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SUMMARY. In many phase I1 clinical trials, it is essential to assess both efficacy and safety. Although several 
phase I1 designs that accommodate multiple outcomes have been proposed recently, none are derived using 
decision theory. This paper describes a Bayesian decision theoretic strategy for constructing phase I1 designs 
based on both efficacy and adverse events. The gain function includes utilities assigned to patient outcomes, 
a reward for declaring the new treatment promising, and costs associated with the conduct of the phase I1 
trial and future phase I11 testing. A method for eliciting gain function parameters from medical collaborators 
and for evaluating the design’s frequentist operating characteristics is described. The strategy is illustrated 
by application to a clinical trial of peripheral blood stem cell transplantation for multiple myeloma. 
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1. Introduction 
Phase I1 clinical trials are usually small studies conducted to 
evaluate the antidisease effect of an experimental therapy and 
to obtain safety information. If the new therapy is determined 
to be both efficacious and safe compared to  existing standard 
treatments, then it may be studied further in a randomized 
phase I11 trial. 

Ethical concerns that a trial must be stopped early if the 
experimental treatment appears to be unsafe or ineffective 
have led to the development of sequential designs for phase 
I1 trials. Most of the development of phase I1 designs has 
been in the area of oncology, where the severity of the disease 
and possible side effects make early stopping particularly de- 
sirable. Designs have been proposed by numerous authors, 
including Fleming (1982), Simon (1989), Bellisant, Benichou, 
and Chastang (1990), Ensign et al. (1994), Thall and Simon 
(1994a,b), Heitjan (1997), and Stallard (1998). All of these 
designs are based on a single binary indicator of treatment 
efficacy with safety considerations ignored. More recently, de- 
signs that monitor safety explicitly, with rules to stop the trial 
if the treatment is either inefficacious or too toxic, have been 
proposed by Bryant and Day (1995), Conaway and Petroni 
(1995, 1996), Thall, Simon, and Estey (1995, 1996), and Thall 
and Sung (1998). 

In this paper, we propose a method for constructing sequen- 
tial designs based on both efficacy and safety using Bayesian 
decision theory. This approach, in which the design optimizes 
some gain function, has been described in general settings 

by Raiffa and Schlaifer (1961), DeGroot (1970), and Berger 
(1985), among others, and more specifically in the setting of a 
phase I1 trial by Berry and Stangl (1996). The decision theo- 
retic approach is briefly described at the beginning of Section 
2. A “pure Bayesian” could use the approach described to 
obtain designs optimal for their choice of a prior and a gain 
function. In many cases, however, it is difficult to elicit both 
the prior information and the gain function from the clinical 
physicians who are planning the trial. As an alternative, we 
propose that a particular form be chosen for the gain func- 
tion and that prior information, trial goals, and certain gain 
function parameters be elicited from the clinician, with other 
design parameters chosen in view of the frequentist properties 
of the design. As the application in Section 3 will illustrate, 
the ability to select numerical values for the gain function pa- 
rameters in this way provides a method by which the clinician 
may obtain a design that will be acceptable in practice. Thall 
and Simon (1994a,b), Rosner and Berry (1995), Thall et al. 
(1995,1996), and Thall and Sung (1998) have also constructed 
stopping rules from a Bayesian viewpoint and have evaluated 
their frequentist properties. Fisher (1996) has referred to this 
a s  a stylized Bayesian approach. 

2. A Bayesian Decision Theoretic Approach 
Although most phase I1 studies in oncology require that all 
patients receive the experimental treatment, E ,  the trial is in- 
herently comparative because decisions involving E must be 
made relative to some standard, S .  We consider the patient 
outcome to be characterized by a multinomial random vari- 
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able with k possible values comprising a partition of all rele- 
vant combinations of efficacy and adverse events. For t = E ,  S 
and i = 1,. . , , k ,  we denote the probability of outcome i for 
patients receiving treatment t by Otz  so that Otl+. . .+Otk  = 1. 
Following the Bayesian approach, the probability vectors BE 
= (OEl,. . . , O E ~ ) ’  and 8s = (Osl,. . . , o ~ k ) ’  corresponding to 
E and S are treated as random. Prior distributions for OE 
and @s will be assumed to take the Dirichlet form. The priors 
reflect expert opinion concerning standard and experimental 
therapies. Typically, the prior for 8s reflects historical data 
or clinical experience of S ,  whereas the prior of OE reflects lit- 
tle or no clinical experience. In a single-arm trial, no patients 
receive S ,  so the prior for 8s is never updated. 

