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Abstract

Adaptive enrichment designs for clinical trials may include rules that use in-
terim data to identify treatment-sensitive patient subgroups, select or com-
pare treatments, or change entry criteria. A common setting is a trial to
compare a new biologically targeted agent to standard therapy. An enrich-
ment design’s structure depends on its goals, how it accounts for patient
heterogeneity and treatment effects, and practical constraints. This article
first covers basic concepts, including treatment-biomarker interaction, pre-
cision medicine, selection bias, and sequentially adaptive decision making,
and briefly describes some different types of enrichment. Numerical illus-
trations are provided for qualitatively different cases involving treatment-
biomarker interactions. Reviews are given of adaptive signature designs; a
Bayesian design that uses a random partition to identify treatment-sensitive
biomarker subgroups and assign treatments; and designs that enrich superior
treatment sample sizes overall or within subgroups, make subgroup-specific
decisions, or include outcome-adaptive randomization.
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1. INTRODUCTION

1.1. Basic Concepts and Examples

It is widely recognized in oncology that the molecular biology of virtually all tumors is heteroge-
neous. For clinical evaluation of targeted agents, this has motivated the use of genomic, proteomic,
or other biological variables obtained from new technologies such as microarrays, cytometry by
time of flight, orDNA sequencing. If an experimental agent,E, is designed to hit a biological target
thought to be associated with the disease being treated, whether a target is present in a patient may
be represented by a function of a vector Z of biomarkers. The idea is that by hitting a biological
target or targets, E may disrupt a functional pathway of cancer cells and thus increase the chance
of a favorable clinical outcome. Major goals are determining a function of Z that characterizes
a subgroup of patients likely to respond to a new targeted agent and comparing E to a standard
control treatment, C, in the identified subgroup. To address these issues, the US Food and Drug
Administration (FDA) has provided guidelines for evaluating new cancer vaccines (FDA 2011).

There is a large, growing literature on tumor heterogeneity, which may be between different
patients who have the same disease, between different tumors in one patient, within a given tumor
over time, or within a tumor and determined by tissue samples taken from different locations.
Numerous clustering methods have been proposed, with a review given by Weber & Robinson
(2016). An important modern approach to characterizing tumor heterogeneity is application of
Bayesian feature allocation models (FAMs), first formulated by Griffiths & Ghahramani (2006)
and reviewed by Griffiths & Ghahramani (2011). As an illustrative example, consider a setting
where each cancer cell in one or more samples may or may not have any of a set of biomarkers,
such as surface markers identified by cytometry. A FAM accounts for the fact that a tumor cell
population in a sample may include different cell subpopulations, each characterized by a set of
biomarkers. The FAM identifies cell subpopulations by using a random binary matrix, with rows
corresponding to biomarkers and columns corresponding to cell subpopulations. The FAM uses
latent (unobserved) feature variables to represent the unknown subpopulations, and it includes
a feature allocation prior on the probabilities of whether or not each biomarker is expressed in
each subpopulation. A FAM is more general than a clustering algorithm, since a feature is a set
of the biomarkers, and a given biomarker may belong to more than one cluster. For example,
maximum a posteriori estimation with FAMpriors was proposed by Xu et al. (2015) for identifying
haplotypes and subclones. Lee et al. (2016) developed a FAM framework for identifying subclonal
copy number and within-patient single nucleotide mutations over time. Reviews of the biological
bases for tumor heterogeneity and possible strategies for targeted therapies were written by Fisher
et al. (2013) and Dagogo-Jack & Shaw (2018), among many others.

Consider a new agent, E, that has been designed to hit a particular biological target, a binary
variable defined with Z = 1 if a patient has a biomarker for the target and Z = 0 if not, and the
primary clinical outcome of interest, denoted by Y. Patients with Z= 1 are said to have biomarker
positive disease, or to be E-sensitive.Usually,Y is an early treatment response indicator or survival
time. If the new molecule behaves as it was designed, then on average, patients who receive E will
live longer, and this effect will be larger if Z = 1 than if Z = 0; that is, E-sensitive patients can be
expected to benefit more from E. More generally, Y may denote a vector including two or more
coprimary endpoints, such as an indicator YRES of early antidisease effect (response), an indicator
YTOX of a severe adverse event (toxicity), and YS = survival time, so in this more general case, Y =
(YRES,YTOX,YS).This sort of outcome is used, for example, byChapple&Thall (2019) to construct
a hybrid phase I-II-III design. While such designs using multidimensional Y can be very useful,
this article focuses on enrichment trials, so only designs with one primary outcome are discussed.
If the effects of E on Y in the subgroups with Z = 1 and Z = 0 differ, then Z is predictive. Given
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an active control treatment, C, denote the treatment indicator τE = 1 if a patient is treated with
E+ C and τE = 0 if treated with C. In some settings,E is not combined with C, but this distinction
is ignored here for simplicity.

As a prototype example, suppose that the disease is de novo acute myelogenous leukemia
(AML), C is the intravenous chemotherapy agent cytosine arabinoside (ara-C), and E is a de-
signed molecule that may aim to either inhibit cancer cell proliferation by targeting a mutation
in the FLT3 tyrosine kinase enzyme or enhance ara-C-induced cell death. The trial would ran-
domize patients between ara-C alone (C) and the targeted agent + ara-C (E + C). In this setting,
Y may be the indicator of complete remission (CR) within 42 days, or survival time. The aim is
that E-sensitive patients treated with E+ C should have larger p= Prob(CR) if Y is CR, or longer
mean survival if Y is survival time. In the extreme case, if Z = 0, then E + C provides no benefit
at all over C. In a regression model for the distribution of Y as a function of (τE, Z), a linear term
accounting for the possible effects of both E and Z may take the form

η = μ + γ τE + β Z + ξ τE Z.

In η, the effect of E is γ + ξ if Z = 1 and γ if Z = 0. This implies that the treatment-biomarker
interaction quantifying the additional effect of E in biomarker positive patients is (γ + ξ ) −
γ = ξ . If ξ = γ = 0, then E has no antidisease effect at all, regardless of biomarker status. In
the AML example, if Y is a binary indicator of CR, then one might assume the logistic model
η = log {p/(1 − p)}. If Y is survival time, then η would appear in the model for the logarithm of
the hazard of death. For example, a Weibull distribution may be assumed since it has the flexible
hazard function h(t)= λ α tα − 1, which is the death rate at time t > 0, where λ is a rate parameter,
α is a shape parameter, and one may assume λ = exp(η) to model the effects of E and biomarker
status Z on survival time.

1.2. Enrichment Based on Many Biomarkers

In practice, a vector Z that includes many candidate biomarkers often is available, rather than only
one binary Z, and an important statistical problem is to identify a discrimination function, f (Z),
such that f (Z) > c for a fixed cutoff c identifies a patient as being E-sensitive. Statistical methods
for identifying such a function are discussed below in Sections 4 and 6. If an E-sensitive patient
subset in whichE+C has a substantively larger antidisease effect thanC can be determined, thenZ
may be used by practicing physicians to guide precision medicine, wherein the physician uses each
patient’s biomarker vector,Z, to guide treatment decisions.The availability of modern biomarkers
notwithstanding, physicians have been using patient covariates to guide their therapeutic decision
making for thousands of years.

