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We propose a Bayesian semiparametric joint regression model for a re-
current event process and survival time. Assuming independent latent subject
frailties, we define marginal models for the recurrent event process intensity
and survival distribution as functions of the subject’s frailty and baseline co-
variates. A robust Bayesian model, called Joint-DP, is obtained by assuming
a Dirichlet process for the frailty distribution. We present a simulation study
that compares posterior estimates under the Joint-DP model to a Bayesian
joint model with lognormal frailties, a frequentist joint model, and marginal
models for either the recurrent event process or survival time. The simulations
show that the Joint-DP model does a good job of correcting for treatment
assignment bias, and has favorable estimation reliability and accuracy com-
pared with the alternative models. The Joint-DP model is applied to analyze
an observational dataset from esophageal cancer patients treated with chemo-
radiation, including the times of recurrent effusions of fluid to the heart or
lungs, survival time, prognostic covariates, and radiation therapy modality.

1. Introduction. Esophageal cancer is the eighth most common cancer in the
world, with over 16,000 new cases annually in the United States [Torre et al.
(2015)]. For patients whose disease cannot be removed by surgical resection,
concurrent chemo-radiation therapy (CRT) is the established standard treatment.
While survival time for these patients has increased over the years with advances
in CRT delivery, the treatment process may take many weeks or months, and late
onset toxicities remain a serious problem. One of the most troubling adverse events
associated with esophageal RT is abnormal accumulation of fluid around the heart
(percardial effusion) or lungs (pleural effusion). A patient may experience effu-
sions for many months or possibly several years from the start of RT, and some
patients suffer multiple occurrences. While effusion events are not immediately
fatal, it is believed that a higher overall effusion rate may increase the risk of death
by impairing heart or lung function.
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The RT modality used most commonly worldwide is three-dimensional confor-
mal radiation therapy (3DCRT), which uses computed tomography for anatomic
visualization so that the radiation may be targeted to reduce exposure of nor-
mal anatomical structures, especially the heart and lungs, located near the tumor.
A newer modality is intensity modulated radiation therapy (IMRT), which uses
multiple radiation beams designed to focus the delivered radiation more closely to
the targeted cancer, and reduce exposure to surrounding organs. Recent compar-
isons of IMRT to 3DCRT have focused on overall survival (OS), local recurrence,
and distant recurrence [Lin et al. (2012)], and the semi-competing risks (SCR)
structure of the times to first effusion and death, since death may censor first effu-
sion time but not conversely. The analyses reported by He et al. (2016) applied the
SCR regression model of Lee et al. (2015), which includes three hazard functions,
one for time to a given nonfatal event, one for time to death following the nonfatal
event, and one for time to death without the nonfatal event. Chapple et al. (2017)
refined the analyses of He et al. (2016) by performing Bayesian variable selec-
tion in the linear component of each hazard function. He et al. (2016) and Chapple
et al. (2017) found that IMRT decreased the hazards of time to first effusion, time to
death without effusions, and time to death after first effusion, compared to 3DCRT,
under their semi-competing risks models.

Our motivating dataset includes 468 esophageal cancer patients who received
either 3DCRT or IMRT. The patients were followed from the start of RT to the
time of death or administrative right censoring. Since the overall occurrence rate
of each type of effusion, pericardial or pleural, was low, and moreover some pa-
tients experienced both types of effusions, to obtain reasonably reliable inferences
we combine them, and hereafter refer to either type as “effusion.” A key difference
between our analyses of the esophageal cancer dataset and those reported by He
et al. (2016) and Chapple et al. (2017) is that we account for the occurrence times
of all effusions experienced by each patient, rather than only the first effusion time.
Figures 1(a) and (b) illustrate the observed recurrent effusion event processes for
each RT modality. Each line ends with either the symbol • at the time of death
or ◦ at the time of administrative right censoring. The plots show that, for some
patients, effusions continued to recur for many years, while a substantial number
of patients died or were right censored without any effusions. Empirical intensi-
ties of recurrent effusion events are plotted in Figure 1(c) for each RT modality
group (3DRT in black and IMRT in red). The plot shows that the effusion rate
decreased over time, and was slightly lower for IMRT. Figure 1(d) gives Kaplan–
Meier curves of survival times for the RT modality groups, with 95% confidence
bands. In this dataset, patients were not randomized between the two RT modal-
ities. Consequently, apparent differences in the plots may be due to actual differ-
ences between the RT modalities, or imbalances in known covariates or unknown
latent variables related to effusion or survival. Thus, possible bias may arise for
any posterior comparison of the RT modalities, and must be accounted for in the
analyses.
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FIG. 1. Esophageal cancer. (a) and (b) give plots of counts of recurrent effusion events over time
with the two radiation therapy modalities for the esophageal cancer patients, with • and ◦ repre-
senting patients with observed and censored survival outcomes, respectively. For the two radiation
therapy modalities, 3DCRT (black) and IMRT (red), empirical intensities of effusion events for each
modality are plotted in (c), and Kaplan–Meier curves are given in (d) with 95% confidence intervals.
Observed Ti,j and Ni,j are jittered for better presentation.

Initially, the methodology described here was motivated by the desire to com-
pare the two RT modality effects on both the effusion process and survival in the
esophageal cancer dataset, while accounting for effects of patient baseline prog-
nostic covariates, including age, body mass index (BMI), performance status, tu-
mor histology, and disease stage. After formulating a robust model, described be-
low, for the frailties that induce association between the recurrent effusion event
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process and survival, we were further motivated to compare the performance of
this new model to established joint recurrent event-survival models, and to sim-
pler marginal regression models for either the recurrent event process or survival
time.

A central methodological issue is that, if the effusion process and the risk of
death are related, then death informatively censors the effusion process. In this
sense, the effusion point process plays a role similar to that of a longitudinal real-
valued process observed with the possibility of termination by death or informa-
tive drop-out, a data structure that has received a great deal of attention. Joint
models for a longitudinal process with an informative terminating event have been
proposed by De Gruttola and Tu (1994), Faucett (1996), Henderson, Diggle and
Dobson (2000), Song, Davidian and Tsiatis (2002), Wulfsohn and Tsiatis (1997),
Ye, Lin and Taylor (2008), among many others. The four chapters in Part IV of
Fitzmaurice et al. (2009) provide reviews of a variety of joint longitudinal-survival
models. Bayesian approaches for joint modeling of longitudinal outcomes and sur-
vival time have been proposed by Brown and Ibrahim (2003), Hatfield, Boye and
Carlin (2011), and Hatfield, Hodges and Carlin (2014). While a stochastic point
process is structurally different from a real-valued longitudinal process, since both
types of processes may be right censored informatively by death, or some other
terminal event such as drop out, in general a given method for constructing a joint
longitudinal-survival time model may be adapted for constructing a joint point
process-survival model, or conversely.

Various frequentist and Bayesian joint models for a recurrent event process and
a terminal event also have been proposed. A common approach, which we take
here, is to assume i.i.d. subject-specific random effects (frailties) {γ1, . . . , γn}, with
γi appearing in both the intensity function of the recurrent event process and the
survival distribution of the ith subject. Conditional on γi , a point process model
is assumed for the recurrent event process hazard, and a hazard function is as-
sumed for survival time. See, for example, Ghosh and Lin (2000), Huang and
Wang (2004), Kalbfleisch et al. (2013), Liu and Huang (2009), Liu, Wolfe and
Huang (2004), Ouyang et al. (2013), Sinha et al. (2008), Wen et al. (2016) for ex-
amples. Cook and Lawless (2002) gave a thorough account of models and methods
for nonfatal recurrent events. Liu, Wolfe and Huang (2004) developed a likelihood-
based, semiparametric joint model by assuming nonparametric baseline intensity
and hazard functions for the recurrent event process and survival time, assuming a
gamma distribution for shared frailties and incorporating covariates through a Cox-
type model. Xu et al. (2017) developed a general likelihood-based, semiparametric
joint model by allowing an arbitrary distribution for the frailties and nonparametric
baseline functions. They assumed accelerated failure time (AFT)-type models to
estimate covariate effects for recurrent psychiatric admissions and survival times
of patients with schizophrenia. Sinha et al. (2008) provided an extensive review
of Bayesian approaches for joint modeling. Ouyang et al. (2013) investigated a set
of Bayesian models by assuming different combinations of prior distributions for
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the baseline intensity and hazard functions, with a gamma frailty distribution. One
case assumes a gamma process on the baseline cumulative intensity and a Weibull
for the baseline hazard function, with gamma frailties in the recurrent event in-
tensity function and survival time hazard function. Wen et al. (2016) developed a
Bayesian joint model for multivariate recurrent events with a terminal event, as-
suming a bivariate normal distribution for the frailties.

In this paper, motivated by the esophageal cancer dataset, we propose a
Bayesian semiparametric approach to jointly model recurrent events and survival,
accounting for baseline covariates. Like many existing methods, our modeling
framework assumes i.i.d. frailties that appear in both the recurrent event inten-
sity and survival hazard. For each subject, we assume conditional independence
of the recurrent event process and survival time, given the subject’s frailty. The
main departure from existing Bayesian approaches is that we assume a Bayesian
nonparametric (BNP) prior distribution, specifically a Dirichlet process (DP), for
the patient-specific frailties. We call this a Joint-DP model. Since the patients in
our motivating dataset were not randomized between the two RT modalities, ad-
justment for possible bias is needed. Our approach is to view patient frailties as
latent variables that may account for such biasing effects, as well as heterogeneity
between patients. The DP prior relaxes commonly used distributional assumptions
on the frailty distribution, and allows the frailty distribution to have features, such
as skewness or multimodality, that may not be captured by particular parametric
forms, such as a gamma or lognormal distribution. Accommodating such irregular
features may help with bias correction due to lack of randomization in treatment
assignment, and also may improve estimation of covariate effects and the baseline
functions.

From our exploratory analysis of the esophageal cancer dataset, it was observed
that patients had on average 0.82 recurrent events, and 1.93 and 4.88 years, re-
spectively, for observed and censored survival times. Due to sparse information
on recurrent events in the motivating data, our model formulation is intended to
provide simplicity and flexibility. Each patient’s recurrent event time sequence is
assumed to be a realization of a nonhomogeneous Poisson process having intensity
function that is stochastic due to the patient-specific frailties. This is an example
of a Cox process [Cox (1955)], also known as a doubly stochastic Poisson process
[Grandell (1976)]. We model covariate effects on the Poisson process through a
regression structure in the log intensity process [Lawless (1987)]. We assume an
accelerated failure time (AFT) model to describe the regression of survival time
on covariates and the frailty, with the particular AFT survival distribution chosen
through preliminary goodness-of-fit analyses. Using this approach, the Joint-DP
model is applied to analyze the esophageal cancer data. For this dataset, assuming
these parametric baseline functions helps with practical estimation issues due to
the limited amount of recurrent event information.

The remainder of the paper is organized as follows. Section 2 describes the
proposed Bayesian semiparametric joint model. Section 3 reports simulation stud-
ies to evaluate the Joint-DP model and compare it to simpler Bayesian regression



226 J. LEE, P. F. THALL AND S. H. LIN

models and to the likelihood-based joint model of Xu et al. (2017). Section 4 sum-
marizes analyses of the esophageal cancer dataset, and we close with a discussion
in Section 5.

2. Probability model.

2.1. Sampling model. For subjects i = 1, . . . , n, let Ni(t) denote the number
of recurrent events in the time interval (0, t], denote survival time by Di , and let
Ci denote the right censoring time. The final follow up time is D̃i = min{Di,Ci},
and we denote the binary indicator of censoring by δi = 1 if D̃i = Ci < Di , and
δi = 0 if D̃i = Di . Censoring is assumed to be independent of the recurrent events,
survival, and covariates. Denote the vector of baseline covariates and treatment
variables by Zi , with ZRi = (ZRi1, . . . ,ZRip)′ and ZDi = (ZDi1, . . . ,ZDiq)

′ the
subvectors of Zi that affect the recurrent event process and survival, respectively.

For the recurrent event data, let Ti,j denote the time of j th occurrence for pa-
tient i. Note that {Ni(t), t > 0} and {Ti,1, Ti,2, . . .} carry equivalent information
about the recurrent event process. A time-varying pattern in the empirical intensity
is suggested by Figure 1(c), and we assume a nonhomogeneous Poisson process
(NHPP) with power law intensity (also known as a Weibull process) for the recur-
rent effusions. The power law intensity function has been used widely to flexibly
accommodate time-varying patterns of recurrent events [Guida, Calabria and Pul-
cini (1989), Kuo and Yang (1996)]. Let γ1, . . . , γn denote i.i.d. patient-specific
random frailties that characterize intrinsic patient variability not explained by the
observed covariates. For patient i, the time-varying conditional intensity (hazard)
function of the Poisson recurrent event process [Ni(t) | γi,ZRi,βR, ξ ] is given by

(1) ψR(t,ZRi, γi,βR, ξ) = γiξ tξ−1 exp
(
β ′

RZRi

)
.