At any stage during the trial, three possible actions are 
envisaged: 

Action P: Stop the study and declare E promising. 
Action N :  Stop the study and declare E not promising. 
Action C: Continue the study. 

A maximum sample size, M ,  is chosen so that after obser- 
vation of M patients, only actions P and N are available. We 
also limit the availability of action P to avoid the possibility 
of declaring E promising on the basis of little or no data from 
the trial. Two cases will be considered. In the first, action P 
may be taken only after the maximum of M patients have 
been observed. The second case generalizes the first by allow- 
ing P after at least M i  patients for some M i  5 M .  Taking 
MI = 0 allows early stopping as a result of superiority of E 
over S at any stage in the trial. This is equivalent to using the 
upper boundary in the Thall et al. (1995) design. In practice, 
a larger value of M1 seems to be more appropriate to avoid 
declaring E promising on the basis of data from very few pa- 
tients. Reasonable values of M I  might be similar to the stage 
1 sample size of a two-stage design, such as that of Simon 
(1989). In practice, both M i  and M will be specified during 
consultation with the clinician. Action N will be allowed at 
any stage during the trial, so no minimum sample size needs 
be specified in advance. 

To decide between P, N ,  and C, these possible actions must 
be assigned gains indicative of their desirability. The gains for 
the actions P and N depend on OE, 8s, and n and will be 
denoted by Gp(@E, 8s, n) and GN(@E, Bs, n), respectively. 
The expected gain from continuing beyond the nth patient to 
the (n+ 1)st depends on the action that would be taken after 
observing the response from that patient and can be obtained 
by backward induction (DeGroot, 1970). 

Because it may be difficult for a clinician to specify G p  
and G N ,  we now suggest a form for the gain functions that 
summarizes the concerns of those with an interest in the trial. 
Suppose that some function g ( 8 E , @ S )  gives the gain for a 
patient being treated with E under the pair ( O E ,  Os), where 
g(@E,8S) = 0 if E and s are equally desirable treatments. We 
will call this the patient gain. A possible form for g is given. 
The total gain to the n patients in a trial is ng(OE,Os). 

Everything else being equal, it  seems sensible to  stop the 
study earlier rather than later. This reflects a cost per patient 
for conducting the trial, besides the possible loss arising from 
negative values of g(8E, Qs) .  Although it is difficult to quan- 
tify this cost, which could be either financial or a consequence 
of a delay in development of E or of alternative therapies, on 

the same scale as the patient gain, it cannot be ignored. De- 
noting the cost per patient by c, we define the trial gazn to 
be ng(OE, 0s)  - nc. The declaration of E as promising or not 
does not affect the trial gain, which depends on the conduct 
of the trial itself. 

If E is declared promising, then there will be a cost, de- 
noted by K ,  associated with further development and testing 
of E in phase 111. There will also be a benefit to future pa- 
tients depending on the true value of @E, which we take to 
be I I g ( 8 ~ , 8 s )  for some II > 0. Note that if g(f3E, 0s)  is neg- 
ative, then I I g ( 8 ~ , @ s )  is the loss arising from erroneously 
declaring E promising. Because this gain is on the same scale 
as the patient gain, II may be interpreted as the number of fu- 
ture patients to benefit from treatment with E ,  the so-called 
patient horizon. However, the values of II might also reflect 
the gains to clinicians or pharmaceutical companies and thus 
need not be equated to a number of potential patients. The 
gain functions for the actions P and N are thus given by 

To specify a form for the patient gain function g(eE, @s), 
we assign utilities ul ,  . . . , U k  to the k possible outcomes. As 
the expected utility under E would be u’8E = 2 ~ 1 0 ~ 1  + . . . + 
u ~ Q E ~ ,  the patient gain could thus be defined as 

In practice, ~ 1 , .  . . , UI, may be elicited from the clinician. Be- 
cause it is generally straightforward to identify the best and 
worst outcomes and because the problem is invariant to scal- 
ing and shifting the vector u, for convenience, we assign utili- 
ties +1 and -1 to the best and worst outcomes, respectively, 
with the others taking on values in the interval [-1, +1]. The 
form of g(OE,OS) given by (3) provides an explicit trade- 
off between desirable and undesirable outcomes, where an in- 
crease in the probability of the latter is tolerated if accompa- 
nied by an increase in that of the former, the relative size of 
which is determined by the choice of u. 

