in the Cancer Genome Atlas (TCGA).139

RNA velocity analysis
For scRNA-seq data generated through the 10x platform, spliced and unspliced UMI counts for each gene in each cell were counted

using kallisto-bustools with the workflow set to ‘‘nucleus’’ and using an intron-containing index. For scRNA-seq data generated

through the Singleron platform (for paired scRNA/TCR-seq), the same count tables were obtained using Velocyto130 with interme-

diate bam files as the input. Subsequent analyses were performed using Scanpy and scVelo.124 Specifically, library size
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normalization and log transformation were applied to the count matrices. The top 2,000 genes with the highest expression dispersion

were then selected for subsequent velocity computation. Next, for each cell, the moments (means and uncentered variances) of

normalized spliced/unspliced counts were computed using the 30 nearest neighbors. RNA velocity estimation was then conducted

with the mode set to ‘‘deterministic.’’ We then used the gene expression graph used for clustering and annotation to embed RNA

velocities in the UMAP space in the form of streamlines to facilitate a direct interpretation of velocities on top of the original annotated

space.

Gene regulatory network analysis
Activated regulons in each subpopulation of Treg and Tex cells were analyzed using SCENIC46 with a raw count matrix as input.

Briefly, the co-expression network was calculated by GRNBoost2, and the regulons were identified by RcisTarget. Next, the regulon

activity for each cell was scored by AUCell. The differentially activated regulons in each Treg or Tex subset were identified by a Wil-

coxon test using cells from the other subsets as control. The Benjamini-Hochberg test was used to correct multiple hypotheses.

Paired scRNA/TCR-seq data analysis
For scRNA-seq data, FASTQ files were processed using the CeleScope (https://github.com/singleron-RD/CeleScope) ‘‘rna’’ work-

flow, designed for transcriptome sequencing data generated through the Singleron platform, to obtain gene-level UMI counts for

each droplet, with GENCODE v37 human genome as the reference. Briefly, after using fastqc (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and cutadapt140 to QC and filter the data, reads were compared with the reference genome using

STAR.141 Finally, featureCounts142 was used to generate the gene count matrices. The same preprocessing, QC, and downstream

analysis workflows for the main cohort were applied again. For paired same-cell scTCR-seq data, FASTQ files were processed using

CeleScope ‘‘flv_CR’’ workflow, designed for full-length VDJ enrichment sequencing data generated through the Singleron platform,

to obtain TCR ⍺- and b-chain CDR3 nucleotide sequences. Only the assembled chains that were productive, high confidence, full

length, and had a valid cell barcode and an unambiguous chain type assignment were retained. If a cell had > 2 qualified chains

of the same type, only the chain with the highest UMI count was qualified and retained. Single-cell CDR3 sequences were used

for downstream analysis with Scirpy.122 Clonotypes were determined based on identical CDR3 nucleotide sequences for both

arms. Expanded clones were determined by a clonal size of > 1. The magnitude of TCR repertoire overlap between different

T cell subpopulations was calculated using the Jaccard index.

TCR clonotype reconstruction from non-VDJ-enriched scRNA-seq data
TCR CDR3 sequences were extracted from the scRNA-seq FASTQ files using TRUST4,39 and sample cells with at least one produc-

tive chain (either ⍺- or b-chain) were retained. Samples with > 25 cells matching this criterion were retained for subsequent analysis

with Scirpy. Due to data sparsity of the inferred CDR3 profiles, we employed a relaxed definition of TCR clone by only requiring either

of the two chains to have identical CDR3 nucleotide sequences. We called expanded TCR clones based on them containing at least

two cells. TCR clonotype overlap was measured by the Jaccard index. The quality of CDR3 inference by TRUST4 was evaluated by

examining (i) the agreement between the enrichment of T cell gene marker expressions and that of TCR UMI count, (ii) the proportion

of expanded clones that only contained cells from the same patient, thus meeting the standard of being a ‘‘private’’ clone, and (iii) the

concordance between the relative expansion magnitudes across different T cell subpopulations based on the inferred CDR3 profiles

and those based on VDJ-enriched bona fide CDR3 profiles.

Bulk TCR-seq data processing and analysis
Sequences were processed and analyzed using MiXCR.115 PBMC bulk TCR-seq clonotypes were associated with patient-matched

intratumoral single-cell TCR clonotypes by matching their TCR b-chains based on identical nucleotide sequences.

