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SUMMARY. We describe an adaptive Bayesian design for a clinical trial of an experimental treatment for 
patients with hematologic malignancies who initially received an allogeneic bone marrow transplant but 
subsequently suffered a disease recurrence. Treatment consists of up to two courses of targeted inimunother- 
apy followed by allogeneic donor lymphocyte infusion. The immuriotherapy is a necessary precursor to the 
lymphocyte infusion, but it may cause severe liver toxicity and is certain to cause a low white blood cell 
count and low platelets. The primary scientific goal is to determine the infusion time that has the highest 
probability of treatment success, defined as the event that the patient does not suffer severe toxicity and 
is alive with recovered white blood cell count 50 days from the start of therapy. The method is based on a 
parametric model accounting for toxicity, time to white blood cell recovery, and survival time. The design 
includes an algorithm for between-patient immunotherapy dose de-escalation based on the toxicity data 
and an adaptive randomization among five possible infusion times according to their most recent posterior 
success probabilities. A simulation study shows that the design reliably selects the best infusion time while 
randomizing greater proportions of patients to superior infusion times. 
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1. Introduction 
Patients with hematologic malignancies who have undergone 
allogeneic bone marrow transplantation (alloBMT) but whose 
disease has recurred have a very poor prognosis with conven- 
tional treatments. We describe an adaptive Bayesian design 
for a clinical trial of an  experimental therapeutic strategy 
for patients who previously have received an alloBMT but 
who have suffered a disease recurrence more than 90 days af- 
ter the transplant. Patients with acute rriyelogenous leukemia, 
advanced chronic Inyelogenous leukemia, or myelodysplastic 
syndrome will be included. Prognostically, the fact that the 
patient's disease has recurred after alloBMT supersedes the 
type of malignancy diagnosed initially. The 1-year survival 
rate of these relapsed patients is only about 5-10%, regard- 
less of the type of malignancy. They also exhibit very similar 
response rates, of approxiniately 20-40%, with a variety of 
salvage chemotherapy regimens. The trial aims to evaluate 
the efficacy and safety of t,argeted immuriotherapy folIowed 
by allogeneic donor lymphocyte infusion (DLI) while also at- 
tempting to optimize the interval between administration of 
targeted imniunotherapy and DLI, hereafter referred to as 
DLT time. The duration of the DLI is only about 20 minutes. 
The rationale for this study stems from previous trials demon- 
strating that DLI can induce remissions in patients with acute 
and chronic leukemias relapsing after alloBMT (Antin, 1993; 
Collins et sl., 1997). The donor T-cells can recognize anti- 

gens on the surface of the malignant cells and directly induce 
cell death. DLI, however, appears to be most successful in pa- 
tients who have low tumor burden, known as minimal residual 
disease. The goal of the targeted irnrnunotherapy is to induce 
minimal residual disease, thus providing the DLI with a better 
chance of success. 

Mylotarg is an engineered monoclonal antibody attached 
to chalicheamicin, a potent cellular toxin (Bernstein, 2000). 
Mylotarg binds to the cell surface receptor CD33 located on 
immature blood progenitor cells, both normal and leukemia 
cells. Thus, an entry criterion for the trial is that the patient's 
cancer cells must express the CD33 cell surface antigen. My- 
lotarg has been administered to patients with relapsed acute 
myelogenous leukemia, with overall response rates of approx- 
imately 20-30% (Sievers et al., 1999). Its main side effects 
are liver dysfunction (hepatotoxicity, HT), infusion-related 
fevers and chills, prolonged neutropenia (low absolute neu- 
trophil count, ANC, defined as <I000 celk/pl), and throm- 
bocytopenia (low platelets). Severe HT is the adverse event of 
greatest concern with Mylotarg because it is potentially life 
threatening (Giles et al., 2001; Neumeister et al., 2001) and 
it is more likely to be severe in patients who have received 
prior stem cell transplantation than in those who have not. 
In previous clinical trials of Mylotarg, infusion-related fever 
and chills have been controlled through the administration 
of steroids prior to Mylotarg. Very few other severe adverse 
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Figure 1. Treatment plan and patient outcomes for the 
DLI trial. 

events were encountered, and almost all were resolved before 
day 50. Although HT is the most likely adverse event, in the 
sequel, we include any severe toxicity that cannot be resolved 
therapeutically, other than low blood counts, in the definition 
of HT. 

The average time to achieve ANC >lo00 cells/pl follow- 
ing Mylotarg is more than 40 days. In this study, mobilized 
DLI will be given following Mylotarg in an attempt to hasten 
neutrophil recovery. Usually, donor lymphocytes are collected 
without giving the donor white blood cell (WBC) growth fac- 
tors. This unstimulated lymphocyte collection contains mostly 
lymphocytes and very few immature stem cells. However, if 
the donor is given WBC growth factors prior to lympho- 
cyte collection, then this (mobilized) collection will contain 
a much larger proportion of immature stem cells (Lane et 
al., 1999). Mobilized DLI is usually given to patients who 
receive chemotherapy for disease relapse following alloBMT. 
The goals of mobilized DLI are to provide lymphocytes capa- 
ble of fighting leukemia and immature stem cells capable of 
hastening bone marrow recovery. 