The parameter ξ describes the time-varying pattern of the intensity function. If
ξ < 1 (> 1), the intensity decreases (increases) over time. The latent frailty γi

plays the role of a baseline intensity that varies from patient to patient, but it is
assumed to be independent of time and the covariate parameter vector βR . Un-
der the model in (1), the cumulative intensity function is �R(t,ZRi, γi,βR, ξ) =∫ t

0 ψR(u,ZRi, γi,βR, ξ) du = γit
ξ exp(β ′

RZRi), which implies that the covariate
effects are multiplicative in the cumulative intensity. The Poisson process assump-
tion implies that, given γi , time gaps between recurrent events for each patient are
independent. If this assumption is believed to be violated, alternative models may
be considered, such as a Poisson cluster process or Markovian process. Note that a
scale parameter for the intensity function is omitted due to potential identifiabilty
issues. This is further discussed in Section 2.2.

For brevity, we denote N = {(Ni(D̃i)}ni=1, D̃ = {D̃i}ni=1 and ψR = {ψR(t,ZRi,

γi,βR, ξ)}ni=1. Assuming independence between patients given ψR , the likelihood
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of the observed recurrent event process given the latent frailties γ1, . . . , γn and the
truncation times D̃ is

(2)

p(N | ψ, D̃) =
n∏

i=1

{
Ni(D̃i )∏
j=1

ψR(Ti,j ,ZRi, γi,βR)

}

× exp
{
−

∫ D̃i

0
ψR(t,ZRi, γi,βR)dt

}

=
n∏

i=1

{
Ni(D̃i )∏
j=1

γiξT
ξ−1
i,j exp

(
β ′

RZRi

)}
exp

(−γiD̃
ξ
i eβ ′

RZRi
)
.

We assume conditional independence of Ni(t) and Di given γi , and assume an
accelerated failure-time (AFT) model for the failure time distribution given γi .
Specifically, denoting ηi = log(γi), we assume that

(3) log(Di) = μ + ζηi + β ′
DZDi + σWi,

where the Wi’s are i.i.d. following a distribution with c.d.f. FW . Any tractable para-
metric or nonparametric model can be used for FW , for example, see Ghosh and
Ghosal (2006), Walker and Mallick (1999) for nonparametric models. In prelimi-
nary goodness-of-fit analyses of survival time in the esophageal cancer data, we ex-
plored a set of distributions for FW , and chose the extreme value distribution, char-
acterized by density function fW(w) = exp(w − ew), −∞ < w < ∞. The model
selection procedure for Wi in (3) can be considered part of the methodology. De-
tails of the model selection procedure and the extended model with model selection
are described in Section 2.3. With the choice of the extreme value distribution, the
induced c.d.f. FD,i(t) = FD(t | ZDi, γi,μ, ζ,βD) for t > 0 of Di is the Weibull
with shape parameter 1/σ and scale parameter exp{−(μ+ζηi +β ′

DZDi)/σ }. This
yields the survival hazard function

(4)

ψD(t,ZDi, γi,μ, ζ,βD,σ) = 1

σ
t

1
σ
−1 exp

(
−μ + ζηi + β ′

DZDi

σ

)

= 1

σ
t

1
σ
−1γ

− ζ
σ

i exp
(
−μ + β ′

DZDi

σ

)
.

For each subject i = 1, . . . , n, the random patient frailty, γi , is the key element
that creates the Bayesian joint model from its two main components, the recur-
rent event process intensity function ψR(t,ZRi, γi,βR, ξ) in (1) and the survival
process hazard function ψD(t,ZDi, γi,μ, ζ,βD) in (4). The hazard function ψD

has a common factor exp(−μ/σ) and subject specific factors γ
−ζ/σ
i . Compared to

the intensity function ψR in (1) that is proportional to γi , the effect of γi on Di is
adjusted through the term γ

−ζ/σ
i . This allows γi to have different effect sizes on

the recurrent event intensity and the survival distribution hazard. Another way to
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view γi is that the patient’s survival data is used to adjust for possible informative
censoring in the intensity of the recurrent event process. For example, if ζ < 0,
then a small value of D̃i for a patient with larger frailty γi implies, on average,
larger Ni(t) (more recurrent events). Additionally, from the practical viewpoint of
obtaining a fitted joint model, the conditional independence of Ni(t) and Di given
γi greatly simplifies the MCMC computations required for posterior inference.

2.2. Prior. As described in Section 1, we utilize random frailties to account
for between-patient heterogeneity and to adjust for potential biasing effects due
to the lack of randomization in treatments as in our motivating dataset. We do
not attempt to model possible systematic differences in patients between the two
treatment groups due to the lack of randomization, as is done with propensity
score based methods such as inverse probability of treatment weighting (IPTW)
[Austin (2013), Robins, Hernan and Brumback (2000)] or doubly robust (aug-
mented) IPTW [Bang and Robins (2005), Robins, Hernan and Brumback (2000)].
Instead, we account for possible bias through a flexible modeling strategy for the
distribution of the γi’s. To do this, we take a BNP approach by assuming a Dirich-
let process (DP) [Ferguson (1973)] for the distribution of γi in equations (1) and
(3). This adjusts for possible biases in the posterior estimates of the covariate ef-
fects, βR and βD , which quantify covariate and treatment effects on the recurrent
event process and survival time, respectively. The basic idea is that, accounting
robustly for irregular effects, possibly due to treatment selection bias, in the under-
lying patient-specific baseline recurrent event intensity and survival hazard avoids
or mitigates these effects being reflected incorrectly in the estimates of βR and
βD .

BNP models, including the DP or its many variants, have been applied success-
fully to capture nearly any pattern in data for a wide variety of applications. They
express a full range of uncertainty about the form of the distribution function for
parameters in a model by defining a distribution on the space of probability dis-
tribution functions. This enables one to obtain consistent estimation of essentially
any distribution. See Müller and Rodriguez (2013) for a recent review of DP mod-
els and computational methods. For our application, because the DP provides a
general form for the distribution of the γi’s, it allows us to focus on the distribu-
tion from which the random effects are drawn, instead of the individual random
effects themselves. Bush and MacEachern (1996) used a BNP model for random-
ized block designs in a similar way. Recalling that ηi = log(γi), we assume

(5) ηi
i.i.d.∼ G, G ∼ DP(αG0),

where α is the total mass parameter and G0 is the baseline distribution of the DP.
We assume G0 = N(η̄, v2). G0 determines the features of G such as shape, spread,
and location, and α expresses the prior strength of belief in G0. The DP prior in
(5) does not hold the mean of G at zero even with η̄ = 0, but does not create an
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idetifiability issue. A scale parameter is omitted in (1), and no fixed effect is paired
with the random effect, while ζ and μ are common for all subjects in (3) [Li,
Müller and Lin (2011)]. Following [Escobar and West (1995)], we assume that
α is random with prior α ∼ Ga(aα, bα) Using the stick-breaking representation
[Sethuraman (1994)], G can be expressed as an infinite mixture,

(6) G =
∞∑

k=1

vk

k−1∏
�=1

(1 − v�)δ
(
η�

k

)
,

where vk | α
i.i.d.∼ Be(1, α), η�

k

i.i.d.∼ G0 and δ(η�) is a unit point mass at η�. As
equation (6) shows, G is almost surely discrete and it allows ties in the ηi’s with
positive probabilities, resulting in clustering of the ηi’s into a random number of
subgroups. The following remark describes the dependence structure between re-
current events and survival time induced under the proposed model given by (1),
(4), and (5).

REMARK 2.1. Let H−
i = {Ni(u),0 < u < t} and Ni(t

−) denote the recur-
rent event history and the number of recurrent events in time interval (0, t). As-
sume a NHPP for the recurrent events with the conditional intensity in (1). Let
ψ ′

Ri(t) = ξ tξ−1 exp(β ′
RZRi) and � ′

Ri(t) = ∫ t
0 ψ ′

Ri(u) du. Similarly, let ψ ′
Di(t) =

1
σ
t

1
σ

−1 exp(−μ+β ′
DZDi

σ
) and � ′

Di(t) = ∫ t
0 ψ ′

Di(u) du. Then,

ψRi

(
t | Hi

(
t−

)
,Di ≥ t

) ≡ ψRi

(
t | Ni

(
t−

)
,Di ≥ t

)

= ψ ′
Ri(t)

E[γ Ni(t
−)+1

i exp{−γi�
′
Ri(t) − γ

−ζ/σ
i � ′

Di(t)}]
E[γ Ni(t

−)
i exp{−γi�

′
Ri(t) − γ

−ζ/σ
i � ′

Di(t)}]
,

ψDi

(
t | Hi

(
t−

)) ≡ ψDi

(
t | Ni

(
t−

))

= ψ ′
Di(t)

E[γ Ni(t
−)−ζ/σ

i exp{−γi�
′
Ri(t) − γ

−ζ/σ
i � ′

Di(t)}]
E[γ Ni(t

−)
i exp{−γi�

′
Ri(t) − γ

−ζ/σ
i � ′

Di(t)}]
,

where the expectations are taken with respect to the distribution G of γi in (5).

Remark 2.1 is an extension of the results in Sinha et al. (2008) for a random
frailty distribution. Similar to their results, the shared frailty model with the NHPP
in (1) implies that given Di > t the conditional risks of a new recurrent event
and survival depend on the recurrent event history through the number N(t−) of
past recurrent events. The value ζ = 0 implies independence of the recurrent event
process and survival time. For given σ , ζ moderates the effect of survival time.
In contrast with Sinha et al. (2008), who assume a gamma frailty distribution,
our model in (5) assumes the frailty distribution itself to be random and the de-
pendence structure between the recurrent event process and survival time remains
unspecified.
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Our use of a BNP prior for the random effects is similar in spirit to the approach
of Xu et al. (2016) who used a BNP model for transition time distributions in a
setting involving multi-stage dynamic treatment regimes and nonrandomized data.
Their BNP model, dubbed a “dependent Dirichlet process with a Gaussian Process
(DDP-GP)” assumed a GP prior on the means of the Gaussian mixture components
of the DDP. They showed, by simulation, that the DDP-GP model yielded substan-
tially better bias correction and better reliability for estimating overall mean sur-
vival, compared with conventional frequentist IPTW and augmented IPTW. Aside
from the fact that our data structure is very different from that considered by Xu
et al. (2016), our modeling approach differs from theirs in that we assume a DP
prior for the distribution of the patient random frailties, which in our setting are in-
cluded primarily to obtain a joint model for the recurrent event process and survival
time. Our simulation study, reported in Section 3, below, shows that this approach
does a good job of reliably correcting for bias in the posterior estimates of both βR

and βD .
For priors on βR , βD , ξ , μ, and ζ , we assume βR ∼ Np(β̄R,R), βD ∼

Nq(β̄D,D), ξ ∼ Gamma(aξ , bξ ), ζ ∼ N(ζ̄ ,ω2) and μ ∼ N(μ̄, τ 2). We complete
the prior model specification by assuming σ ∼ IG(aσ , bσ ). Specification of nu-
merical hyperparameter values is discussed in Section 3.

We use standard Markov chain Monte Carlo (MCMC) methods to implement
posterior inference on the parameters βR , βD , {ηi} (equivalently, {γi}), ξ , μ, ζ ,
and σ . Usual MCMC posterior simulation proceeds by iteratively updating each
of the parameters conditional on the currently computed values of all other pa-
rameters. It is possible to improve the mixing of the Markov chain, however, by
jointly updating some parameters by means of a Metropolis–Hastings transition
probability that proposes changes in those parameters. For our model, joint updat-
ing of ζ and μ may greatly improve the mixing. For updating γi , the algorithm
in MacEachern and Müller (1998) is implemented to speed convergence of the
Markov chain. Details of posterior computation are described in the Supplemen-
tary Material [Lee, Thall and Lin (2019)]. We diagnose convergence and mixing
of the described posterior MCMC simulation using trace plots and autocorrelation
plots of imputed parameters. For both the upcoming simulation examples and the
data analysis, we found no evidence of practical convergence problems. The pos-
terior simulation is implemented in R and C and for the esophageal cancer data in
Section 4 simulation of 17,000 Monte Carlo samples takes less than one minute on
a 3.33 GHz CPU. An R package of the code used for simulations and the analy-
sis of the esophageal cancer dataset in the following sections is available from the
authors’ website https://users.soe.ucsc.edu/~juheelee/.

2.3. Comparators. For comparison, we include five different Bayesian mod-
els, and also the frequentist joint scale-change model (JSCM) proposed by Xu et al.
(2017). We first consider a Bayesian joint model with log-normal distributions for

https://users.soe.ucsc.edu/~juheelee/
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frailties, γi
i.i.d.∼ logNormal(0, ũ2) with fixed ũ2 while assuming the same baseline

functions in (1) and (4), called the “Joint-logNormal” model. We also consider
alternative marginal models, for the recurrent event data while treating death as in-
dependent right censoring, called “R” models, or for survival time while ignoring
the recurrent event data entirely, called “S” models. For each marginal Bayesian
model, we either model frailty distributions nonparametrically through the DP or
parametrically through a lognormal distribution. This gives four different models,
“R-logNormal”, “R-DP”, “S-logNormal”, and “S-DP.” For the “S” models, we as-
sume that survival time follows an AFT distribution, given by

(7) log(Di) = μS
i + β ′

DZDi + σWi.

