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Summary. In therapy of rapidly fatal diseases, early treatment efficacy often is characterized by an event,
“response,” which is observed relatively quickly. Since the risk of death decreases at the time of response, it
is desirable not only to achieve a response, but to do so as rapidly as possible. We propose a Bayesian method
for comparing treatments in this setting based on a competing risks model for response and death without
response. Treatment effect is characterized by a two-dimensional parameter consisting of the probability of
response within a specified time and the mean time to response. Several target parameter pairs are elicited
from the physician so that, for a reference covariate vector, all elicited pairs embody the same improvement
in treatment efficacy compared to a fixed standard. A curve is fit to the elicited pairs and used to determine
a two-dimensional parameter set in which a new treatment is considered superior to the standard. Posterior
probabilities of this set are used to construct rules for the treatment comparison and safety monitoring. The
method is illustrated by a randomized trial comparing two cord blood transplantation methods.
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1. Introduction
When evaluating treatments for rapidly fatal diseases, early
therapeutic efficacy often is characterized in terms of an event,
“response,” which occurs continuously in time. Some exam-
ples are engraftment in a blood or marrow cell transplantation
(tx) trial, resolution of a life-threatening infection by antibi-
otics, and complete remission of acute leukemia by chemother-
apy. In each of these examples, achieving response is the
first therapeutic goal because the hazard of death is initially
high but decreases substantially once response is achieved. In
many settings, it also is the case that a response achieved
more quickly is associated with a lower subsequent hazard of
death. For example, Estey, Shen, and Thall (2000) show that,
in chemotherapy of acute leukemia, patients who achieve a
complete remission more quickly are more likely to have a
longer subsequent survival. Let t∗ denote a fixed time limit
for achieving response, after which the initial therapy may be
replaced by a salvage regimen. Denoting the times to response
and death by TR and TD , early treatment success is the event
St∗ = {TR < min(t∗,TD)}. This requires that the patient sur-
vive long enough to respond, and that response occurs by time
t∗ from the start of therapy.

Although π = Pr(St∗) depends on both TR and TD , com-
paring treatments in terms of π alone may ignore important
information. For example, if treatments A and B have similar
πA and πB , but on average treatment A achieves a response
more quickly than B, then A will have a lower overall death

rate. This is because, with either treatment, the risk of death
decreases once a response is achieved. A statistical compari-
son based on πA and πB would be likely to conclude that the
two treatments have similar efficacy, despite the fact that, on
average, A has longer overall survival time. If the death rate
after response increases with TR, then the superiority of A
over B is even greater.

We propose a Bayesian approach to treatment comparison
in this setting based on a two-dimensional parameter consist-
ing of π(Z) = Pr(St∗ |Z) and the conditional mean time to re-
sponse, μ(Z) = E(TR |TR < TD , Z), where Z = (Z1, . . . ,Zq) is
a vector of patient prognostic covariates. We define μ(Z) con-
ditionally because response and death without response are
competing risks, that is, TR is observed only if TR < TD . Our
method bases comparisons on these two parameters evaluated
at a reference covariate vector, Z∗, chosen by the physician.
For convenience, we will denote π(Z∗) by π and μ(Z∗) by μ.
Evidently, larger π or smaller μ is more desirable. If π and
μ are considered together, however, treatment comparison is
problematic. When one treatment has both larger π and larger
μ than the other, it is not obvious which treatment is prefer-
able. For example, in our application, St∗ is the event that a
cord blood tx patient achieves engraftment within 42 days, so
π = Pr{TR < min(42, TD) |Z = Z∗}. Historical data (Shpall
et al., 2002) give the means π0 = 0.69 and μ0 = 30 days with a
standard cord blood tx method. A new regimen is considered
an improvement over the standard if E(π, μ) = (0.70, 18),
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which requires engraftment with about the same probability
as the standard but on average 12 days sooner. A different
improvement is achieved by (0.90, 30), which allows E(μ) to
remain the same but requires E(π) to increase from 0.69 to
0.90. This illustrates the motivation for our method, which
compares treatments by considering (π, μ) together. Initially,
several target (π, μ) pairs are elicited from the physician so
that, for Z = Z∗, all elicited pairs embody the same improve-
ment compared to the historical mean, (π0, μ0). A curve is
fit to the elicited pairs, and the curve is used to determine a
two-dimensional region of (π, μ) pairs for which a new treat-
ment is considered superior to the standard. This region is
used to compute posterior probabilities that form the basis
for treatment comparison and safety monitoring.

We establish a probability model in Section 2. The method
for constructing a two-dimensional parameter set for compar-
ing treatments in terms of (π, μ) is described in Section 3. In
Section 4, we present decision rules based on this construc-
tion and a design for trial conduct. The method is illustrated
in Section 5 by application to a randomized trial to compare
two cord blood tx strategies. We close with a discussion in
Section 6.

