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SUMMARY

A family of covariance models for longitudinal counts with predictive covariates is presented. These
models account for overdispersion, heteroscedasticity, and dependence among repeated observations.
The approach is a quasi-likelihood regression similar to the formulation given by Liang and Zeger
(1986, Biometrika 73, 13-22). Generalized estimating equations for both the covariate parameters
and the variance—covariance parameters are presented. Large-sample properties of the parameter
estimates are derived. The proposed methods are illustrated by an analysis of epileptic seizure count
data arising from a study of progabide as an adjuvant therapy for partial seizures.

1. Introduction

Consider a longitudinal data set consisting of a count response variable Y, and a p X 1
vector X, of covariates observed at times ¢ = 1, . . ., »;, for independent subjects i =1, . . .,
M. Such data frequently arise in the clinical testing of new drugs, as well as other areas of
application.

When there is a single response for each subject, i.e., all #; = 1, generalized linear models
(Nelder and Wedderburn, 1972; McCullagh and Nelder, 1983) are broadly applicable.
However, data involving counts taken from biological units often exhibit variability
exceeding that explained by exponential family probability models. In many circumstances,
this can be modelled by unobserved random effects acting on the responses. The main
problem faced by the scientist in such settings is identification of the linear predictor in the
model. Several authors have stressed the importance of accounting for overdispersion and
heteroscedasticity in order to correctly test elements of the linear component. The quasi-
likelihood approach to this problem was first introduced by Wedderburn (1974).

For repeated outcomes, where n; > 1, Liang and Zeger (1986) and Zeger and Liang
(1986) have proposed quasi-likelihood models that describe the correlation structure among
the responses, while also taking overdispersion into account. In the present article, we
develop a means of postulating parametric forms for the within-subject covariance matrix
and carrying out parameter estimation under the general framework of McCullagh (1983),
and more specifically that of Liang and Zeger. We are motivated in part by circumstances
wherein the nature and degree of the variability of the phenomenon over time may be as
important as its average behavior.

For ease of notation we shall write #n; = n. Modifications to accommodate partially
missing data are straightforward, provided they are missing completely at random. To
account for regression of Y; = (Y, ..., Y,,)T on both time and the covariates, we denote

Key words: Covariance matrix; Generalized linear model; Longitudinal data; Overdispersion; Quasi-
likelihood.
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by Z;, = (Zi, ..., Ziy)" a vector consisting of X,, and possibly some functions of time,
with link function g connecting each mean w;, = E(Y,) to the parameter vector 8 =
(Bos - - - Bp—1) T via g(uy) = Z% B = ;. In general, the visit times ¢ = 1, ..., n may be used
to index unequally spaced study times 7, < ... < 7,. This is useful for incorporating
functions of time, e.g., 3, fi(7) + - -+ + B, fi (), within the linear component.

Denote u; = (tiy . .5 i) 5= i, o . 1), Si= Y, — u;, and V, = cov(Y,). We also
require the covariate matrices Z; = d1,/08 = (Z:, ..., Z;,)T and the derivative matrices

D, = du;/98 = A/Z;, where A; = du,;/don; = diag, {du;/dn;,}. The A/’s are required to allow for
links other than log(u;,) = n;, such as those obtained from the family suggested by Pregibon
(1980). For convenience write Y = (YT, ..., YT, S=(ST, ..., Si)T, etc., and block-
diagonal matrices D = diag{D;} and V = diag{V,}, given specified V,. The p generalized
estimating equations for @ are

M

> DIV!S,=DTV IS =0. (1)
i=1
Let a be a ¢ X 1 vector of additional parameters arising in the formulation of V, and denote
6=B", a™)".

The principal objective here is to present tractable parametric forms for V = V(6) that
account for heteroscedasticity, overdispersion relative to Poisson marginals, and depen-
dence among the elements of each Y;. In addition to the assumed independence of the
response vectors Yy, . .., Y, we shall require that E(S) = 0, i.e., that the link g and linear
components {n;} are correct. The joint distribution of the entries of each Y; is specified
only up to second moments. We derive V heuristically by including random effects for
subject and time in each »;, and mixing over these effects. Estimation is carried out by
alternating between solution of moment equations for the vector a and the equations (1)
for 8. An asymptotic distribution theory for the estimators then allows formal testing and
subsequent remodelling of both u and V, as functions of @ and 8. Our formulation is
analogous to that of Prentice (1988), who provides a quasi-likelihood framework for
correlated binary responses with covariates. He derives the joint distribution of the regres-
sion and covariance parameters under a generalized estimating equation formulation that
models both the pairwise correlations p(Z) and the marginal probabilities 7 (Z) as functions
of the covariates.

