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SUMMARY. We propose an approximate Bayesian method for comparing an experimental treatment to a 
control based on a randomized clinical trial with multivariate patient outcomes. Overall treatment effect 
is characterized by a vector of parameters corresponding to effects on the individual patient outcomes. We 
partition the parameter space into four sets where, respectively, the experimental treatment is superior to 
the control, the control is superior to  the experimental, the two treatments are equivalent, and the treatment 
effects are discordant. We compute posterior probabilities of the parameter sets by treating an estimator 
of the parameter vector like a random variable in the Bayesian paradigm. The approximation may be used 
in any setting where a consistent, asymptotically normal estimator of the parameter vector is available. 
The method is illustrated by application to a breast cancer data set consisting of multiple time-to-event 
outcomes with covariates and to count data arising from a cross-classification of response, infection, and 
treatment in an acute leukemia trial. 
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ysis. 

1. Introduction 
Patient response to treatment in a clinical trial is often a com- 
plex, multivariate phenomenon with components that may 
differ qualitatively. In cancer trials, where the primary goal 
is to achieve disease remission and thus extend survival, pa- 
tients may also experience various adverse events, including 
transient toxicity or permanent organ damage. When the pri- 
mary outcome is survival time, treatment effects on disease 
recurrence time or events characterizing morbidity may be 
highly relevant in assessing overall treatment effect. In breast 
cancer trials, a patient may experience some combination of 
local, regional, distant, or opposite breast recurrence. A treat- 
ment may have a different effect on each type of recurrence, 
possibly including positive effects on some outcomes and neg- 
ative effects on others. A common method for dealing with 
multiple event times is to define disease-free-survival (DFS) 
time as the single outcome for treatment evaluation. 

In such settings, summarizing patient outcome by a sin- 
gle variable and characterizing overall treatment effect with a 
single parameter is a substantive oversimplification that may 
obfuscate actual effects on specific components of the mul- 
tivariate patient outcome and thus misrepresent the medical 
phenomena. We consider it more useful, both scientifically 
and ethically, to characterize patient outcome and treatment 
effect as multidimensional objects. This provides a basis for 
jointly evaluating the risks of specific adverse events and the 

rates of desired efficacy outcomes. In the case of multiple time- 
to-event outcomes, evaluating treatment effects on nonfatal 
events may help to  explain the mechanism whereby a given 
treatment affects overall survival, which may in turn aid in 
development of new therapies. 

In this paper, we propose an approximate Bayesian method 
for comparative evaluation of two treatments, which we refer 
to as the experimental (E) and standard (S), based on the re- 
sults of a randomized clinical trial with multivariate patient 
outcome. The only requirements to apply the method are that 
treatment effect can be characterized by a parameter vector 
8 having entries corresponding to particular patient outcome 
variables and that a consistent, approximately normal esti- 
mator 8 is available. We partition the parameter space into 
four sets where, respectively, E is superior to S, S is superior 
to E, the two treatments are equivalent, and the treatment 
effects are discordant. This partition generalizes the three-set 
partition of a one-dimensional parameter space based on an 
indifference region or range of equivalence, as discussed by 
Spiegelhalter, Freedman, and Parmar (1994) and references 
cited therein. Under a Bayesian formulation, we obtain an 
approximately jointly normal posterior for 8 and use this to 
obtain posterior probabilities of the four parameter sets. The 
method also accommodates patient prognostic covariates. 

The model is established in Section 2, followed by a descrip- 
tion of methods for partitioning the parameter space into sets 
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characterizing the multivariate E-versus-S treatment effect in 
Section 3. Section 4 presents two applications, the first to 
multiple time-to-event outcomes with covariates arising from 
a breast cancer trial and the second to cross-classified count 
data from an acute leukemia trial. We conclude with a dis- 
cussion in Section 5 .  