Figure 1 illustrates the treatment plan and clinically rele- 
vant patient outcomes. Therapy begins with a bolus of My- 
lotarg aimed at reducing the patients’ leukemic burden. The 
patient is then monitored for the following week for HT. If 
no HT is encountered, then a second dose of Mylotarg is ad- 
ministered. Mobilized DLI will be given at a defined interval 
following the second dose of Mylotarg. Patients who develop 
HT after the first dose of Mylotarg will not receive a sec- 
ond dose and will not receive scheduled DLI because one dose 
of Mylotarg likely will not result in prolonged neutropenia. 
These patients will be taken off study and may receive DLI 
at a later time once HT has been resolved. Patients who ex- 
perience HT after the second course of Mylotarg will receive 
DLI as scheduled because, at that point, DLI is the only re- 
maining therapeutic avenue and likely will hasten neutrophil 
recovery. Due to the effects of the first course of Mylotarg, 

all patients will suffer neutropenia, defined as an ANC falling 
below 1000, within 5 days of drug infusion. Neutrophils are 
white blood cells that play an important role in fighting infec- 
tions. The dual therapeutic goals of the mobilized DLI are to 
enhance neutrophil recovery and kill remaining cancer cells. 
Restoring the patient’s ANC is critical because, during the 
period of neutropenia, the patient is highly susceptible to life- 
threatening bacterial and fungal infections. Treatment success 
is defined as the event that the patient does not suffer HT and 
is alive with ANC 21000 at day 50. 

The primary scientific goal of the trial is to determine the 
DLI time, among five predetermined times after the Mylotarg, 
having the highest treatment success probability. Our design 
is based on a parametric Bayesian model for the probabil- 
ity of HT as a function of Mylotarg dose and for the times 
to ANC recovery and death, each as a function of infusion 
time and whether the patient has experienced HT. We take a 
model-based approach because decisions must be made adap- 
tively during the trial based on very limited information, and 
this problem is especially acute early in the trial. The design 
has two main components: an algorithm for between-patient 
de-escalation among six Mylotarg dosc pairs if an unaccept- 
ably high HT rate is observed and a sequentially adaptive 
randomization of patients among the infusion times. Depend- 
ing on the interim HT data and the dose de-escalation al- 
gorithm, each patient may receive any of five possible dose 
combinations in the two courses. Each patient’s randomiza- 
tion probabilities for the five infusion times are based on their 
current posterior success probabilities. Thus, each patient is 
more likely to be infused at a time having higher current suc- 
cess rate, based on the most recent data from the trial. This 
method is used in place of balanced randomization because it 
yields unbiased comparisons among the infusion times while 
also providing each patient, with high probability, the cur- 
rent highest success rate. Because the therapeutic goal of the 
treatment being studied in this trial is to save patients for 
whom initial treatment has failed, it is an cxample of a sal- 
vage therapy. 

We provide a detailed description of the patient outcomes 
and probability model in Section 2 .  The trial design is pre- 
sented in Section 3, followed by a summary of a simulation 
study of the design in Section 4. We close with a discussion 
in Section 5. 

2. Probability Mode l  
2.1 Patient Outcomes 

The indicator of HT in the j t h  Mylotarg course is denoted by 
YJ for j = 1,2.  Because the patient’s targeted immunotherapy 
is terminated if there is HT in the first course, Yz is defined 
only if Yl = 0, so that the three possible HT outcomes are 
Yl = I, (Y1,Yz) = ( O , l ) ,  and (Y1,Yz) = ( 0 , O ) .  We let Y+ 
indicate HT in either course, which is either of the first two 
outcomes. We assume that the onset time of neutropenia, 
T N ,  is uniformly distributed on the interval from 0 to 5 days. 
Denoting the infusion time by t I  and the time from infusion to 
ANC recovery by TA, the patient’s time from start of therapy 
to ANC recovery is tl +TA and total duration of neutropenia 
is t i  + TA - T N .  

The primary scientific goal of this study is to choose the 
best DLI time among 11, 14, 17, 20, and 23 days after the 
initial Mylotarg bolus. This is motivated by the potential 
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trade-off between giving the DLI as soon as possible after 
Mylotarg to hasten neutrophil recovery or potentially giving 
the DLI too soon after Mylotarg such that residual circulating 
immunotoxin can bind to the donor stem cells and further 
delay ANC recovery. Ideally, patients achieve ANC recovery 
within 14 days after DLI. Therefore, the neutropenic interval, 
t1 + TA - TN, begins within 5 days of the initial Mylotarg 
infusion and lasts until approximately 14 days following DLI. 
Because the half-life of Mylotarg is approximately 60-90 
hours, giving DLI soon after Mylotarg may prolong neutrophil 
recovery to much longer than 14 days, the standard interval 
following DLI. Alternatively, waiting longer to infuse the 
patient to give more time for Mylotarg clearance may also 
prolong the neutropenia and thus increase the risk of death 
due to infection. This study is designed to identify the DLI 
time, t i ,  that is associated with the shortest neutropenic 
interval, TA, while maintaining survival. Formally, clinical 
success is defined as the event that the patient does not suffer 
HT within the first 8 days, recovers ANC 21000, and survives 
to  day 50. Denoting the time of death by To,  the success 
probability of a patient infused at time t I  is e(t1) = Pr(Y1 = 0 
and ti +TA < 50 < TD I t i ) .  
2.2 Regression Models 
In addition to the fact that each patient receives either one or 
two courses of Mylotarg, the trial design includes an algorithm 
for Mylotarg dose de-escalation between patients, described in 
Section 4. Consequently, the Mylotarg doses given in courses 
1 and 2, denoted dl and d2, may vary between patients. We 
assume that the probability of HT depends on the cumulative 
dose of Mylotarg according to the logistic model 

n l ( d 1 , ~ )  = p r ( y l =  1 I d1,y) = logit-l(yo +y ld i )  (1) 

and 

~ 2 ( d + , 7 )  = Pr(Y2 = 1 I Yi = O,dl,d2,7) 