In Section 2 we present a heuristic derivation of V based on random effects that act
multiplicatively on the mean. Parameter estimation is described in Section 3, and a joint
asymptotic distribution theory for 8 and & is provided. In Section 4 we present several
other forms of V suggested by the initial structure derived in Section 2. To illustrate our
methods, an application to the analysis of epileptic seizure count data arising in a study of
progabide as an adjuvant antiepileptic chemotherapy is presented in Section 5. Related
methods are discussed in Section 6, including estimation of « via pseudo-likelihood
(Davidian and Carroll, 1987) and the quasi-likelihood approach of Prentice.

2. A Covariance Matrix

Denote ¢7 = var(Y;) (1 < ¢ < n) and o;, = cov(Yy, Yu,) (¢ < u). Consider the case of
counts exhibiting extra-Poisson variation, in that ¢ > u,,. This may be checked empirically
by comparing the sample mean and variance of {Y;; 1 < i< M} for each 1.

We derive an initial form for V under the following assumptions. Let {v,, ..., va} be
independent and identically distributed subject effects and {¢,, ..., ¢} independent time
effects, all unobserved and positive-valued. The two sets of effects are mutually independent.
Conditional on these random effects, the responses are independent within subject and
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each Y, is Poisson with mean v;{u;, (1 < i< M; 1| <t < n). In particular, E(Y;,) =
wi E(v:§). Since
var(Yy) = E{var(Yy | vi, {)} + var{E(Yi | vi, §)
and
cov(Yi, Yu) = E{E(Yi Yi | vi, &, )b — E(Yi)E(Yi),
it follows that
oi = wiB(vi&) + uivar(y; &),
Tine = Wi o VAr(y: JE(S )

Assume the usual link log(u;) = 5;. Due to the mutual independence of all the random
effects, E(y; () = E(v/)E({), E(& &) = E(6)E(S,), and

var(y; {;) = var(y;)var($;) + var(y,)E*(&) + var($)E*(v;).

For simplicity denote «o = var(vy,)/E*(v,) and 6, = var({,)/E*({,) (1 <t < n). Incorporate
the term log{E({;)} into the linear component 75, as an additive time effect and likewise
absorb log{E(vy)} into the constant term 8y. Under the reparameterization «, = 6,(1 + «g),
expression (2) now may be written as

(2)

oh = mi + (o0 + a)ui,
(3)
Oty = O Mijr My -
Upon denoting ¢, = u; + o,u? and C; = diag, {c;}, we can express the covariance matrix in
the form

Vi=C + aouinl, 4)

which is clearly positive-definite. Further denoting b;, = u?/c; and b;, = by + -+ + by,
Householder’s formula yields

-1 _ (-1 %o -1 T-1
Vi'=C; 1 + aObi. C; win; Ci, (5)
which allows the estimating equations (1) to be expressed in a simple closed form.

There are three important simplifications and variants of this formulation. If oy = - -+ =
a, = 0, 1.e., there are no time effects in V;, then (4) takes the form suggested by Nelder
(1985, §5) for repeated measurements. When «y = 0 there are no subject effects and we
obtain the case of within-subject response independence with heteroscedastic overdispersion
across time. Applying both constraints, ¢; = .-+ = «, and «y = 0, yields the univariate
additive overdispersion model of Breslow (1984). Covariance models similar to (4) are
given by Morton (1987) in the context of nested strata, and Tsutakawa (1988) for analysis
of lung cancer mortality rates with stratification by demographic groups and geographic
region.

The heuristic derivation of V given above could be carried out equivalently by assuming
a priori that all the random effects have mean 1, since E*(y,) and E*({;) are absorbed into
their respective variances. In this sense the formulation is analogous to that of the classical
additive linear model for real-valued responses in which E(y,) = E(¢;) = 0 and each Y, has
conditional mean u;, + v; + {; and variance o2, so that marginally

V; = diag,{var(;) + o2} + var(y,)J, (6)

where J denotes the n X n matrix of 1’s. This corresponds to the usual linear model having
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within- and between-subject variance components, but allowing heteroscedasticity over
time. Thus, the two developments both can be carried out either from the full (Poisson or
Gaussian) distributional assumption, or via quasi-likelihood with respective variance func-
tions u or 1. The variance matrix V; in (6) does not vary with u,, however, while the
analogous expression (4) derived under the Poisson assumption is an explicit function
of u;.

3. Estimation

We approach the problem of parameter estimation by augmenting the p generalized
estimating equations (1) in 8 with a second set of moment equations for the additional
parameters « arising in the formulation of V. The underlying philosophy is to obtain a
unified distribution theory for 8 and «, as in Moore (1986) and Prentice (1988), rather
than to regard « as a vector of nuisance parameters.