2. Probability Models
2.1 A Competing Risks Model
Since response and death without response cannot both oc-
cur in the same patient, these events are competing risks. To
account for this while also allowing the hazard of death to
change when response occurs, we assume the following piece-
wise model. Let T1 denote the time to death without response
and, among the patients who respond, let T2 be the time from
response to subsequent death. Aside from administrative cen-
soring, for each patient either T1 or the pair (TR,T 2), but
not both, may be observed, and the patient’s survival time
is either TD = T1 if T 1 < TR, or TD = TR + T 2 if T 1 ≥
TR. We assume that T1 and (TR,T 2) are independent. To
accommodate the common case where T2 is stochastically de-
creasing in TR, we model the conditional distribution of T2

given TR. For k = R,D , 1, or 2, denote the probability den-
sity function (p.d.f.), cumulative distribution function (c.d.f.),
and survivor function (s.f.) of Tk by fk ,Fk , and Fk = 1 − Fk.
Denote the conditional p.d.f., c.d.f., and s.f. of T2 given TR

by f 2|R, F 2|R, and F2|R. Let I(A) be the indicator of the event
A. We assume that the conditional p.d.f. of TD given TR is
the piecewise distribution

fD|R(x | y) = F1(y)f2|R(x− y | y)I(x ≥ y)

+ f1(x)I(x < y), x, y > 0. (1)

The joint distribution fD,R(x , y) = fD|R(x | y)fR(y) thus is
determined by f 2|R, f 1, and fR, and averaging over fR yields
the marginal survival time distribution,

fD(x) =

∫ x

y=0

fR(y)F1(y)f2 |R(x− y | y) dy

+FR(x)f1(x), x > 0. (2)

Under this piecewise model, the hazard of death changes
from h1(x) = f1(x)/F1(x) for x < TR to h2|R(x − TR |TR) =
f2|R(x− TR |TR)/F2|R(x− TR |TR) for x ≥ TR.

The two key parameters that will form the basis for our
design strategy are

π = Pr(TR < t∗ ∧ TD) =

∫ t∗

y=0

fR(y)F1(y) dy, (3)

and

μ = E(TR |TR < T1) =

∫ ∞

0

yfR(y)F1(y) dy∫ ∞

0

fR(y)F1(y) dy

. (4)

The facts that π and μ are determined by (f 1, fR) but do not
involve f 2|R, π and μ characterize different aspects of (f 1, fR),
and the hazard of death decreases at TR, together motivate
using (π,μ) to characterize early treatment efficacy. Moreover,
the pair (π, μ) provides more information than π alone about
T1 and TR. While the ultimate therapeutic goal is to make
π = 1 and T2 very large with high probability, that is, to cure
the patient, this goes far beyond the goals of the sort of trials
that we have in mind.

Let To be the patient’s last follow-up time and denote the
indicators YD = I(To = TD) that the time of death is observed
and YR = I(TR < To) that the time of response is observed.
Each patient’s likelihood contribution may take one of four
possible forms, depending on whether (TR,TD), (TR,To), TD ,
or To is observed. Accounting for these four possibilities, the
likelihood may be written in the general form

L = {fR(TR)F1(TR)}YR
{
FR(T o)f1(T

o)YDF1(T
o)1−YD

}1−YR

×
{
f2|R

(
T o − TR |TR

)YDF2|R
(
T o − TR |TR

)1−YD
}YR

.

(5)

For any given parametric model, we denote by θR,θ1, and
θ2 the parameter vectors characterizing fR, f 1, and f 2 |R. De-
note the first two terms in (5) involving the distributions
of TR and T1 by LR,1(data |θ1,θR), and denote the third
term involving the distribution of T 2 |TR by L2|R(data |θ2).
Since L = LR,1(data |θ1,θR) × L2|R(data |θ2), one may com-
pute the maximum likelihood estimators (MLEs) and poste-
riors of (θR,θ1) and θ2 separately, which reduces the dimen-
sionality of the computational requirements for fitting data.
Since π and μ both are determined by fR and f1 and our
clinical trial design is based on (π, μ), only the likelihood
LR,1(data |θ1,θR) and the posterior of (θ1,θR) given the in-
terim data are required for computing adaptive decision rules
during the trial.

2.2 Parametric Models
We will consider two families of parametric distributions for
fR, f 1, and f 2|R. The first is the lognormal, which has a non-
monotone hazard function, and the second is the Weibull,
which has a monotone hazard and includes the exponential
as a special case. For real η and σ > 0, we denote the lognor-
mal distribution with p.d.f.

f(x | η, σ) =
1

xσ(2π)1/2 exp[−{log(x) − η}2/2σ2], (6)

by LN(η,σ2). This has median eη, mean eη+σ2/2, and variance
e2η+σ2

(eσ
2 − 1). Recall that Z∗ is the physician’s reference
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covariate vector. For each outcome k = 1, 2, or R, we ac-
count for covariate effects by βk(Z − Z∗) = βk,1(Z1 − Z∗