= logit-l(yo + yld+),  (2) 

where logit(p) = log{p/(l - p ) } ,  d+ = dl + dz, and 7 = 
(y0,yl). The linear components of “1 and n2 have identical 
parameters and differ only in terms of Mylotarg dose, 
reflecting the assumption that the risk of toxicity is a function 
of cumulative dose. Recalling that (Y1,Yz) take on three 
possible values, the overall probability that a patient has HT 
is T+ = “1 + (1 - T ~ ) T Z ,  with (1 - n+) = (1 - q ) ( 1  - “2). 

To reduce collinearity among the parameter estimates in 
the following models for regression of the means of TA and TD 
on t I ,  we use the standardized infusion time XI = ( t r  - 17)/3, 
which takes on the five possible values {-2, -1,0, 1,2}. For 
time from infusion to ANC recovery, TA, denoting P = 
(,Bo,,B1, p ~ ) ,  we assume an exponential distribution with mean 

P A ( t 1 ,  P )  = exP(P0 + PlxI  + P 2 X ? ) ,  (3) 

t > ti. (4) 

We define this distribution conditional on Y1 = 0 to 
limit attention to patients who are randomized among the 
five infusion times because this is the methodological and 
scientific focus. Moreover, patients are unlikely to suffer HT in 
course 1. 

so that TA has probability density function (p.d.f.) 

f ~ ( t  I t r , ~ )  =  PA-^ exp{-(t - ~ I ) / P A } ,  

To account for the effects of toxicity and lymphocyte infu- 
sion time on survival, we assume that TD follows a piecewise 
exponential distribution with mean 

P D , l ( Y + , a )  = exp(a0 f sly+) ( 5 )  

before infusion and, if the patient survives long enough to be 
infused, mean 

(6) 

thereafter, denoting a = (ao,.. . ,4, i.e., the preinfusion 
baseline death rate a0 is replaced by the quadratic az+a3x1+ 
a4.f after the patient is infused. Thus, TD has p.d.f. 

P D , z ( t i ,  y+, a)  = exP(W + “ 3 z 1  -t a 4 6  + aiY+) 

fo(t I t i ,  a )  
PEtl exp ( -t/ P D ,I) 

w -  t l /PO,  1 )PG$ 

0 < t 5 t I ,  
(7) = {  xexp{-(t - ~ I ) / P D , z >  t > ti .  

In particular, patients who suffer HT in the first course are 
subject to the death rate P D , ~  thereafter because they are 
not infused. For convenience, we will denote the p.d.f. with 
parameter p ~ , ~  by f ~ , ,  for j = 1,2. 

We assume log quadratic functions of ZI for both p ~ ( t l ,  p) 
and p ~ , z ( t ~ , Y + , a ) .  This is a flexible family of functions 
allowing a broad range of possible ways in which TA and 
TD each may depend on infusion time. We assume that 
TA and TD are independent because any probability model 
including a parameter characterizing their association is not 
identifiable (Prentice et  al., 1978). The piecewise exponential 
model specifies mean postinfusion survival time as an explicit 
function of infusion time, however. 

2.3 Likelihood 
Let 6~ denote the indicator that TA is not right-censored 
either administratively or by death, with TI the observed 
value of TA or its censoring time, and let 6 0  and TE be 
the analogous quantities for survival time. Denoting F( t )  = 
Pr(T > t ) ,  the likelihood is given by 

L(yl > y 2 ,  T A ,  bA,  T D ,  6 0  I a,  P, 7) 

= { “1 f D  ,I (TI, 6 D  F D  , I  (TE ) } y1 

Because administrative censoring takes place only at t = 50, 
when Y1 = 1 the event time portion of the likelihood takes one 
of two forms: ~ D , I ( T D )  if TD < 50 or F ~ , 1 ( 5 0 )  if TD > 50. 
Because f~ is piecewise exponential, when Y1 = 0, the event 
time portion of the likelihood takes one of the following five 

if TD < t i ,  

i f t I + T A < 5 0 < T D ,  

if t i  + TA < T o  < 50, 

if 50 < min{tf + T’, TB}  
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or 

FA(TD - t i  I t r ) F ~ , i ( t i ) f ~ , 2 ( T o  - t i )  
if t I  < TD < min{tI + TA, 50). (9) 

The last four rows correspond to cases in which the patient 
survives long enough to be infused at t I ,  with fo(t) = 
F D , I ( ~ I ) . ~ D , ~ ( ~  - tr)  and F D ( ~ )  = F D , l ( t r ) h , z ( t  - t i ) .  
Thus, for Mylotarg dose schedule (dl , dz), the 50-day success 
probability for a patient infused at t I  is 

0(t1)  = (1 - 7rl(dl))F~(50 - t~ I t ~ )  
1 

Table 1 
Prior means and 90% credibility intervals (Cl)  

a. Prior mean time to ANC recovery: f L A ( t I , p )  = exp(P0 + 
Pixr + ~ z x f )  

t I  xr Mean 90% CI 
- 11 

17 
23 

- 2  
0 
2 

20 
10 
10 

10-30 
8-20 
8-15 

b. Prior probability of death before day 50 given 
survival to infusion at time t I :  I - exp{-(50 - t i )  x 
e-(az+a32r+a42:+al~+) 