Denote U;; = DT V'S, and define the g-vector of dispersion scores U,; = (U, ..
Usi))T, where g=n + 1,

*

Y

Uy==—5—-1 (I1<t<n),
(TI[
and (7)
Si Siu
UZiq = 2 <—1‘ - ao),
Ist<usn \MitMin
with & = (ay, ..., a,, ao)™. The p + ¢ estimating equations for § now may be expressed
generally as
Ul M Ul )
U= = 1=0. 8
[Uz] 2 U, ®)

In practice, these equations are solved via a two-operation procedure that is iterated, as
in Green (1984), Liang and Zeger (1986), Nelder and Pregibon (1987), and Prentice (1988).
First U, = 0 is solved for 8 using a modified Fisher scoring approach; then & is obtained
by solving the moment equations U, = 0. The moment equations are solved directly when
possible, otherwise via Newton-Raphson. These two operations are applied alternately
until 6 converges.

Initially V is set equal to the naive diagonal matrix of usual variances, assuming
independence within and between subjects. That is, estimation of « is suppressed. The
estimates of 8 so obtained are those of a generalized linear model. Thereafter, V takes
the form glven by expression (4) and, using the previous value of ﬂ the full parameter
vector 6 is computed iteratively until convergence. The convergence criterion used
in the illustrative example given in Section 5 below is to stop at iteration r + 1 when
max, [ (09— §)/s()] < 107

The statistic H = det{var(f)~ 1 is employed here to assess goodness of fit, where det(-)
denotes the determinant function. As noted by Godambe and Heyde (1987), H is an
increasing function of the squared vector correlation p? = det{E(UU?} )}/{det(A)det(A, )}
between U and the score vector U, of the “true” likelihood, denoting A, = cov(U, ). We
use H because U, is of course unknown, hence p? cannot be computed. The numerical
values of log(#) that are given in Table 4 of the illustrative example thus may be interpreted
only ordinally, in that a larger value corresponds to a higher value of p2, hence a better fit
to the data. Note that a generalized Pearson statistic based on ¥ STV;'S,; or 3 (S%/c?)
would be rather misleading here due to the essential role of the moment equations in
estimating V.
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Define the (p + q) X (p + q) matrices G = M ~'(—3U/38), T = E(G), and A = M ~'cov(U),
and partition G as

G = G, G2 =_1_ —-oU,/08 —dU,/da
Gy G2 —-9U,/38 —0U,/da |

M
with T and A partitioned in like manner. Let 6, denote the true value of 8. The following
theorems are proved in the Appendix, under suitable regularity conditions.

Theorem 1 There exists a sequence {6y} such that (a) Pr{U(éf,,) =0} — 1 and
(b) 82, — 6 in probability. This sequence is unique in that for any {6,,} satisfying (a) and
(b), it must be the case that Pr{f,, = 8,,} — 1.

Theorem 2 M'*(6 — 6o) is -asymptotically normal with mean 0 and covariance matrix
consistently estimated by [T(0)] ' A@){[T(6)] 7"} ".

This result provides a joint asymptotic distribution for 8 and &. In this sense it may be
regarded as an extension of Liang and Zeger (1986, Theorem 2), with the important
difference that we assume V is correct while they do not. From another viewpoint, our
results are a multivariate version of those given by Moore (1986). Prentice (1988) provides
a similar distribution theory for the case of binary responses, but estimates the second
moment parameters in a different manner.

For computation of the covariance matrix of 6, first write A;, = M~' ¥ A,,,, etc. Since
A, =DTV7D,, it follows from (5) that

a A[Z[ &%) o Ay i " Ay i

AllAl.(r.s) - 1§1 Zl/r'Zus Ci 1 + Olobi. [;l Zur ci ,El Zu/s Cin ) (9)
(1 < r, s < p). The submatrices A»; = DT V;7'E(S;UY,) = AL, ; and A, = E(Uy,UY)
involve mixed central moments of {Y,, 1 <t < n}, up to fourth order. In general, these
matrices may be estimated by substituting 6 for 6 and Y, — iy for S, throughout. Substantial
simplifications may be made using the first- and second-order moment assumptions
E(S;) = 0 and E(S;ST) = V,. For I, it is easily verified that T';;, = M~' ¥ DTV;'D, and
T';; = 0. The remaining components of T'; are

[ 2
diag[[a{log(au)}}
My,
Iy = Z, (10)
Ai Ain
(n— l)oz()( ‘,...,—)
B Mil Min
and
#12'1/0121
i 2/.2 .
1122‘[ — dlag,{/,t,,/a,,} : , (11)
Wi ok
0O -« 0 nn-1))/2

using formula (4), with § in place of 8. A
An immediate consequence of Theorem 2 is that M Y*(8 — 8,) is asymptotically normal
with covariance matrix A, ()", since A, = T';,. Liang and Zeger (1986) prove asymptotic

A

normality for B under the more general assumptions that V may be incorrect but
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M (& — ay) = 0,(1). While this condition is difficult to verify when the model for second-
order structure used in U, and V is not assumed to be correct, the definition of A shows
that in any case the covariance matrix of @ may be correctly estimated by

M
rrl'{i 3 D,TV;'sfs?V:IDi}rrl', (12)
M
using § = 6 throughout. As noted by Prentice (1988) in the analogous formulation for
binary responses, the choice between (12) and A7} is essentially a trade-off between
robustness and precision, provided that in the latter case one has done a good job of
modelling V.