1) +
· · ·+ βk,q(Zq − Z∗

q), where βk = (βk,1, . . . ,βk,q). We will in-
dex the two experimental treatments in the trial by j = 1, 2
and the historical treatment by j = H. For each j, we denote
the linear terms ηj ,k = αj,k + βk(Z − Z∗) for k = 1, R, and
ηj,2 = αj,2 + β2(Z − Z∗) + β2,q+1 g(TR), where g is a suitable
transformation, such as log or the identity. Under the log-
normal model, for a patient with covariates Z randomized to
treatment arm j, we assume that fR, f 1, and f 2|R are given by

TR | j,Z ∼ LN
(
ηj,R, σ2

j,R

)
, (7)

T1 | j,Z ∼ LN
(
ηj,1, σ2

j,1

)
, (8)

T2 | j,Z, TR ∼ LN
(
ηj,2, σ2

j,2

)
. (9)

For λ > 0 and φ > 0, we denote the Weibull distribution
with p.d.f.

f(x |λ, φ) = φλ−φtφ−1e−(t/λ)φ , (10)

by Weib(λ, φ). This distribution has median λ{log(2)}1/φ,
mean λΓ(1 + φ−1), and variance λ2{Γ(1 + 2φ−1) − Γ2(1 +
φ−1)}. Under the Weibull, we will assume the same regression
structures as in (7)–(9), but with each LN(ηj ,k ,σ

2
j ,k ) replaced

by a Weib( eηj,k , φj,k).
Under both models, βk accounts for the covariate effects on

Tk for k = 1, 2, and R, and β2,q+1 accounts for the effect of the
time to achieve a response on the patient’s subsequent survival
time. The parameters characterizing fR, f 1, and f 2 |R under
treatment j are θj,R = (αj ,R, βR, σj,R), θj,1 = (αj,1,β1, σj,1),
and θj,2 = (αj,2, β2, β2,q+1, σj,2). For each j and k, since ηj ,k =
Ej{log(Tk )} under the lognormal, and ηj ,k = Ej{log(Tk )} −
log{Γ(1 + φ−1

j ,k )} under the Weibull, with both models a larger
value of Tk is associated with larger ηj ,k . When evaluated at
the reference covariate vector Z∗, the ηj ,k ’s in (7)–(9) reduce
to αj ,R, αj,1, and αj,2 + β2,q+1TR. If β2,q+1 < 0 then T2 is
stochastically decreasing in TR. If β2,q+1 = 0, then T2 and
TR are independent. If β2,q+1 > 0, then T2 is stochastically
increasing in TR, although this case does not correspond to
any of the medical settings that we have in mind, since longer
TR typically shortens T2 in treatment of rapidly fatal diseases.
While this is the case if Pr(β2,q+1 < 0) is reasonably large,
even if β2,q+1 ≡ 0 the hazard of death should still drop at TR

due to an improvement in the patient’s medical status. In the
three examples given in Section 1, this would be recovery of
white cell count to a minimally functional level, absence of
infection, and absence of leukemia, respectively.

Under either parametric model, πj = π(θj,R,θj,1,Z∗) and
μj = μ(θj,R,θj,1,Z∗) are both highly nonlinear functions of
the elements of θj,R and θj,1. Because they are functions of the
same parameters, πj and μj are not independent. The map-
ping (θj,R,θj,1) −→ (πj , μj) reduces the (4 + 2q)-dimensional
parameter vector under treatment j to a two-dimensional
parameter whose elements have a natural clinical interpre-
tation. This will provide a basis for our use of (π1, μ1) and
(π2, μ2) for treatment comparison.

3. Characterizing Treatment Differences
3.1 Methods Based on Multivariate Outcomes
There are many approaches to the problem of comparing
treatments based on multidimensional outcomes. Most meth-

ods are based on hypothesis tests, and involve a test statis-
tic that differentially weights the outcomes (O’Brien, 1984;
Pocock, Geller, and Tsiatis, 1987; Tang, Gnecco, and Geller,
1989), or specifies the alternative geometrically (Willan and
Pater, 1985; Jennison and Turnbull, 1993; Bryant and Day,
1995; Conaway and Petroni, 1996; Thall and Cheng, 1999;
Kosorok, Shi, and DeMets, 2004). Thall, Simon, and Shen
(2000) compared treatments by partitioning the parameter
space into four sets characterizing the desirability of the two
treatments and computing the posterior probabilities of these
sets.