That is, the “S” models include a component with both a subject-specific frailty

and covariate effects, similar to (3). We assume either μS
i

i.i.d.∼ N(μ̄S, (νS)2) with

fixed μ̄S and (νS)2, or μS
i

i.i.d.∼ GμS and GμS ∼ DP(αμS · GμS0), where αμS ∼
Ga(aS

α, bS
α) and GμS0 = N(μ̄S, (νS)2) with fixed μ̄S and (νS)2. We assume the

same prior distributions for βD and σ as those under the Joint-DP model. Simi-
larly, we define the “R” models for the recurrent event process only, that assume
the likelihood (2). The R-logNormal model assumes a lognormal prior for γi , and
the R-DP model assumes a DP in (5) for the prior distribution of ηi = log(γi).
Both R models treat D̃i as a censoring time that is independent of N i , and ignore
the possibility that death informatively censors the recurrent event process.

Lastly, we include as a comparator the JSCM given by Xu et al. (2017) im-
plemented in a R function, reReg, in the library reReg. The JSCM assumes AFT
models for both recurrent events and failure times and relates recurrent events and
survival to covariates through the regressions log(Ti,j ) ∝ −β ′

RZRi and log(Di) ∝
−β ′

DZDi , respectively. In particular, the intensity of the recurrent events takes the
form λi(t) = γiλ0(t exp(β ′

RZRi)) exp(β ′
RZRi) and the hazard function of the sur-

vival time hi(t) = γih0(t exp(β ′
DZDi)) exp(β ′

DZDi) for patient i at time t . λ0 and
h0 are arbitrary but absolutely continuous baseline intensity and hazard functions,
respectively. While the models for survival time are similar, the AFT model for re-
current events in JSCM differs from the Poisson process model assumed in our pro-
posed models. Under the AFT model, the covariate effects in the original time scale
change the time scale by a factor exp(β ′

RZRi), that is, for a patient with covari-
ate ZRi , the cumulative intensity is �i(t) = ∫ t

0 λi(u) du = γi�0(t exp(β ′
RZRi)),

where �0(t) = ∫ t
0 λ0(u) du. The AFT model for recurrent events includes a ho-

mogenous Poisson process as a special case, that is, the model in (1) with ξ = 1,
but does not accommodate NHPP with ξ 
= 1 in (1). Importantly, in contrast with
(4), in the JSCM the frailty γi appears multiplicatively in hi(t) without any ad-
justment, and the distribution of γi is unspecified, with E(γ | Z,βD) = mγ . The
parameter βD in the JSCM has the opposite sign of the parameter βD in (3) and
(7), so to facilitate fair comparison, negative values of the JSCM-based estimates
are used for the illustration in Sections 3 and 4. The JSCM computes parameter
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estimates for the two processes sequentially, first estimating parameters for the re-
current event process including the frailties, then plugging in the frailty estimates
and estimating the covariate effects on survival, similarly to Huang and Wang
(2004). A resampling method is used to estimate the variances of the estimates,
and asymptotic normality is used as a basis for a test and confidence intervals.

While we use a parameteric distribution of Wi in (3) to keep the model simple
due to sparse recurrent event information in the motivating dataset, we empirically
select a distribution of Wi for the Joint-DP model that better fits the data using the
S-DP model. In particular, we fit the S-DP model to the survival data, using each
of several distributions for W , and choose the distribution that gives the best fit in
terms of smallest deviance information criterion (DIC). For the esophageal cancer
data, we fit the survival data in Section 4 with each of the standard extreme value,
normal, and logistic distributions for W , which correspond to Weibull, lognormal,
and log-logistic distributions for FD , respectively. Comparison of the three dis-
tributions based on DIC values showed that the extreme value distribution for W

gave the best fit to the survival data in Section 4. In general, one may choose a
distribution of Wi based on some other reasonable model comparison procedures
using either the survival data only or the entire data [e.g., see Chapter 7 of Robert
(2007)], or use a nonparametric model for Wi similar to the models in Sinha et al.
(2008) and Ouyang et al. (2013). The Joint-DP model can be extended by includ-
ing this model selection procedure to choose a distribution for Wi . We examined
robustness of this extended approach empirically through simulation studies in
Section 2.3 of the Supplementary Material.

3. Simulation study. In this section, we assess the performance of the Joint-
DP model and compare it to the alternative models described above through a
simulation study. For each dataset, we simulated a sample of n = 500 patients
with three covariates in both the recurrent event intensity and survival distribution
(pR = pD = 3, ZRi = ZDi = Zi). We simulated each patient’s covariates by let-

ting Z1i
i.i.d.∼ 0.5N(−0.5,0.252) + 0.5N(0.5,0.252) and Z2i

i.i.d.∼ Unif(−√
3,

√
3).

We introduced bias in the treatment assignment by simulating the treatment indi-
cator Z3i ∈ {0,1} using the probability

wi =

⎧⎪⎪⎨
⎪⎪⎩

0.05 if 1/
{
1 + exp(−2Z1i )

}
< 0.05,

1/
{
1 + exp(−2Z1i )

}
if 0.05 ≤ 1/

{
1 + exp(−2Z1i )

} ≤ 0.95,

0.95 if 1/
{
1 + exp(−2Z1i )

}
> 0.95.

We assigned each patient to treatment Z3i = 0 with probability wi and treatment
Z3i = 1 with probability 1 − wi . This randomization mimics physician behavior
in which Z1i is used for choosing treatment, with a stochastic component to reflect
between-physician variability in this covariate-based treatment selection process.
For example, w = 0.26 if Z1 = −0.5, and w = 0.73 if Z1 = 0.5. Since wi is in-
creasing in Z1i , patients with larger Z1i are more likely to be given treatment
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Z3i = 0. We simulated patient frailties ηTR = log(γ TR) from a mixture distribu-
tion with K = 5 components, p(ηTR

i ) = ∑K
k=1 πkφ(ηTR

i | η�TR
k ,0.25), where φ(· |

η�, v2) is the normal distribution with mean η� and variance v2. We fixed the mix-
ture component means (η�TR

1 , . . . , η�TR
5 ) = (−1.5,−0.4,0.0,0.4,0.6) and simu-

lated the component weights from π = (π1, . . . , π5) ∼ Dir(3,3,3,3,3), where
Dir(a) denotes the Dirichlet distribution with parameter a. We set the covari-
ate effects βTR

R = (0.30,0.25,−0.30)′, βTR
D = (−0.30,−0.25,0.30)′, ξTR = 0.8,

ζTR = −1.2, μTR = 0.5 and σ TR = 0.7. We simulated the death time Di from
(3) under a Weibull model with the above assumed true parameter values. We let
δi = 0 (the survival outcome is observed) or 1 (the survival outcome is censored)
with probabilities 0.75 and 0.25, respectively, set D̃i = Di for patients with δi = 0,
and for patients with δi = 1 we assumed uniform censoring time D̃i ∼ Unif(0,Di).
Ni(t) was simulated from a nonhomogeneous Poisson process with intensity func-
tion γ TR

i ξTRtξ
TR−1 exp(βTR′

R Zi ), with γ TR
i = exp(ηTR

i ) and censored at t = D̃i .
A total of 1000 datasets were simulated under this set-up.

For the Joint-DP model prior hyperparameters, we used large values for prior
variances to express weak prior information. We set β̄R = β̄D = η̄ = μ̄ = 0, with
R = D = diag(102) and τ 2 = 102, aσ = bσ = 1. We fixed aα = bα = 3 for the
DP total mass parameter α, which implies prior mean 6.79 and standard deviation
3.74 for the number of clusters. We did this using the R function DPelicit of DP-
package [Jara et al. (2018)]. We let v2 = 1 for the base distribution G0. For the
priors of ξ and ζ , we set aξ = bξ = 1, ζ̄ = 0, and ω2 = 102. To run the MCMC
simulation, we initialized the parameters at their prior means. For ηi , we let each
ηi have its own cluster and η�

k be a random draw from G0. We then implemented
posterior inference using MCMC simulation over 10,000 iterations, discarding the
first 4000 iterations as burn-in and choosing every other sample as thinning.

The simulation results are summarized for β in Table 1 and for ξ and σ in
Table 2. For each of the 1000 simulated datasets, we computed estimates of pos-
terior means and 95% credible intervals (CIs) of the parameters, and used them
to evaluate four quantities, average of the posterior means (Mean), average differ-
ence between each posterior mean and the truth (Bias), average lengths of the CIs
(Ave. CI length), and proportion of the CIs containing the truth (Coverage). For
all β’s, the Joint-DP model produces very small biases and the CIs capture their
true values with proportions close to 95%, but slightly less than 95%. Although
bias is introduced by using X1 to assign X3 to either of the values 0 and 1, the
model yields estimation biases close to zero, and their coefficients are well esti-
mated with tight intervals. The model also provides reasonable inference for the
power parameter of the baseline intensity function ξ and the shape parameter of
the baseline hazards function σ .

For comparison, we fit each of the five models described in Section 2.3. Under
the Bayesian models, we specified their hyperparameters and ran MCMC poste-
rior simulations similarly to the Joint-DP model. The results under the comparators
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TABLE 1
Simulation results for covariate effect estimation. The values are based on 1000 simulated datasets,
each fit using each model. The proposed joint model assuming a DP prior for the frailty distribution
is labeled Joint-DP. The four criteria are the mean of the point estimates (Mean), average difference
between point estimates and the truth (bias), average length of 95% credible (confidence) intervals

(Ave. CI length), and the proportion of interval estimates capturing the truth (Coverage). The
numbers for the best cases are in boldface

Recurrent events Survival

Parameters: βR1 βR2 βR3 βD1 βD2 βD3
Simulation truth: 0.300 0.250 −0.300 −0.300 −0.250 0.300

Joint-DP Mean 0.288 0.247 −0.312 −0.291 −0.251 0.311
(Joint with DP) Bias −0.012 −0.003 −0.012 0.009 −0.001 0.011

Ave. CI length 0.419 0.208 0.464 0.432 0.213 0.483
Coverage 93.1% 92.6% 93.2% 94.1% 93.5% 94.3%

Joint-logNormal Mean 0.174 0.261 −0.622 −0.202 −0.255 0.516
(Joint with logNormal Bias −0.126 0.011 −0.322 0.098 −0.005 0.216
Frailty) Ave. CI length 0.473 0.246 0.392 0.504 0.246 0.509

Coverage 75.0% 95.3% 28.8% 85.3% 94.4% 60.6%

JSCM Mean 0.365 0.310 −0.365 −0.225 −0.202 0.244
Bias 0.065 0.060 −0.065 −0.075 −0.048 0.056
Ave. CI length 0.760 0.381 0.868 1.512 0.745 1.690
Coverage 92.3% 88.4% 94.0% 99.5% 99.6% 99.6%

R-DP Mean 0.260 0.223 −0.276
(Recurrent events Bias −0.040 −0.027 0.024
only with DP) Ave. CI length 0.446 0.221 0.496

Coverage 93.6% 91.4% 94.8%

R-logNormal Mean 0.016 0.222 −0.856
(Recurrent events Bias −0.284 −0.028 −0.556
only with logNormal Ave. CI length 0.490 0.260 0.406
Frailty) Coverage 38.9% 94.1% 3.3%

S-DP Mean −0.276 −0.251 0.339
(Survival only Bias 0.024 −0.001 0.039
with DP) Ave. CI length 0.457 0.224 0.507

Coverage 94.0% 93.7% 93.3%

S-logNormal Mean 0.121 −0.253 1.270
(Survival only Bias 0.421 −0.003 0.970
with logNormal Ave. CI length 0.454 0.233 0.425
Frailty) Coverage 16.6% 92.0% 0.7%
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TABLE 2
Simulation results for parameters in baseline functions. Results are based on 1000 simulated

datasets, each fit with each model. The parameters ξ and σ control time-varying patterns in the
recurrent event baseline intensity and survival hazard functions, respectively. The four criteria are
the mean of the point estimates (Mean), average difference between point estimates and the truth

(bias), average length of 95% credible (confidence) intervals (Ave. CI length), and the proportion of
interval estimates capturing the truth (Coverage). The numbers for the best cases are in boldface

Baseline intensity (ξ ) Baseline hazards (σ )
Simulation truth: 0.800 0.700

Joint-DP Mean 0.796 0.702
(Joint with DP) Bias −0.004 0.002

Ave. CI length 0.122 0.202
Coverage 96.1% 97.1%

Joint-logNormal Mean 0.848 0.617
(Joint with logNormal Bias 0.048 −0.083
Frailty) Ave. CI length 0.117 0.264

Coverage 58.8% 74.9%

R-DP Mean 0.686
(Recurrent events Bias −0.114
only with DP) Ave. CI length 0

Coverage 3.3%

R-logNormal Mean 0.695
(Recurrent events Bias −0.105
only with logNormal Ave. CI length 0.099
Frailty) Coverage 11.0%

S-DP Mean 0.736
(Survival only Bias 0.036
with DP) Ave. CI length 0.265

Coverage 95.4%

S-logNormal Mean 0.608
(Survival only Bias −0.092
with logNormal Ave. CI length 0.291
Frailty) Coverage 42.4%

also are summarized in Tables 1 and 2. In the tables, the fitted joint models utiliz-
ing both the recurrent event data and the survival time data are given on the top,
followed by fits of the models for recurrent event outcomes only (R models) and
the models for survival time only (S models).