4. Other Forms of V

In application, the modelling process may require several forms of V, each motivating its
own version of U,, A, and T'. Under the special case of the general formulation given
by (3), (4) where oy = 0 and ¢ = n, corresponding to independence within subjects, the
(n + 1)st entry of U, is deleted. Here V is diagonal, with A and T simplified in fairly
obvious ways. In this case, the model for the marginal distribution at each occasion is
equivalent to the formulation given by Breslow (1984).

For the case o, = - -+ = «,,, where a@ = («y, ap) T, the first n entries of U,; collapse to the
single term ¥, {(S3/0%) — 1}, while 67 = u; + (a; + ag)u?. Here g = 2,

[ oflog(o )] dflog(o3)}
87711 ’ U aﬂm
= Z;,
Ai Ain
(n — 1)a0< 1 - —)
L Mil Min
(=1 Ot =1 0t
Iy, =
nn—1)

and the remaining submatrices of I and A are obtained essentially as before.
The general expression (4) for V; suggests the alternative ¢ = (n + 1)-parameter model in
which

oh = oy + aopy and o = Ao ik (13)

so that overdispersion is represented both additively and multiplicatively. This form of the
variance is suggested in unpublished work by Nelder for the univariate case (n = 1), where
he notes that it was used by Bartlett as early as 1936 to model insect count data. Here
V;=C; + aou;ul as before, but now C; = diag, {a,u; }. If oy = -+ = «, this reduces to the
g = 2-parameter formulation where a = («;, ap)’, 02 = o,y + aopi, and the matrices
U,;, Ty, and A; are of the same general form as given previously for the corresponding
g = 2-parameter version of (4). The further constraint «; = 1 yields the model suggested
by Nelder (1985) in the context of grouped count data.
The requirement that all ¢;,, > 0 may be relaxed by setting

Titt = P 0itOin

for some suitable form of ¢7 and correlation p,. This is essentially the correlation
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formulation proposed by Liang and Zeger (1986, §3), but with time-varying overdispersion.
Zeger (1988) also presents a regression model for a time series of counts with similar
correlation structure. This formulation may be more desirable in settings where correlations
that vary with (¢, u) are appropriate, since the assumption that the {’s are independent
does not provide such structure. We discuss this point further in Section 6. Although
formally we must constrain ¢ < #n(n + 1)/2, in the present context a more parsimonious
approach, e.g., all p,, = p or pj,—,, is highly desirable. In the former case, U, is as in
expression (7) but with ¢;,0;, in place of w;u,, and oy now the common correlation
parameter. Writing A; = diag, {7}, for these models we have

V,‘ = (l - ao)A,' + aoA}/ZJA}/Z
and

(&%)

1 + ap(n —1) (14)

V,‘_l = (1 — aO)_I{Ai_l — Ai_l/zJAi_l/z}'u
For example, given the additive overdispersion variance o% = u; + o,u%, both U, and
T, are computed using (14). The other submatrices of A are also obtained empirically

as before, Ty, ; is of the form (10) but with the first matrix having (n + 1, ) entry

{(n = Dao/2}[3{log(a7)}/dn ] rather than (n — aoAu/pi (¢ =1, ..., n), and
~ 7 0 -
diag,{“—g}‘ :
Iy = 0
n—1 12 %n
%%% “—2) n(n — 1)/2
il in,

The various forms of 'V described above are presented systematically in Table 1. The first

two entries in column 2 of the table are the most general models (13) and (4), respectively,
with columns 1 and 3 containing their respective independence and correlation versions.
In the latter case, oy denotes the correlation. For convenience we shall refer to each model

by its two-digit row—column location in the table, e.g., model 21 has o7 = u, + a,u? and

o, = 0. The third and fourth rows are obtained by setting «;

Table 1

= ... = @, in each of the first

Formulations for the within-subject covariance matrix V, suppressing the
subject index i for simplicity. Each cell contains the variance o?

and covariance a,, of the model.

1 2 3°
1 9727, o p + 010#;2 9727
O Qo ey Qo0 0y
2 e+ ol e+ (a + ao)u? e+l
0 o iy A0, 0y
3 a ap + aou? o
0 Qo ey o0y
4 te+ oy pl ue+ (ar + ag)u? e+ gl
0 Ry Q0,0
5 Me [T aO,uIZ 3%
0 Qo My My Qo0 0y
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Table 2
Stccessive two-week seizure counts for 59 epileptics. Covariates are adjuvant treatment
(0 = placebo, 1 = progabide), eight-week baseline seizure counts, and age (in years).