90% CI t I  "I y+ Mean 
- -~ ~ 

0.10-0.50 11 -2 0 0.30 
11 -2 1 0.50 
17 0 0 
23 2 0 

0.20-0.80 
0.25 0.10-0.40 
0.30 0.10-0.50 

c. Prior mean hepatoxicity probability: E{logit-'(yo +yld+)} 

90% C1 

dl  = 4 4 0.025 0.00-0.20 

Dose d+ Mean 

(4, d2) = (4,4) 8 0.10 0.00-0.60 

(10) 
where 

FA(50-tI I t I )  = 1-exp{-(50-tI) exp(-Po-PlxI-P2x?)} 

and 7rT3(d) = logit-l(y0 + yld). The quantities { @ @ I ) ,  t I  = 
11, 14, 17, 20, 23}, will provide the basis for adaptively ran- 
domizing patients among the five infusion times throughout 
the trial. 
2.4 Prior Distributions 
When using Bayesian adaptive decision rules in small-scale 
clinical trials, the priors may have a substantive effect on 
the decisions early in the trial when relatively little data are 
available, i.e., in clinical trials including decisions based on 
small amounts of data, no prior is truly noninformative. In 
the present setting, assuming a highly dispersed prior on a 
given parameter will have particular consequences with regard 
to the doses assigned to the patients earlier in the trial as 
well as on the decision of whether to stop the trial early 
if unacceptably high rates of either toxicity or death are 
observed. 

We assume a pnori that each of the parameter vectors 
0, a,  and 7 is multivariate normal. We apply a slightly 
modified version of the method of Bedrick, Christensen, and 
Johnson (1996) for specifying priors in a generalized linear 
regression model setting. The Bedrick et al. method begins 
with specification of a multivariate prior having dimension p 
equal to that of the parameter vector, based on p distinct 
covariate vectors, in the natural domain corresponding to the 
phenomenon described by the parameter. This distribution is 
then transformed to obtain the prior on the parameter vector. 
Here, the natural domains corresponding to @, a,  and 7 that 
we employ are, respectively, the mean time to ANC recovery, 
mean probability of surviving 50 days, and HT probability. 

Because the third author of this paper (TM) is a physician 
specializing in BMT and is a coinvestigator in the DLI trial, 
the numerical values of the priors are based on his clinical 
experience and prior beliefs regarding the patient outcomes 
in the trial. 

We denote the mean and variance of aj by paj and 
m23 and cov(aj,ak) = uaJlakr with the prior parameters 
of the Pj's and yj's denoted similarly. Because 0 is three 
dimensional, we first specified the prior mean and a 90% 
credibility interval (CI) for the mean time to ANC recovery, 
,UA(tI, @), at each of three distinct infusion times. These 
are summarized in Table 1, part a. The rationale for these 
numerical prior parameters is that the earliest possible time 
to neutrophil recovery following DLI is approximately 8 days 
and the typical range is between 8 and 15 days. By t I  = 
23 days, the Mylotarg should clear the patient's bloodstream 
and standard neutrophil recovery would be expected following 
DLI administration, i.e., recovery in 8-15 days. At t I  = 17 
days, there is greater uncertainty about the amount of residual 
circulating Mylotarg, with greater amounts associated with a 
delay in neutrophil recovery. This motivates the larger, 8- 
20 day, 90% CI. At t i  = 11 days, there certainly will be 
circulating Mylotarg and neutrophil recovery may be delayed 
slightly or significantly, hence the wider CI. 

We used this prior information to  determine the means of 
the linear terms ~ ~ ( 2 1 ,  p) = Po + Pix1 + P2xf algebraically 
for X I  = -2, 0, and 2 and then used the credibility 
intervals t o  solve for the variance of each entry of V A ( X ~ , ~ )  
= (vA( -~ ,  01, V A @ ,  PI, V A ( ~ ,  PI). Because @ is a one- 
to-one linear function of ~ ~ ( 2 1 ,  @), applying the usual 
transformation theorem for multivariate normals then yielded 
the three-dimensional normal distribution of 0. 
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For a,  we first determined the prior of a0 from the mean 
probability 0.02 of death without HT within the first 11 days 
and the probability 0.90 that the probability of this event will 
be less than 10%. Formally, we assumed that 

1 - exp(-IIe-pou) = 0.02, 

which yields pao and 

P r ( 1 -  exp(-lle-"") < 0.10) = 0.90, 

which then gives gag under norrnality. The prior of a-0 = 
(a1, a2, ag, aq) was then determined analogously to that of 
p. Because a-0 has four elements, the mean arid variance of 
the linear term g ~ ( z l , Y + , a - ~ )  = a2+a3z~+cu4z~+cylY+ 
characterizing the survival distribution of a patient infused 
at tI is required for each of four distinct values of the vector 
(z1, Y+). We thus elicited the conditional probability of death 
before day 50 given that the patient survived to be infused, 
which is 

Pr(TD < 50 I TD > t I )  

1 (11) 
= 1 - exp{-(50 - t 1 )e  - ( C Y 2 + a 3 Z I + C Y ' I Z : + a l Y + )  

under the piecewise exponential model. This prior is summar- 
ized in Table 1, part b. The rationale for these numerical prior 
parameters is that, in previous DLI studies, the mortality 
rates at 60-90 days post-DLI have been approximately 30%, 
with deaths due to infection and disease recurrence. Mylotarg 
may cause more neutropenia and more infection, hence higher 
mortality, but it, also may decrease mortality by preventing 
disease relapse. At tI = 11 or 23 days, the total duration of 
neutropenia may be longer than for t I  = 17 days. Therefore, 
estimated mortality will be lowest for a t i  of 17 days versiis 
11 or 23 days. Given this, if HT occurs, then rriortality is 
expected to increase. 