We first compare the three joint models, Joint-DP, Joint-logNormal, and JSCM,
given in the top three boxes in each of Tables 1 and 2. Compared to the Joint-
DP model, the Joint-logNormal model yields larger Bias, wider CIs, and smaller
Coverage for all β , especially for treatment effects βR3 and βD3. For exam-
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ple, (Bias, Ave. CI length, Coverage) are (−0.322,0.392,28.8%) for βR3 and
(0.216,0.509,60.6%) for βD3 under the Joint-logNormal model. This compara-
tively poor performance in estimation of β1 and β3 for both recurrent events and
survival may be due to the simulated treatment assignment bias, and also possibly
mis-specification of the frailty distribution. The Joint-logNormal model also pro-
duces poor estimation of the baseline function parameters ξ and σ compared to
the Joint-DP model. The JSCM produces larger bias and larger confidence inter-
vals for both βR and βD , although the estimates of βR1 and βR3 are better than
those under the Joint-logNormal model. Since the JSCM assumes AFT models for
recurrent events and survival times, the assumption under the JSCM is satisfied
only for survival times in the simulation truth and their estimates of βD only are
comparable to the simulation truth. The coverage probabilities of the confidence
intervals under JSCM are above 99% for βD , possibly leading to the conclusion
of no significant effect on survival for truly significant variables. This may be due
to the violation of the assumption for recurrent events, the two-step estimation
method, or the modeling assumption that the frailties appear in the hazard func-
tions without adjustment.

Another interesting comparison is between the joint models and the models with
only one outcome. Table 1 shows that improvement in inference about βR and βD

through combining information from two sources via the Joint-DP model is mini-
mal. In contrast, Table 2 shows that the Joint-DP model greatly improves estima-
tion of the baseline intensity and hazard function parameters ξ and σ compared to
the R-DP and S-DP models. Although the performance of the Joint-logNormal is
inferior to that of the Joint-DP model, the Joint-logNormal model gives much more
reliable estimates of βR and βD compared to the R-logNormal and S-logNormal
models. Considered together, these results imply that combining the two sources
of information through joint modeling improves covariate effect estimation, and
greatly improves estimation of the baseline intensity and hazard functions, com-
pared to fitting separate models for the recurrent event process and survival. More-
over, the latter improvement is largest when a BNP model is assumed for the frailty
distribution.

We further examined the performance of the Joint-DP model through additional
simulation studies, Simulations 2–8 in Section 2 of the Supplementary Material.
In these simulations, we kept most of the simulation set-up used in Simulation 1,
including biased generation of Z3, and focused on comparisons of the Joint-DP
model to particular sets of models. In Simulations 2 and 3, we simulated the frail-
ties from a lognormal distribution, that is, the frailty distribution is parametric in
the simulation truth and from a mixture of gamma distributions, respectively. The
performance of the models with the DP for the frailty distribution is almost the
same as in Simulation 1, or is slightly improved, with posterior coverage proba-
bilities closer to 95%. Interestingly, the models with lognormal frailty distribution
perform poorly in Simulation 2, especially for β1 and β3 estimation for the recur-
rent events. This comparison implies that, even when the frailty distribution is cor-
rectly specified, biased treatment assignment may severely deteriorate inference,
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especially for parameters related to treatment and treatment assignment. In Simula-
tions 4 and 5, we generated recurrent events from a homogeneous Poisson process
and a Poisson cluster process, respectively, for further comparisons of the Joint-DP
to JSCM. Recall that JSCM assumes an AFT model for recurrent events, and the
NHPP in Simulation 1 violates the assumptions under JSCM. From Simulation 4,
when the assumption under JSCM is not violated, JSCM yields on average unbi-
ased estimates, but with larger interval estimates and larger coverage probabilities
than the Joint-DP model. Simulation 5 shows that the Joint-DP produces reason-
able inference on βR and βD even when the recurrent event model is not correctly
specified. Simulation 6 is conducted to study robustness of the extended Joint-DP
that includes the model selection procedure to misspecification of the distribution
of Wi . In this simulation, inference on β under the extended model is minimally
affected compared to the Joint-DP that assumes the true distribution of Wi known,
and is better than JSCM that assumes a nonparametric distribution for Wi . Lastly,
in Simulation 6, we further compared the Joint-DP model to the single outcome
R-DP and S-DP models. The results show that when survival times are more heav-
ily censored, the Joint-DP significantly improves inference by borrowing strength
between the recurrent event and survival time outcomes. A more detailed summary
of the additional simulations is given in Section 2 of the Supplementary Material.

4. Analysis of the esophageal cancer data. In this section, we summarize
our analyses of the esophageal cancer dataset described in Section 1. Recall that
the primary goal is to compare effects of the RT modalities, 3DRT and IMRT, on
recurrent effusion occurrences and survival, while accounting for effects of age,
BMI, KPS score, histology, and cancer stage. The continuous variables age and
BMI were standardized to have mean 0 and variance 1. The variables RT modality,
KPS score, histology, and cancer stage are binary, with RT modality = 1 for IMRT,
KPS score = 1 for good, histology = 1 for adenocarcinoma, and cancer stage = 1
for stage 3–4 (advanced) cancer. The RT modality and covariate parameter vectors
thus have dimension pR = pD = 6.

We specified hyperparameters similar to those in the simulations for the
Bayesian models. The MCMC simulation was run over 17,000 iterations, with
the first 8000 iterations discarded as burn-in and every third sample kept as thin-
ning and used for inference. Posterior inferences are summarized in Tables 3
and 4. When interpreting the numerical parameter estimates in Table 3, it is im-
portant to bear in mind that βRj < 0 corresponds to a lower recurrent effusion rate,
while βDj > 0 corresponds to a lower death rate, that is, longer survival. Under
the Joint-DP model, the posterior means of the coefficients for the RT modality
IMRT are β̂R1 = −0.82 and β̂D1 = 0.45, with respective 95% credible intervals
(−1.07,−0.56) and (0.21,0.69). On average, IMRT decreases the effusion rate
by a multiplicative factor of exp(−0.82) = 0.442, and decreases the hazard of
death by a multiplicative factor of 0.468. One may infer that IMRT provides both
a significantly lower rate of effusion occurrences and longer survival compared to
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TABLE 3
Fits of the esophageal cancer data under the joint models. Point estimates of βR and βD are given

with their 95% credible intervals in parentheses under the proposed joint model with DP,
Joint-logNormal, and with confidence intervals under the frequenstist JSCM. Covariates having a

statistically significant effect are given in boldface

Model Covariates βR βD

Joint-DP IMRT −0.82 (−1.07, −0.56) 0.45 (0.21, 0.68)
(Joint with DP) Age 0.08 (−0.05, 0.22) 0.01 (−0.12, 0.14)

BMI −0.13 (−0.27, 0.00) 0.16 (0.04, 0.29)
KPS Score −0.22 (−0.64, 0.11) 0.65 (0.26, 1.06)
Adeno Histology −0.18 (−0.46, 0.10) −0.16 (−0.44, 0.10)
Cancer Stage 0.06 (−0.19, 0.34) −0.46 (−0.73, −0.21)

Joint-logNormal IMRT −0.88 (−1.15, −0.62) 0.45 (0.18, 0.66)
(Joint with logNormal Age 0.08 (−0.06, 0.22) −0.01 (−0.15, 0.12)
Frailty) BMI −0.12 (−0.28, 0.03) 0.15 (0.01, 0.28)

KPS Score −0.36 (−0.61, −0.10) 0.68 (0.38, 0.93)
Adeno Histology −0.10 (−0.39, 0.20) −0.31 (−0.56, −0.02)
Cancer Stage 0.08 (−0.16, 0.33) −0.47 (−0.68, −0.22)

JSCM IMRT −0.85 (−1.45, −0.25) −0.22 (−0.98, 0.54)
Age 0.24 (0.06, 0.41) 0.07 (−0.32, 0.46)
BMI −0.16 (−0.41, 0.09) 0.07 (−0.25, 0.38)
KPS Score −0.54 (−1.15, 0.06) 0.70 (−0.20, 1.60)
Adeno Histology −0.29 (−0.89, 0.30) −0.26 (−1.29, 0.77)
Cancer Stage 0.11 (−0.21, 0.43) −0.84 (−1.64, 0.04)

TABLE 4
Baseline function parameter estimates of the esophageal cancer data.
Point estimates of ξ and σ are given with their 95% credible intervals
in parentheses under Joint-DP, Joint-logNormal, R-DP, R-logNormal,

S-DP, and S-logNormal

Model Baseline intensity (ξ )

Joint-DP 0.84 (0.76, 0.92)
Joint-logNormal 0.90 (0.83, 0.98)
R-DP 0.68 (0.62, 0.74)
R-logNormal 0.70 (0.64, 0.77)

Model Baseline hazards (σ )

Joint-DP 0.60 (0.45, 0.76)
Joint-logNormal 0.43 (0.30, 0.61)
S-DP 0.63 (0.49, 0.78)
S-logNormal 0.58 (0.44, 0.71)
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3DRT. These inferences agree with previous findings in Chuong et al. (2016) that
IMRT is significantly associated with better clinical outcomes, such as decreased
toxicity in the lungs and heart and longer survival. Higher BMI, higher KPS score,
and lower cancer stage also were significantly associated with longer survival,
while no other covariate besides RT modality had a significant effect on the effu-
sion occurrence intensity. While our inference that higher BMI is positively asso-
ciated with longer survival in RT patients may seem spurious or counterintuitive, it
agrees with previously published results [e.g., Ji et al. (2016), Zhang et al. (2013)].
Recalling the forms (1) of the effusion intensity function and (4) of the hazard of
death, Table 4 shows that the effusion intensity decreased over time (ξ̂ = 0.84)
and the hazard of death increased over time (σ̂ = 0.60). It is also reflected in the
posterior estimates of the functions t ξ and t1/σ−1 that are proportional to the cu-
mulative baseline intensity and hazard functions

∫ t
0 ψR(u,ZRi, γi,βR, ξ) du and∫ t

0 ψD(u,ZDi, γi,μ, ζ,βR,σ ) du in Figure 2(a) and (d), where the black solid and
dashed lines represent posterior means and 95% pointwise credible intervals, re-
spectively. Figure 2 of the Supplementary Material illustrates the posterior distri-
butions of all parameters. From panel (o) of the figure, the posterior mean of ζ

is −1.32, implying that the intensity of the effusion occurrence process and the
hazard of death are positively associated. The posterior mean of −ζ/σ is 2.25,
implying that the patient random effects are scaled up for survival. In particular, a
simpler model with ζ ≡ 1 would miss the fact that the magnitudes of the impacts
of γi on the two hazard functions differ. Panel (a) of Figure 3 shows a kernel den-
sity estimate of the posterior means γ̂i of γi . A very interesting result is that the
posterior distribution of γi is bimodal, which is revealed by the DP distribution due
to its flexibility. This suggests that, because a simpler, unimodal assumed distribu-
tion for the γi ’s would miss this bimodality, this in turn would affect the posterior
estimates of βR and βD .

Posterior inferences on βR and βD under the comparators also are summarized
in Tables 3, 5, and 4. Table 3 shows that the two joint models Joint-logNormal
and JSCM identify different sets of significant covariates. For example, the Joint-
logNormal model concludes that all covariates but Age are statistically significant
for survival. The Joint-logNormal model gives slightly larger ξ̂ and smaller σ̂ com-
pared to the estimates under the Joint-DP model, which is similar to the compari-
son in Simulation 1. We compared the posterior frailty estimates under the models
Joint-DP and Joint-logNormal graphically, shown in Figure 3(b). The figure shows
that frailty estimates are similar under the two models when they are small, but
the Joint-logNormal model tends to produce much more extreme estimates than
Joint-DP for larger frailties. We also compare the Joint-DP and Joint-logNormal
based on model assessment metrics, DIC [Spiegelhalter et al. (2002)] and the log-
pseudo marginal likelihood statistic [LPML, Gelfand and Dey (1994), Gelfand,
Dey and Chang (1992)]. DIC and LPML are commonly used for model compar-
ison in the Bayesian paradigm. DIC measures posterior prediction error based on
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FIG. 2. Baseline functions for the esophageal cancer data. In panels (a)–(c), inferred baseline
intensity functions under different models are illustrated. Panels (d)–(f) has plots of inferred baseline
hazard functions. Solid lines and dotted lines are posterior means and 95% credible intervals. The
joint models are in black and the models with single outcomes in red. Blue crosses in (a)–(c) denote
observed Ti,j . Open and closed dots in (d)–(f) represent observed D̃i with δi = 1 (censored) and
δi = 0 (observed), respectively. Note that the intensity and hazard functions of the Bayesian models
including Joint-DP omits scale parameters to avoid potential identifiability issues and are not directly
comparable to those under JSCM and between the models.

deviance penalized by model complexity. LPML is a metric based on cross vali-
dated posterior predictive probability, and is defined as the sum of the logarithms
of subject specific conditional predictive ordinates [CPOs, Geisser (1993)]. Sinha
et al. (2008) and Ouyang et al. (2013) used CPO for model comparison and di-
agnostics for their Bayesian shared frailty models. We integrate out subject level
latent parameters (frailties) and compute DIC and LPML based on the partially
marginalized likelihoods for more reliable comparison [Lee et al. (2016), Millar
(2009)]. Details of the DIC and LPML computation are discussed in Section 3 of
the Supplementary Material. Table 6 provides DIC and LPML for the mode fits.
Note that a model with a smaller DIC and/or a larger LPML indicates a model for
a better fit of the data. Both criteria indicate that the Joint-DP gives a substantially
better fit to the data. JSCM produces larger confidence intervals, especially for βD .