3.2 Constructing a Desirable Parameter Set
Because we characterize the efficacy of treatment j by the
two-dimensional parameter (πj , μj), treatment comparison
requires a further dimension reduction to obtain a one-
dimensional decision criterion. We begin by eliciting a set
of fixed target (π,μ) pairs from the physician, so that each
elicited pair embodies the same desired improvement over
(π0, μ0) for Z = Z∗. The elicited values, (π∗

1, μ∗
1), . . . , (π

∗
M ,

μ∗
M ), are used to obtain a smooth curve, D, which is the

boundary of a set of desirable (π,μ) pairs in the two-
dimensional parameter space. We construct D by treating the
elicited values like data and using conventional least squares
(LS) to fit μ as a function of π. The fitted function may be a
line μ̂π = a + bπ, a quadratic μ̂π = a + bπ + cπ2, or some
other simple function, where μ̂π denotes the LS estimator of
μ at π. The particular function should provide a reasonably
good fit to the elicited pairs, provided that dμ̂π/dπ ≥ 0 for
π ∈ [π

¯
, π̄]. We define the target contour to be the fitted curve

D = {(π, μ̂π) : π
¯
≤ π ≤ π̄}. To facilitate the elicitation pro-

cess, it is useful to plot the elicited pairs as they are specified,
as well as D. The domain [π

¯
, π̄] should be the interval of π

values where the physician considers D to be a valid repre-
sentation of equivalent targeted improvements over (π0, μ0),
and this may simply be the range of {π∗

1, . . . ,π
∗
M}. If desired,

rather than using a smooth curve, D could be a continuous,
nondecreasing piecewise linear function on [π

¯
, π̄], similar to

the polygonal boundaries of the alternatives used in the two-
dimensional hypothesis testing settings discussed by Conaway
and Petroni (1996) in the one sample case, and by Thall and
Cheng (1999) in the context of randomized trials.

Definition 1: Given target contour D, the set of desirable
parameter pairs is

ΘD = {(π, μ) : π ≥ π′ and μ ≤ μ′

for some (π′, μ′) ∈ D and π
¯
≤ π ≤ π̄}. (11)

That is, ΘD is the set of all (π,μ) pairs at least as desirable as
a pair on D. If 0 < π

¯
, then ΘD is bounded on the left by the

vertical line segment from (π
¯
, μ̂π

¯
) to (π

¯
, 0), and if π̄ < 1 then

ΘD is bounded above by the horizontal line segment from
(π̄, μ̂π̄) to (1, μ̂π̄). Figure 1 illustrates the historical mean,
elicited pairs, fitted curve D, and set ΘD for the cord blood
tx trial, for which π

¯
= 0.60 and π̄ = 1.

4. Trial Design and Conduct
4.1 Decision Rules
Our rules for comparing treatments 1 and 2 will be based on
the differences δ1,2 = (δπ1,2, δμ1,2) = (π1 − π2, μ1 − μ2) and
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Figure 1. The historical posterior mean and six elicited tar-
get values of (π,μ), and the fitted target curve D and set ΘD

of desirable parameter pairs. All values correspond to a stan-
dard patient age of 38 years.

δ2,1 = −δ1,2, and we compare experimental treatment j to the
historical treatment in terms of δj,H = (δπj ,H , δμj ,H ) = (πj −
πH , μj − μH), for j = 1, 2. We do this by evaluating the
posterior probabilities that these differences are in the shifted
set ΘD − (π0,μ0), which has the same relationship to (0, 0) as
ΘD has to (π0, μ0). Denote the historical data by dataH , and
the interim data obtained from the first n patients in the trial
by datan, for 1 ≤ n ≤ N . Our design requires the following
two decision rules:

1. Safety monitoring. Terminate treatment arm j = 1 or 2
if

Pr{δj,H ∈ ΘD − (π0, μ0) |datan,dataH} < pL. (12)

2. Treatment comparison. At the end of the trial, select
treatment 1 if

Pr{δ1,2 ∈ ΘD − (π0, μ0) |dataN}
> Pr{δ2,1 ∈ ΘD − (π0, μ0) |dataN}, (13)

and select treatment 2 if this inequality holds with δ1,2

and δ2,1 reversed.

The stopping rule (12) may be applied continuously, each time
a new patient is accrued, or group-sequentially at a prespeci-
fied sequence of interim times or sample sizes. In some trials,
if one arm is terminated by (12) then the investigator may
wish to treat all remaining patients, up to N , on the remain-
ing arm. In other trials, if the criterion (12) is met by either
arm then it may be appropriate to stop the entire trial. The
trial’s operating characteristics (OCs) may be evaluated by

simulation, with the values of pL or N modified on that basis
to obtain a design with desirable properties. The OCs con-
sist of the selection probabilities, early stopping probabilities,
and sample sizes of the two treatment arms under a set of
fixed values of (π1, μ1) and (π2, μ2) that represent a range of
different clinical scenarios.

4.2 Establishing Priors and Design Parameters
We begin by assuming a noninformative prior on θH =
(θH,R,θH,1,θH,2), computing p(θH |dataH), and using this
posterior to establish priors on the two experimental
treatments’ parameters, as follows. Since patients will be
randomized, the priors on (θ1,R,θ1,1) and (θ2,R,θ2,1), should
be identical, so to simplify notation we temporarily drop the
first subscript j = 1, 2. For convenience, we consider the
lognormal model, since the regime for establishing a prior
under the Weibull is similar. To utilize historical informa-
tion on how Z may affect TR and T1, we use the posterior
p(βR,β1 |dataH) as the prior on (βR,β1) for the trial. This
relies on the assumption that the covariate effects in the trial
will be the same as seen historically, which makes sense if
the patient populations are reasonably similar. Otherwise, it
may be more realistic to assume a noninformative prior on
(βR,β1). Because (αR, α1, σR, σ1) characterize (π, μ) and we
wish the data to dominate all inferences and interim decisions,
we require the multivariate normal prior on {αR, α1, log(σR),
log(σ1)} to be uninformative. We thus set the means and cor-
relations of this prior equal to their posterior values given
dataH , but inflate the posterior variances by setting var(αk) =
c var(αk |dataH) and var(σk) = c1/2 var(σk |dataH) for k =
1, R, where c is a suitably large positive number.