The patient gain given by ( 3 )  is equal to zero when f3E = 
8s, indicating that E and S are equally attractive. Many clin- 
icians, however, are accustomed to thinking that E should be 
considered promising compared with S only if @E = 6s + 6, 
for some targeted improvement, 6 = (61,. . . , Sk)’.  An alter- 
native definition of g(OE, 0s)  accommodating this is 

Substituting this form for g(8E,8s) into (1) and (2) gives 

Because backward induction requires comparing E(Gp)  
with E ( G N ) ,  including 6 in (4) is equivalent to adding IIu’6 
to the cost K .  That is, the requirement that E must show 
some improvement over S contributes to the future develop- 
ment cost of E ,  and formulation (4) provides no generalization 
over ( 3 ) .  As clinicians may find it easier to express a required 
improvement directly rather than in terms of cost, we will use 
forms (5) and (6) with K = 0. 
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As an alternative to direct specification of the parameters in 
the gain functions (5) and (6), we propose a stylized Bayesian 
approach in which u is elicited from the clinician along with 
the priors, M and M I  , whereas 6, c, and IT are chosen by con- 
sideration of the frequentist properties of designs obtained, 
This approach is illustrated by the example given in Sec- 
tion 3. 

3. Application 
Although the approach described previously is applicable for 
any k ,  two cases are of particular interest. The first case has 
k = 3 with the possible outcomes toxicity, eficacy without 
toxicity, and neither eficacy nor toxicity. The second case 
has binary responses for both efficacy and toxicity so that 
k = 4. Although these two cases are not comprehensive, they 
encompass a very large proportion of phase I1 trials. The case 
k = 4 also reduces to the case k = 3 in settings where the oc- 
currence of the adverse event renders efficacy either irrelevant 
or impossible. We will illustrate the method described in the 
case k = 3 with reference to a trial in peripheral blood stem 
cell transplantation in multiple myeloma patients. 

The trial discussed in this section was originally designed 
for use at the M. D. Anderson Cancer Center using the method 
of Thall et al. (1995), although for administrative reasons, the 
trial was never actually conducted. The decision theoretic de- 
signs described next are based on the outcomes, priors, max- 
imum sample sizes, and trial goals originally specified by the 
clinician. 

The phase I1 trial was designed to assess autologous CD 34- 
selected peripheral blood stem cell transplantation, El in pa- 
tients with poor prognosis multiple myeloma. The three clin- 
ically relevant outcomes, scored at 4 weeks post-transplant, 
were complete remission (CR), transplant-related mortality 
(TRM), or neither of these (NCT). Historical data were avail- 
able for 43 patients given the standard, s, of conventional 
bone marrow transplantation. Of these, 33 had outcome NCT, 
2 achieved CR, and 8 experienced TRM. For t = E ,  S ,  we de- 
note the components of the probability vector Ot by ( Q ~ , N c T ,  
O t . c ~ ,  Q t , r r ~ ~ ) .  A Dirichlet prior with parameters 33, 2, and 
8 was thus assumed for 8s. A Dirichlet prior with parameters 
2.302, 0.140, and 0.558 was assumed for 8E because this prior 
has the same mean as that for 8s but a weight equivalent to 
only three observations, reflecting the relative lack of prior 
knowledge of E. The clinician indicated that E would be con- 
sidered promising compared with S if an improvement of 0.15 
in QCR could be achieved, from a mean of 0.047 with S, but 
that no increase in QTRM would be acceptable. A design was 
obtained using the method of Thall et al. (1995), based on 
the stopping criteria P r ( Q s . c ~  + .15 < QE,CR 1 data) < ,025 
and PT(QS.TRM < BE.TRM 1 data) > ,975, with a maximum 
sample size of M = 40. 