2. Bayesian Model  
The focus of the method is a parameter vector 8 = (01, 
defined so that B j  characterizes the E-versus-S treatment ef- 
fect on the j t h  patient outcome. For example, if Y = (Y1, Y2) 
is a bivariate binary outcome with Y1 indicating cancer re- 
mission and Y2 indicating infection, denoting r j , t  = Pr[q  = 
1 I treatment t ] ,  the treatment effects may be defined as 
0, = g(7rJ,E)  - g ( r j , s ) ,  j = 1,2,  for an appropriate transfor- 
mation g such as the identity, logit, or arcsine square root. Pa- 
tient covariates Z = ( 2 1 , .  . . , Zp- l )  may be incorporated by 
defining a treatment indicator Zj,p,  with g(r . j , t )  = pj, lZl + 
. . . + /3j,p-1Zp-1 + p j , p Z j , p ,  so that the covariate adjusted 
treatment effects are 8 = (&,&) = ( P I , ~ , P ~ , ~ ) .  We define 
the Bj ' s  so that larger values correspond to superiority of E 
over S, with Zj,p the indicator of E if the j t h  outcome is de- 
sirable and the indicator of S if it is adverse. The treatment 
effect vector 8 may be defined similarly for multiple time-to- 
event outcomes with covariates, as in the breast cancer ap- 
plication in Section 4.1. For discrete Yj ' s  without covariates, 
an alternative approach is to start with the niultinomial dis- 
tribution of all possible elementary outcomes and define the 
treatment effects by summing elementary outcome probabil- 
ities as appropriate. We illustrate this approach in Section 
4.2, where the method is applied to count data arising from 
a cross-classification of response, infection, and treatment in 
a leukemia chemotherapy trial. 

For tractability, we require a consistent estimator 6 of 8 
that is approximately multivariate normal with mean 8 and 
covariance matrix C, denoted 8 A N(8,C),  and we also as- 
sume that a consistent estimator of C is available. The es- 
timator 6 may be obtained via standard maximum likeli- 
hood estimation (MLE). Alternatively, depending on the data 
structure and model assumptions, 6 may be obtained via the 
method of moments (MM) or a generalized estimating equa- 
tion (GEE) formulation (Liang and Zeger, 1986). For censored 
time-to-event outcomes, the method of Wei, Lin, and Weiss- 
feld (1989) (subsequently referred to as WLW) may be used. 

The distribution theory underlying the method is based on 
the idea of treating 8 as the data vector within a Bayesian 
formulation under which, a priorz, 8 N N(p,O) .  Utilizing 
standard MLE, MM, GEE, or WLW distribution theory to 
establish that 6 I 8 N(O,C),  it follows that, a posteri- 
ori, 8 I 6 ,L N(Bb,B), where B-' = C-' + 0-l and b = 
C-'6 + O - l p  (cf., Lindley and Smith, 1972). A desirable as- 
pect of this approximation is that it provides a general basis 
for Bayesian inference requiring only manipulation of mul- 
tivariate normal distributions for implementation. This ap- 
proach has been used by Simon, Dixon, and Freidlin (1996) 
in the context of Bayesian subset analysis and by Faraggi and 
Simon (1997) to provide a Bayesian analysis of covariate ef- 
fects on survival under the Cox model. 

3. Treatment Evaluation Cri ter ia  
Denote the k-dimensional treatment effect parameter space by 
0. We propose that 0 be partitioned into four sets that char- 
acterize the k-dimensional E-versus-S treatment effect vector. 
Inferences or decisions regarding treatment comparisons may 
then be based on the posterior probabilities of these sets. In 
general, we define the partition as follows. Let 01 =_ [E > S] 
denote the set of B where E is superior to S and likewise 
let 0 2  = [E < S] be the set where S is superior to E. The 
equivalence set 0 3  = [E - S] is the set of 8 where there 
is no compelling reason to favor either treatment over the 
other. The discordance set 0 4  E [E >< S] is the set where 
E is superior to S with regard to some effects and inferior to 
S with regard to others, formally defined as the complement 
( 0 1  U 0 2  U 0 3 ) '  of 01 U 0 2  U 0 3 .  This formulation, and each 
of the particular constructions of the partition given below, 
generalize the three-set partition based on the idea of a range 
of equivalence described by Freedman, Lowe, and Macaskill 
(1984) in the context of evaluating a one-dimensional treat- 
ment effect. 