To account for these possibilities prospectively, an adaptive enrichment design, probability
model, and parameter estimation method must address two closely related statistical problems.
These are (a) identification of a subpopulation of E-sensitive patients, and (b) estimation (evalu-
ation) or testing (validation) of the effects of E on Y in both biomarker positive and biomarker
negative patients. Doing both identification and evaluation reliably in the same clinical trial, or
in a series of trials, is a challenging problem. Preclinical in vitro data on the molecular biology
of the disease and in vivo data on the effects of E in rodents xenografted with the disease may
suggest which elements of Z are more likely to identify E-sensitive patients. However, data on
humans treated with E + C and C from a properly designed randomized clinical trial are needed.
Strategies and designs for clinical identification, evaluation, and validation are reviewed below in
Sections 3 through 6.

www.annualreviews.org • Adaptive Enrichment Designs 395

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

21
.8

:3
93

-4
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

T
ex

as
 -

 M
.D

. A
nd

er
so

n 
C

an
ce

r 
C

en
te

r 
on

 0
3/

10
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



While it might appear counterintuitive to evaluate possible effects of E in biomarker negative
patients, in terms of clinical outcomes, a new targeted agent often does not affect a particular hu-
man disease as expected based on preclinical data.Moreover, any statistical rule for dichotomizing
patients into E-sensitive and non-E-sensitive subgroups based on an available biomarker vector Z
is not perfect because it is based on data, and data are subject to random variation. Consequently,
Emay turn out to have a substantive antidisease effect in biomarker negative patients. Numerical
examples of this are given below.

In most enrichment designs, decisions and actions include identifying a patient subgroup con-
sidered to be sensitive to E, restricting enrollment to E-sensitive patients, and testing whether
E + C provides a substantive benefit over C either within the E-sensitive subgroup or overall.
More generally, the two main goals of clinical trials, including adaptive enrichment trials, are to
benefit the patients in the trial and to provide high-quality data for making statistical inferences
to benefit future patients. The central statistical problem in adaptive enrichment designs is that
the statistical decisions include some combination of selection of a subvector Z∗ of elements of Z;
construction of a function f (Z∗ ) that is used to define an E-sensitive subgroup, or possibly more
than two subgroups; and one or more comparative tests to assess the effect of E, conducted in se-
quence and possibly within different subgroups. The conventional type I error and power of one
such test viewed in isolation are incorrect and misleading since all of the other statistical decisions
have been ignored. Consider the probability of the following two actions:

� Step 1: Determine Z∗, f (Z∗ ), and a cutoff c such that [ f (Z∗ ) > c] = [E-sensitive].
� Step 2: Test whether E is superior to C in the E-sensitive patient subset determined in

step 1.

Denote the response probabilities, or mean survival times, for the two treatments by θE + C and θC.
The probability of both step 1 and step 2 for a given value θE + C larger than θC may be called the
generalized power (GP) of the procedure. The GP is smaller than the probability of the test (step
2) considered alone, as if the subset of E-sensitive patients were known and not determined from
data. A conventional power figure is misleading if the test has been preceded by decisions such as
variable selection, subset selection, or treatment selection. The relevant quantity is the GP of the
entire decision process. Moreover, to compute a GP, one must assume a true subset of E-sensitive
patients as well as a parameter θE + C in that subset.

1.3. Treatment Selection and Estimation Bias

While the use of biomarkers to guide application of targeted agents is the most common idea
of an enrichment design, such designs may include a variety of different types of sequentially
adaptive decisions. They are adaptive in that treatment, outcome, and covariates (τ ,Y ,Z) from
previous patients, and each newly enrolled patient’s Z, may be used to make interim decisions.
Many adaptive enrichment designs are based on (τ , Y ) only and do not involve patient covariates.
An adaptive futility rule stops accrual to a treatment found to be ineffective, and an adaptive safety
rule stops accrual to a treatment found to be unsafe.An example is a randomized phase II-III select-
and-test trial of three experimental agents, E1, E2, and E3, and a control, C, that includes adaptive
futility and safety rules. In the AML setting, if one wishes to evaluate three different targeted
agents in the same trial, then C again denotes the ara-C arm, and each Ej denotes a targeted agent
given in combination with ara-C. If interim data show that, for example, the E1-versus-C efficacy
effect is negligible, or that the E1-versus-C toxicity rate is unacceptably high, then one of the
rules may drop E1 and increase (enrich) the sample sizes of E2 and E3, followed by confirmatory
comparison of one or both of {E2,E3} toC.This approach was taken in the STAMPEDE (Systemic
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Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy) trial ( James
et al. 2009) in men with advanced prostate cancer, a very large randomized trial including many
experimental treatments. After an initial stage for safety testing, interim treatment comparisons
are based on time to failure, defined as disease progression or death, allowing termination of arms
showing poor performance compared with the control arm, with final comparisons to the control
based on survival time.

Estimation bias is a major issue after doing adaptive futility or safety monitoring, treatment
selection, or subgroup selection, and it is an inherent problem in enrichment trials. Temporarily
ignoring subgroups, consider a conventional group sequential design for a randomized two-arm
trial of E versus C (see, e.g., Jennison & Turnbull 2007). If a futility rule is included in the decision
scheme, the fact that the difference 
̂ = θ̂E − θ̂C between the estimated response probabilities
or expected survival times must be sufficiently large at each interim test to continue the trial
causes the final 
̂ statistic to overestimate the true 
. To see this, suppose first that the trial was
conducted without any adaptive interim rules to stop the trial early. Then the fact that patients
were randomized between E and C would ensure, by a standard statistical argument, that the
distribution of the estimator 
̂ based on the final data will have a distribution with mean (expected
value) equal to the true 
, written as E(
̂) = 
. This is the definition of an unbiased estimator.
Now suppose that, instead, the trial has two stages with equal sample sizes, and a futility rule is
applied after stage 1. If the futility rule does not stop the trial early, then only interim stage 1 data
that give values of 
̂1 large enough to continue the trial are possible. So E(
̂1) must be larger
than the true parameter 
. Denote the estimator based on the stage 2 data by 
̂2. So, if the trial is
not stopped early by the futility rule, then since the final estimator is 
̂ = 0.50
̂1 + 0.50
̂2, the
upward bias in 
̂1 causes the final 
̂ to overestimate 
.

A similar problem arises in a two-arm trial comparing E to C where patient subgroups {S1, . . . ,
Sm} have been identified before the start of the trial, possibly based on a biomarker vector Z. If one
uses the final data to select the best subset, Sj∗ , defined as having the largest estimated E-versus-C
effect, 
̂ j∗ , then the estimate of 
 in that subset will be upwardly biased. If, in fact, the subsets
have no effect whatsoever, then the estimators 
̂1, . . . , 
̂m will have identical distributions, all with
mean 
. But the fact that the maximum 
̂ j∗ must be larger than all of the other 
̂ js implies that
E(
̂ j∗ ) > 
. For example, if 10 independent random variables are uniformly distributed between
0 and 1, so that each has mean 0.50, then the maximum of the 10 has expected value 0.91, rather
than 0.50. If there are no actual treatment-subset interactions, in this case a nominally best subset
will be identified purely due to the play of chance. Ignoring this basic fact is likely to lead to serious
errors when making inferences about a selected best Ej∗ , including estimation bias, miscalculation
of a test’s power, and the incorrect conclusion that Ej∗ provides a treatment advance over C when
in fact it does not. The common practice of selecting a best subset based on post hoc data analyses,
sometimes called cherry picking or data dredging, is one of the major reasons why such results
often cannot be replicated in later studies. In the context of adaptive enrichment trials, methods
to correct for bias due to using the same data set for developing a classifier C(Z, τE ) and doing
parameter estimation are given, for example, by Bai et al. (2017) and Zhang et al. (2017).