Pseudobulk analysis
To suppress false positive discoveries in differential expression analyses using single cells as data points for statistical testing, we

employed a pseudo-bulk alternative.143 Briefly, for cells of a specific combination of a cell state and an HRD status/treatment group,

we first aggregated reads across biological replicates, transforming a genes-by-cells matrix to a genes-by-replicates matrix using

matrix multiplication. Then, we ran DESeq2,102 which used a Wald test of the negative binomial model coefficients to compute

the statistical significance.

mIHC Image analysis
For each slide, 8 fields of view (FoVs) were obtained, and cell segmentation was performed using the adaptive cell segmentation

setting in image analysis software (InForm v.2.6.0, Akoya Biosciences/PerkinElmer). Then, the cytoplasmic (CD4, CD8, PD-1,

TNFRSF9, panCK) and nuclear (FOXP3) optical signals in the spectral unmixing image were isolated and quantified. The data was

consolidated with the phenoptr v.0.3.2 package for R software and was analyzed with reference to described analysis in a previous

study.144 Specifically, thresholds for both the mean pixel intensity and the total pixel intensity for all channels were manually thresh-

olded in each slide and evaluated by 4 independent researchers. The specificity and sensitivity of the positive threshold were further

adjusted carefully in all FoVs using a visualization strategy where the positive cells of each marker are mapped onto the spectral
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unmixing image of the corresponding channel. Each cell phenotype was evaluated as the average percentage of CD4+ or CD8+

T cells. The inter-cellular distance between nearest neighbors was calculated using the phenoptr package. Briefly, for each cell in

a FoV, the distancematrix was used to find the nearest neighbor cell in each of the provided phenotypes, and the cell ID and distance

to the nearest neighbor cell were reported. After that, the median distance from the panCK+ cells to the target cells was computed

among all cells of the desired marker combination.

QUANTIFICATION AND STATISTICAL ANALYSIS

All details related to statistical analysis can be found in figure legends and in the correspondingmethods. No statistical methodswere

used to predetermine sample sizes. Data met the assumptions of the statistical tests used and were tested for normality. Statistical

significance was set at p < 0.05.
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Figure S1. Quality control and overview of scRNA-seq data, related to Figure 1
(A) Aggregated knee plots across samples show a robust separation between empty and cell-containing droplets.

(B) An example of the first-layer quality control. The first scatter plot shows the correlation between UMI count and gene count per cell. The second and third

panels are knee plots showing the rank of droplets by UMI or gene count, respectively. The density plot in the fourth panel shows the distribution of the proportion

of mtDNAUMI counts. The fifth panel is a scatter plot that shows the relationship between gene count per cell andmtDNAUMI proportion per cell. The scatter plot

in the sixth panel shows the association between UMI count per cell and the probability of a droplet being empty as calculated by EmptyDrops. For the con-

venience of visualization, some metrics were logarithmically transformed, as labeled on the panels.

(C) An example of the second-layer QC. UMAP embedding of cells that have passed the first layer of QC filtering, overlaid with total UMI count, mtDNA UMI rate,

ribosomal UMI rate, doublet score, and the false discovery rate (FDR) value of droplets being empty.

(D) An example of the third-layer QC. UMAP embedding of cells that have passed the second layer of QC filtering, overlaid with normalized expression levels of

cell type-specific marker genes (EPCAM for epithelial cell, PLVAP for endothelial cell, DCN for fibroblast, CD3D for T cell,MS4A1 for B cell, and AIF1 for myeloid

cell).

(E) The distributions of log-transformed UMI count (top left), gene count (bottom left), mtDNA UMI proportion (top right), and ribosomal UMI proportion (bottom

right) of all scRNA-seq samples. Samples are ordered according to the median value of each metric.

(F) UMAP embeddings of unintegrated (left) contrasted with integrated (right) cells colored by sample (top) and cell type (bottom).

(G) Difference in cluster-average silhouette coefficient between unintegrated and integrated spaces across major cell types, using sample IDs as cluster labels

(n = 67 samples, two-sided paired Wilcoxon rank-sum test, ns, non-significant, *p < 0.05, **p < 0.01, ***p < 0.001).

(H) Expression levels of marker genes across 10 major cell types.
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Figure S2. Differential abundance testing of major cell types and minor cell states, related to Figure 2

(A–D) Difference inmajor cell type proportion between pre-treatment primary versus metastatic (A, n = 15 primary samples, n = 23metastatic samples, two-sided

Mann-Whitney U test, ns, non-significant. *p < 0.05), pre-treatment HRP versus HRD (B, n = 12 HRP samples, n = 26 HRD samples, two-sided Mann-Whitney U

test, ns, non-significant), pre-nira versus post-nira (C, n = 12 pre-nira samples, n = 12 post-nira samples, two-sided paired Wilcoxon rank-sum test, ns, non-

significant. *p < 0.05), or pre-chemo versus post-chemo (D, n = 12 pre-chemo samples, n = 12 post-chemo samples, two-sided paired Wilcoxon rank-sum test,

ns, non-significant. *p < 0.05) samples.