The partition may be formed in a variety of ways, depend- 
ing on the particular outcomes and trial objectives. To show 
how this might be done in practice, we describe four differ- 
ent methods for constructing the partition and illustrate each 
graphically in the two-dimensional case. Each of these ap- 
proaches begins with a one-dimensional range of equivalence 
running from a lower limit Q j  to an upper limit e j  for each 
treatment effect B j .  For the j t h  outcome considered alone, 
B j  > e j  corresponds to superiority of E over S, B j  < to 
superiority of S over E, and ej 5 B j  5 @j to the case where 
neither treatment is considered superior to the other. These 
three sets are the one-dimensional versions of 01, 0 2 ,  and 
03, respectively. Discussions of how the one-dimensional cut- 
offs ej and eJ may be selected in various settings are given by 
Freedman et al. (1984) and Spiegelhalter et al. (1994). The 
partition of 0 may be defined in any manner that is med- 
ically and scientifically appropriate for the particular appli- 
cation. Ideally, the process of developing a partition should 
involve medical collaborators or, in nonmedical applications, 
appropriate subject area specialists. 

We first consider the rectangular partition illustrated in 
Figure la. The set where E is superior to S, denoted by 
E > S in the figure, is the set of 8 where all 0, > Q,, and 
at least one 0, > 03. We use the abbreviated set notation 
01 = [ B j  > 0, 3 j and -9, > ej V j]. Thus, on 01, E is at least 
equivalent to S with regard to all effects and superior to S 
with regard to at least one effect. Similarly, the set where S is 
superior to E is 0 2  = [ B j  < ej 3 j and 0, < @j V j ] .  The equiv- 
alence set, 0 3  = n$,,[ej 5 B j  5 O j ] ,  is the k-dimensional 
rectangle where the treatments are equivalent with respect to 
each effect considered individually. For each 8 in the discor- 
dance set 0 4  = (01 U 0 2  U 0 3 ) ' ,  there is at least one pair 
of effects B j  and 01 such that B j  > ej and 01 < el,  i.e., E is 
superior to S with regard to one effect and S is superior to E 
with regard to the other. The partition in Figure l b  is defined 
similarly, with the important difference that [el > el] c 0 1  

and [el < Q , ]  c 0 2 ,  so that, if E is either superior or inferior 
to S with regard to 01, the other entries of 8 are irrelevant. 
This partition is appropriate when 81 corresponds to survival, 
as in the breast cancer application described in Section 4.1. 

- 
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Figure 1. 
rameter space. 

Four possible partitions of a two-dimensional pa- 

While the definitions of 01 and 0 2  in Figure l b  imply that 
0 4  = in the two-dimensional case, 0 4  is not necessarily 
empty for k 2 3. 

Figure l c  and Id illustrates partitions based on trade-offs 
between 81 and 82.  For example, each corner of the diamond 
in Figure l c  might quantify a trade-off between efficacy and 
toxicity. Figure l c  is obtained by first defining the 2k vec- 
tors 8; = [Sj = 6j and 81, = 0, V k # j ]  and e; = [Qj = 
8 . and Sk = 0, V k # j ]  for each j = 1,. . . , k .  The equivalence 
set 0 3  is the convex hull of UFIl(6; U e:), represented in the 
two-dimensional case by the diamond-shaped set. We define 
01 to be the open convex hull of Us,l[8j > ej and Qk = 
0, V k # j ] .  The ideas underlying this definition of 01 are 
that (1) if E is superior to S at the point then this must 
also be the case for any 8 such that Qj > ej and all other 
ok = 0 and (2) if E is superior to s at both 8 1  and 82, then 
this must also be the case for any 8 on the line connecting 
these two vectors, i.e., 01 should be convex. Similarly, 0 2  is 
the open convex hull of U;=l[8j < ej and 8 k  = 0, V k # j ] ,  
and 0 4  = (01 U 0 2  U 0 3 ) ' .  Other approaches to partition- 
ing 0 are possible, such as replacing the polygonal regions 
in Figure la, lb ,  and l c  with smoother analogs. Figure Id 
illustrates a partition defined by beginning with an equiv- 
alence region that is an ellipsoid determined by the points 
a;, @ T ,  . . . , 6 i ,  e;. The remaining three sets are then defined 
similarly to the partition in Figure lc. 

4. Applications 
In this section we apply the method to two data sets arising 
from randomized comparative clinical trials. The first con- 
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sists of multiple time-to-event outcomes with covariates from 
a breast cancer trial. The second consists of count data from 
an acute leukemia trial. We chose two data sets with very 
different structures and used different types of partitions to 
illustrate the generality of the proposed methodology. 