The decision rules, cutoff pL, and prior together determine
the design’s OCs. One may calibrate the prior and pL together
by considering an array of suitable (c, pL) pairs, for reasonably
large values of the variance multiplier c. This may be done
by simulating the trial for each (c, pL) pair with (π1, μ1) =
(π0, μ0), the historical posterior means, and (π2, μ2) varying
over several fixed alternatives. As an additional check, since
a beta(a, b) distribution has mean p = a/(a + b), variance
p(1 − p)/(a + b + 1), and effective sample size a + b, it is
useful to compute the approximate effective prior sample size,
p(1 − p)/varc(π) − 1, obtained by equating the prior varc(π)
to this beta variance for each value of c considered. This pro-
vides a basis for choosing c and pL so that, together, they
yield a design with desirable properties while also ensuring
that the prior is reasonably noninformative.

4.3 Numerical Methods
Posteriors were computed using the iterative defensive impor-
tance sampling method of Owen and Zhou (1999). At each
iteration, this method requires choosing the posterior mode
of L(data |θ) prior(θ) as a function of θ and then computing
the gradient at the mode. We used the method of Nelder and
Mead (1965) to determine the mode at each iteration. The nu-
merical integrations required to compute μ and π as defined
by (3) and (4) were done using the method of Takahasi and
Mori (1974). All programming was done in C++. Computer
programs for implementing the method are available from the
second author on request.
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5. Application
5.1 A Cord Blood Transplantation Trial
In blood or bone marrow cell tx for treatment of leukemia
and other cancers, high-dose chemotherapy is given to kill
the tumor cells, but it also destroys all of the patient’s nor-
mal bone marrow cells. In conventional allogeneic tx, bone
marrow or peripheral blood progenitor cells (PBPCs) from
a human leukocyte antigen (HLA)-matched donor are given
after the chemotherapy to restore the patient’s marrow with
healthy cells. These include neutrophils (white blood cells) to
fight infection, red blood cells, and platelets. Response in tx
therapy occurs when the absolute neutrophil count (ANC) in
the patient’s peripheral blood is ≥500 cells per mm3, an event
called engraftment, which indicates that the transplanted cells
have begun functioning normally in the bone marrow. Because
tx carries a substantial risk of fatal infection due to low ANC,
and engraftment is essential to give the patient a chance of
long-term survival, it is critical to achieve engraftment as soon
as possible. When an HLA-matched donor cannot be found,
an alternative is to use umbilical cord blood, which has been
used since 1988 to treat patients worldwide for a variety of
diseases (Kurtzberg et al., 1996). The major disadvantage of
cord blood tx is its low cell dose, which results in a longer time
to engraftment. Whereas bone marrow and PBPC recipients
engraft in approximately 14–17 days, cord blood recipients
often take 25–30 days to engraft and have higher rates of
engraftment failure and death due to complications, such as
infections and bleeding.

We illustrate our method with a small-scale clinical trial to
compare two experimental strategies for increasing the cell
dose in cord blood tx. Both strategies involve cord blood
expansion, in which the cord blood cells are manipulated
ex vivo (outside the patient’s body) to grow more cells prior
to tx. A different approach is double cord blood tx, in which
unexpanded cord blood grafts obtained from two different pla-
centae are infused simultaneously (Rubinstein et al., 1998).
Patients are randomized to receive either two unexpanded
(j = 1), or one unexpanded plus a second, expanded cord
blood graft (j = 2). There is one predictive covariate, the pa-
tient’s age, and Z∗ = 38 years is the reference value used for
eliciting the target pairs and computing the decision criteria.
The key parameters are thus the probability of engraftment
within 42 days, πj = Prj(TR < 42 ∧ T 1 |Z = 38), and the
conditional mean time to engraftment, μj = Ej(TR |TR < T 1,
Z = 38) for j = 1, 2.