The decision theoretic designs obtained next will be eval- 
uated by consideration of their frequentist properties. These 
will be computed under five scenarios, each characterized by 
fixed values of the vectors 8~ and 8s and representative of 
a clinical circumstance of interest to the clinician. Abusing 
notation, for the remainder of this section 8E and 8s will 
be used to denote these fixed values, which should not be 
confused with the random parameters considered under the 
Bayesian model during the conduct of the trial. The scenar- 

Table 1 
Scenarzos consadered zn the frequentast 

evaluatzon of deszgns an Sectaon 4 

Scenario Description ~ E , N C T  @E,CR QE' I rczi 
~ 

1 E(&)  0.767 0.047 0.186 
2 QCR t .15, QTRM 1.075 0.692 0.197 0.111 
3 @CR .15, ~ N C T  1 .15 0.617 0.197 0.186 
4 OCR t .15, OTRL? 1 .15 0.767 0.197 0.036 
5 QTRM t .I0 0.667 0.047 0.286 

ios are given in Table 1, where in each case, 8s is equal to 
(0.767,0.047,0.186)', the mean value of the prior distribution 
described earlier. In scenario 1, OE equals 8s. In scenarios 
2, 3, and 4, OE achieves the required increase of 0.15 in QC:R, 
with the gain coming equally from ~ N C T  and QTRM in scenario 
2, solely from ONCT in scenario 3, and solely from Q 7 . n ~  in 
scenario 4. In scenario 5 there is no improvement in Q ~ R ,  but 
QTRM rises by 0.10. 

Given a stopping rule, such as that obtained using the back- 
ward induction described, in which the number of patients is 
limited, it is possible to conduct an exhaustive enumeration of 
all possible outcomes from the patients in the study, together 
with the calculation of the probability of each outcome for 
fixed values of OE and 8 s .  This provides a complete calcu- 
lation of the discrete probability distribution of the vector of 
responses, which in turn allows the derivation of the frequen- 
tist operating characteristics of the design. These exact cal- 
culations serve the purpose of simulations performed by other 
authors. The frequentist properties, consisting of pr(P)  and 
E(n)  under the five scenarios, are computed in this way for 
each design obtained. To develop a decision theoretic design 
for this trial, we first note that any acceptable design must 
have a large probability of declaring E promising, pr(P) ,  un- 
der scenarios 2 ,  3, and 4 and a small p r (P)  under scenarios 
1 and 5; furthermore ethical considerations dictate that ex- 
pected sample size, E(n) ,  must be small under scenario 1 and 
very small under scenario 5. To achieve this using the deci- 
sion theoretic structure, we first specify u and choose 6 so 
as to make pr(P I scenario I) small and pr(P I scenario 2) 
large for a wide range of II and c values. We then choose II 
and c to minimize E(n  I scenario 1) subject to the constraint 
that pr(P I scenario 2) must be bounded below by some large 
probability. The values of UNCT, the lower bound on p r ( P  I 
scenario 2),  and possibly 6 are then calibrated to obtain an 
acceptable design. The following account is intended to serve 
as a guide for others using this methodology. 

As CR and TRM are the best and worst outcomes, we as- 
sign them utilities fl and -1, respectively. Because specifying 
UNCT may not be straightforward, the meaning of a particular 
numerical value might, in practice, be assessed by evaluating 
the operating characteristics of the resulting design and cal- 
ibrating UNCT on that basis. w e  initially set UNC'r  = 0 and 
studied the design using three different values for the required 
improvement, 6, specifically, (0, 0, O)', (-0.075,0.15, -0.075)', 
denoted by A and equal to the difference between OE and 8s 
under scenario 2, and A/2. For each 6, we obtained designs 
over a range of c and III, using the priors given before with M 
= 40 and action P allowed only after observation of exactly 
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Figure 2. 
of values of IT and c for 6 = A/2. 