ID Y, Y, Ys Y, Trt Base Age
104 5 3 3 3 0 11 31

106 3 5 3 3 0 11 30
107 2 4 0 S 0 6 25
114 4 4 1 4 0 8 36
116 7 18 9 21 0 66 22
118 5 2 8 7 0 27 29
123 6 4 0 2 0 12 31

126 40 20 23 12 0 52 42
130 5 6 6 5 0 23 37
135 14 13 6 0 0 10 28
141 26 12 6 22 0 52 36
145 12 6 8 4 0 33 24
201 4 4 6 2 0 18 23

202 7 9 12 14 0 42 36
205 16 24 10 9 0 87 26
206 11 0 0 5 0 50 26
210 0 0 3 3 0 18 28
213 37 29 28 29 0 111 31

215 3 5 2 5 0 18 32
217 3 0 6 7 0 20 21

219 3 4 3 4 0 12 29
220 3 4 3 4 0 9 21

222 2 3 3 5 0 17 32
226 8 12 2 8 0 28 25
227 18 24 76 25 0 55 30
230 2 1 2 1 0 9 40
234 3 1 4 2 0 10 19
238 13 15 13 12 0 47 22
101 11 14 9 8 1 76 18
102 8 7 9 4 1 38 32
103 0 4 3 0 1 19 20
108 3 6 1 3 1 10 30
110 2 6 7 4 1 19 18
111 4 3 1 3 1 24 24
112 22 17 19 16 1 31 30
113 5 4 7 4 1 14 35
117 2 4 0 4 1 11 27
121 3 7 7 7 1 67 20
122 4 18 2 5 1 41 22
124 2 1 1 0 1 7 28
128 0 2 4 0 1 22 23
129 5 4 0 3 1 13 40
137 11 14 25 15 1 46 33
139 10 5 3 8 1 36 21

143 19 7 6 7 1 38 35
147 1 1 2 3 1 7 25
203 6 10 8 8 1 36 26
204 2 1 0 0 1 11 25
207 102 65 72 63 1 151 22
208 4 3 2 4 1 22 32
209 8 6 S 7 1 41 25
211 1 3 1 5 1 32 35
214 18 11 28 13 1 56 21

218 6 3 4 0 1 24 41

221 3 5 4 3 1 16 32
225 1 23 19 8 1 22 26
228 2 3 0 1 1 25 21

232 0 0 0 0 1 13 36
236 1 4 3 2 1 12 37
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two rows, respectively. In particular, 31 is the usual multiplicative overdispersion model
while 41 is the additive overdispersion model treated by Williams (1982), Breslow (1984),
Moore (1986), and Lawless (1987). The fifth row is obtained from row 1 by setting o, = 1
(1 <t =< n),so that 52 is Nelder’s (1985) proposal, while 51 is the usual generalized linear
model.

In solving the moment equations for the central model 22, we use (M — p)/M in place
of 1 in Uy, (1 <t <n),and [{Mn(n — 1)/2} — pl/{iMn(n — 1)/2} as a multiplier of «g in
U,i,, to correct for estimation of 8, with these modifications also included in A. Similar
modifications apply for the other models. For numerical values of &, that are negative, the
estimator is defined to be either O or | as «, is included additively or multiplicatively
in o2.

5. Example

As an illustration, we present analyses of data arising from a clinical trial of 59 epileptics
carried out by Leppik et al. (1985). The data are given in Table 2.

Patients suffering from simple or complex partial seizures were randomized to receive
either the antiepileptic drug progabide or a placebo, as an adjuvant to standard chemother-
apy. At each of four successive postrandomization clinic visits, the number of seizures
occurring over the previous 2 weeks was reported. Although each patient subsequently was
crossed over to the other treatment, we shall consider only the four precrossover responses.
As shown in Table 3, the seizure counts exhibit a high degree of extra-Poisson variation,
heteroscedasticity, and within-patient dependence.

Each of the first six covariance models given in Table 1 was fit to the data, with the
additive overdispersion model 41 also included for comparison. The covariates appearing
in the fitted models are baseline seizure rate, computed as the logarithm of § the 8-week
prerandomization seizure count, logarithm of age in years, and the binary indicators Trt
for the progabide group and Visit, for the fourth clinic visit. These were obtained from a
larger set of predictors via preliminary stepdown procedures carried out for each model.

Table 4 gives the parameter estimates, their standard errors, and the value of log(H) for
each model. Convergence was obtained in between five and eight iterations of the two-
stage estimation procedure for all models shown. For these data, the original model 22 that
was derived heuristically in Section 2 gives the best fit, although model 12 and the
correlation model 23 fit the data almost as well. The common properties of these three

Table 3
Summary statistics for the two-week seizure counts. Within each group, the first column contains the
mean and variance at each visit, followed by the correlations.