(E–G) Difference in cell-state proportion for CD4+ T cells (E), CD8+ T cells (F), and fibroblasts (G). Top, pre-treatment HRP versus HRD (n = 12 HRP samples, n = 26

HRD samples, two-sided Mann-Whitney U test, two-sided Mann-Whitney U test, ns, non-significant, *p < 0.05, **p < 0.01, ***p < 0.001). Middle, pre-nira versus

post-nira (n = 12 pre-nira samples, n = 12 post-nira samples, two-sided paired Wilcoxon rank-sum test, ns, non-significant, *p < 0.05, **p < 0.01). Bottom, pre-

chemo versus post-chemo (n = 12 pre-chemo samples, n = 12 post-chemo samples, two-sided paired Wilcoxon rank-sum test, ns, non-significant, *p < 0.05).

For boxplots, themiddle line in the box is themean, the bottom and top of the box are the first and third quartiles, and the whiskers extend to the 1.53 interquartile

range of the lower and the upper quartiles, respectively.
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Figure S3. Annotation of fine-grained cell states, related to Figure 2

(A and B) Normalized expression levels of cell state-specificmarker genes for CD4+ (A) and CD8+ (B) T cells. The circle size denotes the proportion of cells within a

cell state where a gene expression is non-zero.

(C–I) Top, UMAP embeddings of cells colored by cell states. Bottom, normalized expression levels of cell state-specific marker genes. Cell types annotated

include natural killer (NK)/gamma delta T (gdT) cell (C), B cell (D), DC (E), monocyte and macrophage (MoMac) (F), endothelial cell (G), fibroblast (H), and pericyte

(I). Insets of UMAP plots exemplify three different annotation approaches, including marker gene expression, signature scoring, and reference projection. The

circle size denotes the proportion of cells within a cell state where a gene expression is non-zero.

(J) Left, UMAP embeddings of cancer cells colored by cell state. Right, UMAP embeddings overlaid with the usage score of consensus non-negative matrix

factorization (cNMF) factors 1–8.
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Figure S4. T cell-focused annotation of an independent scRNA-seq dataset, related to Figure 2

(A and B) UMAP embeddings of CD4+ (A) and CD8+ (B) T cells extracted from a public dataset (GSE165897) colored by T cell state.

(C and D) Overlap of cell state-specificmarker genes betweenGSE165897 and the in-house dataset for CD4+ (C) and CD8+ (D) T cell states, measured by Jaccard

index.
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Figure S5. Quality control of TCR clonotypes inferred from scRNA-seq data, related to Figure 3

(A) Number of TCR clonotypes with a full pair of ⍺- and b-chains, only a b-chain, or only an ⍺-chain.

(B) UMAP embeddings of all cells overlaid with color grades in log-transformed TCR UMI count (left), CD3D expression level (middle), and TYROBP expression

level (right).

(C and D) Sample composition of each CD4+ (C) or CD8+ (D) TCR clonotype. The circle size denotes the number of cells within each clone.

(E and F) Fraction of expanded clones in each CD4+ (E) or CD8+ (F) T cell state across samples.

See also Table S6.
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Figure S6. IFN-responding cancer cells contribute to Treg induction through MHC class II, related to Figure 6

(A) Ranking of cell types and cell states by abundance correlation with eTregs (out of all CD4+ T cells) across all samples.

(B) Abundance correlation between IFN-responding cancer cells (out of all cancer cells) and eTregs (out of all CD4+ T cells). Rs, Spearman rank correlation

coefficient.

(C and D) Same as (A) and (B) but for Texs out of all CD8+ T cells. Rs, Spearman rank correlation coefficient.

(E) Abundance correlation between top IFN-responding cell states and CD4+ T cell states (each out of all CD4+ T cells). Rs, Spearman rank correlation coefficient.

(F) Same as (E) but for CD8+ T cells.

(G) Average expression levels of MHC class I and MHC class II genes (left) or of primary and secondary co-stimulatory T cell ligand genes (right) across MoMac

cell states. The circle size denotes the proportion of cells within a cell state where a gene expression is non-zero. Labels in parentheses are common protein

names.

(H) Pseudobulk (sample-average) expression levels of MHC class I genes in proliferative (left) and non-proliferative cancer cells (right). Heatmaps on the top show

the HRD status of each pre-treatment sample.
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Figure S7. Niraparib combined with CCR8 mAb or CD25 mAb caused no serious side effects in mice, related to Figure 7

(A) Difference in level of hemoglobin, lymphocytes, platelets, erythrocytes, and leukocytes in the blood of hCCR8mice treated with control, niraparib, CCR8mAb,

or their combination.

(B) Same as (A) but for WT mice treated with control, niraparib, CD25 mAb, or their combination.

(C) Difference in level of ALT, AST, BUN, CREA, CK, and LDH in the serum of hCCR8 mice treated with control, niraparib, CCR8 mAb, or their combination.

(D) Same as (C) but for WT mice treated with control, niraparib, CD25 mAb, or their combination.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CREA, creatinine; CK, creatine kinase; LDH, lactate dehydrogenase.
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