The idea of GP also arises in settings where a comparative test is preceded by treatment se-
lection, even if one assumes that patients are homogeneous. Consider a multi-arm randomized
select-and-test trial of experimental treatments E1,E2, andE3 and an active control C, which first
selects the treatment Ej∗ having the largest estimated Ej-versus-C effect for later comparison to C.
For such two-stage phase II-III designs, as given by Thall et al. (1988), if θ̂Ej∗ − θ̂C is sufficiently
large in stage 1, then additional data are obtained in a second stage by randomizing patients be-
tween the selected Ej∗ and C, thus enriching the Ej∗ arm, and a final test is done, based on all of
the data, to decide whether Ej∗ is superior to C. In the global null case where all four treatments
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have identical means, θE1 = θE2 = θE3 = θC , the statistical estimate θ̂ j∗ will have an expected value
larger than the true value. Again, this is because a selected maximum produces upward estimation
bias. If a two-arm test comparing Ej∗ to C is constructed while ignoring the preliminary selection,
it will not have the nominal size and power figures, since it ignores the fact that j∗ is a statistic that
depends on data from all four treatment arms.The relevant quantity is not conventional power but
the GP,which in this setting is the probability of (a) correctly identifying an Ej∗ that truly provides
an improvement over C in stage 1 and (b) concluding that θE∗

j
> θC in stage 2. Since the GP is the

probability of a smaller event than just the event (stage 2) assuming that j∗ is known, it is harder
to achieve a numerical GP value close to conventional power figures. A similar two-stage phase
II-III design based on Y = survival time that allows more than one Ej to be selected for stage 2 is
given by Schaid et al. (1990). This design controls the pairwise type I error rate and power when
testing θE∗

j
= θC for each selected E∗

j . A multistage version is given by Stallard & Todd (2003).

1.4. Other Forms of Enrichment

An extreme form of enrichment is outcome-adaptive randomization (OAR), which repeatedly un-
balances randomization probabilities for the treatment arms by using the interim data to favor the
arm, or arms, seen to have more favorable outcomes. This continuously enriches the arms that
have superior performance based on the interim data. The main motivation of OAR is to enroll a
greater proportion of patients to the treatment arms that, during the trial, show higher response
rates. Some unexpected properties of OAR designs are discussed in Section 7.

Another type of enrichment is done in sequentially adaptive early-phase trials that choose an
optimal regime, which may be a dose, dose pair, schedule, or dose-schedule combination, for suc-
cessive patient cohorts. This repeatedly enriches the regimes seen interimly to have superior out-
comes in terms of the optimization criterion that is used. Acceptable regimes are further enriched
by adaptive rules that drop unsafe or ineffective regimes. If the outcomes include some combina-
tion of two or more efficacy and toxicity variables, the class of designs is called phase I-II, since
they hybridize conventional phase I dose escalation trials based on toxicity and phase II trials based
on response. This topic is reviewed briefly by Yan et al. (2018) and Gauthier et al. (2019) and is
covered extensively in the book by Yuan et al. (2016). Refinements of such designs may account
prospectively for patient subgroups, allowing for regime-subgroup interactions and possibly as-
signing different optimal regimes to different subgroups. Lee et al. (2019) provide a utility-based
phase I-II design that uses restricted randomization to adaptively optimize the dose of natural
killer cells to treat hematologic malignancies. Dose optimization is done within each of six sub-
groups defined by disease type and severity,with subgroup-specific rules that stop accrual to unsafe
doses. Lin et al. (2020) propose a phase I-II design that optimizes (dose, schedule) regimes within
ordered disease subgroups based on an efficacy–toxicity tradeoff. A Bayesian phase I trial design
based on time to toxicity that adaptively chooses optimal subgroup-specific doses while using la-
tent subgroup membership variables to combine similar subgroups is given by Chapple & Thall
(2018).

In the setting of multistage therapies, also known as dynamic treatment regimes (DTRs), a
within-patient adaptive treatment decision may be to choose a patient’s dose or treatment in the
second or later stages of therapy based on the patient’s previous treatments and outcomes. These
within-patient sequential treatment decisions may be informed by updated covariate values or
recent outcomes used as tailoring variables, as well as data from other patients. This may be re-
garded as within-patient sequential enrichment. The idea is to give each patient the best sequence
of treatments by using the accumulating data both within and between patients. For example, Lee
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Table 1 Mean survival times for each of the four possible combinations of treatment arm
and biomarker status, and E-versus-C effects in the biomarker subgroups

Biomarker status
Treatment Positive Negative

E θE, pos θE, neg

C θC, pos θC, neg

E-versus-C effecta 
pos 
neg

aCalculated as 
pos = θE, pos − θC, pos and 
neg = θE, neg − θC, neg.

et al. (2015) give a Bayesian phase I-II design that jointly optimizes the doses (d1, d2) of an agent
given in two stages of therapy, where each ds may be a dose or the action to not treat at any dose if,
for example, the patient has experienced unacceptable toxicity at the lowest dose being considered.
DTRs have been applied to optimize sequences of adaptive interventions in mobile health devices
to treat behavioral disorders, drug and alcohol dependence, and chronic diseases, with methods
described by Nahum-Shani et al. (2017). A randomized oncology trial designed to evaluate mul-
tistage chemotherapy regimes for advanced prostate cancer was reported by Thall et al. (2007).
A sequential multiple assignment randomized trial was designed to evaluate precision medicine
in which burn victims were repeatedly and adaptively rerandomized to different plastic surgery
methods at multiple scheduled intervention points (Hibbard et al. 2018). There is an extensive
literature on methods for optimizing DTRs (see, for example, Murphy 2005, Kosorok & Moodie
2016, and Tsiatis et al. 2019).

2. NUMERICAL EXAMPLES OF TREATMENT-BIOMARKER
INTERACTIONS

There are many possible cases when using biomarkers for enrichment during a clinical trial and
doing precision medicine based on its results. The following toy numerical examples are con-
structed to illustrate some qualitatively different cases. Consider a simple setting where E + C
is compared with C in terms of Y = survival time and a binary biomarker, Z, is available. Each
patient is either biomarker positive, pos = (Z = 1), if the biomarker is detected as being present,
and otherwise is biomarker negative, neg = (Z = 0).Table 1 gives the mean survival time θτ , Z for
each (τ , Z) = (treatment, biomarker) combination, and the E-versus-C effect in each biomarker
subgroup. The θτ , Zs could instead represent response probabilities if Y = response rather than
survival were the primary outcome.