Placebo (M, = 28) Progabide (M, = 31)
Y Y
Visit s? Correlations s? Correlations
1 9.36 8.58
102.76 1.00 332.72 1.00
2 8.29 8.42
66.66 .78 1.00 140.65 91 1.00
3 8.79 8.13
215.29 51 .66 1.00 193.05 91 92 1.00
4 7.96 6.71

58.18 .67 78 .68 1.00 126.88 97 95 95 1.00
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models are that, in addition to their accounting for the rather strong within-subject
covariance, the time-varying overdispersion is parameterized additively in their variances.

The interaction between treatment and baseline seizure rate in these analyses produces
a rather interesting result—namely, the predicted mean seizure rate for the progabide group
is either higher or lower than that for the placebo group, accordingly as the baseline count
does or does not exceed a critical threshold. This threshold varies between 11.2 and 15.2
seizures per 2-week period for the seven models considered, with the highest value
corresponding to model 22. This suggests that progabide may be contraindicated for patients
with high seizure rates. We regard this as a qualitative result, however, since it is based on
a single data set and a particular family of models.

A visual scan of the data suggests that progabide patient #207 is an outlier, since both
the baseline and posttreatment counts are much higher than those of the other patients.
Deletion of this patient produces a marked drop in the means, variances, and correlations
within the progabide group (Table 5), although the extra-Poisson variation and within-
subject dependence are still substantial. While a comparison of these adjusted summary
statistics with those of the placebo group suggests a greater treatment effect, deletion of this
patient from the data has no clinical basis.

Plots of the standardized residuals ¢, = (Y, — )/, for model 22 on the log baseline
counts at each occasion (Figure 1) are perhaps more telling. In addition to the fact that
each of the plots shows a random scatter, none of the residuals e = (e,, e, 3, e3) = (2.06,
.58, .70, 1.32) of patient #207 are extreme. The largest residual at £ = 1 is that of placebo
patient #135, for whom e = (3.84, 2.99, .75, —1.32). This is due in part to the marked
improvement of this patient over the course of the trial, as evidenced by the monotone

Table 4
Covariate and dispersion parameter estimates for each of seven covariance matrix models. Standard
deviations of the estimates are given in parentheses.

Model 11 12 13 21 22 23 41
Int -2.695  —1.456  —2.753  —1.590 —1.350 —1.735 —1.456
(.902) (.933) (.907) (.907) (.904) (915) (.927)
Base 933 870 922 892 877 888 896
(.087) (.105) (.085) (.107) (.103) (.098) (.123)
Trt —1.439 -987  —1.532 -.983 958  —1.063 -.907
(418) (.423) (.419) (412) (.390) (418) (412)
Base.Trt .595 372 629 375 352 401 351
(171 (.209) (172) (.203) (.196) (.206) (.204)
Age 895 567 923 589 531 639 542
(.264) (272) (267) (.264) (.266) (.268) (.266)
Visits —.168 -.170 -.170 —.156 —.159 =155 —.150
(.065) (.070) (.066) (077) (.072) (077) (.080)
& 3.641 1.936 3.575 372 148 364 452
(.924) (.126) (.887) (151) (.138) (.143) (.139)
& 4.768 2.769 4.846 638 383 664
(1.558) (196)  (1.629) (.276) (.249) (.296)
& 8.250 5.749 8.255 777 546 786
(3.656) (423)  (3.682) (.310) (.298) (319)
& 2.456 1.000 2.479 218 .000 224
(.443) (.079) (.447) (.080) (.078) (.081)
éo 225 348 227 334
(.056) (.070) (.055) (.069)

log(H) 26.98 47.55 32.29 41.46 47.96 46.75 29.11
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decline in seizure count. The largest residual of 4.48 at t = 2 is due to progabide patient
#225, while the two extreme residuals at = 3 of 3.20 and 4.17 correspond to patients #112
and #227, respectively. In each instance, a relatively large value of ¢; is due to some
deviation within subject from the predicted pattern over the four occasions. This phenom-
enon will arise almost invariably in any setting where a predictive model is fit to longitudinal
data. The model thus accounts for the high dispersion in these data quite well, since none

Table 5
Summary statistics for the two-week seizure counts of the progabide group,
after deletion of patient #207

Y
Visit 52 Correlations
1 5.47
33.22 1.00
2 6.53
31.43 45 1.00
3 6.00
54.34 .63 .70 1.00
4 4.83
18.35 77 .72 .83 1.00
t=1 t=2
4.0 + 4.0 + '
e e
3.0 + 30 +
2.0 + 2.0 +
1.0 + 1.0 +
0.0 o . 0.0 - M : .'-‘~ o
. -..u.'. o e . . .' :':. [ PR
-1.0 N .. S -1.0 1 e )
0.0 0.8 1.6 2.4 3.2 4.0 0.0 0.8 1.6 2.4 3.2 4.0
Base Base
t=3 t=4
4.0 4.0 +
e e
3.0 | * 3.0 1
2.0 + 20 +
1.0 | v 1.0 + .
0.0 N 0.0 _.. _________
-1.0 ) .'. -1.0 . :
0.0 0.8 1.6 2.4 3.2 4.0 0.0 0.8 1.6 2.4 3.2 4.0
Base Base
Figure 1. Plots of the residuals ¢, = (Y, — i)/, on log-baseline seizure count, by occasion.
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of the extreme residuals was due to a value of the response variable being large relative to
the sample.