4.1 Breast Cancer Data 
The first data set arose from a trial conducted by the National 
Surgical Adjuvant Breast and Bowel Project (NSABP) to 
compare melphalan + 5-FU (PF) to  P F  + adriamycin (PAF) 
for the treatment of women with stage I1 breast cancer who 
were considered nonresponsive to tamoxifen (Fisher et al., 
1989). The data analyzed here consist of the times to death, 
local recurrence, and distant recurrence, along with treatment 
and prognostic covariates. 

We first establish some additional notation to deal with 
multiple time-to-event outcomes with covariates. Let T = 

, T k )  denote the vector of k possibly censored time- 
to-event outcomes, with 6J = 1 if T, is the j t h  event 
time and 6, = 0 if it is the independent right-censoring 
time. Let (21,. . . , Zp-l)  denote the patient's covariates, let 
2, be the indicator of the standard treatment, and denote 
Z = ( 2 1 , .  . . , Z  ) Denote the linear term corresponding to " ;  
T, by CJ = p,Z = pj,lZ1 + . . .  + /33 ,pZp,  so that under 
the usual Cox model (1972), the hazard function is X,( t  I 

Thus, positive values of ,f33,p correspond to superiority of E 
over S. We employ the method of WLW to obtain the usual 
estimators of each marginal Cox model, which we denote by 

, b k ) ,  and a robust estimate V p  of the p k  x pk  
asymptotic covariance matrix of this pk-dimensional vector 
of estimates. Under the WLW formulation, ,8 - AN@, V p ) ;  
hence, marginally, the k covariate-adjusted treatment effect 
estimates 8 = (81,. . . ,&) =  PI,^, . . . , p k , p )  N AN(8, C), 
where C is the appropriate k x k submatrix of V p .  

For the NSABP data, k = 3, with TI = time to 
death, T 2  = time to local recurrence, and T3 = time to 
distant recurrence. The covariates are Z 1  = tumor size, 
standardized by subtracting its mean and dividing by its 
standard deviation, Z 2  = estrogen receptor level similarly 
standardized, and 2 3  = 1 if any positive lymph nodes are 
present and is 0 otherwise. The treatment indicator 2 4  = 
1 if the patient received PF, the standard regimen, and is 
0 if she received the experimental combination PAF. Thus, 
p = 4, the linear term of the j t h  outcome is 6, = p,,lZl + 
p,,2Z2+p,,3Z3+p3,4Z4, j = 1,2 ,3 ,  and the covariate-adjusted 
treatment effect vector is ( e l , & ,  83) = (p1,4, p2 ,4 ,&,4 ) ,  with 
entries corresponding, respectively, to death, local recurrence, 
and distant recurrence. 

Since the experimental regimen PAF involves adjuvant 
adriamycin, we consider it superior to the standard PF for 
a given outcome only if it reduces the relative risk of that 
event by a specified amount, while PF is superior to PAF if 
PAF increases the relative risk above one by any amount. For 
death, we use the criterion that PAF must reduce the risk of 
death relative to PF, exp(-81), to 10/11 or less in order to be 
considered superior to PF, while any value of exp(-B1) larger 
than one corresponds to superiority of P F  over PAF. Thus, the 
region of equivalence for the effect 81 of PAF relative to PF 
on death is [e l ,  &]  = [log( 1), log( 1. l)] = [0, ,09531. Similarly, 

Z) = X,,o(t)exP(tJ), equivalently E, = log{X,(t I Z)/A,,o(t)}. 
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Table 1 
Parameters of skeptical priors. Each p j  = (ej + 6j)/2, each uj(p) is determined 
so that Pr[exp(Bj) > 4/31 = p f o r p  = .05, .lo, or .25, and p1,3 is determined 

so that Pr[exp(Ol) > 4/3 I 03 = 01 = p / 2 ,  with p l , ~  = p2,3 = 0. 