JOINT BAYESIAN SEMIPARAMETRIC REGRESSION ANALYSIS 241

FIG. 3. Esophageal cancer data—frailties. Posterior distributions of frailties {γi}. A kernel density
estimate of the posterior means of the frailties {γi} is given in (a). A scatterplot of γ̂i pairs obtained
from Joint-DP and Joint-logNormal is shown in (b). Scatterplots of γ̂i pairs obtained from Joint-DP
and R-DP are shown in (c) and (d) for subjects with δi = 0 (observed survival) and δ1 (censored
survival), respectively.

In sharp contrast with both of the Bayesian joint models, JSCM indicates that there
is no statistically significant effect of IMRT on survival. Point estimates of the cu-
mulative baseline intensity and hazard functions are illustrated in Figure 2(c) and
(f), respectively. Recall that JSCM does not impose any functional form for the
baseline functions. While the estimates under the Joint-DP, Joint-logNormal, and
JSCM are not directly comparable due to the difference in the formulation, the
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TABLE 5
Fits of the esophageal cancer data under the single outcome models. Point estimates of βR and βD

are given with their 95% credible intervals in parentheses under R-DP, R-logNormal, S-DP, and
S-logNormal. Covariates having a statistically significant effect are given in boldface

Model Covariates βR βD

R-DP IMRT −0.73 (−0.98, −0.50)
(Recurrent events Age 0.09 (−0.05, 0.23)
only with DP) BMI −0.07 (−0.21, 0.07)

KPS Score −0.13 (−0.45, 0.18)
Adeno Histology −0.19 (−0.46, 0.07)
Cancer Stage −0.01 (−0.26, 0.26)

R-logNormal IMRT −0.85 (−1.14, −0.54)
(Recurrent events Age 0.09 (−0.07, 0.24)
only with logNormal BMI −0.10 (−0.27, 0.06)
Frailty) KPS Score −0.45 (−0.74, −0.13)

Adeno Histology −0.26 (−0.56, 0.04)
Cancer Stage −0.09 (−0.37, 0.18)

S-DP IMRT 0.49 (0.27, 0.74)
(Survival only Age 0.01 (−0.12, 0.15)
with DP) BMI 0.13 (−0.01, 0.26)

KPS Score 0.74 (0.40, 1.07)
Adeno Histology −0.13 (−0.43, 0.13)
Cancer Stage −0.42 (−0.70, −0.13)

S-logNormal IMRT 0.58 (0.38, 0.79)
(Survival only Age 0.03 (−0.10, 0.14)
with logNormal BMI 0.09 (−0.03, 0.23)
Frailty) KPS Score 1.00 (0.75, 1.24)

Adeno Histology −0.10 (−0.37, 0.11)
Cancer Stage −0.25 (−0.48, 0.01)

estimated patterns in the baseline functions between the Joint-DP and JSCM are
closer than those between the Joint-logNormal and JSCM.

The separate models with DP in Table 5 identify the same set of significant
covariates as the Joint-DP model, although their point estimates are slightly dif-
ferent. The estimates of the baseline function parameters are compared in Table 4.
The posterior estimates of ξ are considerably different under the Joint-DP and R-
DP models, with much smaller ξ̂ under the R-DP model. The estimates of the γi’s
under the Joint-DP and R-DP models are compared graphically in Figure 3(c) and
(d) for patients with δ = 0 (observed) and 1 (censored), respectively. The dot sizes
are proportional to observed effusion event counts Ni(D̃i). The scatter plots show
that γ̂i tends to be larger under the R-DP model than under the Joint-DP model for
patients with large Ni(D̃i) (big symbols) and/or censored survival [in panel (d)].
Also, patients with Ni(D̃i) = 0 and observed survival tend to have larger γ̂i under
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TABLE 6
DIC and LPML under Bayesian models for the esophageal cancer data

Model DIC LPML

Joint-DP 5654.21 −4113.72
Joint-logNormal 14,206.75 −4639.29

R-DP 1501.91 −764.98
R-logNormal 1541.62 −779.88

S-DP 2167.01 −2036.54
S-logNormal 3116.00 −2523.84

the Joint-DP model [see a band of small black circles below the 45-degree line
in panel (c)]. This illustrates that the Joint-DP model properly accounts for infor-
mative censoring on effusion events by death and yields γ̂i values different from
those obtained under the R-DP model. The patterns of the estimated cumulative
baseline intensity and hazard functions under the joint models and the single out-
come models are compared in Figure 2(a) and (d) where the back and red colors
are for the joint models and the single outcome models, respectively. While the
estimates are not directly comparable, the difference between the joint model and
the single outcome models is smaller under the models with DP than those with
log normal. Similar to comparison of the Joint-DP to the Joint-logNormal, DIC
and LPML indicate that the single outcome models with DP provide a better fit to
the data than those with lognormal as shown in Table 6.

5. Discussion. We have presented a semiparametric Bayesian approach to
jointly model recurrent events and a terminal event through shared latent frailties.
An empirical Bayes approach is used to establish numerical prior hyperparameter
values. All parameters in the proposed joint model are estimated simultaneously
based on both the recurrent events and terminal events, through Bayesian hierar-
chical modeling. By assuming that the patient-specific random effects follow a DP
prior, the proposed model propagates uncertainties at all levels and provides valid
statistical inferences on covariate effects.

Our simulation studies and analysis of the esophageal cancer show that utiliz-
ing all sources of information in the data to estimate patient frailities yields good
performance in posterior inferences for covariate and treatment effects on both the
recurrent event process and survival. In the simulations, our proposed Joint-DP
model shows robustness to a mild violation of the modeling assumption on the
shared frailties. The Joint-DP model compared quite favorably to either of two
BNP models that consider one outcome only, and to the likelihood-based method
of Xu et al. (2017). Based on our simulations, the joint model and a similarly con-
structed survival (S-only) model appear to reliably estimate treatment effects in



244 J. LEE, P. F. THALL AND S. H. LIN

the absence of randomization, when treatment assignment is covariate-dependent.
That is, the joint model and R-only model including latent patient-specific frailties
assumed to follow a DP distribution both do a good job of bias correction, provided
that the covariates used for treatment assignment are available.

The proposed joint model may be extended to accommodate more complex
data structures, such as time-varying covariates or multivariate recurrent event
processes. Also, different baseline intensity functions for the Poisson process of
recurrent events may be assumed. This may be done, for example, by consider-
ing the set of time-varying intensity functions that have been applied successfully
under various Bayesian frameworks [Kuo and Yang (1996)]. These are potential
areas for future research.

SUPPLEMENTARY MATERIAL

Supplement to “Bayesian semiparametric joint regression analysis of re-
current adverse events and survival in esophageal cancer patients” (DOI:
10.1214/18-AOAS1182SUPP; .pdf). Joint Bayesian semiparametric regression
analysis of recurrent adverse events and survival in esophageal cancer patients
are available under the paper information link at the Journal website.
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Supplementary Materials: Joint Bayesian
Semiparametric Regression Analysis of Recurrent
Adverse Events and Survival in Esophageal Cancer

Patients

1 MCMC Algorithm

Let θ = (ξ,γ,βR, µ, ζ,βD, σ) denote the vector of all unknown parameters. The joint prob-
ability model of data and parameters under the Joint-DP model is

p(N , D̃, δ,θ) = p(N , D̃, δ | θ)p(ξ)p(βR)p(βD)p(γ)p(µ)p(ζ)p(σ).

In (5) of the main text, we defined a probability distribution ηi
iid∼ G for ηi = log(γi), and

let G ∼ DP(αG0) where G0 = N(η̄, v2). We use the Gibbs sampling scheme in MacEachern
and Müller (1998) to simulate η = log(γ). The random measure G in the assumed model is
a.s. discrete and yields a positive probability of ties among the ηi’s. We let η?k, k = 1, . . . , K,
denote the K ≤ n unique values among the ηi’s. We also introduced a n−dimensional cluster
membership vector s = (s1, . . . , sn) by letting si = k if and only if ηi = η?k. Given partition
s, ck denotes the size of cluster k, and we denote c = (c1, . . . , cK) for the sizes of the K
clusters. The distributions of s and η? = (η?1, . . . , η

?
K) implied by the Dirichlet process (DP)

are

p(s | α) = αK
∏K

k=1 Γ(ck)∏n
i=1(α + i− 1)

(1)

and given s, η?k | s
iid∼ G0 = N(η̄, v2), k = 1, . . . , K. The Pólya urn can be defined as the

distribution of s in (1) (Blackwell and MacQueen, 1973). Assuming the exchangeability of
subjects, the complete conditional prior probability of si can be described using the Pólya
urn scheme as follows: let s−, c− and K− denote s, c and K without subject i. The prior
probability that subject i joins in existing cluster k, k = 1, . . . , K− is p(si = k | s−) =
c−k /(α + n − 1) and the conditional prior probability of subject i being in a new singleton
cluster, si = K− + 1 is p(si = K− + 1 | s−) = α/(α + n− 1).

From the relationship between η, η?, and s, sampling ηi is equivalent to sampling η?

and s. We denote θ̃ = (ξ,η?, s,βR, µ, ζ,βD, σ). The parameters are estimated by iteratively

1



drawing samples from the full conditional posterior distributions given the data and the
other parameters.

1. Update η?k.
Recall γ?k = exp(η?k). Let θ−γ = (ξ,βR, µ, ζ,βD, σ) be all unknown parameters except
γ. For k = 1, . . . , K,

p(η?k |N , D̃, δ, s,θ−γ) ∝ p(η?k)
n∏

i=1|si=k

p(Ni, D̃i, δi | γ?k , ξ,βR, µ, ζ,βD, σ)

∝ exp

{
−

(η?k − η̄)2

2v2

} n∏
i=1|si=k

(γ?k)Ni exp
(
−γ?kD̃

ξ
i e
β′
RZRi

)
{
λi
σ
D̃

1/σ−1
i exp

(
−λiD̃1/σ

i

)}1−δi

{
exp

(
−λiD̃1/σ

i

)}δi
,

where λi = exp
(
−µ+ζη?k+β

′
DZDi

σ

)
. We use a random-walk Metropolis-Hastings algo-

rithm to simulate η?k from the full conditional. For the esophageal cancer data analysis,
we generated a proposal η?,′k = η?k + ε, ε ∼ N(0, 0.22).

2. Update s.
We sequentially updated a cluster label for subject i, i = 1, . . . , n as follows:
For k = 1, . . . , K−,

p(si = k | Ni, D̃i, δi,θ−γ ,η
?−, s−) ∝ c−k · p(Ni, D̃i, δi | γ?k ,θ−γ)

∝ c−k (γ?k)Ni exp
(
−γ?kD̃

ξ
i e
β′
RZRi

)
{
λi
σ
D̃

1/σ−1
i exp

(
−λiD̃1/σ

i

)}1−δi

{
exp

(
−λiD̃1/σ

i

)}δi
.

p(si = K− + 1 | Ni, D̃i, δi,θ−γ ,η
?−, s−) ∝ α · p(Ni, D̃i, δi | γ?,θ)

∝ α

∫
(γ?)Ni exp

(
−γ?Die

β′
RZRi

)
{
λi
σ
D̃

1/σ−1
i exp

(
−λiD̃1/σ

i

)}1−δi

{
exp

(
−λiD̃1/σ

i

)}δi
g0(η

?)dη?,

where g0 is the probability density function of G0. The integral can be evaluated
numerically (MacEachern and Müller, 1998). We sample k from {1, . . . , K−, K− + 1}
with probabilities proportional to p(si | Ni, D̃i, δi,θ−γ,η

?−).
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3. Update ξ.

p(ξ |N , D̃,θ) ∝ p(ξ)

n∏
i=1

p(Ni(D̃i) | θ)

∝ ξaξ−1 exp (−bξξ)
n∏
i=1


Ni(D̃i)∏
j=1

ξtξ−1ij

 exp
(
−γiD̃ξ

i e
β′
RZRi

)
.

We used a random-walk Metropolis-Hastings algorithm to simulate ξ from the full
conditional. For the esophageal cancer data analysis, we generated a proposal ξ′ = ξ+ε,
ε ∼ N(0, 0.22).

4. Update βR.

p(βR |N , D̃,θ) ∝ p(βR)

n∏
i=1

p(Ni(D̃i) | θ)

∝ exp

{
−

(βR − β̄R)′Σ−1R (βR − β̄R)

2

}
n∏
i=1

exp(Niβ
′
RZRi) exp

(
−γiD̃ξ

i e
β′
RZRi

)
.

We used a random-walk Metropolis-Hastings algorithm to simulate βR from the full
conditional. For better acceptance, we updated an element of βR at a time given the
others in βR. Alternatively, the entire vector βD can be updated with a Metropolis-
Hastings jump in a block. For the esophageal cancer data analysis, we generated a
proposal β′Rp = βRp + ε, ε ∼ N(0, 0.52).

5. Update βD.

p(βD | D̃, δ,θ) ∝ p(βD)
n∏
i=1

p(D̃i, δi | θ)

∝ exp

{
−

(βD − β̄D)′Σ−1D (βD − β̄D)

2

}

×
n∏
i=1

{
λi
σ
D̃

1/σ−1
i exp

(
−λiD̃1/σ

i

)}1−δi {
exp

(
−λiD̃1/σ

i

)}δi
.