5.2 Analysis of the Historical Data
To establish a standard for comparison in the trial being
planned, we first analyze a data set (Shpall et al., 2002)
including the times to engraftment and death in 37 pa-
tients who received an allogeneic cord blood tx using an
ex vivo expansion method similar to those in the trial
being planned. Of the 37 patients, 30 (81.1%) engrafted
(YR = 1), with 28 of 37 (75.7%) engrafting within 42 days,
and seven died without engraftment (YR = 0 and YD =
1). Among the 30 patients who engrafted, the mean time
to engraftment was 28.1 days with variance 75.8 and range
15 to 49. For the seven patients who died without en-
graftment, the mean survival time was 35.7 days with vari-
ance 451.6 and range 14 to 74. Indexing the patients who

engrafted by i = 1, . . . , 30, the early outcome likelihoods in
these two groups are LR =

∏30
i=1 fR(Ti,R |Zi)F1(Ti,R |Zi) and

L1 =
∏37

i=31 FR(Ti,1 |Zi)f1(Ti,1 |Zi). After engraftment, 18 of
30 (60%) died (YR = 1 and YD = 1), and the values of T2

for the remaining 12 patients were censored (YR = 1 and
YD = 0). Indexing the 18 patients who died after engraftment
by i = 1, . . . , 18, the respective likelihood contributions of
these 30 subsequent post-transplant observations are LR,2 =∏

18
i=1f 2|R(T i,2 − T i,R |T i,R, Zi ) and LR,c =

∏30
i=19 F2|R(T o

i −
Ti,R |Ti,R, Zi). No patient had both TR and T1 censored, so
the case YR = 0 and YD = 0 did not occur. Thus, the likeli-
hood for the historical data is L = LR × L1 × LR,2 × LR,c. For
these data, only Z = patient age is predictive of outcome, Z∗ =
38 years was chosen as the reference age, and there was only
one treatment. Under either parametric model, there are three
linear terms, η1(Z) = α1 + β1(Z − 38)/10, ηR(Z) = αR +
βR(Z − 38)/10, and η2(Z ,TR) = α2 + β2,1(Z − 38)/10 +
β2,2 log(TR). Under the lognormal model, θR = (αR, βR,
σR), θ1 = (α1, β1, σ1), and θ2 = (α2, β2,1, β2,2, σ2), and
under the Weibull each σk is replaced by φk. Since LR × L1

is parameterized by (θR,θ1) and LR,2 × LR,c by θ2, these two
subvectors may be treated separately when computing MLEs
and posteriors.

For the historical data, the maximized log likelihood is
–10.02 under the lognormal and –15.01 under the Weibull.
Since both models have 10 parameters, we chose the lognor-
mal for our analysis of dataH and as a basis for the trial
design. For the prior used to analyze the historical data, we
assumed that each αk and βk was normal with mean 0 and
variance 100, and that each σk ∼ LN(0, 100), with all param-
eters independent. The posterior is summarized in Table 1.
In these 37 patients, older age was predictive of a longer time
to engraftment, with Pr(βR > 0 |dataH) = 0.86, and moder-
ately predictive of a quicker time to death without engraft-
ment, with Pr(β1 < 0 |dataH) = 0.75. Among patients who
engrafted, older age was strongly predictive of a quicker time
to death after engraftment, with Pr(β2,1 < 0 |dataH) = 0.96,
and a longer time to achieve engraftment was moderately pre-
dictive of a shorter subsequent survival time, with Pr(β2,2 <
0 |dataH) = 0.80. The posterior means of the two design
parameters for a 38-year-old patient were E(π |dataH) =
0.69 and E(μ |dataH) = 30 days and, as might be expected
from their definitions, π and μ were negatively correlated.
Figure 2 gives the posterior medians and 95% credible in-
tervals of π and μ as functions of age. Although there was
substantial variability due to the small sample size, the plots
show that older patients were less likely to engraft and, given
that they did engraft, on average they required a longer time
to achieve engraftment. We used log(TR) in η2(Z ,TR) since
it was moderately predictive of T2, whereas the untrans-
formed TR was not predictive, with Pr(β2,2 < 0 |dataH) =
0.52.

5.3 Prior, Trial Design, and Simulations
The trial has a maximum of N = 60 patients. The scientific
goal is to select the better of the two treatments, provided that
it does not compare unfavorably with the historical treatment.
Patients are randomized between the two treatments arms,
but if one arm is terminated early by (12) then all subsequent
patients are treated on the remaining arm. Following the
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Table 1
Fit of the lognormal model to the historical data on 37 cord blood transplant patients

Posterior values given dataH

Outcome Covariate Parameter Mean (SD) Pr(β > 0)

Time to – αR −2.483 (0.069) –
engraftment (TR) age βR 0.041 (0.038) 0.86

– σR 0.375 (0.045) –
Time to death – α1 −1.938 (0.169) –

without engraftment (T1) age β1 −0.067 (0.100) 0.25
– σ1 0.556 (0.112) –

Time to death – α2 −1.530 (1.213) –
after engraftment (T2) age β2,1 −0.487 (0.276) 0.04

log(TR) β2,2 −0.409 (0.479) 0.20
– σ2 2.304 (0.423) –

Pr(engraftment in 42 days) – π 0.69 (0.07) corr(π, μ) = −0.39
E(TR | engraft) – μ 29.8 (2.24) –

Note: Patient age is coded in each linear component as (age − 38)/10.

