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Clinical trial design as a decision problem

Peter Müllera*†, Yanxun Xub and Peter F. Thallc

The intent of this discussion is to highlight opportunities and limitations of utility-based and decision theoretic arguments in clinical
trial design. The discussion is based on a specific case study, but the arguments and principles remain valid in general. The exam-
ple concerns the design of a randomized clinical trial to compare a gel sealant versus standard care for resolving air leaks after
pulmonary resection. The design follows a principled approach to optimal decision making, including a probability model for the
unknown distributions of time to resolution of air leaks under the two treatment arms and an explicit utility function that quan-
tifies clinical preferences for alternative outcomes. As is typical for any real application, the final implementation includes some
compromises from the initial principled setup. In particular, we use the formal decision problem only for the final decision, but use
reasonable ad hoc decision boundaries for making interim group sequential decisions that stop the trial early. Beyond the discussion
of the particular study, we review more general considerations of using a decision theoretic approach for clinical trial design and
summarize some of the reasons why such approaches are not commonly used. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

We discuss opportunities and practical limitations of approaching clinical trial design as a formal decision problem. Using
a case study as a running example keeps the argument focused and specific. We review a study that was set up to compare
a hydrogel sealant (Progel) against standard care for patients who develop air leaks after pulmonary resection. The main
features of the design are the elicitation of a utility function that quantifies clinical preferences for time to resolve the
air leaks and a nonparametric Bayesian prior for the distributions of the resolution time under the two treatment arms. A
Bayesian nonparametric (BNP) model is a prior for an unknown probability measure that is not restricted to a specific
parametric family. Both features are important. The utility function is only meaningful if the probability model allows
learning about detailed features of the event time distribution, and the nonparametric model is only needed when the
decision hinges on such details. In the upcoming discussion, we focus mainly on the features of the decision problem.
A complete discussion of the design and the trial appears in [1], including extensive simulations to evaluate the design’s
operating characteristics (OCs) under alternative scenarios.

The use of decision theoretic approaches in Bayesian clinical trial design is rare. Commonly used methods use Bayesian
inference to compute posterior probabilities of clinically meaningful events or inference summaries for key parameters but
then use these summaries for reasonable, but ad hoc designs. See, for example, [2] or [3] for a recent review. Beyond clinical
trial design, Bayesian decision theoretic approaches are not widely used for optimal design in general. The review by [4]
discusses commonly used Bayesian approaches to optimal design, focusing mainly on design problems related to learning
about unknown parameters but clearly recognizing the importance of more general problems. To date, this paper remains
one of the most cited and most comprehensive reviews of Bayesian optimal design. In their final discussion, Chaloner and
Verdinelli write ’It is clearly helpful, in the design process, to carefully consider the reason the experiment is being done
and to consider what utility should be used. [...] it would also be interesting to see alternatives constructed and explored
in future research’. In the following discussion, we review one such construction which is in the spirit of what Kathryn
Chaloner might have wished to see.
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The discussion is restricted to the particular decision problem of clinical trial design and even further focused by fol-
lowing a particular example. The arguments are meant to highlight the benefits of following a formal decision theoretic
setup and also to indicate the practical limitations and challenges that are involved.

2. Decision problem

2.1. Framework

We set up the design problem as a Bayesian decision problem, following a formal, principled approach. See, for example,
[5] or [6] for a description of the general framework. Briefly summarized, the ingredients of a Bayesian decision problem are
a probability model for all relevant unknown quantities, including data, future data, and unknown parameters of interest and
a utility function that formalizes relative preferences of a decision maker under hypothetical data and assumed parameters.
The optimal action, known as the Bayes rule, is the action that maximizes utility, in expectation over all unknown variables
and conditional on all known variables. To be specific, let y denote the data. Often, some data may already be observed at
the time of decision making. In that case, we partition the data vector into (y, y0) denoting the observed data by y0 (but we
will simply use y when all data is observed). Let 𝜃 denote unknown parameters, and let d denote the decision. The Bayesian
probability model usually is given as a sampling model for the data, p(y, y0 ∣ 𝜃, d) and a prior model, p(𝜃). Including d
here in the conditioning set is a slight abuse of notation and only indicates that the sampling model can be indexed by d.
In general, the prior also could be indexed by d, but this usually is not performed. Finally, let u(d, 𝜃, y) denote the utility,
defined as a function of a possible action d, assumed parameters 𝜃, and hypothetical data y. The utility function represents
the decision maker’s relative preferences for actions under an assumed truth and data. Let A denote the action set of all
possible decisions under consideration. The Bayes rule is

d⋆ = arg max
d∈A ∫ u(d, 𝜃, y) p(𝜃, y ∣ y0, d) dy d𝜃. (1)