-3 0 e j  & 0j ( .05)  ~ j ( . l O )  uj(.25) 

Death (el) o . o w  . o m  .1459 .1873 .3559 
Local recurrence (02 ) 0 .2231 .1116 ,1071 ,1374 ,2611 

,1195 .1533 .2914 Distant recurrence (03) 0 .1823 ,0912 
P1.3 .2970 ,3909 ,6472 

the respective requirements that PAF must reduce the relative 
risk of local recurrence to 4/5 and of distant recurrence to 5/6 
in order to be considered marginally superior yield equivalence 
intervals [e2, (721 = [0, ,22311 and [e3, 631 = [0, ,18231. If PAF 
is either superior or inferior to PF with regard to survival, 
then 02 and 03 are irrelevant. We thus constructed a three- 
dimensional partition that generalizes Figure l b  as follows: 

As noted earlier, 0 4  # 4 in this case since it contains, 
e.g., the set [e, I 81 I el] n [& > $21 n [e, < &I, where 
01 is in its equivalence interval but 82 and 03 are discordant. 
To construct priors, we first considered each B j  marginally, 
with the prior mean pj of Oj taken to be the center (el + 
&)/2 of its equivalence interval to reflect a priori equipoise 
between superiority and inferiority of E compared to S. The 
standard deviation uj was then determined to reflect a given 
level of skepticism, with several values considered. Because 
4/3 is a substantive difference in the relative risk, for given 
small probability p = .05,.10, or .25, we determined uj so 
that Pr[exp(Oj) > 4/31 = p .  We assumed that only the effects 
on death and distant recurrence were correlated, with their 
correlation p1,3 determined so that Pr[exp(O1) > 4/3 I 03 = 
01 = pc for pc < p .  In practice, p ,  might be elicited from 
the physicians along with p. Under multivariate normality, 
01 103 - N ( 1 - ~ i + ( e 3 - ~ ~ 3 ) ~ 1 , 3 u i / ~ 3 , a T ( 1 - ~ ~ , 3 ) ) ;  hence, P1,3 
is determined once p1, p3, 01, and 03 are given. Since p ,  < p ,  
we took pc = p / 2  to reflect a strong prior association between 
81 and 03. The equivalence intervals and parameters of these 
three priors are summarized in Table 1. 

Table 2 summarizes fits of the marginal Cox model for each 
outcome, with the standard error of each estimated parameter 
obtained from the WLW robust covariance matrix estimate. 
For comparison, the posterior mean and standard deviation 
of each parameter under the Bayesian formulation with each 
prior also are given. A 95% posterior credibility interval for 
each outcome-specific treatment effect, running from the 2.5th 
to 97.5th percentiles of the posterior, is given in parentheses 
below the posterior mean and SD. Since each treatment ef- 
fect in the model is defined as the log relative risk of the 

event for PF as compared to PAF, the positive-valued esti- 
mates in Table 2 correspond to superiority of PAF over PF. 
The positive-valued estimates of the covariates correspond to 
increased risk of each event with positive nodes, larger ER, or 
larger tumor size. The fact that most of the posterior means 
are closer to zero than the corresponding frequentist parame- 
ter estimates reflects shrinkage due to the effect of the prior. 
The method is rather insensitive to the informativeness of the 
prior, however, for the priors considered. 

Posterior probabilities of the partition sets are presented 
in Table 3. We considered each skeptical prior and also the 
prior with all 03’s i.i.d. N(0, l ) ,  which is essentially noninfor- 
mative because o = 1 is large relative to log(4/3) = .288. 
Given that Pr[E > S] = .881 with this prior, it is notable that 
Pr[E > S] = .834 under the most skeptical prior where the 
variances are smallest, a drop of only .047. Thus, the partition 
probabilities appear to be rather insensitive to the priors con- 
sidered. The main substantive result is that, after accounting 
for prognostic covariates and considering the three outcomes 
jointly using the partition as defined, a posteriori, it is highly 
likely that adriamycin is a desirable adjuvant to PF. 

4.2 The  AML Data 
The second data set consists of counts characterizing the 
rates of complete remission (CR) and infection arising from a 
chemotherapy trial in acute myelogenous leukemia (Estey et 
al., 1999). The trial was designed to study the adjuvant effects 
of all-trans retinoic acid (ATRA) and the growth factor G- 
CSF, when added to the combination fludarabine + cytosine 
arabinoside + ifosfamide, in a 2x2 factorial design. For 
purposes of illustration, we focus on the two treatment groups 
defined by whether the patient did or did not receive ATRA. 
Cross-tabulations of the indicators of CR and infection within 
each of these treatment groups are given in Table 4. A routine 
examination of these data indicates that the infection rates 
were very similar (38.3% for the ATRA group vs 38.1% for 
the no-ATRA group), while the ATRA group had a 55.1% 
CR rate compared to 46.7% in the no-ATRA group. Although 
any reasonable treatment comparison based on both of these 
outcomes should include comparison of the two marginal 
rates, it is worthwhile to also account for the association 
within each 2x2 table since the odds ratio is .167 for the 
ATRA data and .090 for the no-ATRA data. This reflects 
the fact that, for all patients, the CR rate among patients 
with infection was much lower than among patients without 
infection (22.2 vs 68.7%). 
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Table 2 
Frequentist coeficient estimates based on WLW method and 

approximate Bayesian posterior means and standard deviations 

Bayesian estimates 

Frequent ist estimates p = .05 p = .10 p = .25 
P W )  Mean (SD) Mean (SD) Mean (SD) 