We used a random-walk Metropolis-Hastings algorithm to simulate βD from the full
conditional. We may update one element of βD at a time given the others in βD.
Alternatively, the entire vector βD can be updated with a Metropolis-Hastings jump in
a block. For the esophageal cancer data analysis, we generated a proposal β′Dp = βDp+ε,
ε ∼ N(0, 0.52).
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6. Update µ.

p(µ | D̃, δ,θ) ∝ p(µ)

n∏
i=1

p(Ni, D̃i, δi | θ)

∝ exp

{
−(µ− µ̄)2

2ν2

} n∏
i=1

{
λi
σ
D̃

1/σ−1
i exp

(
−λiD̃1/σ

i

)}1−δi {
exp

(
−λiD̃1/σ

i

)}δi
.

We used a random-walk Metropolis-Hastings algorithm to simulate µ from the full
conditional. For the esophageal cancer data analysis, we generated a proposal µ′ =
µ+ ε, ε ∼ N(0, 0.82).

7. Update ζ.

p(ζ | D̃, δ,θ) ∝ p(µ)
n∏
i=1

p(D̃i, δi | θ)

∝ exp

{
−(ζ − ζ̄)2

2ω2

}
n∏
i=1

{
λi
σ
D̃

1/σ−1
i exp

(
−λiD̃1/σ

i

)}1−δi
×
{

exp
(
−λiD̃1/σ

i

)}δi
.

We used a random-walk Metropolis-Hastings algorithm to simulate ζ from the full
conditional. For the esophageal cancer data analysis, we generated a proposal ζ ′ = ζ+ε,
ε ∼ N(0, 0.52).

8. Update σ.

p(σ | D̃, δ,θ) ∝ p(σ)
n∏
i=1

p(Ni, D̃i, δi | θ)

∝ (σ)aσ−1 exp(−bσ
σ

)

n∏
i=1

{
λi
σ
D̃

1/σ−1
i exp

(
−λiD̃1/σ

i

)}1−δi {
exp

(
−λiD̃1/σ

i

)}δi
.

We used a random-walk Metropolis-Hastings algorithm to simulate σ from the full
conditional. For the esophageal cancer data analysis, we generated a proposal σ′ =
σ + ε, ε ∼ N(0, 0.32).

2 Additional Simulations

2.1 Frailty Distribution: Simulations 2 and 3

We conducted simulations for further examination of the proposed joint model with the DP
for the frailty distribution, the Joint-DP model. We compared the Joint-DP model to the

4



Recurrent Events Survival
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.299 0.251 -0.307 -0.298 -0.252 0.305
(Joint with DP) Bias -0.001 0.001 -0.007 0.002 -0.002 0.005

Ave. CI length 0.354 0.176 0.391 0.318 0.156 0.355
Coverage 94.3% 94.4% 95.2% 94.6% 94.9% 95.0%

Joint-logNormal Mean 0.172 0.264 -0.655 -0.276 -0.253 0.351
(Joint with logNormal Bias -0.128 0.014 -0.355 0.024 -0.003 0.051

Frailty) Ave. CI length 0.497 0.259 0.404 0.329 0.157 0.369
Coverage 89.3% 98.7% 3.1% 94.5% 94.7% 91.6%

JSCM Mean 0.365 0.310 -0.382 -0.237 -0.200 0.241
Bias 0.065 0.060 -0.082 -0.063 -0.050 0.059

Ave. CI length 0.645 0.316 0.718 1.616 0.785 1.795
Coverage 89.7% 86.1% 91.4% 99.8% 99.3% 99.5%

R-DP Mean 0.293 0.246 -0.302
(Recurrent events Bias -0.007 -0.004 -0.002

only with DP) Ave. CI length 0.356 0.176 0.397
Coverage 94.9% 94.9% 94.7%

R-logNormal Mean 0.130 0.251 -0.714
(Recurrent events Bias -0.170 0.001 -0.414

only with logNormal Ave. CI length 0.493 0.262 0.402
Frailty) Coverage 79.4% 98.8% 0.1%

S-DP Mean -0.294 -0.252 0.312
(Survival only Bias 0.006 -0.002 0.012

with DP) Ave. CI length 0.318 0.156 0.354
Coverage 94.9% 94.0% 94.8%

S-logNormal Mean -0.143 -0.268 0.678
(Survival only Bias 0.157 -0.018 0.378

with logNormal Ave. CI length 0.316 0.166 0.291
Frailty) Coverage 49.8% 82.6% 0.0%

Table 1: [Simulation 2] Simulation results for covariate effect estimation. The values are
based on 1000 simulated datasets, each fit using each model. The lognormal distribution is
used to simulate the true frailties. The proposed joint model assuming a DP prior for the
frailty distribution is labeled Joint-DP. The four criteria are the mean of the point estimates
(Mean), average difference between point estimates and the truth (bias), average length of
95% credible (confidence) intervals (Ave. CI length), and the proportion of interval estimates
capturing the truth (Coverage). The numbers for the best cases are in boldface.
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Baseline Intensity(ξ) Baseline Hazards (σ)
Simulation Truth 0.800 0.700

Joint-DP Mean 0.808 0.692
(Joint with DP) Bias 0.008 -0.008

Ave. CI length 0.123 0.174
Coverage 94.3% 95.1%

Joint-logNormal Mean 0.855 0.712
(Joint with logNormal Bias 0.055 0.012

Frailty) Ave. CI length 0.150 0.136
Coverage 69.0% 93.5%

R- DP Mean 0.788
(Recurrent events Bias -0.012

only with DP) Ave. CI length 0.111
Coverage 93.8%

R-logNormal Mean 0.809
(Recurrent events Bias 0.009

only with logNormal Ave. CI length 0.121
Frailty) Coverage 96.6%

S-DP Mean 0.674
(Survival only Bias -0.026

with DP) Ave. CI length 0.224
Coverage 97.5%

S-logNormal Mean 0.185
(Survival only Bias -0.515

with logNormal Ave. CI length 0.177
Frailty) Coverage 0.0%

Table 2: [Simulation 2] Simulation results for parameters in baseline functions. Results are
based on 1000 simulated datasets, each fit with each model. The lognormal distribution is
used to simulate the true frailties. The parameters ξ and σ control time-varying patterns
in the recurrent event baseline intensity and survival hazard functions, respectively. The
four criteria are the mean of the point estimates (Mean), average difference between point
estimates and the truth (bias), average length of 95% credible (confidence) intervals (Ave.
CI length) and the proportion of interval estimates capturing the truth (Coverage). The
numbers for the best cases are in boldface.

six different models, including a frequentist method Joint Scale-Change Model (JSCM), that
are described in §2.3 of the main text. We kept most of the simulation set-up in Simulation
1, except the distributions used to simulate the frailties. For Simulation 2, we generated

ηTR
i = log(γTR

i ) from a single lognormal distribution, ηTR
i

iid∼ N(0, 0.25). For Simulation 3, we
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used a mixture of gamma distributions as follows: We simulated patient frailties γTR
i from

a mixture distribution with K = 5 components, p(γTR
i ) =

∑K
k=1 πkGamma(γTR

i | 14.3, b?TR
k ),

where Gamma(· | a, b) is the gamma distribution with mean a/b and variance a/b2. We fixed
the mixture component means (b?TR

1 , · · · , b?TR
5 ) = (64.0, 21.3, 14.3, 9.6, 7.8) and simulated

the component weights from π = (π1, . . . , π5) ∼ Dir(3, 3, 3, 3, 3), where Dir(a) denotes the
Dirichlet distribution with parameter a. We specified the hyperparameters and initialized
the parameters for the Bayesian models as in Simulation 1.

The results from Simulation 2 are summarized in Tables 1 and 2. The Joint-DP model
performs very well for estimation of β, ξ and σ. The bias due to the treatment assignment
using Z3 is well corrected and the model produces very tiny biases in the estimation of all β.
Surprisingly, the Joint-logNormal model does not produce good inference for β, despite the
fact that the assumed model for the frailties is the same as that used for the simulation. In
particular, estimates of β1 and β3 under the Joint-logNormal model have larger biases and
wider intervals with smaller coverage probabilities than those under the Joint-DP model.
For example, Bias, Ave. CI length and Coverage for βR3 are (-0.004, 0.383, 93.6%) under the
Joint-DP model versus (-0.355, 0.404, 3.1%) under the Joint-logNormal model. Similar to the
results in Simulation 1, the JSCM produces slightly biased estimates with wider confidence
intervals, especially for βD. This possibly is due to the two-step estimation method for
β and γ, or the assumption that frailties are included in the two hazard functions, of the
recurrent event process and the survival time distribution, without any adjustment to allow
their effects to have different magnitudes. Comparisons of the Joint-DP model to the R-DP
and S-DP models show that the performance of each one outcome model with DP is very
close to that of the Joint-DP model. On the other hand, the improvement by joint modeling
remains critical for the models with lognormal frailty distribution, although the frailty model
is correctly specified. In particular, the estimates of β1 and β3 are significantly improved
under the Joint-logNormal model compared to the R-logNormal and S-logNormal models.

Tables 3 and 4 summarize the results from Simulation 3. The Joint-DP model yields
on average unbiased estimates of βR and βD. Comparing to the results from Simulation
1, where the true frailties are simulated from a mixture of lognormal distributions, the
performance of the Joint-DP model remains approximately the same, implying that the
model captures the pattern in the true frailty distribution reasonably well. Similarly, the
performance of the single outcome models with DP is about the same as in Simulation 1.
Estimates of βR and βD under the single outcome models tend to be slightly more biased
with wider interval estimates than those under the Joint-DP model. The Joint-DP model
produces great improvements in estimation of ξ and σ compared to the R-DP and S-DP
models. The models with lognormal frailty distributions, the Joint-logNormal, R-logNormal
and S-logNormal models do not perform well, especially for estimation of coefficients related
to treatment and prognostic factor, βR1, βR3, βD1 and βD3 and produce large biases. The
JSCM also produces large biases, wider interval estimates, and coverage probabilities greater
than 95%, even for βD although the assumption under the JSCM for survival times is satisfied
in the simulation truth.
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Recurrent Events Survival
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.293 0.248 -0.313 -0.300 -0.252 0.307
(Joint with DP) Bias -0.007 -0.002 -0.013 0.000 -0.002 0.007

Ave. CI length 0.422 0.209 0.467 0.440 0.217 0.490
Coverage 94.5% 93.6% 94.0% 95.2% 94.8% 94.5%

Joint-logNormal Mean 0.162 0.260 -0.657 -0.198 -0.255 0.537
(Joint with logNormal Bias -0.138 0.010 -0.357 0.102 -0.005 0.237

Frailty) Ave. CI length 0.472 0.245 0.394 0.506 0.247 0.512
Coverage 75.4% 95.7% 23.2% 87.6% 95.8% 54.7%

JSCM Mean 0.369 0.306 -0.366 0.237 0.197 -0.226
Bias 0.069 0.056 -0.066 -0.063 -0.053 0.074

Ave. CI length 0.782 0.383 0.871 1.517 0.744 1.695
Coverage 92.9% 90.4% 93.5% 99.6% 99.3% 99.4%

R-DP Mean 0.262 0.222 -0.281
(Recurrent events Bias -0.038 -0.028 0.019

only with DP) Ave. CI length 0.447 0.221 0.496
Coverage 93.6% 91.7% 94.7%

R-logNormal Mean 0.002 0.221 -0.892
(Recurrent events Bias -0.298 -0.029 -0.592

only with logNormal Ave. CI length 0.490 0.259 0.407
Frailty) Coverage 35.1% 94.0% 1.7%

S-DP Mean -0.286 -0.252 0.338
(Survival only Bias 0.014 -0.002 0.038

with DP) Ave. CI length 0.462 0.227 0.512
Coverage 94.0% 94.6% 93.8%

S-logNormal Mean 0.140 -0.252 1.329
(Survival only Bias 0.440 -0.002 1.029

with logNormal Ave. CI length 0.458 0.236 0.429
Frailty) Coverage 13.7% 90.7% 0.4%

Table 3: [Simulation 3] Simulation results for covariate effect estimation. The values are
based on 1000 simulated datasets, each fit using each model. A mixture of gamma distribu-
tions is used to simulate the true frailties. The proposed joint model assuming a DP prior
for the frailty distribution is labeled Joint-DP. The four criteria are the mean of the point
estimates (Mean), average difference between point estimates and the truth (bias), average
length of 95% credible (confidence) intervals (Ave. CI length), and the proportion of interval
estimates capturing the truth (Coverage). The numbers for the best cases are in boldface.
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Baseline Intensity(ξ) Baseline Hazards (σ)
Simulation Truth 0.800 0.700

Joint-DP Mean 0.795 0.703
(Joint with DP) Bias -0.005 0.003

Ave. CI length 0.122 0.205
Coverage 95.3% 96.5%

Joint-logNormal Mean 0.846 0.611
(Joint with logNormal Bias 0.046 -0.089

Frailty) Ave. CI length 0.116 0.271
Coverage 59.6% 74.4%

R-DP Mean 0.684
(Recurrent events Bias -0.116

only with DP) Ave. CI length 0.104
Coverage 2.2%

R-logNormal Mean 0.691
(Recurrent events Bias -0.109

only with logNormal Ave. CI length 0.098
Frailty) Coverage 9.7%

S-DP Mean 0.743
(Survival only Bias 0.043

with DP) Ave. CI length 0.269
Coverage 94.3%

S-logNormal Mean 0.630
(Survival only Bias -0.070

with logNormal Ave. CI length 0.294
Frailty) Coverage 42.2%

Table 4: [Simulation 3] Simulation results for parameters in baseline functions. Results are
based on 1000 simulated datasets, each fit with each model. A mixture of gamma distri-
butions is used to simulate the true frailties. The parameters ξ and σ control time-varying
patterns in the recurrent event baseline intensity and survival hazard functions, respectively.
The four criteria are the mean of the point estimates (Mean), average difference between
point estimates and the truth (bias), average length of 95% credible (confidence) intervals
(Ave. CI length) and the proportion of interval estimates capturing the truth (Coverage).
The numbers for the best cases are in boldface.