Letting U(d ∣ y0) = ∫ u(d, 𝜃, y) p(𝜃, y ∣ y0, d) dy d𝜃, we can write d⋆ = arg max U(d ∣ y0). Here, the conditioning bar in
U(⋅) indicates the conditioning on y0 in the expectation. One can argue, from first principles, that a rational decision maker
should act as if he or she were maximizing expected utility U(d ∣ y0) [7].

An important detail in the setup is the statement of the action set A. Usually, the set of possible actions is highly restricted,
to avoid unintuitive, unreasonable, or impractical decisions. A good choice of action set avoids awkward solutions d⋆.
Mathematically, a choice of a probability model and a utility function implies an optimal decision d⋆. But the mapping is
very indirect through the integration and maximization in (1), and technical details in the choice of the probability model
and utility function could lead to unintended solutions if care is not taken to restrict A suitably. We will give examples of
this later on.

2.2. Terminal decision

The design of the Progel study involves two different types of decisions. After each patient cohort is treated, and their
outcomes are observed, we decide whether to continue accrual (Sequential Stopping Decision). Let ac ∈ {0, 1} denote the
continuation decision, with ac = 0 indicating continuation and ac = 1 for early stopping. We index cohorts by c = 1,… ,C,
with a1 denoting the continuation decision after the first cohort, etc. The study includes a maximum sample size. That is, we
restrict aC = 1. Upon stopping, we decide whether or not to report Progel as superior (Terminal Decision). Let d ∈ {0, 1}
denote the terminal decision, with d = 0 for recommending standard care versus d = 1 for Progel. In summary, the action
set is ac ∈ {0, 1} and d ∈ {0, 1}.

Ideally, all decisions should be made as Bayes rule with respect to the same underlying utility function. However, this
is where the need to construct a practicable implementation that actually can be used to conduct clinical trial parts with
the principled approach. For the Progel trial, only the terminal decision d is implemented as a Bayes rule. In contrast, the
stopping decisions are based on a reasonable group sequential decision boundary. Details of the latter are discussed in the
next section. We first discuss the terminal decision and explain the terminal decision graphically, in Figure 1.

Posterior inference. Index j = 1 for Progel and j = 0 for standard care, with sample sizes n1 and n0. Let yji denote the
time until resolution of air leaks for patient i = 1, · · · , nj in treatment arm j. Let Gj(y) denote the distribution of time to
resolution of air leaks, j = 0, 1. That is, yji ∼ Gj independently for all i = 1, · · · , nj. We will use a BNP model for Gj.
That is, Gj itself is the unknown parameter, for which the BNP model defines a prior p(Gj). Figure 1(a) shows hypothetical
posterior means for G0 and G1, conditional on all patients up to a particular time during the trial. For some patients, actual
event times are recorded, while for others the time until resolution of air leaks is censored at the current time. Note that G1
has a point mass at y = 0, corresponding to a nonzero probability of immediate resolution of air leaks, before day 1.
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Figure 1. The random resolution times under each treatment (left panel, a) are weighted with elicited payoffs (center panel, b), giving
the weighted average payoff V0 and V1 (right panel, c) for the two treatments. Inference in the BNP model includes averaging with
respect to the uncertainty on the resolution time distributions, G0 and G1. [Colour figure can be viewed at wileyonlinelibrary.com]

Utility. Let ỹ denote the time until resolution of air leaks for a future patient who is assigned the final recommended
treatment. Figure 1(b) shows the elicited payoffs v(ỹ) that are used to construct a utility function. For the Progel study, the
utility function compares average clinical payoff v(ỹ) of resolution times under the two treatment arms. That is, v formalizes
clinical desirability for different resolution times, with high values for quick resolution times ỹ < 5. Let Vj = ∫ v(ỹ)dGj(ỹ)
denote the average payoff under Gj. We then define the utility function

u(G0,G1, d) =

{
I(V1 > V0 + 18) ifd = 1

I(V1 ≤ V0 + 18) ifd = 0.

