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SUMMARY. A sequential Bayesian phase II/III design is proposed for comparative clinical trials. The de- 
sign is based on both survival time and discrete early events that may be related to survival and assumes a 
parametric mixture model. Phase I1 involves a small number of centers. Patients are randomized between 
treatments throughout, and sequential decisions are based on predictive probabilities of concluding supe- 
riority of the experimental treatment. Whether to stop early, continue, or shift into phase I11 is assessed 
repeatedly in phase 11. Phase I11 begins when additional institutions are incorporated into the ongoing 
phase I1 trial. Simulation studies in the context of a nonsmall-cell lung cancer trial indicate that the pro- 
posed method maintains overall size and power while usually requiring substantially smaller sample size and 
shorter trial duration when compared with conventional group-sequential phase I11 designs. 
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1. Introduction 
The randomized comparative phase I11 clinical trial is the es- 
tablished scientific standard for determining whether an ex- 
perimental treatment, E ,  is effective compared with a stan- 
dard treatment, S.  The usual method for deciding whether 
E is sufficiently promising to warrant phase I11 evaluation is 
to first conduct a phase I1 trial. In oncology trials of the sort 
considered here, this is typically a small, single-arm study of 
E, and the phase I1 data are compared with historical data 
on S.  Many phase 11 trials are based on a k-nary variable, Y ,  
recording early outcomes. For example, Y may be a binary 
indicator of >50% tumor shrinkage in oncology, an ordinal 
variable recording degree of lipid lowering in cardiology, or, 
more generally, a categorical variable recording possible com- 
binations of desirable and adverse events. Except in trials of 
rapidly fatal diseases, few uncensored values of patient sur- 
vival time, T ,  are available at the completion of phase 11. 
Thus, the Y data are usually the basis for deciding whether 
to go to phase 111. This widespread practice is motivated by 
the belief that it is not feasible in phase I1 to wait to observe 
the patients’ survival times and the assumption that Y is a 
reasonable surrogate for T .  Interim and final inferences com- 
paring E with S in phase I11 typically are based only on the 
survival data from phase I11 while ignoring both the phase I11 
data on Y and all of the phase XI data. 

Scientifically, this conventional approach suffers from sev- 
eral defects. The E-versus-S treatment effects in phase I1 are 
confounded with latent trial effects because the data on E and 
S arise from separate trials. Thus, the decision of whether to 
proceed with phase I11 is based on a confounded treatment- 

trial effect estimate. Once phase I11 has begun, however, the 
phase I1 data typically are discarded to avoid introducing bias 
into the confirmatory phase I11 comparison. Even when pa- 
tients are randomized between E and S in phase 11, the use of 
Y alone for treatment evaluation relies implicitly on its sur- 
rogacy for T ,  a generally tenuous assumption (Fleming and 
DeMets, 1996). Finally, given the assumption that T is related 
to Y ,  ignoring the Y data in phase I11 wastes information. 

A typical complication is that Y is not observed immedi- 
ately but rather is defined over a period of length t o .  If U is 
the right-censoring time of T and T* = min{T, U } ,  then Y is 
observed only if T* 2 t o .  Thus, in addition to the indicator 
d = I[T < U ]  that T is not censored, we will require W = 
I(T* 2 t o ) ,  the indicator that Y is observed. The patient’s 
outcome data thus consist of W and either (Y, T*,  d)  if W = 
1 or (T*,d) if W = 0. 

In this article, we propose a Bayesian phase II/III treat- 
ment evaluation strategy. Patients are randomized between 
E and S throughout. In phase 11, the decision of whether to 
stop early, continue phase 11, or proceed to phase I11 is made 
repeatedly during a time interval rather than at one time 
point. Phase I11 begins when additional institutions join the 
trial, with the phase 11 trial expanded into phase I11 without 
interruption. Decisions and inferences are based on predictive 
probabilities that E will be found to be superior given the 
observed (Y, T* ,  d ,  W )  data and possibly patient covariates. 
We do not assume that Y is a surrogate for T .  Instead, we 
specify parametric models for P(T I Y )  and P ( Y )  and as- 
sume that Y may affect T through the mixture model P(T) 
= Ci=l P(T I Y = y)P(Y = y). 
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Our approach has several practical advantages. Randomiz- 
ing from the start allows all current data, including the phase 
I1 data, to be utilized in each decision. Moreover, there is no 
interim suspension of accrual while waiting to evaluate Y for 
the most recent patients, which may be required using conven- 
tional phase I1 designs. If it is decided to proceed with phase 
111, then phase I1 is continued and data are accumulated while 
the phase I11 portion of the trial is being organized. In our 
application, these advantages result in substantial savings in 
time and resources compared with the conventional approach. 