Time to Death 
Treatment .224 (.107) .191 (.101) ,197 (.102) ,208 (.104) 

(-.007, .389) (-.003, ,397) (.004, ,412) 
Positive nodes ,546 (.108) .528 (.107) .528 (.107) ,527 (.107) 
ER ,012 (.060) ,014 (.059) .014 (.059) .013 (.059) 
Tumor size .160 (.048) ,160 (.048) .160 (.048) ,159 (.048) 

Time to First Local Recurrence 
Treatment ,336 (.108) ,296 (.101) .304 (.103) ,318 (.105) 

(.098, .494) (.103, .505) (.112, ,524) 
Positive nodes .648 (.110) ,629 (.108) .629 (.108) .629 (.108) 
ER ,026 (.054) .028 (.053) .027 (.053) .026 (.053) 
Tumor size .145 (.052) ,145 (.052) ,145 (.052) .145 (.052) 

Time to Distant Recurrence 
Treatment .210 (.107) .175 (.101) ,182 (.102) ,193 (.104) 

Positive nodes ,633 (.log) ,614 (.107) .614 (.107) .615 (.107) 
ER ,021 (.063) ,022 (.063) .022 (.063) ,021 (.063) 
Tumor size .133 (.051) .132 (.051) .132 (.051) ,132 (.051) 

(.023, .373) (-.018, .382) (-.on, ,397) 

To apply the approximate Bayesian method to these data, 
let t = 1 index the ATRA group and t = 2 index the no-ATRA 
group and let n1 and n2 denote their respective sample sizes. 
For each t ,  define the random vector Yt = ( & , ~ , & , 2 , & , 3 ) ,  

where Yt,l is the number of patients with CR and infection, 
Yt,2 is the number with CR and no infection, and &,3 is the 
number with infection and no CR. Let 7rt,ll denote the proba- 
bility of the j t h  outcome in group t with rt = (7rt,l, 7r t ,2 ,7r t ,3 ) .  
The probability of neither CR nor infection in group t is 
r t , 4  = 1 - (7r t , l  + 7rt,2 + 7rt,3), and the corresponding count is 
Yt,4 = nt-(&,l+&,2+&,3). Assuming patients are exchange- 
able, Yt I r t  is multinomially distributed with parameters r t  
and nt, t = 1,2, and Y1, Y 2  are independent. Since 7rt,l+7rt,2 

is the probability of CR and 7rt,1+7rt,3 is the probability of in- 
fection in group t ,  we may define the ATRA-versus-no-ATRA 
treatment effects OCR = g(7r1,l + ~ 1 , 2 )  - g(7rz,l + 7r2,2) and 
O I N F  = g(m,i+r1,3)-g(7r2,1 + ~ 2 , 3 ) ,  where g(.) = sin-'(.)'/' 

Table 3 
Posterior probabilities of the four parameter 
sets f o r  death, local recurrence and distant 

recurrence f r o m  the breast cancer data 

Prior E > S  S > E  E - S  E > < S  

Skeptical, p = .05 ,834 ,032 ,078 .056 
Skeptical, p = .10 ,846 ,029 ,072 ,053 
Skeptical, p = .25 366 .025 ,055 ,054 
01,02 ,& N i.i.d. N(0,l)  ,881 .021 .054 ,044 

to stabilize the asymptotic variance. Denote 8 = (OCR, OINF). 
Since the usual estimator i i t  = Yt/nt N AN(rt ,  VT,t) ,  where 
Vn,t has diagonal terms nt, j( l  - n t , J ) / n t  and off-diagonal 
terms - n t , j x t > k / n t  with and 7i2 independent, it follows 
)?y a straightforward application of the delta method that 
8 I 8 N AN(@, C), where C is the 2 x 2 matrix with diagonal 
terms (1/4)(ny1 +nT1) and off-diagonal terms (1/4)(pl/nl+ 
~ z / n z ) ,  where 

Pt = b t , l  - ( T t , l  + 7r t ,2) (7r t , l  + Xt,3)1 

* {(nt,l f "t,2)(7rt,1 $- a t , 3 ) ( 1  - X t , l  - 7rt,3) 

x (1 - Tt,l - 7rt,2)}1'2. 