Denote the proportion of patients who test positive by ppos = Pr(Z = 1). If there is no testing
error, then ppos is the prevalence of E-sensitive patients in the population of patients with the
disease. For simplicity, assume that the test for Z is perfectly accurate, so Z = 1 implies that
the patient must be pos. The expected effects of E are 
pos = θE, pos − θC, pos in biomarker positive
patients and 
neg = θE, neg − θC, neg in biomarker negative patients. The overall effect of E in the
patient population is the subgroup prevalence weighted average 
 = 
pos ppos + 
neg (1 − ppos), and
the vector of all parameters is θ = (θE,pos, θE,neg, θC,pos, θC,neg, ppos ).

Different numerical configurations of a statistical estimate θ̂ of θ may motivate different pre-
cision treatment decisions by a physician, depending on each patient’s biomarker status. This un-
derscores the importance of conducting a randomized trial of E + C versus C that includes both
pos and neg patients, although as data are accumulated during an enrichment trial, the sample sizes
of the four subgroups may be changed by the adaptive decision rules. Table 2 illustrates eight
cases, each defined by fixed numerical values of θ. In case 1, E has no effect, either overall or
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Table 2 Numerical illustration of possible cases involving a binary biomarker that is either
positive (pos) or negative (neg) for each patient; an experimental treatment, E; and an active
control treatment, C

Mean survival times (months)
Case θE, pos θE, neg θC, pos θC, neg ppos �pos �neg �

1 24 24 24 24 NA 0 0 0
2 36 36 24 24 NA 12 12 12
3 36 24 24 24 0.10 12 0 1.2
4 84 24 24 24 0.01 60 0 0.6
5 36 24 24 24 0.50 12 0 6
6 36 30 24 24 0.50 12 6 9
7 25 24 24 24 0.50 1 0 0.5
8 84 24 24 24 0.40 60 0 24

Each case is characterized by the biomarker subgroup-specific mean survival times for E and C, and prevalence ppos of
E-positive patients. Within-subgroup E-versus-C effects are 
pos = θE, pos − θC, pos and 
neg = θE, neg − θC, neg, and the overall
effect is the weighted average is 
 = ppos
pos + (1 − ppos)
neg. Abbreviation: NA, not applicable.

within subgroups, and Z is irrelevant. In case 2, E + C provides a 12-month (50%) mean survival
improvement over C in both subgroups, but again, Z is irrelevant.

Case 3 illustrates a biomarker-specific effect, where E + C provides a 12 month improvement
over C if Z = 1, but E has no effect if Z = 0.While Z is very important in case 3, only the 10% of
patients who are biomarker positive benefit from E, so if this were known, then it would not make
sense to give E to biomarker negative patients. For example, the BRAF mutation, associated with
colorectal cancer (CRC), encodes a serine/threonine protein kinase that is a downstream effector
of activated KRAS. Thus, BRAF often is targeted by therapies for CRC, but the BRAF mutation
has low prevalence. Hsieh et al. (2012) cited BRAF rates of 6% to 13% in Spanish CRC popula-
tions and 7% in Chinese and Greek CRC populations. An important point illustrated by case 3 in
Table 1 is that the overall average effect 
 = 1.2, considered alone, is extremely misleading, since
what matters for therapeutic decision making is that 
pos = 12 and 
neg = 0. Thus, adaptively
identifying and enriching a biomarker positive subgroup by increasing its sample size during a
trial and decreasing the number of neg patients who receive E are highly desirable in settings like
case 3. This would be triggered by interim estimates showing that 
̂pos is much larger than 
̂neg

and that π̂pos is small. Case 4 is a more extreme version of case 3, with 
pos = 60 months and ppos =
0.01, so E is a home run that extends expected survival from to one to five years, but only in a tiny
subpopulation of 1% of patients. For example, in case 4, a sample of 1,000 patients randomized
fairly between E + C and C would yield a subsample with an expected size of only 10 biomarker
positive patients, so the reliability of an estimate 
̂pos or statistical test of 
pos = 0 would be very
low.

Case 4 shows that a very small value of the prevalence ppos may make it very difficult to make
a reliable inference about 
pos, even with a large overall sample. Thus, adaptive enrichment by
increasing the biomarker positive subgroup sample size is desirable to improve the reliability of
inferences about the benefit 
pos. Case 5 also is like case 3, but ppos = 0.50 rather than 0.10. The
potential overall benefit of using E + C for treating biomarker positive patients is much larger in
case 5 because, on average, there are a lot more of them. Here, subsample size enrichment is less
useful. In case 6,E+C provides a substantial advantage overC in both subgroups, but the expected
survival benefit is twice as large in biomarker positive patients, 12 versus 6 months. This shows
why a randomized trial should include both biomarker positive and negative patients since, despite
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what may be believed based on preclinical studies and the way that E was designed, 
neg may be
meaningfully large. Case 7 is like case 5 in that E + C provides a benefit over C only in biomarker
positive patients, but the expected improvement is very small, only
pos = 1month. In case 7, while
a nominally significant p-value for a subgroup-specific test of
pos = 0may be obtained with a large
sample, the clinical benefit of E in terms of 
pos is a 1-month improvement in expected survival
time, which renders addition of E to C nearly useless and is a waste of resources if E is expensive.
In case 8, a subgroup of positive superresponders have a 60-month expected survival benefit with
E + C, they comprise 40% of all patients, and the E effect is 
neg = 0 in the 60% of patients who
are biomarker negative. In this case, ideally, interim adaptive enrichment during a trial would be
to conclude that 
neg = 0, conclude that 
pos is large, stop the trial, and treat all future patients
having Z = 1 with E + C and all future patients having Z = 0 with C. Case 8 is easy to deal with
statistically, but one still may go astray if a conventional design is used. If Z is ignored in case 8,
as in a conventional trial, then a large estimate of the overall mean improvement 
̂ = 24 months,
which doubles the overall mean survival time with C from 24 to 48 months, is very misleading, as
in case 3. This is because adding E to C only benefits biomarker positive patients. In case 8, once
reliable estimates of θ are obtained, it would be a waste of resources to continue to treat biomarker
negative patients with E+C rather thanC. Case 8 illustrates the importance of reliably identifying
an E-sensitive subgroup if it exists, estimating its prevalence, and not mistakenly concluding that
E+ C is superior to C in all patients when an overall beneficial effect is due entirely to a biomarker
positive subgroup. In all cases where it can be inferred interimly that 
pos is substantively larger
than 
neg, enrichment of the E + C subgroup is beneficial both during and after the trial. Recall
that all of these cases are based on the simplifying assumption that Z is a perfect classifier for
E-sensitive and non-E-sensitive patients. As noted earlier, in practice, the statistical problem of
determining a reliable classifier is far from trivial and is a central issue in adaptive enrichment
trials. More generally, before conducting a clinical trial, one simply does not know which case is
true.