Expected sample size under scenario 1 for a range 

Figure 1. pr(P)  under scenarios 1 and 2 for a range of 
values of II and c for (a) 6 = 0 ,  (b) 6 = A, and (c) 6 = A/2. 

40 patients ( M I  = M ) .  Figure 1 shows pr (P) ,  under scenarios 
1 and 2 over the (c ,  II) study domain for the three choices of 
6. Setting 6 = 0 leads to a relatively high pr (P  I scenario 
l), whereas setting 6 = A leads to a relatively low pr(P 1 
scenario 2). Thus, A /2  appears to be the most appropriate 
choice for 6. Values of E(n)  under scenarios 1 and 2 over the 
same ( c ,  II) domain with 6 = A / 2  are given in Figure 2. 

Larger values of ll increase the likelihood that E will be 
declared promising, as the reward for doing so is greater. 
However, values of E(n)  produced are also larger. Increas- 
ing c has a lesser effect; because observations are more ex- 
pensive, it leads to a smaller trial and hence to a slightly 
smaller pr(P) .  Taken together, these results suggest that c 
and ll may be chosen to achieve a compromise between a 
large p r ( P )  under scenario 2 and a small E(n)  under scenario 
1. A simple search can be used to find, e.g., the (.,IT) pair 
that minimizes E ( n  I scenario 1) subject to pr(P I scenario 
2) being bounded below by 0.85. This design is achieved by 
(c , I I )  = (1.15, 20,000). The properties of the design under 
the five scenarios are given in the columns labeled “Decision 
Theoretic, M I  = 40” in Table 2, with the corresponding prop- 
erties for the Thall et al. (1995) design, described earlier, given 
in the columns labeled “Thall et al. (1995)” for comparison. 
It can be seen that the decision theoretic approach yields a 
design with p r ( P )  being smaller under scenario 1 and larger 
under scenario 2 than that of the Thall et al. (1995) design. 
However, in this case, the cost is an increased expected sample 
size under scenario 1. The decision theoretic design also has 
p ( P )  being much larger under scenario 4 and smaller under 

scenario 3. As discussed in more detail later, this follows from 
comparison of the scenarios when considering the vector of 
utilities, u. 

In designing the trial using the method of Thall et al. 
(1995), the clinician initially planned a maximum sample size 
of 20, but consideration of the operating characteristics of the 
design led to the use of M = 40. With this in mind, we next 
obtain a design as that shown above but with M i  = 20, i.e., 
a design in which the treatment can be declared promising, 
provided that at least 20 patients have been included in the 
trial. For this extended class of designs, the effect of c is more 
marked because the decision to stop early no longer amounts 
to a decision that E is not promising. Frequentist properties 
are given in the last two columns of Table 2, in this case for the 
design with c = 1.5 and II = 22,000. Comparing the proper- 
ties of this design with those of the design with M1 = M = 40 
shows an unsurprising drop in the expected sample size, par- 
ticularly under scenarios 2, 3, and 4, together with slightly 
lower values of pr(P)  under the “good” scenarios and slightly 
higher values under the “bad” ones. This may be interpreted 
as a penalty for the smaller sample sizes. 

The probabilities in Table 2 show that, although the pr(P)  
for the Thall et al. (1995) design is similar for scenarios 2, 3, 
and 4, these probabilities differ markedly for the decision the- 
oretic designs. A contour plot of p r ( P )  for values of OE,TR.R/I 
and e,,,,, with 0s fixed at (0.767,0.047,0.186)’ for the de- 
sign with M1 = 20, is given in Figure 3 and illustrates this 
difference. The probability contours in Figure 3 follow the 
direction of contours of the patient utility when UNC‘I’ = 0. 
The decision theoretic designs thus discriminate to the great- 
est extent between scenarios farthest apart in terms of their 
patient gain. The direction of the contours of the patient util- 
ity is determined by the value chosen for UNCT; decreasing 

Table 2 
Properties of the designs obtained in Section 3 UNCT = 0 

Decision theoretic 

Thall et al. (1995) M I  = 40 M I =  20 

Scenario pr(P)  E (n )  p r ( P )  E (n )  pr (P)  E ( n )  

1 0.051 15.6 0.035 21.7 0.039 21.1 
2 0.810 35.3 0.850 38.5 0.850 28.6 
3 0.799 35.0 0.571 35.5 0.574 30.6 
4 0.811 35.3 0.988 39.8 0.987 23.4 
5 0.046 15.2 0.003 15.9 0.003 15.5 
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Figure 3. 
A41 = 20. 