In Section 2, we describe the nori-small-cell lung cancer 
(NSCLC) trial that motivated this research. The probability 
model is presented in Section 3 .  Six hypotheses under which 
we evaluate the design are described in Section 4. In Section 
5, we apply the method to design the NSCLC trial, and we de- 
scribe a simulation study in Section 6. Robustness is discussed 
in Section 7, and we conclude with a discussion in Section 8. 

2. The Lung Cancer Trial 
Our illustrative application is a trial of unresectable stage 
I1 or I11 non-small-cell lung cancer (NSCLC). Patients are 
randomized to chemotherapy + radiation either with ( E )  or 
without (S) an adjuvant adenovirus, Ad-p53, that carries a 
gene thought to restore programmed cell death, apoptosis, 
while also sensitizing cancer cells to the chemoradiation. The 
Ad-p53 is injected directly into the patient's tumor. Because 
patients with local control (LC) have better survival (Thomas 
et  al., 1999), the rationale is that, through apoptosis and sen- 
sitization, Ad-p53 will increase the LC rate and thus prolong 
survival. Patient outcome consists of survival time and the bi- 
nary indicator, Y ,  of whether a fine-needle aspiration biopsy 
of the patient's primary tumor at 5 months is negative, known 
as local control (LC), with Y = 1 if LC is achieved and Y = 2 
if not. Thus, to  = 5 and W = I (T*  2 5). Our probability 
model and trial design will provide a basis for evaluating the 
effect of Ad-p53 on LC, the effect of LC on survival, and a 
possible direct Ad-p53 effect on survival not mediated by LC. 

The following conventional designs (CDs), which were con- 
sidered initially, will provide a basis for evaluating the 
Bayesian design. Denote the fixed probability of LC with 
E under a frequentist model by p ~ .  For phase 11, the null 
LC probability p~ = .16 was based on a previous study of 
chemoradiation in NSCLC (Le Chevalier et al., 1991). A Si- 
mon (1989) optimal two-stage phase I1 design with size .05 
and power .90 to detect p~ = .36 stops and accepts Ho af- 
ter 21 patients have been evaluated if four or fewer have LC. 
Otherwise, 30 more patients are treated, with final acceptance 
or rejection of Ho if the total number of LCs among the 51 
patients is 512 or 213.  That LC is evaluated 5 months after 
the start of therapy has the logistical implications that any 
two-stage phase I1 trial may require up to 10 months of wait- 
ing to observe the LC data needed to make the interim and 
final decisions. 

Given phase I1 results sufficiently promising to warrant a 
phase 111 trial, initially phase 111 was planned using a conven- 
tional group-sequential design (Pocock, 1977; Lan and 
DeMets, 1983; Kim and DeMets, 1987; Jennison and Turnbull, 
2000) with both inner and outer O'Brien-Fleming boundaries 
(1979) for a symmetric log-rank test comparing median sur- 
vival times. At up to four successive times, the design re- 

jects or accepts the null so that the trial may be stopped 
early due to either a significant treatment difference or futil- 
ity. The overall size is .05 and, assuming a null median, t . 50 ,  

of 15.5 months, the power to detect a 25% increase in t .50  

with Ad-p53 is 30. Given a maximum of 900 patients and an 
accrual of 30 patients per month, the design requires up to 
30 months of accrual plus 24 additional months of follow-up, 
with tests conducted at 175, 350, 524, and 699 deaths. For all 
designs considered here, the randomization is stratified by dis- 
ease stage because stage I11 NSCLC reduces median survival 
by approximately 5% compared with stage 11. 

The NSCLC trial is a registration trial. Thus, the statistical 
design must be approved in advance by regulatory agencies, 
including the U S .  Food and Drug Administration (FDA). 
Because the Bayesian approach is not yet fully embraced by 
the FDA, the extent to which our design can be Bayesian is 
limited. We thus base all decisions on predictive probabilities 
rather than using a fully Bayesian decision theoretic approach. 
In virtually all practical applications, the overall Type I and 
Type I1 error rates both must be controlled. A major criticism 
of Bayesian methods is that the Type I rate is not controlled 
(Jennison and Turnbull, 2000, Chapter 18). We thus calibrate 
the Bayesian design's parameters to ensure an overall Type I 
error 5.05, and we evaluate its frequentist properties. 