Given the fact that many targeted agents are very expensive to produce, the question of whether
a pharmaceutical company may consider it feasible or desirable to pursue development of a given
targeted E is quite important. In many settings, the costs of preclinical experimentation to develop
E are quite substantial. In terms of clinical evaluation, if the prevalence ppos of E-sensitive patients
turns out to be very small, then even if E turns out to be highly effective in E-sensitive patients, it
may not appear to be economically worthwhile to produce the agent unless patients or insurance
companies pay a very high price for treatment with E. A broader, more useful perspective is ob-
tained by also considering the prevalence of the disease and the number of people affected. For
example, if the disease has annual prevalence 0.001 in a population of 400million people and ppos =
0.10, then one may expect 400,000 people to have the disease each year and 40,000 of these to
be sensitive to E. So the market for E is substantial despite the apparently low disease prevalence
and small value of ppos. Since lower values of either the disease prevalence or ppos will reduce the
number of people who have the disease and may benefit from E, from either a scientific or an eco-
nomic viewpoint, this underscores the importance of obtaining reliable estimates of ppos and 
pos.
To place this in context, since the annual prevalence of influenza is about 0.05 to 0.20, although
a given case of the flu may be due to numerous different strains of this class of viral diseases, the
potential benefits of a highly effective vaccine or treatment targeting one or more specific strains
are immense.

In some settings, optimism motivated by preclinical data about the effects of E at the molec-
ular or cellular level, or promising results using the agent in E to treat xenografted rodents,
may lead to the use of a dysfunctional clinical trial design where a randomized trial of E + C
versus C is conducted in biomarker positive patients only. Worse, a single-arm trial of E + C
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alone may be conducted in what are presumed to be E-sensitive patients. Such presumptive en-
richment is very bad scientific practice, as seen above in case 1, and may lead to serious er-
rors. Observations at the molecular or cellular level or in experiments with rodents provide a
basis for designing a clinical trial, but they cannot guarantee that a desired effect of E will be
seen in humans. Presumptively excluding nonsensitive patients uses preclinical data as a basis
for assuming that the effect 
neg in humans is negligible or 0. For a trial that does presump-
tive enrichment by ignoring the subgroups (E, neg) and (C, neg), inferences cannot be made about
either 
pos or 
neg. Such a trial does not provide data if Z has little or no relationship to clin-
ical outcome because 
pos − 
neg is 0 or small (cases 1, 2, or 7), or if 
pos = 
neg = 
 > 0
is clinically meaningful (case 2), or if 
pos > 
neg > 0 and 
neg is clinically meaningful (case 6).
In these cases, biomarker negative patients would be deprived of the benefit of E. This raises the
question of whether conducting such a presumptive enrichment trial based on preclinical data
alone is ethically reasonable.

These numerical examples show the importance of obtaining reliable, unbiased statistical es-
timates of the relevant parameters in θ. This requires randomizing patients, determining an E-
sensitive subgroup reliably if it exists, and reliably estimating comparative subgroup-specific treat-
ment effects. In cases 3, 5, or 7 in Table 1, given reliable interim data, an adaptive rule to treat
a larger proportion of pos patients, or to restrict enrollment to pos patients, would provide more
reliable estimates of 
pos. The possibility of cases 1, 3, 4, 5, or 7 suggests the desirability of using
adaptive subgroup-specific rules to terminate enrollment of neg patients, or all patients, due to
futility. However, the risk from using subgroup-specific futility rules is that, in cases 2 or 6, in-
correctly terminating accrual of neg patients and concluding that E is not superior to C in those
patients would deprive future Z-negative patients of the benefit of E.

A major reason for conducting a clinical trial is to find out which case actually is true.
Table 1 shows that, given a reliable estimate of θ from a well-designed trial, in some cases, physi-
cians would have an informed way to make precision treatment decisions using each patient’s Z.
The therapeutic value of Z would be high in cases 3, 4, 5, and 8, where the best decisions would
be to treat biomarker positive patients with E + C and negative patients with C and to reduce
treatment costs of adding E unnecessarily when it is not beneficial. In case 6, E + C would be the
best choice for all patients, but a better outcome could be expected in biomarker positive patients,
and here Z also would be useful for predicting patient survival times.

Enrichment need not rely on frequentist tests and p-values to make inferences. Under a
Bayesian model, adaptive enrichment rules may increase the sample size of pos patients if a suf-
ficiently large value is seen for Pr(
pos > 
neg + δ�data) based on interim data, where δ > 0 is a
clinically meaningful improvement. This is the posterior probability, given the observed data, that
the improvement due to giving E to E-sensitive patients is at least δ larger than the improvement
in non-E-sensitive patients. A Bayesian design may also adaptively reduce the sample size of E or
terminate enrollment entirely of neg patients if Pr(
neg < ϵ�data) is large for a given small ϵ > 0
(see, for example, Trippa et al. 2012 or Simon & Simon 2018).

Randomization is essential to obtain unbiased treatment comparisons, both overall and within
biomarker-defined pos and neg subgroups. Failing to randomize between E + C and C ignores the
bias that is inherent in the comparison of a single-arm trial of E + C to historical data on C. If a
single-arm trial of E + C is conducted, it provides data to estimate θE, pos and θE, neg, but unbiased
E-versus-C comparisons cannot be made. If historical data on C are available, then some sort of
bias correction method may be used, such as pair matching (see Rosenbaum & Rubin 1985) or
inverse probability of treatment weighting (see Robins et al. 2000). However, this is much less
desirable than conducting a randomized trial in the first place.
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Because adaptive enrichment designs prospectively account for possible treatment-subgroup
interactions, they avoid post hoc data analyses to identify subsets where E provides substantive
benefit. When subgroup analyses are not planned ahead of time, discovery of a large treatment
effect in some subgroup is very difficult to defend.As explained above in the discussion of selection
bias, with many subgroups, the maximum estimated treatment-subgroup effect will be large even
if, in fact, there is no effect at all. Unfortunately, the practice of selecting a maximum without
understanding its potentially misleading consequences is very common inmedical research.There
aremanymethods to correct for selection bias in post hoc searches for subsets with large treatment
effects or treatment-covariate interactions. Bayesian hierarchical model–based approaches have
been proposed by Dixon & Simon (1991, 1992).

Causal analysis is based on potential and counterfactual outcomes, which may be imagined
but may not actually be observed. Causal methods have been proposed by Foster et al. (2011)
by fitting random forests with cross-validation, and by Zhang et al. (2013) under a generalized
linear mixed regression model for the joint distribution of each patient’s two potential outcomes.
Othermethods for dealing with adaptive subset selection were discussed by Lipkovich et al. (2017),
Ondra et al. (2016), and Lai et al. (2019). Approaches to enrichment in particular clinical trial
settings were given by Rosenblum & Hanley (2017) for stroke trials, by Rosenblum et al. (2016)
to combine group sequential decision making with reallocation, by Steingrimsson et al. (2019) for
three-arm trials, and by Flehinger et al. (1972) for reducing the number of inferior treatments.