For the prior on y, the mean HT probabilities and 90% CIS, 
summarized in Table 1, part c, correspond to Mylotarg doses 
of 9 mg/m2 in each of two courses. The prior corresponds to 
this dose level since it has been used in previous trials not 
involving DLI. As above, we began with the assumption that 
q ~ ~ ( 9 ,  y) = 70 + 719 has mean logit(0.05) and 7 / ~ ~ ( 1 8 ,  y) = 
yofyll8 has mean logit(0.10), used the credibility intervals to 
solve for the variances of these two linear terms, and applied 
the transformation theorem to obtain the bivariate normal 
distribution of (70,yl) .  The rationale for the numerical prior 
in Table 1, part c, is that, iri the phase I and I1 trials utilizing 
Mylotarg at  a total dose of 18 mg given in two courses, the 
incidence of HT in patients with relapsed AML following 
allogeneic transplantation was 1676, with half of these cases 
fatal. This motivated the starting dose here of 8 mg in two 
courses. The prior mean probabilities of HT of 2.5% after 4 
mg and 10% after 8 mg are based on the above experience at 
the higher dose. The larger CI for 8 mg at ( d l ,  dz) = (4,4) 
reflects the greater uncertainty over two courses of therapy. 
2.5 Posterior Distributions 
Based on the assumed model and priors, neither the joint 
posterior distribution of all the parameters nor the full 
conditionals are available analytically. Moreover, numerical 
evaluation of the posterior distribution is not feasible given 
the high dimension of the parameter vector. Estimation, how- 
ever, can proceed using Markov chain Monte Carlo (MCMC) 
methods, which construct a Markov chain having stationary 

distribution that is the posterior distribution of interest. After 
an initial burn-in to reach the stationary distribution, sampled 
values of the chain are used to estimate the posterior. One 
of the key elements for using this approach is the algorithm 
used for constructing the chain. We used the Gibbs sampler 
algorithm (Geman and Geman, 1984), in which samples are 
taken from all univariate full conditional distributions. While 
riot available analytically, the full conditionals are log concave 
so that sampling can proceed by using the adaptive rejection 
sampling (ARS) algorithm (Gilks and Wild, 1992). This 
algorithm is based on the fact that any concave function can 
be bounded from above and from below by piecewise hulls 
constructed by using tangents and chords between points that 
are cvaluated in the density's domain. Because the rejection 
probability decreases with the number of sampled values, this 
algorithm is quite efficient. 

To evaluate the performance of the ARS algorithm within 
the Gibbs sampler, we initially ran parallel chains with 
different starting points and assessed convergence of the 
chains using the software CODA (Best, Cowles, and Vines, 
1995). This preliminary analysis indicated that the chains 
converged when using a burn-in of 500 iteratrions and an 
additional 1000 iterations for computing the randomization 
probabilities defined in equation (15). A discussion of 
implementation aspects of MCMC methods is given by 
Gilks, Richardson, and Spiegelhalter (1996). For actual trial 
coridiict, a larger posterior sample size may be used to improve 
precision of the posterior estimates. 

3. Trial Conduct 
The Mylotarg dose de-escalation algorithm is based on the 
following definitions. Based on the clinical judgment that 
toxicity rates of 25% in the first coiirse and 30% in the second 
course would be acceptable, we defined t,he course 1 Mylotarg 
dose dl to be uriacceptably toxic if 

P r (q (d1)  > 0.25 1 data) > 0.95 

Pr(7r2(d+) > 0.30 I data) > 0.95. 

(12) 

(13) 

and the two-course pair ( d l ,  dz )  to be unacceptably toxic if 

The dose de-escalation algorithm is given in Figure 2, where 
H1 is the event that d l  is unacceptably toxic, regardless of 

i \H2 , ,  , 
STOP 2 + 0  2 + 2  4 + 0  

Figure 2. The Mylotarg between-patient dose de-escala- 
tion algorithm. "4+2" denotes 4 mg/m2 in course 1 and 
2 mg/m2 in course 2, etc., HI = [dl unacceptably toxic], 
Hz = [(dl, d2)  unacceptably toxic but d l  acceptable]. If eit,her 
H1 or H2 occurs after the third level, then the trial is stopped. 
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I 

2 

-- I I ,  
L 

Figure 3. Patient outcomes and adaptive decisions. Arrow 
1 denotes the adaptive randomization probabilities for 
infusion time, arrow 2 the fact that no DLI i s  given if there is 
HT in course 1, and arrow 3 the use of HT data by the dose 
de-escalation algorithm. 

d2,  and Ha is the event that ( d l ,  d 2 )  is unacceptably toxic but 
d l  is acceptable. 