general method described in Section 4.2, we initially examined
the nine designs obtained for all pairs of c = 10, 15, 20 and
pL = 0.01, 0.05, 0.10. These three values of c give var(μ) = 60,
100, 140 and var(π) = 0.039, 0.051, 0.060, so the approximate
effective sample sizes based on a beta distribution having the
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Figure 2. Estimated posterior median and 95 percent cred-
ible intervals for π and μ as functions of patient age, based
on the historical data.

same mean and variance as π are 4.5, 3.2, and 2.6 patients.
For each (c, pL) pair, we simulated the trial under each of
six scenarios defined in terms of fixed values of (π1, μ1) and
(π2, μ2). These are given in Table 2, which summarizes the
design’s OCs for the three scenarios with c = 15. The nu-
merical results for c = 10 and 20 are not tabled to conserve
space. Since E(T1) = 99, 125, 164 days for these three val-
ues of c, and 125 was considered a very large value for T1,
to avoid unrealistically large values of T1 occurring with non-
trivial probability we chose c = 15 to determine the prior
variability.

For the simulations, we generated the data as follows. In
all scenarios studied, we fixed (π1,μ1) = (0.69, 30), the null
values, and fixed (π2,μ2) at null or alternative values depend-
ing on the scenario. Within each arm, suppressing j, we first

fixed β and var(Tk |Z = Z∗) = eαk+σ2
k
/2(eσ

2
k − 1) for k =

1, R at their historical posterior means and, given (π, μ),
solved for (α1, αR, σ1, σR). We simulated each patient’s out-
comes (T 1, TR) from the lognormal distributions determined
by these fixed parameter values, with age sampled from a
smoothed density based on the historical data. For (π, μ)
near the boundaries of ΘD, with either μ = 5 or π ≥ 0.70 and
μ ≥ 35, we incrementally reduced var(TR |Z = Z∗) until the
distributions of (TR,T 1) yielded the given (π, μ). Each case
was simulated 1000 times.

Denote the scenarios in Table 2 by S1, . . . ,S6. The null
case, S1, is given by (π2, μ2) = (π1, μ1) = (0.69, 30), the
historical posterior mean. Arm 2 is unsafe in S2, where
μ2 = 40 is unacceptably large, and in S3, where π2 = 0.55
is unacceptably small. In S4 and S5, which have (π2, μ2) val-
ues on the target curve D, arm 2 is preferable to arm 1. In S6,
where (π2, μ2) = (0.90, 18) is in the interior of ΘD, arm 2 is
highly preferable to arm 1. Table 2 shows that pL = 0.01 gives
a design with early stopping probabilities for arm 2 that are
far too small in S2 and S3, where (π2, μ2) are unsafe. The cut-
offs pL = 0.05 and 0.10 both give safe designs, but the selection
probabilities for arm 2 under S4 and S5, where arm 2 is more
desirable, were higher for pL = 0.05, so this was chosen as the
cutoff. These results illustrate the general fact that smaller
pL gives higher selection probabilities and smaller stopping
probabilities. Thus, pL must be chosen to balance safety with
the ability to select desirable treatments.
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Table 2
Stopping and selection percentages and sample sizes for true (π1, μ1) = (0.69, 30) and six different true values of (π2, μ2)

True values of (π2, μ2)

1 2 3 4 5 6
Arm 0.69, 30 0.70, 40 0.55, 30 0.70, 18 0.90, 30 0.90, 18

pL = 0.01 1 Stopped (%) 8 9 7 8 9 7
Selected(%) 51 90 79 5 7 0
No. of patients 30 35 34 29 28 29

2 Stopped (%) 8 46 34 2 0 0

Selected (%) 48 6 17 95 93 100
No. of patients 30 24 25 31 32 31

pL = 0.05 1 Stopped (%) 49 54 55 46 46 46
Selected (%) 38 46 44 6 7 0
No. of patients 26 34 30 23 22 22

2 Stopped (%) 49 100 90 11 3 0

Selected (%) 36 0 5 87 91 99
No. of patients 26 7 17 35 37 38

pL = 0.10 1 Stopped (%) 79 83 81 71 71 70
Selected (%) 18 17 19 8 6 0
No. of patients 20 23 21 18 17 16

2 Stopped (%) 78 100 98 25 12 1

Selected (%) 18 0 0 73 85 99
No. of patients 19 5 10 35 40 44

Note: Correct decision percentage is enclosed in box.

An additional safety rule imposed by FDA reviewers ter-
minates an arm if none of the first three patients in that arm
engraft. We applied this rule to each arm 42 days after the
third patient was accrued, with no patients enrolled in the
interim. Thereafter, the trial may continue with (12) applied
at 30-day intervals until the last patient has been accrued.
However, it appears that (12) with pL = 0.05 subsumes the
FDA rule. If the first three patients die at day 74 without
engrafting, then the criterion probability in (12) is 0.0003.
If all engraft at day 49, the historical maximum and 7 days
later than the maximum allowed 42 days in S∗

t, then the cri-
terion probability is 0.015. If all three engraft at day 40, three
late successes, then the criterion probability is 0.075. Thus,
pL = 0.05 would stop the arm in the first two cases and con-
tinue in the third, all in agreement with the FDA rule.