3. Probability Model 
3.1 Mixture Model 
We assume that the probability density function (p.d.f.) f of 
T takes the general form 

f(t> = f ( t  I T t o )  Pr(T < t o )  

+ 
k 

f (t I T 2 t o ,  Y = y ) r y  Pr(T 2 t o ) ,  t 2 0,  
y=l 

(1) 

where 7ry = Pr(Y = y I T 2 t o )  varies with y but not 
to  because Y is observed only if T 2 to .  The mixture 
in (1) may be generalized to allow continuous Y ,  although 
we do not consider this case here. We assume that T = 
To(1- W )  + (TI + to)W, where To and 2'1 are latent survival 
times with To following p.d.f. fo not depending on Y and TI 
following the mixture p.d.f. f(") = fy?ry. Expression (1) 
thus may be written 

where &(t) = Pr(T0 > t )  is the survival function 
corresponding to fa, 

Introducing treatment, Z,  we denote the survival and 
hazard functions of [To I Z] by F, , z ( t )  and ho,z(t) = 
-Fh,z(t)/F~,~(t) and, for y = 1 , .  . . , k ,  those of [TI 1 Z, Y = 
y] by Fy,Z(t) and hy,Z(t). For a sample of n patients, we 
denote Y = ( f i , .  . . , Yn), Z = (21,. . . , Zn), and so on for T ,  
U ,  T* ,  d, and W .  Under (2)' the likelihood is the product 
of two components, the first from patients who die or are 
censored before Y can be observed, T* < t o ,  and the second 
from patients for whom T" 2 to  and hence Y is observed, i.e., 

L(8; T*, d ,  Y,  W, 2) 
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3 0 , 2 , ( t o )  . 

(3) 
1 IW* x Fy,z, v: - t o ) r y , z ,  

We will use the following version of (3) in our application. 
Let XO,Z be the death rate of [T 1 T < t o ,  Z] on [0, t o )  and 
X,,Z the death rate of [T 1 T 2 t o ,  Y = y, Z ]  on [ to ,  m). Let 
ezp(X) denote the exponential distribution with mean 1/X and 
X = ( X i ,  . . . , X p )  a vector of non-negative-valued covariates 
and denote ,Bx = IIj p?. We assume that f0,z is given by 

[T I T < t o ,  z, x, 81 exp (X0,zDX) (4) 

and that, for each y = 1,. . . , k ,  the component fy,z of fg' 
is given by 

[T I T 2 t o ,  Y = y, 2, X ,  81 N exp (xY,zpx) . (5) 

Thus, P(T [ Y , Z )  is piecewise exponential on [O,to) 
and [to,m), with parameters for the effects of treatments, 
covariates, whether Y is observed and, if so, the value of Y .  
Our basis for assuming an exponential model in this setting 
is empirical survival distributions reported by Le Chevalier 
et al. (1991) and Schaake-Koning et al. (1992). When Y is 
not observed, we characterize the death rates in terms of XO 
= X O , ~  and the multiplicative E-versus3 treatment effect 
qo = Xo,E/XO. For T 2 t o ,  we define 77y = X,,E/X,,S for 
each y = 1,. . . , k. Thus, the treatment effect on the death 
rate may vary as a function of the early outcome. Denoting 
XI = X ~ , S ,  the comparative effects among different values 
of Y relative to the baseline outcome Y = 1 are yy = 

brevity, we will denote = ( X o , X l ) ,  y = (72,. . . ,yk), and 
77 = ( ~ o , g l , .  . . ,7&). Finally, [Y 1 z] is k-nary multinomial in 
rz = ( r l , ~ ,  . . . , ?'rk,J), where rY,z = P ( Y  = y 1 2). 
3.2 Prior Distributions 
We denote the gamma distribution with mean uu-l and 
variance uuU2 by gam(u, u). A priori, we assume 

Xy,s/A1. Thus, X,,S = XIYY,  X,,E = X i ~ ~ v ~ ,  and 71 = 1. For 

(6) 

(7) 

(8) 

(9) 

i.i.d. 

i.i.d. 
"/2,...9Yk gam(uy,?f)  

i.i.d. 
77O,'Vl,...,qk gam(uv,uv) 

i.i.d. 

X 0 , X l  gam(ux,vx) 

P l , . . . ,PP  gam(up,vp). 