3. ADAPTIVE SIGNATURE DESIGNS

Freidlin & Simon (2005) proposed the adaptive signature design (ASD) for randomized trials
of targeted agents, which has the goals to (a) determine a subset of E-sensitive patients and
(b) compare E+ C to C overall and within the determined E-sensitive subset. For θ i = Pr(response)
and candidate biomarkers Zi = (Zi,1, . . . ,Zi,K ) in the ith patient, i = 1, . . . ,N, the logistic regres-
sion model log{θi/(1 − θi )} = μ + τE (λ + ∑K

k=1 γkZi,k ) is assumed, so λ is the main E effect and γ k

is the interaction between E and Zi, k. The design accruesNs patients in stage s= 1, 2, uses the stage
1 data to develop a classifier, and applies it at the end of stage 2 to identify a subset of E-sensitive
patients. The final analysis has two tests, (a) overall comparison of E + C to C with a test having
type I error probability α1 and (b) comparison of E + C to C in the subset of E-sensitive patients
accrued in stage 2 by a test having type I error probability α2. Since signature development and
testing in the sensitive subset are done using disjoint subpopulations, the overall type I error is
α1 + α2. For example, one may use α1 = 0.03 and α2 = 0.02 to have an overall type I error rate of
0.05. If either test is significant, the trial is considered positive. Freidlin & Simon (2005) suggested
the following two-step algorithm for defining E-sensitive patients: Step 1 is to use the fitted logis-
tic regression model to declare biomarker Zj significant if γ̂k > η1, where η1 is a fixed cutoff. Step
2 is to classify a patient as E-sensitive or not for the stage 2 test, using the biomarkers selected in
step 1. For example, one may declare the ith patient sensitive if γ̂kZi,k > η2 for at least G of the
significant biomarkers. This design has parameters (N1,N2, α1, α2, η1, η2,G), which may be deter-
mined using various criteria, including achieving given power figures for the two tests or deciding
how large N1 should be for given overall N = N1 + N2. Jiang et al. (2007) extended the ASD to
settings with prespecified continuous biomarkers and combined the test for an overall treatment
effect with the establishment, validation, and estimation of a cutpoint for the biomarker.

Freidlin et al. (2010) proposed a cross-validated ASD (CV-ASD) to improve reliability. This
was motivated by the problems that reliably determining a signature for E-sensitive patients with
large-dimensional Z requires a large sample, and that if the proportion of E-sensitive patients is
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low, then a large sample also is required for the test in the E-sensitive subset to have reasonably
high power. The CV-ASD uses K-fold cross-validation by first randomly partitioning the sample
into K validation cohorts,V1, . . . ,VK, each consisting ofM=N/K patients. For each k, a signature
based on Z is determined using the data in the complement of Vk, the development cohort Dk =
∪K
r=1Vr −Vk. The signature obtained from Dk is applied to identify the subset, Sk, of E-sensitive

patients in Vk. Since the sample consists of ∪K
k=1Vk, each patient is classified as E-sensitive or not,

and S = ∪K
k=1Sk is the set of all sensitive patients. A permutation test comparing E + C to C then

is carried out in S. Freidlin et al. (2010) show that the CV-ASD has much larger overall power
than the ASD to detect very large treatment effects in cases where 10% of patients are sensitive,
and the response probability is θE, neg = 0.25 with E in the nonsensitive patients and θC = 0.25. In
this case, the CV-ASD using K = 10 validation cohorts has overall power (a) 0.71 compared with
0.35 with the ASD if the response probability θE, pos = 0.80 in E-sensitive patients and (b) overall
power 0.91 compared with 0.60 with the ASD if θE, pos = 0.90 in E-sensitive patients. Thus, the
CV-ASD is useful when the prevalence of sensitive patients is small, but the E effect is much larger
in sensitive patients compared with nonsensitive patients.

4. ENRICHMENT DESIGNS USING ONE BIOMARKER

Simon & Simon (2013) propose a general adaptive enrichment framework for developing a clas-
sifier and using it to restrict enrollment when doing treatment comparisons, with the main focus
on preserving the overall type I error rate. Denote a single biomarker by Zi, treatment indica-
tor τ i = 1 for E + C and τ i = 0 for C, and response indicator Yi for each patient i = 1, . . . , N.
Let θτ (Zi ) = Pr(Yi = 1 | τ ,Zi ) denote the probability of response for a patient with biomarker Zi
treated with τ . A discrimination function is defined as f (Zi) = I[θC(Zi) < θE + C(Zi)], so f (Zi) = 1
if the response probability for a patient with biomarker Zi is larger with E + C than with C, and
f (Zi) = 0 otherwise. Denoting an estimator based on the interim data from m patients who have
been treated and evaluated by f̂m(Z), the proposed method is to (a) randomize m0 patients fairly
between E + C and C and compute f̂m0 from their data; (b) for m > m0, compute the updated
estimate f̂m based on all accumulated data {(Zi, τi,Yi ), i = 1, . . . ,m}; and (c) restrict trial entry to
patients for whom f̂m(Zi ) = 1, continuing this until a prespecified number N patients have been
enrolled, and perform a final test. Defining the global null hypothesisH0: θE + C(Z) = θC(Z) for all
Z, Simon & Simon (2013) propose the test statistic T = ∑N

i=1[τiYi + (1 − τi )(1 −Yi )] = (number
of successes with E+C)+ (number of failures withC). SinceT follows a binomial distribution with
parameters (N, 0.5) under H0, by using appropriate cutoffs from this null binomial distribution to
perform a test, the type I error probability is controlled, regardless of how the discrimination
function for adaptively changing the enrollment based on Z is defined.

To do adaptive threshold enrichment with a single biomarker, Z, Simon & Simon (2013) sug-
gest a practical approach for modeling f , since there are infinitely many possibilities for a true f .
They start by assuming that the E effect
(Z)= θE + C(Z)− θC(Z) equals either 0 or δ, is monotone
nondecreasing in Z, and jumps from 0 to δ at one of a set of candidate cutpoints c1 < c2 < ��� <

cK. At each interim decision, the cutpoint cj∗ maximizing the likelihood of the current observed
data is used to estimate the true cutpoint, and the rules f (Z) = 1 if Z ≥ cj∗ and f (Z) = 0 if Z < cj∗
are used to restrict enrollment. As a practical matter, if the optimal cutpoint is not selected, but a
nearby cutpoint is selected that still provides good discrimination between patients for whom the
true 
(Z) is large and those for whom it is small, then the methodology has succeeded.

Simon & Simon (2013) provide simulations of this enrichment design for clinical trials with
200 patients; the biomarker uniformly distributed between 0 and 1; candidate cutpoints 1/(K+ 1),
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2/(K+ 1), . . . ,K/(K+ 1); clinical outcome as a binary response; and the adaptive enrichment rule
applied once interimly at 100 patients. Accrual for the last 100 patients is restricted to E-sensitive
patients having biomarkers Zi > c j∗ . Their simulations show that, compared with a design that
does not restrict enrollment using the biomarker, if 75% of patients are more likely to benefit
from E, then the adaptive enrichment design has much larger power to detect differences 
 =
θE + C − θC = 0.25 or 0.30 in most cases considered. The price for restricting enrollment to E-
sensitive patients defined in this way is that, for the sample size of 200, the trial duration will be
increased, and this increase in duration will be larger if the proportion ppos of E-sensitive patients
is smaller. Simon & Simon (2013) also discuss extensions to a group sequential design with more
than one interim decision and settings with a continuous outcome rather than a binary response
indicator.