In words, the utility function is an indicator of average clinical payoff under Progel being more than 18 units superior to
the average under control. The offset of 18 units in the comparison relates to the minimum clinically meaningful difference
(on the scale of v).

Expected utility and Bayes rule. Let y denote all currently observed data, and let Gj = E(Gj ∣ y) denote the current
posterior mean of Gj. Expected utility is computed as

U(d = 1 ∣ y) = ∫ u(G0,G1, d) dp(G0,G1 ∣ y, d) = p(V1 > V0 + 18 ∣ y) (2)

and similarly U(d = 0 ∣ y) = 1 − p(V1 > V0 + 18 ∣ y). To decide between the two treatments, we compare U(d = 0 ∣ y)
versus U(d = 1 ∣ y) as in (1). Panel (c) shows, for these assumed G0 and G1 and this utility function, that Progel is the
treatment with higher expected utility. In this case, we would report Progel as the recommended treatment.

There is an important point about (2). At the time of the terminal decision, we have already made the earlier sequential
stopping decisions. Therefore, the only argument of the expected utility function at this moment is the terminal decision d.

In the actual application, the utility function was elicited from the principal investigator of the study. The highly nonlinear
relative preferences for early resolution times in Figure 1(b) reflect the clinical importance of a quick resolution. Leaks that
persist beyond the immediate postoperative period of 5 days may result in longer chest tube drainage, greater postoperative
pain, increased risk of infection, empyema, thromboemboli, and increased length of hospitalization. For these reasons, the
utility function includes a strong preference for early resolution of air leaks.

The probability model underlying inference on Gj in (2), that is, that defines p(Gj ∣ y), will be discussed in more detail
in the next sections. Briefly, we use a dependent Dirichlet process (DDP) model. This is a BNP model for related random
probability measures, in our case G0 and G1. We develop the model for yji on a log scale, that is, for yji = log(Tji + 1),
where Tji is resolution time in days. In particular, yji = 0 corresponds to immediate resolution. In the following discussion,
little would be lost if the DDP model were replaced by a mixture of k, say k = 3, normals, that is, assuming Gj =∑3

h=1 whN(𝜇jh, 𝜎
2), with common weights wh for G0 and G1, and an order constraint 𝜇0h ≥ 𝜇1h on the normal location

parameters. One more elaboration of the model adds a point mass at y = 0, to allow for immediate resolution of air leaks.
This is given by Gj = 𝜋j𝛿0 + (1 − 𝜋j)

∑3
h=1 whN(𝜇jh, 𝜎

2), where 𝛿0 denote the point mass 1 at yji = 0. Later, we will
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introduce the model actually used, which involves additional generalizations. Still, little would be lost if the actual model
were replaced by the simple zero-enriched mixture of normals given previously.

2.3. Sequential stopping decision

The second, more challenging decision is the sequential stopping decision, ac. After each cohort of patients, up to a maxi-
mum sample size, at cohort C, we decide whether or not to stop early for either futility or efficacy. That is, we stop early
to recommend standard of care or stop early to recommend Progel. In the actual trial, we used C = 3 cohorts.

For a principled solution, one would set this up as a sequential decision problem. Upon stopping, we again would use
(2) to make the terminal decision. But the sequential stopping decision must be made first. For the optimal decision in
the next to last cohort, c = C − 1, before the final cohort is enrolled, we would consider the following expected utility
calculation. Let y0 denote the current data, and let y denote the future data for the possible last cohort. As before, we use
ỹ for the response of a future patient assigned the final recommended treatment. The utility of stopping early, given the
current data, is

Ua(aC−1 = 1 ∣ y0) ≡ ∫ max
j

{
U(d = j ∣ y0, y)

}
dp(y ∣ y0). (3)