6. Discussion

Quasi-likelihood regression models for longitudinal data recently have received considerable
attention in the literature. As an alternative to the generalized quasi-likelihood approach
where V is modelled parametrically, Wei and Stram (1988) propose modelling only the
marginal distributions while estimating the within-subject covariance empirically. Other
treatments are given by McCullagh (1983), Jorgensen (1983, 1987), Green (1984), and
Godambe and Heyde (1987).

In the univariate response setting (n = 1), several approaches that allow modelling of
both E(Y) and var(Y') have been proposed. Nelder and Pregibon (1987) present a generalized
quasi-likelihood that provides a general framework for parametric modelling of the variance.
In addition to the usual link g(u) = Z"8 = 7, their formulation allows var(Y) = ¢V,(u)
with @ linked to ¢ via /i(¢) = X0, and an algorithm for estimating 8 and 6 is de-
scribed. Davidian and Carroll (1987) treat the heterogeneous regression model where
E(Y) = f(Z, B) and var(Y) = o%¢*X, B, a) for given covariates Z, X and unknown
parameters 8, a, and ¢> > 0, but no distributional assumptions beyond the forms of
the first and second moments are made. They also focus attention on the variance func-
tion, proposing that « be estimated by maximizing the so-called “pseudo-likelihood”
obtained by conditioning on # and assuming a Gaussian form.

A referee has suggested estimating « in the present setting by adopting a pseudo-likelihood
approach using the multivariate normal, and also via quasi-likelihood. For the first method,
letting var(Y;) = ¢2V, for some covariance matrix V,, the pseudo-log-likelihood is

M
l(a, 0) = —M log(o) —% ;1 [log{det(V)} + ¢ 2STV;'S]. (15)

Although minimization of (15) is apparently more involved than the naive moment
estimation scheme given in Section 3, pseudo-likelihood may prove especially tractable for
patterned covariance matrices having inverse and determinant that are computable in
closed form. Again suppressing the index / for simplicity, each matrix corresponding to a
cell in Table 1 is of the general form V = C + «aa™ with C = diag{c,}, so that

logi{det(V)} = log(l + « ¥ a?ci') + ¥ log(c)
and
aSTC'aa’C™'S
1 +aa™C'a

STV7'S =STC'S -

— E(SIQCI—I —_ M;IL_ZI .

1+ a a;c;

Thus, differentiation of (15) is straightforward. For application of this approach to estima-
tion of « in the generalized estimating equation regime of Liang and Zeger (1986), where
V = A"’R(a)A '/* with A the diagonal matrix of usual generalized linear model variances,
the same sort of consideration would apply—namely, the determinant and inverse of the
“working correlation matrix” R(a) should be computable in closed form.

Prentice (1988) estimates covariance matrix parameters in the case of correlated binary
responses via a second set of generalized estimating equations, solved along with those
for 8. This suggests yet a third approach for estimation of « in the present setting. To
apply Prentice’s method here, let S¥ denote the vector of dimension #n(n + 1)/2 composed
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of the entries
Sil Siu

(,uill'Liu) Z i

1 <t < u<n, where 8, = oi/(pipi)’?. For E; = db;/da and W, the identity or a suitable
working correlation matrix, the generalized estimating equations for a are
M

> EfTW;!ISk =0.
i=1

These alternative methods for estimation of a raise a number of important issues,
including those pertaining to comparisons of the statistical properties of the estimators
under various formulations of V. Although such general questions of how second-order
parameters are to be estimated are quite important, we do not pursue this issue further
here.

As noted earlier, the correlation version of each model in column 2 of Table 1 allows
one to account for the times (¢, /) in modelling cov(Y,, Y,), in addition to allowing these
terms to be negative. This also may be accomplished by specifying a nondiagonal parametric
form for cov({) in the original formulation given in Section 2, rather than assuming that
{1, ..., ¢ are independent. If we denote V, = diag,(x,), o = var(y,), and assume for
simplicity that all the random effects have mean 1, then reasoning as before, we obtain the
generalization of (4) given by

V = V() + V()[(O(() + 1)COV(§') + Ol()J]V().