2.2 Point Processes for Recurrent Events: Simulations 4 & 5

We simulated recurrent events from point processes different from the processes used in
Simulations 1-3, and compared the performance of the proposed Joint-DP to that of the
JSCM. In particular, recurrent events were simulated under a homogeneous Poisson process
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(that is, ξTR = 1 in (2) of the main text) and under a Poisson cluster process for Simulations 4
and 5, respectively. The Joint-DP model and JSCM include homogeneous Poisson processes
as a special case and for Simulation 4, both models are expected to produce on average
unbiased estimates of β. Poisson cluster processes may be generated by first simulating
a Poisson or non-homogeneous Poisson process of parent points, also called immigrants,
and then for each parent point generating a random number of offspring points, also called
children, that are distributed in some random fashion around the parent point. This may
be done in one-dimensional real time or more generally in a suitable space of any finite
dimension. However, in general it is not known whether an observed point is an immigrant or
offspring. A key point is that, in real time, the time gaps between successive observed points
(event times) of a Poisson cluster process are not independent. The remaining simulation
set-up is kept the same as in Simulation 1 for both simulations. Note that survival times
were simulated from a Weibull distribution, which is the model assumed for the Joint-DP
model, and is also a special case under the JSCM.

For Simulation 4, the results of estimation of β are summarized in Table 5(a). Biases
are close to zero under both models, implying that on average both models recover the true
values of β. However, the average lengths of interval estimates under the JSCM are greater
for both βR and βD than those under the Joint-DP model. Most notably, interval estimates
of βD under the JSCM are approximately four times wider and their coverage probabilities
are greater than 95% . This possibly is due to the assumption under the JSCM that frailties
have the same effect on the baseline intensity and survival hazard functions. Table 5(b)
illustrates estimation of ξ and σ, the time-varying parameters for the intensity and hazard
functions, respectively, for the Joint-DP model. Both ξ and σ are estimated reasonably,
while the coverage probability for ξ is less than 95%.

For Simulation 5, we generated recurrent event times Ti,j using a nonhomogeneous Poisson
cluster process. Specifically, we used a branch structure representation of a Poisson cluster
process and simulated Ti,j as follows:

1. Given observed survival time D̃i, we generated immigrants (parent points) N ′i and T ′i,j′ ,

j′ = 1, . . . , N ′i from the Poisson process with intensity λTR
i (t) = γTR

i ξTRtξ
TR−1 exp(βTR,′

R Zi).
Frailties γTR

i and covariates Zi were simulated the same as in Simulation 1, with ξTR

and βTR
R fixed at the same values.

2. For subjects with N ′i > 0, we generated offspring (children points) for immigrants,
N

′′

i,j′ , j
′ = 1, . . . , N ′i from a uniform distribution over the integers {1, 2, 3} and let

T
′′

i,j′,m = T
′

i,j′ + ei,j′,m, m = 1, . . . , N
′′

i,j′ with ei,j′,m
iid∼ N(0, 0.22).

3. We then let the number of recurrent event occurrences N(D̃i)i =
∑N ′

i

j′=1N
′′

i,j′ and their

occurrence times Ti,j = {T ′′

i,j′,m, j
′ = 1, . . . , N ′i ,m = 1, . . . , N

′′

i,j′}.

Table 6(a) summarizes the results for estimation of β. From the table, the JSCM produces
slightly larger biases than the Joint-DP model. Similar to Simulation 4, interval estimation
and coverage probabilities are greatly inferior under the JSCM. Interval estimates are wider
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Recurrent Events Survival
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.283 0.245 -0.312 -0.291 -0.252 0.309
(Joint with DP) Bias -0.017 -0.005 -0.012 0.009 -0.002 0.009

Ave. CI length 0.396 0.197 0.439 0.430 0.211 0.478
Coverage 93.1% 95.7% 94.5% 94.2% 94.0% 94.8%

JSCM Mean 0.298 0.241 -0.290 0.300 0.249 -0.300
Bias -0.002 -0.009 0.010 0.000 0.001 0.000

Ave. CI length 0.699 0.344 0.793 1.752 0.856 1.958
Coverage 94.2% 95.6% 88.4% 99% 99.4% 97.2%

(a) Estimation of β

Baseline Intensity(ξ) Baseline Hazards (σ)
Simulation Truth 1.000 0.700

Joint-DP Mean 0.978 0.702
(Joint with DP) Bias -0.022 0.002

Ave. CI length 0.134 0.198
Coverage 89.5% 95.5%

(b) Estimation of ξ and σ under Joint-DP

Table 5: [Simulation 4] Simulation results for covariate effect estimation in (a) and param-
eters ξ and σ in the baseline function in (b). A homogeneous Poisson process is used to
simulate recurrent events. The parameters βR and βD quantifies the effects of covariates
on the recurrent event baseline intensity and survival hazard functions, respectively. The
parameters ξ and σ control time-varying patterns in the recurrent event baseline intensity
and survival hazard functions, respectively. The four criteria are the mean of the point
estimates (Mean), average difference between point estimates and the truth (bias), average
length of 95% credible (confidence) intervals (Ave. CI length), and the proportion of interval
estimates capturing the truth (Coverage). The numbers for the best cases are in boldface.

and coverage probabilities are less than 95% for βR2 and greater than 95% for βD. Estimation
of ξ and σ under the Joint-DP model is illustrated in Table 6(b). Note that ξTR is used
to generate immigrants only. The parameter ξ under the Joint-DP model has a different
interpretation from ξTR and is not directly comparable. Inference on σ under the Joint-DP
model is greatly affected. Bias is larger than that in the previous simulations including
Simulation 4 and the coverage probability is much smaller than 95%.
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Recurrent Events Survival
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.302 0.254 -0.298 -0.289 -0.245 0.291
(Joint with DP) Bias 0.002 0.004 0.002 0.011 0.005 -0.009

Ave. CI length 0.455 0.226 0.503 0.464 0.228 0.517
Coverage 93.6% 92.9% 92.4% 93.9% 93.1% 94.2%

JSCM Mean 0.324 0.281 -0.343 -0.217 -0.187 0.231
Bias 0.024 0.031 -0.043 0.083 0.063 -0.069

Ave. CI length 0.800 0.392 0.893 1.567 0.761 1.746
Coverage 94.3% 91.7% 94.2% 99.7% 99.1% 99.8%

(a) Estimation of β

Baseline Intensity(ξ) Baseline Hazards (σ)
Simulation Truth 0.800 0.700

Joint-DP Mean 0.874 0.896
(Joint with DP) Bias 0.074 0.196

Ave. CI length 0.098 0.183
Coverage 24.6% 1.5%

(b) Estimation of ξ and σ under Joint-DP

Table 6: [Simulation 5] Simulation results for covariate effect estimation in (a) and param-
eters ξ and σ in the baseline function in (b). A Poisson cluster process is used to simulate
recurrent events. The parameters βR and βD quantifies the effects of covariates on the
recurrent event baseline intensity and survival hazard functions, respectively. The param-
eters ξ and σ control time-varying patterns in the recurrent event baseline intensity and
survival hazard functions, respectively. The four criteria are the mean of the point estimates
(Mean), average difference between point estimates and the truth (bias), average length of
95% credible (confidence) intervals (Ave. CI length), and the proportion of interval estimates
capturing the truth (Coverage). The numbers for the best cases are in boldface.

2.3 Survival Distributions: Simulations 6A-6C

We next examined robustness of the proposed approach for joint analysis to misspecification
of the distribution FW of Wi. For the esophageal cancer data, we chose a distribution for sur-
vival time based on empirical model fit comparison. Specifically, we considered AFT models
with three different distributions, the standard extreme, normal and logistic distributions for
Wi in (3) of the main text. The three distributions correspond to Weibull, log-normal, log-
logistic distributions for Di, respectively. We fit the S-DP model and chose the distribution
that produced the smallest DIC for joint analysis. To assess robustness of the above proce-
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(c) Standard normal (d) Standard logistic

Figure 1: [Simulation 6] In panel (a), baseline hazard function h0(t) under the standard
extreme (black solid line), standard normal (red dashed line), standard logistic (blue dotted
line) distributions for Wi . They correspond to Weibull, log-normal, log-logistic distributions,
respectively. σTR = 1 is assumed. In panels (b)-(d), Kaplan-Meier curves are given with a
simulated dataset under the three different distributions assumed for Wi for illustration.

dure, we included the model selection procedure for Wi and extended the Joint-DP model,
called Joint-DP with Model Selection. We then conducted simulation studies by generating
Wi from several different distributions.
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Recurrent Events Survival
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.294 0.249 -0.303 -0.294 -0.250 0.304
with True FW Bias -0.006 -0.001 -0.003 0.006 0.000 0.004

Ave. CI length 0.311 0.153 0.345 0.388 0.190 0.433
Coverage 94.2% 94.8% 95.2% 95.1% 95.2% 94.6%

Joint-DP with Mean 0.294 0.249 -0.303 -0.295 -0.251 0.304
Model Selection Bias -0.006 -0.001 -0.003 0.005 -0.001 0.004

Ave. CI length 0.311 0.153 0.345 0.393 0.192 0.437
Coverage 93.8% 95.1% 95.5% 94.6% 95.2% 95.1%

JSCM Mean 0.37 0.31 -0.37 0.30 0.25 -0.30
Bias 0.07 0.06 -0.07 0.00 0.00 0.00

Ave. CI length 0.05 0.02 0.05 0.80 0.40 0.90
Coverage 10.4% 6.6% 11.5% 99.9% 99.9% 100.0%

Table 7: [Simulation 6A: Standard Extreme (Weibull)] Simulation results for covariate ef-
fect estimation. An AFT model with the standard extreme distribution (Weibull) is used
to simulate survival times. The proposed joint model is extended to include the model se-
lection based on DIC using S-DP model and labeled Joint-DP with Model Selection. The
four criteria are the mean of the point estimates (Mean), average difference between point
estimates and the truth (bias), average length of 95% credible (confidence) intervals (Ave.
CI length), and the proportion of interval estimates capturing the truth (Coverage). The
numbers for the best cases are in boldface.

In Simulation 6A, we used the same simulation set up for recurrent events and frailties as
in Simulation 1. For survival times, we fixed µTR = 1.8, ζTR = −0.5, σTR = 0.9. We simulated
Wi from the standard extreme distribution and let log(Di) = µTR + ζγTR

i + Z ′iβ
TR
D + σWi.

We used the same censoring procedure used in Simulation 1 to generate censored time D̃i.
For Simulations 6B and 6C, we kept the same simulation set up used in Simulation 6A
except the distribution for Wi. We used the standard normal and logistic distributions for
Simulations 6B and 6C, respectively. Figure 1(a) illustrates the assumed hazard functions
under the distributions of Wi. Figure 1(b)-(d) illustrates Kaplan-Meier curves for datasets
simulated under the standard extreme, normal and logistic distributions, respectively. For
each simulation, we fit the following models for comparison: (1) the Joint-DP model that
assumes the true distribution FW of Wi is known, (2) Joint-DP with Model Selection and
(3) JSCM.

The results of estimation of βR and βD under 6A-6C are summarized in Tables 7-9.
Table 10 shows how often each of the distributions is chosen by the Joint-DP with Model
Selection. Performance of the Joint-DP with Model Selection for inference on β is very
similar to that of the Joint-DP model with the true FW . This may be because the true
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Recurrent Events Survival
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.299 0.253 -0.305 -0.301 -0.252 0.302
with True FW Bias -0.001 0.003 -0.005 -0.001 -0.002 0.002

Ave. CI length 0.281 0.139 0.313 0.382 0.187 0.427
Coverage 93.8% 93.1% 93.4% 96.1% 96.6% 95.9%

Joint-DP with Mean 0.299 0.253 -0.305 -0.300 -0.252 0.302
Model Selection Bias -0.001 0.003 -0.005 0.000 -0.002 0.002

Ave. CI length 0.281 0.139 0.313 0.382 0.187 0.426
Coverage 93.8% 93.4% 93.2% 95.8% 96.0% 95.5%

JSCM Mean 0.37 0.32 -0.38 0.30 0.25 -0.30
Bias 0.07 0.07 -0.08 0.00 0.00 0.00

Ave. CI length 0.03 0.02 0.04 0.91 0.45 1.02
Coverage 8.0% 5.4% 8.7% 99.9% 100.0% 100.0%

Table 8: [Simulation 6B: Standard Normal (Log-Normal)] Simulation results for covariate
effect estimation. An AFT model with the standard normal distribution (log-normal) is
used to simulate survival times. The proposed joint model is extended to include the model
selection procedure based on DIC using S-DP model, and is labeled Joint-DP with Model
Selection. The four criteria are the mean of the point estimates (Mean), average difference
between point estimates and the truth (bias), average length of 95% credible (confidence)
intervals (Ave. CI length), and the proportion of interval estimates capturing the truth
(Coverage). The numbers for the best cases are in boldface.

distribution of Wi is chosen most of time, as shown in Table 10. The JSCM assumes an
arbitrary distribution for Wi in an AFT framework and accommodates all three distributions
used for Simulation 6 as special cases. Since the NHPP is not nested in the JSCM, we focus
on the estimation of βD. The JSCM performs poorly compared to both the Joint-DP model
and Joint-DP with Model Selection. The JSCM produces larger biases with larger interval
estimates for βD than the Joint-DP with Model Selection. The performance for Simulation
6C is worse under all models, but the JSCM is affected more severely than either the Joint-
DP model or Joint-DP with Model Selection.