Table 4 
Cross-tabulations of CR and 

infection within each treatment group 

Infection 

CR No Yes Totals 

ATRA Group 
No 19 29 48 
Yes 47 12 59 

Totals 66 41 107 

No-ATRA Group 
No 22 34 56 
Yes 43 6 49 

Totals 65 40 105 
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Thus, the variance stabilizing transformation removes r from 
the asymptotic variances of 6 , ~  and 6 1 ~ ~  but not from the 
formula for the asymptotic correlation. 

We may now apply the Bayesian approximation to obtain 
posterior probabilities of the four two-dimensional parameter 
sets for assessing the effects of the two treatments on CR and 
infection. We assume that, a priori ,  8cn and 6 1 ~ ~  are i.i.d. 
N(0, u 2 ) ,  with u2 = 2,1, .5, or .05. For this application, our 
criterion is that E and S have equivalent marginal probabil- 
ities p j . ~  and p j , s  if I p j , ~  - pj , s l  5 .lo. For p j , ~  and p j , s  
in the range .40 to .60, this produces the equivalence inter- 
val [-.101, ,1011 on the arcsin square root domain, so that 
81 = 82 = 1.01 and 8, = e2 = -1.01. Because neither CR 
nor infection dominates the other outcome in the sense that 
survival time dominates recurrence time, we employ the sym- 
metric partition illustrated in Figure la.  This two-dimensional 
partition takes the following form: 

el = [el > &, e2 2 e2i u [e2 > g 2 ,  61 2 el] 
0 2  = [el < el, 02 I 821 u [@2 < 8 2 , @ 1  5 &I 
0 3  = [el 5 81 I 611 n [e2 I 8 2  L a21 

0 4  = ( 0 1  u 0 2  u 0 3 ) c .  

For .5 5 u2 I 2, the approximate bivariate normal poste- 
rior of [ ( e ,~ ,  0 1 ~ ~ )  I 81 has mean (.084, .002), common vari- 
ance .0047, and COV(~CR,  &NF 1 8 )  = -.0021. Under the more 
skeptical prior with u2 = .05, these values change very slightly 
to mean (.077, .005), variance ,0042, and covariance -.0018. 
For u2 2 .5, the posterior means are numerically identical 
to the corresponding MLEs. Importantly, although the prior 
correlation between OCR and OINF is assumed to be zero, the 
posterior correlation is between -.45 and -.47 for the above 
values of u2. This reflects, in terms of the posterior bivari- 
ate normal correlation, the strong association noted earlier 
between the CR and infection counts in terms of the usual 
frequentist estimates of within-group odds ratios. 

Under priors with u2 = 2,1, or .5, a posteriori, Pr[E > 
S] = Pr[ATRA is superior] = .404 to ,410, Pr[S > El = Pr[no 
ATRA is superior] = ,068 to .069, Pr[ATRA is equivalent to no 
ATRA] = .514 to ,520, and the discordance set has probabil- 
ity ,008. Under the more skeptical prior with u2 = .05, these 
four probabilities are ,365, ,065, ,564, and ,007. An essential 
point in interpret,ing and using these probabilities inferentially 
is that they pertain to the joint posterior distribution of the 
treatment effects on CR and infection. Thus, they account for 
both the desirable and undesirable effects of treatment simul- 
taneously. This assignment of posterior probabilities to these 
two-dimensional parameter sets thus provides an interpreta- 
tion to these data that is simply not available using the more 
conventional frequentist methods of reporting the MLEs or 
performing separate tests comparing the treatments in terms 
of either CR or infection. As was the case with the breast 
cancer data, for these count data, the method is remarkably 
insensitive to the informativeness of the assumed prior. 