Although Y may affect the death rate parameters, a priori 
there is no bias in either direction because Xo and X i  have 
the same prior, and similarly for the  j's and qj's. Finally, we 
assume that the LC probabilities ns and TE are independent 
with common Dirichlet prior. 
3.3 Posterior Distributions 
We denote the parameter vector by 8 = (Xo, Xi, T O , .  . . , v k ,  
72,. . . , y k ,  as, T E ,  p)' and the subvector of 0 without Xo by 

8-xo, with other subvectors denoted similarly. The posteriors 
of rs and TE are each Dirichlet with parameters depending 
on the data through the values of {(x, W,, Z,),z = 1,. . . ,n}. 
Because the posteriors of parameters in 8--(nE,ns) are not 
available in closed form, we use Gibbs sampling (Gelfand 
and Smith, 1990) to draw samples of 8-,,,,, from the 
posterior p(8--?Ts,xE I data). This is facilitated by the fact 
that the full-conditional distributions of all parameters other 
than TE and rs are gammas. Samples from the posterior of 
p(8-(as,nE) 1 data) are obtained by iteratively sampling 8 
from the full conditionals of the other parameters after initial 
burn-in iterations. 

The decision rules to be presented in Section 5 will be based 
on Pr(A > 0}, where A is the difference between the mean 
survival times with E and S .  We estimate this probability, 
using Monte Carlo integration, as the proportion of posterior 
samples for which A > 0. We also simulate predictive survival 
times at future times, given the current data, by obtaining 
posterior samples of 8 at time t and then, conditional on 
these samples, simulating survival times under the piecewise 
exponential model with censoring at the future time. 

4. Application to the NSCLC Trial 
In the NSCLC trial k = 2, the baseline death rates are X = 
(XO, XI), the early outcome probability vectors are simply the 
single values r1,s = rs and r 1 , ~  = TE for LC (Y=l),  and 
the effect of LC on survival is y 72. The direct treatment 
effects on survival not mediated by LC are 70 if W =0, 91 
if W =I and there is no LC (Y=2), and 772 if W =1 and 
there is LC, so q = (~0,~1,r/2). There is one covariate, the 
indicator X that the patient has stage I11 disease, which has 
multiplicative effect ,B on the death rate. Thus, for t 2 t o  = 5, 

P r [ T  > t 1 X ,  Z]  

Figure 1 illustrates the manner in which r, y, and X determine 
P [ T  > t]  under this version of the mixture model, assuming 
for simplicity that 770 = 771 = 772 = @ = 1. 

The possible paths whereby Ad-p53 may affect survival are 
illustrated in Figure 2. Ad-p53 (1) improves or has no effect 
on the LC rate when ~ T E  - rs > 0 or = 0, (2) LC improves 
or has no effect on survival when y < I or = 1, and (3) Ad- 
p53 has or does not have a direct effect improving survival, 
not mediated by LC, when qj < 1 or = 1 for j = 0, 1, 
or 2. Thus, ( r , y )  characterize the treatment effect for the 
pathway that is mediated through LC, while 7 is the direct 
effect. The global null hypothesis is Ho: TE = ~ s , y  = 1, and 
all 77j = 1. The first alternative hypothesis, which formalizes 
the investigators' motivation, is Hi:  " E  > as,y < 1, and all 
v j  = 1. If neither of the two effects under Hi  is present, 
then Ad-p53 does not improve survival. These cases are 
formalized by the hypotheses HG: T E  > r s , y  = 1, all 
qJ = 1, and H:*: TE = n ~ , y  < 1, and all qj = 1, which 
may be considered two additional null hypotheses. The most 
optimistic hypothesis is HT: X E  > r s , y  < 1, all < 1, 
under which Ad-p53 improves survival via both the direct 
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Figure 1. 
for t = 12, 24, 36 and X = .05, .15, .25.  

Contour plots of P[T > t] as a function of (T,  y) 

effects of the qj's  and by improving the probability of LC, 
which in turn improves survival. Finally, Hi*: T E  = T S ,  y = 1, 
770 = 771 = 772 = 77 < 1 yields the simple exponential model in 
which Y is neither affected by treatment nor has any effect 
on survival but the direct treatment effect 77 is present. 

For the NSCLC trial, we assume a priori that .\a, .\I, ~ 0 ,  71, 

772, y, /3 "Ld' exp(l), and TS,TE - beta(1,l). Because the 
anticipated phase I1 accrual rate is 20 patients per month; 
the expected sample size at each monitoring look is large. 
Consequently, these priors are nearly noninforrnative in the 
sense that, even at the earliest monitoring time at month 8, 
the prior distribution plays essentially no role in the decision. 