2.4 Additional Comparisons to Single Outcome Models: Simula-
tions 7 & 8

We performed simulation studies, Simulations 7 and 8 to focus specifically on how the Joint-
DP model may improve inferences compared to the single outcome models, R-DP and S-DP
models. For Simulation 7, we kept the simulation set up as in Simulation 1, but increased the
probability of censoring; we let Di be censored with probability 0.8. Note that the probability
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Recurrent Events Survival
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.300 0.252 -0.299 -0.293 -0.249 0.302
with True FW Bias 0.000 0.002 0.001 0.007 0.001 0.002

Ave. CI length 0.268 0.131 0.295 0.645 0.315 0.719
Coverage 89.2% 90.4% 90.0% 95.4% 95.0% 95.4%

Joint-DP with Mean 0.301 0.253 -0.299 -0.294 -0.250 0.302
Model Selection Bias 0.001 0.003 0.001 0.006 0.000 0.002

Ave. CI length 0.267 0.131 0.294 0.650 0.319 0.723
Coverage 89.3% 88.8% 89.5% 94.6% 94.7% 94.3%

JSCM Mean 0.20 0.17 -0.20 0.11 0.09 -0.11
Bias -0.10 -0.08 0.10 -0.19 -0.16 0.19

Ave. CI length 0.08 0.04 0.08 1.59 0.78 1.77
Coverage 11.7% 8.8% 10.8% 99.4% 96.4% 99.9%

Table 9: [Simulation 6C: Standard Logistic (Log-Logistic)] Simulation results for covariate
effect estimation. An AFT model with the standard logistic distribution (log-logistic) distri-
bution is used to simulate survival times. The proposed joint model is extended to include
the model selection procedure based on DIC using the S-DP model, and labeled Joint-DP
with Model Selection. The four criteria are the mean of the point estimates (Mean), aver-
age difference between point estimates and the truth (bias), average length of 95% credible
(confidence) intervals (Ave. CI length), and the proportion of interval estimates capturing
the truth (Coverage). The numbers for the best cases are in boldface.

True Model
Selected Model

Standard Extreme Standard Normal Standard Logistic
Standard Extreme 0.921 0.039 0.040
Standard Normal 0.000 0.967 0.033
Standard Logistic 0.000 0.352 0.648

Table 10: [Simulation 6A-6C: Model Selection] Survival time is simulated under three dif-
ferent models, standard extreme (Weibull), standard normal (log-normal), standard logistic
(log-logistic) models. The Joint-DP is extended to include the model selection based on DIC
using DP-S. The percentage of selected models under each true distribution is tabulated.

of censoring is 0.25 in Simulation 1. Due to the larger probability of censoring, observed
survival or censoring time D̃i and the number of observed recurrent events Ni(D̃i) are smaller
than those in Simulation 1. Thus, inference in Simulation 7 is more challenging than that in
Simulation 1. The simulation results under the three models are summarized in Table 11.
Comparing of the Joint-DP model to the R-DP model, biases and average CI lengths are
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larger under the R-DP for the estimation of βR. Inference on ξ, the parameter that captures
the time-varying pattern in the baseline intensity function is very different under the Joint-
DP and R-DP models. The Joint-DP model provides more reasonable inference on ξ. Most
notably, the Joint-DP model clearly outperforms the S-DP model even when the recurrent
event is rarely occurred (the average number of recurrent events per subject in the simulated
dataset is less than one for most of simulated datasets). The performance of the S-DP model
is greatly affected by larger prevalence of censoring. Recall that Z1i is used as a prognostic
factor to determine treatment Z3i ∈ {0, 1} to reflect a physician’s covariate-based treatment
selection process in the simulation. The table shows that while estimation of βD2 under the
S-DP model is comparable to that under the Joint-DP model, estimation of βD1 and βD3 is
much worsened under the S-DP model for all criteria, bias, average CI length and coverage.

For Simulation 8, we simulated recurrent events from a NHPP with larger intensities,
that is, larger η?TR

k , while keeping a large probability for survival times being censored similar
to Simulation 7. We simulated patient frailties ηTR = log(γTR) from a mixture distribution
with K = 5 components, p(ηTR

i ) =
∑K

k=1 πkφ(ηTR
i | η?TR

k , 0.25), where the mixture component
means (η?TR

1 , · · · , η?TR
5 ) = (0.0, 1.1, 1.5, 2.1, 2.5). The component weights are simulated from

a Dirichlet distribution π = (π1, . . . , π5) ∼ Dir(3, 3, 3, 3, 3). The distribution used to simulate
γTR
i has a larger variance than those used in the other simulations, such as Simulations 1

and 7. We set the covariate effects βTR
R = (0.30, 0.25,−0.30)′, βTR

D = (−0.30,−0.25, 0.30)′,
ξTR = 0.8, ζTR = −1.2 and σTR = 0.7, the same as in Simulation 1. But we fixed, µTR = 2.5.
We simulated the death time Di from a Weibull model in Eq (4) of the main text with the
above assumed true parameter values. We let δi = 0 (the survival outcome is observed) or 1
(the survival outcome is censored) with probabilities 0.25 and 0.75, respectively, set D̃i = Di

for patients with δi = 0, and for patients with δi = 1 we assumed uniform censoring time
D̃i ∼ Unif(0, Di). Table 12 summarizes the results of Simulation 8. Similar to the results of
Simulation 7, the Joint-DP model improves estimation of all parameters including βR and
βD compared to those under the single outcome models. Especially for βD, βR1 and βR2 that
are related to biased treatment assignment and treatment, we observe better performance of
the Joint-DP. Due to larger γi, estimation of ξ is improved but estimation of σ is deteriorated
under the Joint-DP and S-DP models. For both parameters, the Joint-DP model produces
better inference on average. Figure 2 illustrates histograms of variances of the posterior
means of random frailties in simulated datasets. For each simulated dataset, we computed
variances of posterior means of γi for the Joint-DP and R-DP models and of µi for the S-DP
model. Note that γi under the Joint-DP model and µi under the S-DP model are not directly
comparable, while γi’s under the Joint-DP and R-DP models are comparable.

3 Additional Results of the Esophageal Cancer Data

Analysis

We illustrate the posterior distributions of parameters including regression coefficients βR
and βD in Figure 3. The vertical dashed lines represents the posterior means with 95%
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Figure 2: [Simulations 1, 7 & 8] Histograms of variances of posterior means of random
frailties. For each simulated dataset, hte variance of the posterior means of γi for the J-DP
and R-DP models (similarly, the variance of posterior means of µi for the S-DP model) is
computed. Each histogram is based on 1000 simulated datasets.

credible intervals. Posterior means and 95% credible interval estimates of βR, βD, ξ and σ
are also summarized in Tables 3 and 4 of the main text.
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In §4 of the main text, we compute the deviance information criterion (DIC, Spiegelhalter
et al. (2002)) and the log-pseudo marginal likelihood statistic (LPML, Gelfand et al. (1992);
Gelfand and Dey (1994)). Since βR and βD are the parameters of primary interest, we
calculate the metrics using the partially marginalized likelihood by integrating out subject
level latent variables γi for more reliable model comparison (Millar, 2009; Lee et al., 2016);

p(D | θ′) =

∫
p(D | θ′,γ) p(γ)dγ, (2)

where D = {N , D̃, δ} is all data, and θ′ all parameters but frailties γ. The corresponding
DIC is

DIC = D(θ̄′) + 2pD,

where D(θ′) =
∑n

i=1−2 log(Di | θ′) with Di = {Ni, D̃i, δi} and θ̄′ is the posterior mean of
θ′. The effective sample size is pD = D̄(θ′)−D(θ̄′), where D̄(θ′) denotes the posterior mean
of D(θ′). The partially marginalized density in (2) is not available in closed form and we
use numerical approximation using the posterior distribution G of η = log(γ). We evaluate
DIC using posterior simulation of θ and select the model with the smallest value of DIC.
To compute LPML, we compute the conditional predictive ordinate (CPO) of Di given the
data with the observation of subject i deleted D−i = {N , D̃, δ}−i;

p(Di | D−i) =

∫
p(Di | θ′)p(θ′ | D−i)dθ′.

Larger values of CPO indicate a better fit of the model to the data. A Monte Carlo estimate
of p(Di | D−i) can be obtained based on the MCMC samples of θ′ from p(θ′ | D) (Chen
et al., 2012). We evaluate the LPML defined as

∑n
i=1 log p(Di | D−i) and select the model

with the largest value of LPML.
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Recurrent Events (βR) Survival (βD)
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.273 0.234 -0.289 -0.291 -0.256 0.318
(Joint with DP) Bias -0.027 -0.016 0.011 0.009 -0.006 0.018

Ave. CI length 0.489 0.242 0.542 0.742 0.364 0.828
Coverage 92.7% 94.7% 94.7% 94.4% 94.6% 95.2%

R-DP Mean 0.263 0.225 -0.276
(Recurrent events Bias -0.037 -0.025 0.024

only with DP) Ave. CI length 0.509 0.251 0.564
Coverage 93.0% 93.8% 94.5%

S-DP Mean -0.239 -0.253 0.425
(Survival only Bias 0.061 -0.003 0.125

with DP) Ave. CI length 0.811 0.398 0.900
Coverage 93.6% 94.7% 92.1%

(a) Covariate Effect (βR and βD)

Baseline Intensity(ξ) Baseline Hazards (σ)
Simulation Truth 0.800 0.700

Joint-DP Mean 0.731 0.695
(Joint with DP) Bias -0.069 -0.005

Ave. CI length 0.125 0.304
Coverage 43.5% 95.7%

R-DP Mean 0.688
(Recurrent events Bias -0.112

only with DP) Ave. CI length 0.119
Coverage 8.0%

S-DP Mean 0.734
(Survival only Bias 0.034

with DP) Ave. CI length 0.447
Coverage 95.6%

(b) Parameters in Baseline Functions (ξ and σ)

Table 11: [Simulation 7] Simulation results for covariate effect estimation in (a) and esti-
mation of parameters in baseline functions in (b). The values are based on 1000 simulated
datasets, each fit using each model. Survival times are censored with probability 0.8. The
four criteria are the mean of the point estimates (Mean), average difference between point
estimates and the truth (bias), average length of 95% credible intervals (Ave. CI length),
and the proportion of interval estimates capturing the truth (Coverage). The numbers for
the best cases are in boldface.
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Recurrent Events (βR) Survival (βD)
Parameters βR1 βR2 βR3 βD1 βD2 βD3

Simulation Truth 0.300 0.250 -0.300 -0.300 -0.250 0.300

Joint-DP Mean 0.299 0.242 -0.265 -0.302 -0.252 0.289
(Joint with DP) Bias -0.001 -0.008 0.035 -0.002 -0.002 -0.011

Ave. CI length 0.303 0.149 0.336 0.589 0.288 0.656
Coverage 92.5% 92.2% 92.3% 94.1% 96.1% 93.8%

R-DP Mean 0.291 0.238 -0.260
(Recurrent events Bias -0.009 -0.012 0.040

only with DP) Ave. CI length 0.306 0.150 0.339
Coverage 92.2% 92.1% 90.0%

S-DP Mean -0.241 -0.252 0.417
(Survival only Bias 0.059 -0.002 0.117

with DP) Ave. CI length 0.787 0.385 0.871
Coverage 93.3% 95.5% 91.1%

(a) Covariate Effect (βR and βD)

Baseline Intensity(ξ) Baseline Hazards (σ)
Simulation Truth 0.800 0.700

Joint-DP Mean 0.773 0.647
(Joint with DP) Bias -0.027 -0.053

Ave. CI length 0.060 0.200
Coverage 60.3% 82.6%

R-DP Mean 0.750
(Recurrent events Bias -0.050

only with DP) Ave. CI length 0.059
Coverage 9.8%

S-DP Mean 0.790
(Survival only Bias 0.090

with DP) Ave. CI length 0.449
Coverage 90.6%

(b) Parameters in Baseline Functions (ξ and σ)

Table 12: [Simulation 8] Simulation results for covariate effect estimation in (a) and esti-
mation of parameters in baseline functions in (b). The values are based on 1000 simulated
datasets, each fit using each model. Survival times are censored with probability 0.75. The
four criteria are the mean of the point estimates (Mean), average difference between point
estimates and the truth (bias), average length of 95% credible intervals (Ave. CI length),
and the proportion of interval estimates capturing the truth (Coverage). The numbers for
the best cases are in boldface.
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Figure 3: [Esophageal Cancer Data] Posterior distributions of the parameters, (a)–(f) for
βR, (g)–(`) for βD and (m)–(p) for the baseline function parameters under the proposed
joint model with DP. The blue dashed lines are at the posterior means and the lower and
upper limits of 95% posterior credible intervals, respectively.
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