We use the subindex a on Ua(⋅) to distinguish this expected utility from U(d ∣ y) in (2). Both are expected utilities but
include expectations and nested optimization to a different extent. While U(d ∣ y) conditions on the trial already being
stopped and only averages over Gj and ỹ, in (3), we average over the posterior predictive distribution, p(y ∣ y0) for the last
cohort (outside integration), substitute the optimal next stage decision (inside maximization), and finally integrate over the
posterior distribution on Gj and over ỹ in the nested evaluation of U(d ∣ y0, y). This alternating sequence of integration
and optimization is typical for sequential decision problems. For earlier stage continuation decisions, ac, c = C − 2,… , 1,
similar expressions are required but with additional levels of integration and maximization. The Bayes rule is then

a⋆c = arg max
h∈{0,1}

Ua(ac = h ∣ y0).

In general, the solution a⋆c is computationally prohibitive, because of the exponential explosion of possible cases and his-
tories that one needs to keep track of in the alternating sequence of optimizations and expectations. In practice, approximate
solution strategies are used. See, for example, Berger ([8], Chapter 7) for a general discussion.

In the context of clinical trial design, it is a common practice to replace maximization of (3) by decision boundaries,
often specified in terms of clinically meaningful events. This is best explained with an example, again using the Progel
trial. Again denoting the current data by y0, define

𝜂(y0) = p(V1 > V0 + 18 ∣ y0)

as the posterior probability of the average payoff with Progel being at least 18 points better than under standard care, recall-
ing the definition (2). Instead of the computationally prohibitive solution to (3), we use the following decision boundaries
for c = 1,… ,C − 1:

a⋆c =
{

1 if𝜂(y0) < 0.05 or 𝜂(y0) > 0.90

0 if0.05 ≤ 𝜂(y0) ≤ 0.90.

These boundaries stop in the face of overwhelming evidence of either futility (𝜂 < 0.05) or efficacy (𝜂 > 0.90). Note
that the definition of 𝜂(y0) coincides with the expected utility in (2). Thus, the terminal decision can be characterized in
terms of 𝜂, as d⋆ = 1 if 𝜂(y0) > 0.5 and d⋆ = 0 otherwise.

The specific values for pL = 0.05 and pU = 0.90 were determined by simulating the trial design for each of several pairs,
say pL = 0.01, 0.05, 0.10 and pU = 0.90, 0.95, 0.99, and choosing the cut-offs to obtain a design with desirable OCs, which
include sample size distributions, and nominally correct and incorrect decision probabilities, such as conventional Type I
and Type II error rates. For the general use of such decision boundaries in clinical trial design, see also [9] or [10].

3. Probability model

We deliberately postponed our discussion of the underlying probability model until after discussion of the decision problem.
This highlights the separate nature of the probability model for statistical inference and the decision problem on top of
it. The two are linked by (2), when we evaluate expected utility by averaging with respect to posterior distributions in
the inference model. Ideally, one could describe the nature of the decision and state the utility function without reference

Copyright © 2017 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2017, 33 296–301

299



P. MÜLLER ET AL.

to specific details of the probability model. We only need to assume that there is a well-defined probability model. For
reference and completeness, we briefly describe the underlying model for the Progel trial.

Let 𝛿x denote a point mass at x and let N(𝜇, 𝜎2) denote a normal distribution with moments (𝜇, 𝜎2) and let x ∼ N+(m, s2)
denote a truncated normal with x ≥ m. We assume

Gj = 𝜋j𝛿0 + (1 − 𝜋j)
∑

h

whN(xjh, 𝜎
2),

with a beta prior on 𝜋j, subject to 𝜋1 > 𝜋0, an infinite version of a Dirichlet prior on the weights wh, independent x1h ∼
N(𝜇1, 𝜎

2
1) and conditionally on x1h

p(x0h ∣ x1h) =
{

𝛿x1h
with probability 𝜅

N+(x1h, 𝜏
2) with probability 1 − 𝜅.

That is, Gj is modeled as a mixture of a point mass at 0 (no air leak) and a mixture of normals. The models for G0 (j = 0)
and G1 (j = 1) are linked by assuming 𝜋0 ≤ 𝜋1 and x0h ≥ x1h. The model on Gj marginally is known as Dirichlet process
mixture model (Ferguson; [11]). The joint model on (G0,G1) is a version of the DDP [12].