5 .  Discussion 
We have proposed a Bayesian method for accommodating 
multiple endpoints and multiple covariates in the monitoring 
and analysis of randomized clinical trials. Although frequen- 
tist methods have been developed for multiple endpoint trials, 

they are not widely used. Most often, formal inference is based 
on a single primary endpoint, such as DFS in cancer trials, 
which is a composite of two or more outcomes. Such compos- 
ite endpoints may mask treatment effects on individual end- 
points. Moreover, the use of composite endpoints as a basis 
for claiming treatment differences is sometimes controversial. 
While dimension reduction may be motivated formally by the 
notion of sufficiency, the use of DFS is difficult to rationalize 
on that basis. The Bayesian approach described here provides 
a flexible framework for evaluating treatment effects on mul- 
tiple endpoints without requiring either a composite endpoint 
or a hierarchy of importance of the endpoints. It also avoids a 
penalty for conducting multiple comparisons to make simul- 
taneous inferences about multiple relevant endpoints. 

With frequentist methods, there is controversy as to what 
point or interval estimates of treatment effect are appropriate 
if a trial is terminated early since MLEs may be quite biased 
in that circumstance. Although several methods for using the 
frequentist sequential monitoring boundary to define an ad- 
justed estimate have been proposed, the uncorrected MLE is 
generally used in medical publications. The situation is even 
more complex with multiple endpoints and frequentist meth- 
ods. Under the Bayesian approach described here, inference 
is straightforward. The mode of the posterior distribution is 
the most appropriate point estimate and the highest posterior 
density intervals are the most appropriate interval estimates. 
Since the posterior distribution is multivariate normal, these 
estimates are very easy to calculate. Moreover, these estimates 
are not modified by the use of the decision regions for interim 
monitoring. Although the estimates for one endpoint will be 
influenced by the results for other endpoints due to their in- 
herent posterior association, an aspect of the method that 
we regard as an advantage, the estimates will not be directly 
dependent on the number of endpoints. A limitation of the 
methods described here is that they depend on large-sample 
approximations and thus may be of limited accuracy at the 
time of an early interim analysis. This is also true of analogous 
frequentist methods, however. 

Our use of a normal prior for the parameters could be gen- 
eralized. For example, rather than specifying correlations be- 
tween the treatment effects, one could place a hyper-prior on 
those correlations, as in Dixon and Simon (1991, 1992). While 
this would complicate computation of the posterior, Markov 
chain Monte Carlo or importance sampling methods (Gilks, 
Richardson, and Spiegelhalter, 1996) could be applied. 

The Bayesian framework described here also accommodates 
subset analysis as described by Simon et al. (1996). This is 
easily done by extending the model to include treatment- 
covariate interactions for binary covariates and employing a 
skeptical prior for the size of the regression coefficients of the 
interaction effects. If this prior distribution is normal, as in 
Simon et al. (1996), then the posterior distribution remains 
multivariate normal. With multiple endpoints, there would 
be treatment-covariate interactions for each endpoint of in- 
terest. Simon et al. (1996) provide details on how to specify 
skeptical priors for these interaction effects by eliciting con- 
ditional probabilities of the medically important treatment 
effects. Our method also may be generalized to accommodate 
trials with more than two treatment arms, with the definition 
of the decision regions reflecting the relationships among the 
treatments. 
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RE SUM^ 
Nous proposons une mkthode bayksienne approchke pour com- 
parer un traitement expkrimental B un traitement de rkfkrence 
basee sur un essai clinique randomis6 avec rksultat multivarik 
pour les patients. L’effet global du traitement est caractkrisk 
par un vecteur de parametres correspondant aux effets sur les 
rksultats individuels des patients. Nous partitionons l’espace 
des parametres en quatre ensembles dans lesquels, respective- 
ment, le traitement expkrimental est supkrieur au tkmoin, le 
tkmoin est supkrieur B l’expkrimental, les deux traitements 
sont kquivalents, et les effets des traitements sont discordants. 
Nous calculons les probabilitks a posteriori de ces ensembles 
en traitant un estimateur du vecteur de parametres comme 
une variable alkatoire selon le paradigme bayksien. L’approxi- 
mation peut Btre utiliske dans tout contexte oii l’on dispose 
d’un estimateur convergent et asymptotiquement normal du 
vecteur de paramhtres. La mCthode est appliquke k des don- 
nkes de cancer du sein consistant en dklais de survenue multi- 
ples avec covariables, et k des donnkes de dknombrement dans 
une classification croisee en rkponse, infection et traitement 
tirkes d’un essai dans la leuckmie aigue. 
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