Figure 3 gives plots of the early stopping and selection per-
centages of arm 2 as fixed values of (π2, μ2) are varied over ΘD,
with (π1,μ1) = (0.69, 30) in all cases. The early stopping per-
centages (Figure 3a) increase sharply as (π2, μ2) moves away
from the target curve D. The selection percentages (Figure 3b)
show the opposite pattern, with high selection percentages
for desirable (π2, μ2) pairs. While early stopping and se-
lection are disjoint events for each treatment arm, they are
not complementary since it may be the case that an arm is
neither stopped early nor selected. Thus, the two plots are not
redundant.

To examine the design’s sensitivity to N, we repeated the
simulations for N = 90, 120, and 150. These showed that the
correct decision probabilities increase with N. For example,
under S3 the correct early stopping percentage for arm 2 in-
creases from 90%, when N = 60, to 99% when N = 150. Under
S4, S5, and S6, when N = 150 the correct selection percentages
for arm 2 increase to 88%, 93%, and 100%, respectively.

5.4 Robustness
To examine the method’s sensitivity to deviations from the
assumed underlying model, we repeated the simulations un-
der the six scenarios in Table 2 with pL = 0.05, but generating
the data from each of two qualitatively different distributions
for (TR,T 1). The first is a Weibull as described in Section 2.
The second is a mixture of two lognormals, which might result
from the effects of an unobserved binary covariate. To con-
struct the mixtures, we replaced E(T 1) and E(TR) by E(T 1) +
Δ1 and E(TR) − ΔR with probability 1/2, and by E(T 1) −
Δ1 and E(TR) + ΔR with probability 1/2. Thus, the latent
variable was either beneficial or harmful with probability 1/2
each. For each scenario, to obtain mixture distributions of T1

and TR yielding the given (π, μ) in each arm, we performed
a two-dimensional search in (Δ1, ΔR). This yielded shift pa-
rameters in the ranges 4 ≤ Δ1 ≤ 7 and 1 ≤ ΔR ≤ 3 for the
six scenarios. The additional simulations are summarized in
Table 3. Comparing these results to those in Table 2 with pL =
0.05, under the Weibull the method is less likely to terminate
an arm early in most scenarios, and the decisions for arm 2 are
less reliable under S3 and S4 but numerically identical under
S2, S5, and S6. Under the mixture distributions, the method
is, generally, more likely to terminate an arm early, but has
higher correct selection probabilities for arm 2 under S4 and
S5. Thus, the method is sensitive to deviations from the as-
sumed model, but still maintains good OCs in all of the cases
studied.

6. Discussion
A potential criticism of our method is that the elicited target
(π, μ) pairs are inherently subjective. However, the conven-
tional method of targeting a fixed improvement δ > 0 from
π to π + δ in the one-dimensional case based on π alone relies
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Table 3
Robustness studies

True values of (π2, μ2)

1 2 3 4 5 6
Arm 0.69, 30 0.70, 40 0.55, 30 0.70, 18 0.90, 30 0.90, 18

Weibull 1 Stopped (%) 34 40 40 34 34 34
Selected (%) 43 60 59 17 8 0
No. of patients 28 38 32 25 24 23

2 Stopped (%) 34 100 76 11 3 0

Selected (%) 42 0 9 79 91 100
No. of patients 28 7 18 33 36 36

Mixture 1 Stopped (%) 84 87 87 78 75 78
model Selected (%) 14 13 13 2 5 0

No. of patients 19 22 19 16 17 15

2 Stopped (%) 83 100 98 11 7 1

Selected (%) 14 0 1 89 89 99
No. of patients 18 5 11 40 43 45

Note: Stopping and selection percentages and sample sizes for true (π1, μ1) = (0.69, 30) and six different true values of (π2, μ2), for T1 and
TR following either a Weibull distribution or a mixture of lognormal distributions. Correct decision percentage is enclosed in box.
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Figure 3. Early stopping percentages (a) and selection per-
centages (b) for treatment arm 2 under six different fixed val-
ues of (π2, μ2) when the fixed parameter values (π1, μ1) for
arm 1 equal the historical posterior mean (0.69, 30).

on a similarly subjective value of δ. In any case, because the
target (π, μ) values play a critical role in our method, these
should be elicited carefully. Our use of a contour constructed
from elicited values as a basis for decision making is similar to
the method of Thall, Sung, and Estey (TSE; 2002), who also
begin by determining a target contour in a two-dimensional
parameter space. A fundamental difference between the two
approaches is that TSE use the target contour to generate
a family of contours, and they base treatment comparison
on the posterior expected value of a utility function that
varies numerically over the contours. In contrast, we fix a
single target contour, use it to define a region of desirable
parameter pairs, and rely on the posterior probabilities of
this region, given in (12) and (13), as decision criteria.
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