The adaptive randomization is as follows: At the time a 
patient completes a second course of Mylotarg, the posterior 
of (cy,,B,y) is updated based on the current data and the 
patient is randomized to infusion time t j  with probability 

pj(data) = Pr{B(tj) = max @(a) I data}, 
l < k < 5  

j = 1 ,2 ,3 ,4 ,5 .  (14) 

This criterion is a generalization of that given by Thompson 
(1933) for the case of two treatments A and B with binary 
outcomes having success probabilities B A  and OB that follow 
beta distributions. Thompson proposed randomizing patients 
to treatment A with probability P A  = Pr(OA > OB I data) 
and to B with probability 1 - PA.  A review of adaptive 
randomization methods, including comparison with balanced 
randomization, is given by Berry and Eick (1995). Our 
approach may be considered a compromise between balanced 
randomization and dropping any infusion time tJ that, based 
on interim data, has an unacceptably small posterior success 
probability, say in terms of E { O ( t j )  1 data} falling below 
some predetermined fixed cutoff. The latter approach risks 
incorrectly dropping a superior infusion time that happens 
to have inferior interim outcomes, however, while balanced 
randomization is less clinically attractive because it ignores 
data favoring some infusion times over others. Another 
approach would be to simply infuse each patient at the time 
having the maximum mean posterior success probability. This 
strategy is well known to be inferior from the theory of bandit 
problems (cf., Berry and Fristedt, 1985), however. To see this, 
suppose an infusion time, t S ,  that is in fact superior has poor 
results early in the trial due to the play of chance. Under the 
above play-the-maximum strategy, it could easily follow that 
no additional patients would be assigned to tS because the 
posterior of O(t ), based on a small amount of early unlucky 
data, thereafter makes tS appear to be inferior. 

S 

Figure 3 illustrates the relationship between the imrnuno- 
therapy and DLI, the possible patient outcomes, and the 
adaptive decision rules. Arrow 1 in the figure refers LO 

the reliance of the adaptive randomization probabilities for 
infusion time on the posterior success probabilities, which in 
turn incorporate both the ANC recovery time and survival 
time data. Arrow 2 refers to the fact that the patient’s therapy 
is terminated without DLI if HT occurs in course 1. Arrow 
3 refers to the use of the HT data by the dose de-escalation 
algorithm. 

Based on historical experience at the M. D. Anderson 
Cancer Center, an accrual rate of about two patients per 
month is anticipated. The trial has a maximum sample size 
of 60 patients and a 30-month maximum duration, allowing 
the possibility that the trial may be stopped early due to an 
excessively high t,oxicity rate. In contrast with the extensive 
time spent simulating the trial as part of the design process, 
during actual trial conduct, only a few minutes are required to 
update the posterior and compute the probabilities (12)-(14) 
used as decision criteria. Thus, each new patient’s assigned 
Mylotarg doses and DLI time or the decision to terminate 
the trial entirely are available immediately at the patient’s 
accrual time. 

4. Simulation Study 
Because interim decisions typically have important ethical, 
scientific, and economic consequences, while developing a new 
clinical trial design, it is important for the statisticians and 
physicians to closely study both the properties of the design 
and the particular decisions that will be made under specific 
clinical scenarios. If any aspect of the design is undesirable, 
then the design parameters or model components should be 
modified appropriately before the design is actually used to 
conduct the trial. The adaptive decisions made during the DLI 
trial rely on the posterior distributions of the probabilities 
nl(d1) and ~ z ( d + )  of HT, the mean time to ANC recovery, 
P A ( t I , Y + ) ,  and mean survival time, pD( t i , y+) .  The aim 
of the simulation study was to evaluate the behavior of the 
design under different possible qualitative and quantitative 
forms of these functions. Designing such a simulation study 
for the DLI trial is not straightforward, however, because the 
number of possible shapes of ,UA and as furictioris of t i  is 
quite large. In order to evaluate the design under a reasonable 
array of possible combinations of toxicity, ANC recovery, and 
survival time, we proceeded as follows. 

We first evaluated only the dose de-escalatioii algorithm in 
terms of HT while ignoring the rest of the trial’s structure. 
The aim was to first calibrate the probability cutoffs used in 
the toxicity criteria (12) and (13) and the ovcrall maxiiniim 
sample size, based on the behavior of the dose dc-escalation 
algorithm. Initially, an algorithm substantially more coniplex 
than that given in Figure 2 was considered, beginning with 
(dl , dz) = (9,9) and involving up to  five possible dose changes. 
We simulated this algorithm with a maximum of 50 patients 
under five cases with (n1(9), ~ ~ ( 1 8 ) )  varying from (0.05,O.lO) 
to (0.50,0.55). For each case, we solved for yo and y1 arid 
used these as fixed values in the simulations to accommodate 
the varying doses resulting from the de-escalation. These 
preliminary simulations showed that, even with the acceptable 
toxicity probabilities r l ( 9 )  = 0.25 arid n2(lS) = 0.30, on 
average, 16 patients suffered HT in the first course and SO 
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only 34 remained to be infused. Based on these numerical 
results and the additional medical consideration that starting 
with ( d l ,  d2) = (9,9) might be overly risky, it was decided to 
modify the design. Accordingly, it began with ( d l , & )  = (4,4) 
rather than (9,9), the Mylotarg dose de-escalation algorithm 
was simplified to that described in Figure 1, and the maximum 
sample size was increased from 50 to 60. 