This provides a broader framework for modelling V, although we advocate as parsimonious
a parameterization of cov(¢{) as is reasonable in a given setting.

The primary aim of the present article has been to propose a family of parametric models
for the covariance matrix in the quasi-likelihood regression framework for longitudinal
count data. As the above generalization shows, more complex versions of the models used
here to fit the epilepsy data certainly are available, and quite possibly may give better fits.
The data analyses presented in Section 5 are intended to provide a reasonably simple
illustration of the general methodology, however, so that we have intentionally avoided
using more elaborate versions of V. Still, the models presented in Table 1 comprise a broad
collection of within-subject covariance structures, while each parameterization of V is rather
parsimonious. Given the distributional results for both a and 8, this provides a practical
means for modelling both u and V in the generalized estimating equation setting.
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REsuME

On présente une famille de modéles de covariance pour des comptages répétés, avec des covariables
prédictives. Ces modeéles analysent la dispersion totale, I’hétéroscédasticité, et la dépendance entre
mesures répétées. L’approche est semblable a la régression par quasi-vraisemblance formulée par
Liang et Zeger (1986, Biometrika 73, 13-22). Une généralisation des équations est faite pour
I’estimation des coefficients des covariables et des variances—covariances. On en déduit un grand
nombre de propriétés des estimateurs. Les méthodes proposées sont appliquées a des données de
comptages de crises d’épilepsie survenues pendant des essais de régulateurs utilisés au cours d’une
thérapie de complément dans des crises légéres.
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APPENDIX

Our strategy for deriving the distribution of § follows Moore (1986), who treats the case of univariate
counts and proportions with additive overdispersion, where var(Y;) = v,(u;) + av.(u;). His approach
is suitably modified here to accommodate the multivariate quasi-likelihood framework and multidi-
mensional a. First, uniform consistency of G(6) for I'(§) in a neighborhood of the true value 8, is
established, and this is applied together with the inverse function theorem to obtain consistency of 6
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for 6, as in Foutz (1977). These results are then used in conjunction with the asymptotic normality
of M~'2U(8,) to establish asymptotic normality for M /%8 — 6,). We assume that

(i) M~ g A — A°,
(11) Supi‘l«rl Zilrl < o,
(iii) B lies in a compact subset of &7,
(iv) supE|S;, + <+ - S, | <o, ie., all sixth-order moments are finite, and
(v) T(8y) is positive-definite,

where the supremum in (iv) is over all i and 1 < ¢,, ..., ts < n, allowing repetition. All limits are
taken as M — .

Lemma 1 Under conditions (i)-(iv), M ~'/?U(6, ) is asymptotically normal with mean 0 and covari-
ance matrix A°.

Lemma 2 Under condition (ii), for any suitably small open neighborhood .#; of 6o,
sup | G(6) — T(®) | — 0
6. 1;
in probability, where || - || denotes the spectral norm.
Proof of Lemma 1 Under condition (i), by Theorem B of Serfling (1980, p. 30), it suffices to

show that

M

M 3 E{UPI(| U | > eM ')} — 0, (A.1)
i=1
where |- | denotes Euclidean norm and 7(-) is the indicator function. Applying Minkowski’s
inequality, condition (A.1) is implied by
sup E | Upir|? < o, sup E| Uy |? < oo, (A.2)
Write
: Qo t Zim'Am/-Liu SII
U ir = >, Zi//-Ai/ = Mi - A3
! ,%1 [ Hep s oy, <11§I Ciu )] Cir (A

(1 < r < p), and recall the specific form of U,,. Since (ii) and (iii) imply {»;} is uniformly bounded,
these conditions together with (iv) imply (A.2).

Proof of Lemima 2 1t suffices to show componentwise convergence. Denoting the coefficient of
S in (A.3) by w;,, we may write

n aw[ .

(G=Thiign=—2 <——L>Si/~ (1 =rs<p)
/=1 \ 9B,

Since 6 lies in a compact set, under condition (ii) direct evaluation shows {dw,,/d8,} is bounded

uniformly in 7, 1, r, and 5. The same assumptions imply {7, } and hence {¢7} are uniformly bounded,

so it follows by the strong law that

M awA )
—1 OWirr
e § (Gl o

with probability 1 for each ¢, r, and s. Similar reasoning may be applied to the entries of the other
three submatrices of G — T,

Theorem 1 is proved in a manner similar to the proof given by Foutz (1977, Theorem 2). The key
requirements are the positive-definiteness of I'(6,) in the limit and the uniform convergence of G to
T on ;. R

Theorem 2 is obtained via a straightforward Taylor expansion of U(#) around 6,. Utilizing
the uniform boundedness of {6*Uy,/36,36,}, the consistency of 8 and of G, and the positive-definiteness
of I'(8,), the asymptotic distribution of M '/3(§ — 6,) is obtained from that of M ~'/2U(6,).