5. AN ENRICHMENT DESIGN BASED ON PREDEFINED SUBGROUPS

Magnusson & Turnbull (2013) propose a phase II-III group sequential enrichment design for
subgroups (GSDS). The design requires that, at the start, a partition be provided that classifies
patients into disjoint subgroups {S1, . . . , SK}, with the effect of E potentially differing between
the subgroups. Since the K subgroups are a partition, by definition they are disjoint, and every
patient belongs to exactly one subgroup. The partition may be predetermined from preclinical
data, previous clinical trial results, or possibly by using a biomarker vector Z. For convenience,
let I = {1, . . . ,K} denote the subgroup indices, and denote the prevalence of subgroup k by pk, so
p1 + ��� + pK = 1. A set of subgroups, S ⊂ I, called a subpopulation, may be represented by the
subgroup indices, and the average improvement in response rate, ormean survival time, due toE in
S is 
S = ∑

j � Spj
j. For example, if I = {1, 2, 3, 4, 5} and S= {1, 4, 5}, then 
S = p1
1 + p4
4 +
p5
5.

The strategy underlying GSDS is that, after an initial stage of the trial with no restriction of
accrual, a subpopulation, S, of E-sensitive patients is determined adaptively by combining subsets;
thereafter, enrollment is restricted to S, and the hypotheses H0, S : 
S = 0 versus Ha, S : 
S > 0
are tested using efficient score statistics. In stage 1, the GSDS begins using equal randomization
(ER) and uses the efficient score statistics of the K subgroups to adaptively identify an optimal E-
sensitive subpopulation, S∗. The GSDS allowsH0,S∗ to be rejected early, after only one stage, with
the conclusion that 
S∗ > 0; that is, E provides an improvement in the identified subpopulation
S∗. If not, then stage 2 proceeds with enrollment restricted to S∗, excluding future patients who
do not appear likely to benefit from E. The subsequent comparative tests of the group sequential
design use all available data. Overall family-wise error rate (FWER) is defined as the maximum
probability of incorrectly rejecting at least oneH0, S, where
j = 0 for all j� S.TheGSDS controls
the FWER by using a bootstrap algorithm to obtain point and interval estimates of treatment
effect parameters, which then are adjusted for selection bias.

6. SUBA: A BAYESIAN RANDOM PARTITION DESIGN

A subgroup-based Bayesian adaptive enrichment design (SUBA) was proposed by Xu et al. (2016)
to choose each patient’s treatment from a set τ � {1, . . . , T} of T possible candidates based on
the patient’s vector Z = (Z1, . . . ,ZK ) of real-valued biomarkers. SUBA identifies and successively
refines a random partition,, of the possible values of Z. The partition is used to repeatedly iden-
tify prognostic subgroups and assign each new patient to the subgroup-specific treatment that is
best based on the trial’s most recent data. SUBA was motivated, in part, by the fact that the tar-
geted agent trial BATTLE (biomarker-integrated approaches of targeted therapy for lung cancer
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elimination), described by Kim et al. (2011), which used five predefined biomarker subgroups and
started with ER followed by OAR, resulted in a lower observed response rate with OAR than that
obtained during the initial ER period. This result was the opposite of what may be expected based
on the putative ethical attraction of OAR that, on average, OAR should result in better outcomes
for the patients enrolled in the trial compared with ER. Possible reasons for undesirable, counter-
intuitive behavior of OAR are identified by the simulation studies reported by Thall & Wathen
(2007), Thall et al. (2015), and Wathen & Thall (2017), which are discussed in Section 7.

SUBA is based on a binary response variable Y, the treatment set, and Z. The underlying mo-
tivation is that there may exist subgroups of patients who respond differentially to each of the
T treatments. The SUBA design has the goals of optimizing treatment selection for patients en-
rolled in the trial and optimizing the final rules used to select treatments for future patients.Rather
than using predefined subgroups, SUBA derives and repeatedly refines patient subgroups adap-
tively during the trial as new data are obtained. A random partition  = {Z1, . . . ,ZM} of the K-
dimensional set of possible Z is defined, and this determinesM patient subgroups. The partition
 is obtained by constructing a tree from recursive binary splits of the elements of Z, and a prior
on  is constructed using probabilities that define the algorithm in the tree’s splitting rules. In the
tree algorithm, a subset is not split at all with probability ν0, and it is split into two new subsets
using biomarker Zk with probability νk. Each node of the tree is a subset of the K-dimensional
set RK of possible Z vectors. Given , the ith patient is placed in mth subgroup if their covariate
vector Zi is in Zm. As the data in the trial accumulate, at each step, the posterior of  is updated
based on the current dataDn = {(τi,Yi,Zi ) : i = 1, . . . , n} from all previous patients. The posterior
predictive probability of response under treatment τ for a future n + 1st patient with biomarker
profile Zn+1 is

q(τ ,Zn+1) = Pr(Yn+1 = 1 | Zn+1, τn+1 = τ ,Dn ),

computed by averaging over the posterior of . An optimal treatment for the n + 1st patient is
chosen by maximizing q(τ ,Zn+1). The probabilities q(τ ,Z) also are used to construct Z-specific
rules for dropping inferior treatments from the trial.Thus, SUBA does sequentially adaptive treat-
ment discovery, futility monitoring, and biomarker-specific treatment assignment.

The number of sets in the partition must be reasonably small to avoid subsets with small num-
bers of patients. For example, Xu et al. (2016) construct a tree for a breast cancer trial withM =
8 subsets. To obtain data for reliable adaptive decision making at the start, SUBA begins with a
burn-in with patients randomized fairly among the T treatments, followed by continuous adaptive
decision making in which (a) treatments having uniformly inferior πτ (Z) forZ in all subgroups are
discarded, and the remaining treatments are enriched; (b) patients are assigned to treatments adap-
tively as described above; and (c) at the end of the trial, the final partition for optimal treatment
allocation is reported. A simulation study given by Xu et al. (2016) shows that SUBA compares
very favorably to designs using ER or OAR and a design based on probit regression of Y on Z and
τ . An important property of SUBA is that, in contrast with GSDS, rather than beginning with a
partition of patient subsets that are provided at the start, SUBA derives and repeatedly refines the
subsets adaptively using Z.

7. OUTCOME-ADAPTIVE RANDOMIZATION

7.1. General Definitions

An early form of enrichment, OAR, was proposed by Thompson (1933), who suggested that, for
success probabilities θA and θB of treatments A and B, under a Bayesian model, the next patient
enrolled in a clinical trial should receiveAwith probability r(A, n) = Pr(θB < θA | data) and Bwith
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probability 1 − r(A, n). Numerous OAR methods have been proposed, and a number of clinical
trials have been conducted using various OAR methods (see, e.g., Maki et al. 2007 or Kim et al.
2011). One may define the modified randomization probability

r(A, n, 0.5) = r(A, n)0.5

r(A, n)0.5 + {1 − r(A, n)}0.5 ,

which shrinks the probabilities toward 0.50. For example, r(A, n) = 0.80 gives r(A, n, 0.5) = 0.67,
so the modified OAR proportions are 2:1 rather than 4:1. OAR may be regarded as a compromise
between ER and the extreme form of enrichment in which the next patient enrolled in a trial is
given the treatment having the larger estimated response rate, known as play the winner (PTW).
To illustrate a fundamental flaw with PTW, suppose that initially, two patients are treated with
each of A and B, and thereafter, PTW is used. If the true response probabilities are θA = 0.50 and
θB = 0.25, and the initial data are 0/2 responses with A and 1/2 responses with B, then PTW will
assign all future patients to B, the inferior treatment. PTW is an example of a greedy algorithm,
and the problem illustrated above is known as stickiness. Reviews of a wide variety OAR methods
are given by Rosenberger et al. (2012) and Sverdlov (2015). OAR remains quite controversial for
both ethical and methodological reasons (see, for example, Korn & Freidlin 2011, Yuan & Yin
2011, or Hey & Kimmellman 2015, among many others).