Contours of pr(P)  for the design in Table 2, with 

U N C T  from 0 increases the slope of the contour lines. This 
acts to make scenarios 2, 3, and 4 more similar and scenar- 
ios 1 and 2 more different, with this difference greatest when 
U N C ~ ~  = -1/3. Columns 2 and 3 of Table 3 give properties for 
the design with U N C , ~  = -113, 6 = A/2, and IM1 = 20, with 
c and II chosen so as to minimize E(n  I scenario 1) subject 
t o  pr(P 1 scenario 2 )  2 0.85. The values of c and II for this 
design are 2.6 and 26,000, respectively. The effect of chang- 
ing UNCT is as anticipated; namely, it increases the difference 
between p r ( P )  under scenarios 1 and 2 and decreases the dif- 
ferences between scenarios 2, 3, and 4. The choice of u is thus 
important and is related to the selection of the scenarios at 
which the design is to be evaluated, thereby illustrating that 
the goal of a trial cannot be considered separately from the 
desirability of possible outcomes. A discussion of this point 
with clinical collaborators could be instructive. 

Depending on the views of the clinician, a more or less 
exhaustive search for appropriate 6 could be performed in 
practice. Figure 2 shows that, when pr(P I scenario 1) is small, 
it is relat,ively unaffected by the choice of c and II. Thus, 6 is 
important in determining this probability. Table 2 shows that 
p r ( P  I scenario 1) is smaller for the decision theoretic designs 
than for the Thall et al. (1995) design. By a careful selection 
of 6, under both scenarios 1 and 2 p r ( P )  can be increased 
slightly so that pr(P 1 scenario 1) remains small, but p r ( P  1 
scenario 2) attains larger values for smaller expected sample 
sizes than in the designs given in Table 2. The fourth and 
fifth columns of Table 3 give such a design, with 6 = 0.38A1 
U N C T  = -113, c = 1.7, and n = 4000. It  can be seen that 

Table 3 
Properties of the designs obtained in Section 

3 withUNCT = -113 and M I  = 20 

6 = A12 6 = 0.38A 

Scenario Pr(p)  E (n )  P T ( P )  E (n )  
1 0.021 19.9 0.051 14.0 
2 0.852 26.6 0.812 20.5 
3 0.695 28.8 0.695 21.4 
4 0.951 23.1 0.896 19.7 
5 0.004 16.4 0.012 11.6 

this design has properties under both scenarios 1 and 2 that 
are preferable to those of the Thall et al. (1995) design. 

Application of the method to the k = 4 case is conceptu- 
ally straightforward. In this case, however, the fact that both 
u2 and u g  must be specified and that the effect of choices 
of u 2  and u3 is harder to visualize in the four-outcome case 
leads to additional practical difficulties in eliciting parame- 
ters and calibrating the resulting designs. These difficulties 
would naturally increase for k > 4 with the specification of 
patients’ utilities for so many outcomes. A computer program 
written in C to calculate designs in the cases k = 3 and k = 4 
is available via anonymous ftp from odin.mdacc.tmc.edu as 
decBayes97. targz in the subdirectory/pub/source. 

4. Discussion 
Although the decision theoretic approach has been available 
for many years, there have been relatively few attempts to ap- 
ply it to clinical trials. The reluctance to use decision theory 
may be due to the difficulty of specifying a suitable gain func- 
tion (Efron, 1986). Indeed, Spiegelhalter and Freedman (1988) 
specifically rejected such an approach in the Bayesian anal- 
ysis of phase I11 trials for this reason. Staquet and Sylvester 
(1977), Sylvester (1988) (see also Hilden, 1990), and Brunier 
and Whitehead (1994) have used the Bayesian decision the- 
ory to design phase I1 studies with a fixed sample size. Berry 
and Ho (1988), Berry, Wolff, and Sack (1994), Cressie and 
Biele (1994), Lewis and Berry (1994), and Stallard (1998) 
have applied decision theory to  construct optimal sequential 
designs for a variety of clinical trials. However, their designs 
consider only univariate outcomes. We have proposed a gen- 
eral form for the gain function that explicitly quantifies a 
trade-off between efficacy and toxicity for the patients in the 
trial and that includes the costs and benefits associated with 
conducting the phase I1 trial itself and with continuing the 
development process in the future. Aside from the decision 
theoretic structure, the substantive practical advances over 
the approach of Thall et al. (1995) are that the assignment 
of utilities to patient outcomes and the calibration of design 
parameters together may produce a more attractive design. 