4. Other decisions

The Progel study involved the sequential stopping and terminal decision only. We chose this study as the running example
of the discussion exactly because of this focused setup and the fact that the decisions are easily described. Other studies
may involve many other types of decisions, more complex outcomes, and thus more structured probability models.

A common decision relates to adaptive treatment allocation. For each patient, or patient cohort, we might want to com-
pute different probabilities of assigning the competing treatment arms. In practice, one rarely would use a full decision
theoretic implementation for choosing this treatment assignment probability. One common solution is to first consider the
(current) posterior probability of any given arm being the optimal arm, say 𝜋t is the probability of treatment t being optimal.
Here, optimal could refer to the criterion used in the terminal decision, such as overall survival, progression free survival,
etc. A common design is to assign treatment t with probability proportional to 𝜋t. See, for example, [13] for a summary,
or [14] for an earlier reference.

Other, more complicated, decisions could arise. For example, an investigator might be interested in inference on sub-
groups of patients who benefit significantly better or worse from the investigated treatments. This is known as subgroup
analysis. See, [15] for a recent review of Bayesian approaches. [16] discuss a setup of the subgroup analysis problem as a
formal decision problem. In general, this and many other decisions that are made in the course of a clinical trial often are
too complex and involved to be easily approached as formal decision problems.

5. Conclusion

Using a particular clinical study as an example, we have discussed some features of a clinical trial design as a decision
problem. In particular, we introduced the setup including a formal description of decisions as elements in an action space,
a probability model on all unknown quantities including parameters and data, and a utility function that quantifies relative
preferences for alternative actions under assumed parameters and hypothetical data. In that framework, the Bayes rule is the
optimal action. In principle, this framework includes all decisions that may have to be taken when one develops a clinical
trial protocol. In particular, this should include sequential stopping decisions, treatment allocation, and terminal decisions
at the conclusion of the trial.

There are many practical limitations to this setup. To start, the optimal sequential decision is computationally intractable.
For this and other practical reasons, it often is convenient to instead use reasonable decision boundaries for sequential
stopping rules. We showed this process in the context of the illustrative example.

Given these practical limitations and compromises, the case study still is an example of an actual clinical trial protocol
that is closer to a formal decision theoretic framework than many. There are many other reasons why most studies, including
trials that use Bayesian designs, do not use decision theoretic approaches. An important one is the difficulty of eliciting
suitable utility functions. However, we would argue that the need to state a utility function is a feature, not a problem. Even
without stating a utility function, investigators make choices and judgments. The main difference is that the statement of a
utility function keeps these choices clearly stated, and facilitates discussion and critique. Examples of elicited utilities for
various two-dimensional outcomes in phase I–II clinical trials are given in Yuan, Nguyen, and Thall ([3], Chapters 6, 8,
11, 13, and 14). A general methodology for eliciting utilities for randomized trials with categorical outcomes is given by
Murray, Thall, and Yuan [17].
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A more serious issue is the nature of the Bayes rule d⋆ as an implicit solution of the optimization problem in (2).
Mathematically, a given probability model and utility function imply d⋆. However, often technical details of the choice of
probability model and utility function might eventually imply clinically unreasonable decisions. This is perhaps another
reason why investigators are reluctant to use this approach. Of course, one could argue that in this case the utility function
fails to reflect clinical utilities (or similarly for the probability model). In practice, when implementing utility-based designs,
we have found it quite easy to elicit utilities that accurately reflect investigator’s goals. Research physicians typically are
very happy to provide their utilities and refine them during the process of learning the impact of a given utility on design
properties (OCs). When an investigator sees that the consequence of a given initial set of numerical utilities is a design
with undesirable properties, they readily alter their utilities to obtain a design with desirable OCs. That is, in practice,
we always show the investigators the consequences of their numerical utilities in terms of design properties, and utility
elicitation becomes an iterative process.

Finally, clinical studies involve many stakeholders, with diverse goals and utility functions, leaving it unclear whose
utility function should drive the design.
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