7.2. Simulation Studies of Outcome-Adaptive Randomization

Thall & Wathen (2007) reported a simulation study of two-arm trials with binary response out-
comes that compared several BayesianOARmethods to a group sequential design using ER.Their
simulations showed that, compared with ER, OAR methods often have a much lower probability
of selecting a truly superior treatment arm (PSEL), produce much larger estimation bias, and give
sample size distributions having much greater variability and skewness. For example, in a 200-
patient trial, if the true response probabilities are θA = 0.25 and θB = 0.45, the OAR methods
based on r(A, n) or r(A, n, 0.5) that control the type I error probability at 0.05 have PSEL figures
0.35 and 0.40, compared with PSEL = 0.86 with the group sequential design using ER.The OAR
trials also have a nontrivial probability of unbalancing the achieved sample sizes, NA and NB, in
favor of the inferior treatment, which is the opposite of the intended effect of OAR.While OAR
produces a larger expected sample size for the superior treatment, the drawbacks noted above are
a consequence of the greater variability and skewness of the sample size distributions produced
by OAR. These effects are a consequence of the fact that OAR probabilities, such as r(A, n) and
r(A, n, 0.5), are statistics computed from the trial data and hence are highly variable, whereas with
ER, the randomization probabilities are fixed constants. In practice, often only the mean sam-
ple sizes from simulations of OAR are reported. This may be very misleading. A general caveat
with OAR in designs accounting for patient heterogeneity, say by defining E-sensitive and non-
E-sensitive subgroups, is that if subgroup-specific OAR probabilities are defined, then the smaller
subgroup-specific sample sizes create even greater variability in the OAR probabilities. Because
numerous OAR methods have been defined, the particular OAR method and specifics of a trial
design can greatly affect a design’s performance. Thus, simply referring to OAR as if it were one
method, without providing specific details, is very bad scientific practice.

Motivated by the controversy about the merits and flaws of OAR and a suggestion that the
greatest benefit of OAR may be seen in multi-arm trials, Wathen & Thall (2017) conducted a
simulation study evaluating four Bayesian OARmethods and ER in five-arm trials with maximum
sample size 250, either including a control arm, C, as a comparator or not. They studied de-
signs that included (a) futility rules that terminate accrual to experimental arms, Ejs, seen to have
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response rates inferior to C, (b) enrichment of the remaining arms if one or more Ejs are termi-
nated early, and (c) selection of the best E∗

j at the end of the trial. The simulations showed that,
in the case where three Ejs are equivalent to C, with θ1 = θ2 = θ3 = θC = 0.20, but E4 is supe-
rior, θ4 = 0.40, the four OAR methods have probabilities 0.44, 0.46, 0.48, and 0.67 of correctly
selecting E4 compared with 0.66 with ER. In the more realistic and more difficult case where
θC = 0.20, θ1 = 0.25, θ2 = 0.30, θ3 = 0.35, and θ4 = 0.40, ER has the largest probability, 0.66, of
correctly selecting E4, compared with 0.40, 0.45, 0.45, and 0.61 for the four OAR methods. The
best-performing OAR method restricts randomization probabilities to the interval 0.10–0.90.

8. PRACTICAL CONSIDERATIONS AND CAVEATS

Adaptive enrichment designs have the potential to greatly benefit both the patients enrolled in
the trial and future patients in settings where a targeted therapy is evaluated. Ideally, a properly
designed and conducted enrichment trial can lead to precision medicine in the clinic by enabling a
physician to use each patient’s biomarker vector Z to assist them in making the best treatment de-
cision for that patient. To facilitate the application of a particular design, a user-friendly computer
program should be made available to clinicians that allows a patient’s Z vector to be input easily
and outputs the optimal treatment, possibly accompanied by predicted survival distributions with
each treatment that was evaluated in the trial.

In practice, clinical trials with adaptive designs do not always play out as planned, and there al-
ways is a risk of human error. For example, Thall &Wathen (2005) constructed a Bayesian design
for a multicenter trial to compare two chemotherapies for metastatic soft tissue sarcomas. The de-
sign included covariate-adjusted OAR and, thus, covariate-dependent treatment assignment rules.
A website with a graphical user interface (GUI) was constructed, and personnel at each partici-
pating site were trained to use the GUI prior to trial initiation. The trial results were reported by
Maki et al. (2007). Despite this careful preparation, analyses of the final data showed that base-
line covariates used by the OAR were input incorrectly for substantial numbers of patients at two
participating sites. This corrupted the adaptive trial design by giving it incorrect data needed for
the OAR-based treatment assignment and decision making. Through pure luck, no patients were
harmed, essentially because there were no treatment-covariate interactions. This example illus-
trates what can go wrong in even the most carefully designed trials that use Z to assign treatments
adaptively.

Another important issue is that poor choice of a primary endpoint may lead to flawed infer-
ences. Thall (2020, chapter 7.1) gave an example where using a response indicator as the primary
outcome may be very misleading. In the example, a new treatment, E, has response probability
0.40, doubling the probability of 0.20 with standard therapy, S, for a disease where response in-
creases the 12-month survival probability from 0.40 to 0.60. While E may seem very promising,
an elementary probability computation shows that the expected 12-month survival probabilities
are 0.48 with E and 0.44 with S, so E actually gives the trivial improvement 0.48 − 0.44 = 0.04.
This illustrates that early treatment response may be a poor surrogate for survival time.

Several additional practical issues must be addressed when planning an adaptive enrichment
trial. The time required to evaluate Z is critical. If it takes two weeks to evaluate Z and the accrual
rate is five patients per month, then it is not feasible to delay each patient’s treatment in order to
apply a Z-adaptive rule. In such settings, a conventional design without adaptive enrichment may
be more appropriate. A major issue is the financial cost of evaluating Z since, if this is prohibitively
expensive, then a trial that requires Z to make adaptive decisions is not feasible. The success of a
trial using each new patient’sZ and previous patients’ data tomake adaptive decisions also depends
on timely and accurate data entry during the trial. This requires specialized computer software,
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including a database and a program to apply the design’s decision rules; a GUI to connect person-
nel in the clinic to the computer programs; and pretrial training of those involved in trial conduct.
As seen in the trial reported by Maki et al. (2007), if incorrect patient data are entered into the
database, then the adaptive design’s rules will not function properly. Still, the data input process is
very similar to what has been done for decades in conventional group sequential trials, so adaptive
enrichment trials are not more difficult to conduct. The greater difficulty resides in constructing a
design, which requires accounting for much greater complexity. Given the large potential benefit
provided by adaptive enrichment designs, this should be well worth the effort.
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