We simulated the entire trial under this design, as follows. 
From the prior on y (Table 1, part c), the fixed toxicity 
probabilities used for the simulations corresponded to rl(4) = 
0.025 and r z ( 8 )  = 0.10. We solved these two equations for 
70 and y1 and simulated Y using the toxicity probabilities 
determined by these values throughout. To obtain fixed values 
of the baseline death rate p g ( t I , Y + ) ,  we solved for fixed 
values of CYO and a1 based on their prior means. Recall that 
Pr(TD < 11 1 Y+ = 0) = 1 - exp(-lle-aO), so the prior 
mean 0.02 for this probability gives fixed a0 = 6.3 for the 
simulation. Similarly, using the means in the first two rows 
of Table 1, part b, give fixed value a1 = -0.6644. These 
values give death rates of 0.0178 for patients with HT and 
0,0091 for patients without HT. The simulations assumed 
these t,wo death rates throughout for a patient never infused, 
and for infused patients the postinfusion mean survival t h e  
was multiplied by exp(n1) = 0.51 if the patient had HT. 

The remaining fixed parameter values needed for the 
simulations are those determining how p~ and the 50-day 
survival probability each vary as functions of t i .  Rather than 
specifying these in terms of fixed values of ~ ~ 2 , 0 1 3 ,  cy4, and p, 
we specified three non-model-based cases of each function in 
terms of their numerical values at each t i .  These are given 
in Table 2. Cases A l ,  Az,  and A3 for p~ are functions that 
decrease, increase, and form a U shape with t i ,  respectively. 
Similarly, cases D1, D2, and 0 3  for the probability of death 
before day 50 are initially flat and then increasing, U shaped, 
and decreasing with t ~ ,  respectively. Each scenario thus 
consists of a combination ( A i ,  D 3 )  from Table 2, with the 
fixed values of y, ao, and 011 as described above. The cases 
A1 and D3 with decreasing functioris correspond to  the case 
where Mylotarg is unlikely to destroy infused donor cells 
and hence neutropenia increases with t I .  The cases A2 and 
D1 with increasing functions correspond to the case where 
Mylotarg kills a substantial number of donor cells, hence 
neutropenia decreases with t i .  The U-shaped functions A3 
and D2 correspond to the case where Mylotarg kills donor 
cells but increasing t I  prolongs neutropenia; hence, there is 
an optimal intermediate infusion time. 

Initial exploratory simulations with 100 repetitions of 
the trial took roughly 2 days for one scenario on a 
personal computer (PC) with a Pentium 111 processor. In 
order to simulate 1000 trials under each scenario, we used 
parallel processing that distributed the computations for each 
simulation over 35 PCs. Using this approach, on average, it 
took roughly 12 hours to simulate each scenario. Because 
there was some redundancy among the nine scenarios in 
terms of their 50-day survival probability curve ( t i ,  @ @ I ) ) ,  in 
Table 3, we summarize results for the balanced incomplete 
block subdesign consisting of the three cases ( A l ,  D3), 
(A2, D l ) ,  and (A3, D2).  Results for the other six cases were 
substantively very similar to those in Table 3. 

Table 2 
Simulation cases f o r  varying mean t ime 
to A NC recovery and probability of death 
before day 50 i f  infused at t~ and n o  H T  

Day of infusion 

Case 11 14 17 20 23 

Mean Number of Days to ANC 21000 
A1 25 21.25 17.50 13.75 10 
A2 10 13.75 17.50 21.25 25 
A3 25 20 15 20 25 

Pr(Death Before Day 50 1 No HT) 
D1 0.25 0.25 0.25 0.30 0.35 
D2 0.25 0.20 0.15 0.20 0.25 
D3 0.40 0.35 0.30 0.25 0.20 

Under scenario (A1 , D3), O ( t I )  increases monotonically 
from 0.43 at t I  = 11 to 0.69 at t I  = 23. The selection 
probability, SP( t l ) ,  is very nearly monotone increasing in t I ,  
with SP(23) = 0.56 for the optimal day t I  = 23. Moreover, 
on average, the adaptive randomization treats more patients 
at the more desirable infusion times. The success probabilities 
under scenario (Az ,  01) decrease monotonically with infusion 
day, from 0.67 at t I  = 11 to 0.39 at t I  = 23. Again, in this 
case, SP(t1) follows this monotone pattern, aside from a very 
small increase at t I  = 23. Given the small difference in the 
two largest success probabilities, O(l1) = 0.67 and O(14) = 
0.64, under this scenario, the fact that t I  = 11 and 14 are 
selected with respective probabilities 0.50 and 0.26 is quite 
encouraging. Under scenario (A3, Dz ) ,  SP(t1) increases to a 
maximum of 0.70 at t I  = 17 and then decreases. Both SP(t1) 
and the numbers of patients infused follow this pattern, with 
SP(17) = 0.54 for the optimal day t I  = 17. These results 
indicate that the quadratic functions of infusion time in the 
log-mean ANC recovery rate and the log-mean death rate do a 
very effective job of recognizing nonlinear rates in terms of the 
Bayesian adaptive randomization based on the posteriors of 
the O ( t I ) ’ s .  Given that the adaptive randomization must rely 
on very small amounts of data early in the trial, the method 
behaves remarkably well. 