Because the actual values used for the gain function pa- 
rameters determine the design obtained, they must be chosen 
with care. The values used ideally reflect the collective views 
of those involved in the trial. Because a single design must be 
obtained, and hence a single gain function used, it is envisaged 
that the gain be specified by the clinician overseeing the study 
with the interests of the patients in mind. A pure Bayesian 
approach, in which the clinician specifies prior distributions 
and the gain function, could be based on the gain functions 
described. We propose, however, a stylized Bayesian method 
in which the form of the gain function is chosen in advance 
and some parameters are specified by the clinician, whereas 
the others are chosen in light of the frequentist properties of 
the designs obtained. 

The choice of the extent to which a pure Bayesian or a styl- 
ized Bayesian approach is adopted must depend on the clin- 
icians’ confidence in their ability to choose attractive designs 
on the basis of either gain functions or frequentist properties 
evaluated under a small number of scenarios. Consideration 
of the latter alone might suggest that one should obtain a de- 
sign that minimizes the expected sample size under a “null” 
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scenario similar to scenario 1 in the application given ear- 
lier, subject to constraints on p r ( P )  under scenarios l and 2. 
The sequential probability ratio test (SPRT) of Wald (1947) 
has such properties, but it does not arise from the methodol- 
ogy described here, thereby showing that the designs obtained 
here are not optimal in this sense. The fact that the SPRT is 
not generally used in phase I1 studies shows that frequentist 
properties evaluated under only two scenarios are not suffi- 
cient to judge a design. 

Although suitable for any k ,  the approach described here is 
likely to be most commonly used with either k = 3 or k = 4. 
The latter case has been discussed extensively by Bryant and 
Day (1995), Conaway and Petroni (1995, 1996), and Thall et 
al. (1996). In contrast to the approach adopted here, how- 
ever, all these authors focus on the marginal probabilities of 
toxicity and efficacy, thereby effectively reducing the dimen- 
sionality of the problem. This maneuver can be misleading, as 
given marginals may correspond to very different joint prob- 
abilities and hence very different clinical scenarios. These dif- 
ferences are reflected by the values of the gain function we 
have proposed. 

An obvious extension could be to the design of randomized 
phase I1 trials in which the approach described here could be 
used with the prior for 0s that is updated after each obser- 
vation in a way similar to that for OE. 
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RBSUME 
Dans beaucoup d’essais thkrapeutiques de phase 11, il est es- 
sentiel d’kvaluer 2L la fois l’efficacitk et la skcuritk. Bien que 
plusieurs schkmas de phase I1 assumant des rksultats mul- 
tiples aient k tk  rkcemment proposks, aucun n’a kt6 obtenu 
a partir de la thdorie de la dkcision. Ce papier dkcrit une 
approche thkorique de dkcision bayesienne pour construire 
des schkmas de phase I1 basks 2L la fois sur l’efficacitk et les 
rkactions indksirables. La fonction de gain inclut les utilitks 
associkes au rksultat du patient, une prime pour l’intkrgt du 
nouveau traitement, et les codts associks a l’essai de phase I1 
et B. la future ktude de phase 111. Une mdthode pour obtenir les 
paramktres de la fonction de gain des collaborateurs mkdicaux, 
et Cvaluer les caractkristiques opkratoires du schema frkquen- 
tie1 est dkcrite. La stratkgie est illustrke par une application 
2L un essai clinique de transplantation de cellules souches san- 
guines dans le myklome multiple. 
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