Our elicited prior is informative. While a thorough analysis 
of the design’s sensitivity to the prior is beyond the scope 
of this article, it is useful to examine how the operating 
characteristics change in a specific case. To do this, we (1) 
decreased the mean and 95% CI of p ~ ( 1 1 , p )  from (20, 10- 
30) to the more optimistic values (15, 5-25), (2) increased 
the mean and 95% CI of p ~ ( 1 7 , P )  from (10, 8-20) to  the 
less optimistic values (15, 13-25), and (3) increased the mean 
and 95% CI of the probability of death before day 50, given 
survival to infusion, for t I  = 11 to (0.40, 0.10-0.60) when Y+ 
= 0 and to (0.60, 0.25-0.90) when Y+ = 1. The effects of 
these changes are to shorten both mean ANC recovery time 
and survival time for patients with the earliest infusion day, 
t I  = 11. With these changes, under scenario ( A l , D 3 ) ,  the 
mean selection probabilities are SP = (SP(11), . . . , SP(23)) 
= (0.07, 0.02, 0.11, 0.17, 0.63) and the mean numbers of 
patients infused are N = (N(11), . . . , N(23)) = (7.9, 3.3, 12.1, 
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Table 3 
Design operating characteristics under three scenarios 

Dav of Infusion 
Not 

Scenario infused 11 14 17 20 23 Overall 

Al,  D3 Pr(50-day success) 0.43 0.48 0.54 0.61 0.69 
Pr(se1ected) - 0.06 0.03 0.15 0.20 0.56 - 

No. patients treated 1.6 5.7 4.2 15.1 10.3 19.3 56.3 

A2, D1 Pr(50-day success) 0.67 0.64 0.58 0.48 0.39 
Pr(se1ected) - 0.50 0.26 0.16 0.03 0.05 - 

No. patients treated 1.3 23.5 11.6 12.4 3.3 5.2 57.3 

A3,D2 Pr(50-day success) 0.54 0.61 0.70 0.57 0.45 
Pr(se1ected) - 0.13 ‘ 0.17 0.54 0.11 0.05 - 

No. patients treated 1.5 7.5 9.8 26.6 7.6 4.6 57.6 

9.7, 23.8); under (Az, D l ) ,  SP = (0.48, 0.22, 0.14, 0.06, 0.11) 
and N = (25.5, 9.4, 10.4, 3.6, 7.1); under ( A 3 , 0 2 ) ,  SP = 
(0.14, 0.16, 0.49, 0.13, 0.08) and N = (10.4, 9.9, 22.0, 7.0, 
6.5). In all three scenarios, both SP(17) and N(17) decrease 
slightly while SP(23) and N(23) increase compared with the 
values in Table 3 for the actual prior. The general behavior of 
the design persists under all three scenarios, however, in that 
the best DLI time still has the highest values of S P  and N. 
It thus appears that the method is sensitive to the prior, at 
least for changes of the magnitude considered, but that it still 
behaves as desired. 

5. Discussion 
We have proposed an adaptive statistical design for conduct- 
ing a clinical trial of an innovative therapeutic strategy in 
a group of cancer patients with very poor prognosis. Each 
patient’s outcome is the vector (Y, T i ,  b ~ ,  Tg ,  SD), with 
several possible configurations of these variables observable 
depending on whether Y1 = 0 or 1 and the values of 2’’ and 
TD. The therapeutic strategy is adaptive within each patient 
in that no further therapy is given if Y1 = 1. The design 
is adaptive between patients in that each patient’s Mylotarg 
doses and infusion time are determined based on the data 
from previous patients in the trial. This may be considered 
a phase 1/11 trial (Thall and Russell, 1998) in the sense that 
it includes dose finding and evaluation of both adverse and 
desirable outcomes. While the design described here has been 
tailored to  the particular application at hand, the dose-finding 
and adaptive randomization methods could be applied, with 
suitable modification, to  design future trials having similar 
goals. 
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RESUME 
Cet article decrit un plan adaptatif bayksien, conqu pour l’es- 
sai clinique d’un traitement experimental destine B des pa- 
tients atteints d’affections tumorales hkmatologiques et x- 
cusant, aprks une greffe de moelle osseuse alloghnique, une 

rkcidive. Le traitement consiste en une ou deux immunothera- 
pies ciblkes, suivies par une transfusion de lymphocytes. Si 
I’on sait que l’immunoth6rapie est un prkalable necessaire B 
la transfusion, on sait aussi qu’elle peut produire des tox- 
icitks hepatiques skvhres, et qu’elle provoque B coup sOr des 
diminutions importantes des globules blancs et des plaquettes. 
L’objectif scientifique primordial est ici de determiner le delai 
optimal (mesure B partir de l’immunoth6rapie) pour proc6der 
A la transfusion, afin que celle-ci ait les meilleures chances 
de succhs (on definit un succks par le fait que le patient, 50 
jours aprks le debut de la thhrapie, ait non seulement surv6cu, 
mais qu’il n’ait subi aucune atteinte hkpatique skvkre, tout 
en ayant par ailleurs recouvrC une quantitk normale de glob- 
ules blancs). Notre mCthode utilise un modkle parametrique 
prenant en compte la survie, la toxicitk hepatique et le temps 
de recouvrement d’une quantit6 normale de globules blancs. 
Le plan experimental repose d’une part sur un algorithme 
comparant, B partir de donnees de toxicit6 hkpatique, la d6ses- 
calade des doses de l’immunothdrapie d’un patient B l’autre; il 
repose d’autre part, sur une randomisation adaptative de cinq 
delais possibles pour la transfusion, randomisation effectuCe 
en fonction des dernikres estimations a posteriori des taux de 
succks lies B chacun des cinq dklais. Une simulation demontre 
que c’est avec une certaine fiabilitk que ce plan sdectionne 
le meilleur dklai aprks immunothkrapie; de surcroi t, la pro- 
portion des patients randomis& sur les dklais les moins bons 
s’avgre relativement faible. 
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