5. A Bayesian Phase II/III Design 
We present the Bayesian design in the context of the NSCLC 
trial. To facilitate comparison with the CD described earlier, 
we calibrate the Bayesian design parameters to obtain a false 
positive rate 5 .05 under Ho and power 2 230 under Hi.  
The two designs are not strictly comparable, however, because 
they have different maximum durations, utilize the available 
data differently, and accrue patients at different rates. The 
last difference is because, with the Bayesian strategy, the time 
t* when it is decided whether to organize phase III or stop 
the trial early depends on the data and hence is random. If it 
is decided to organize phase 111 at t * ,  then accrual increases 
thereafter as new institutions join the expanding trial. 

Our Bayesian design requires specifying a maximum 
number of patients, N ,  and a maximum duration, D. All 
decisions are based on predictive probabilities involving future 
data available either 1 year from the present or at the 
maximum study duration. Specifically, at any given time t 
during the trial, we let Xl(t) denote the data available at 
future time t + 12 if accrual is terminated at t and patients 
are followed for 12 more months and &(t) denote the data 

i.i.d. 

Ad@3 Survival 
rl 

Figure 2. Possible pathways for effects of Ad-p53 on 
survival. 

available at  D if all N patients are accrued and follow-up 
continues to D. Decisions are based on probabilities 

q+(t) = Pr[A > O I xj(t)], j = 1,Z. (11) 

We denote the conclusion that E is superior to S with regard 
to survival by E + S and its complement by E 5 S. A large 
value of the criterion probability 41 (t) provides evidence that, 
if no additional patients are accrued after t and the patients 
are followed for 12 more months, then it would be likely that 
E + S. A large value of 4z(t)  says that, if the maximum 
allowed future resources were expended, then it would be 
likely that E + S.  

In the NSCLC trial, N = 900, as with the conventional 
phase 111 design, but with D = 72 months rather than 54. 
The decision criteria used throughout the trial are based 
on predictive probabilities of concluding superiority of the 
experimental treatment through 

pi@) = rnin{Pr[&(t) > .98],Pr[dz(t) > ,981) (12) 

and 

p2(t) = max{Pr[&(t) > .98],Pr[$z(t) > ,981). (13) 

Stopping rules. At any time t = 8,10,12 and 16,20,. . . , 
The NSCLC trial is conducted as follows. 

72 if 

(i) p l ( t )  2 .98, then stop and conclude E + S; 
(ii) pz(t) 5 .01 or pl(72) < .98, then stop and conclude 

(iii) p l ( t )  < .98 and p2(t) > .01, then continue. 

If neither (i) nor (ii) above is the case for 8 5 t 5 12 during 
phase 11, then the following criteria are used to decide whether 
to expand the trial from phase I1 to phase 111. 

E + S; 

Phase 11 to phase 111. At t = 8, 10, and 12 months, if 

(i) . O 1  < Pr[$z(t) > .98] < .80, then continue phase 11; 
(ii) Pr[42(t) > .98] 2 3 0 ,  then organize phase 111; 

(iii) Pr[42(12) > .98] < 3 0 ,  then stop and conclude E + S. 

If it is decided at time t* = 8, 10, or 12 months to 
proceed with phase 111, then it will take some time, ~ o R G ,  
to organize the phase 111 trial. The "phase 11" portion of 
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the trial will continue to accrue patients during the period 
from t* to the time t* +  to^^ when phase I11 begins. 
This provides an important logistical advantage over the 
conventional approach, under which no patients are accrued 
during the period of length toRG between the two phases. 

Our decision rules are based on several numerical prob- 
ability cut-offs that may appear somewhat arbitrary. We 
obtained these numerical values via trial and error, based on 
a series of preliminary simulations, to obtain a design with 
good frequentist operating characteristics (OCs). Similarly, 
the qualitative forms of pl ( t )  and p2(t) and the decision rules 
were constructed to obtain a practical design with desirable 
frequentist properties. In this sense, the decision rules are 
ad hoc. We anticipate that, in future applications of this 
methodology to other trials, different numerical probability 
cut-offs and qualitatively different rules may be used. 

6. Simulation Study 
6.1 Simulation Parameters 
To evaluate and compare the Bayesian and CDs, we simulated 
the trial 10,000 times under each of the six hypotheses 
described in Section 4.1 using each design. We assumed TS = 
.16, a null median survival, med(T), of 15.5 months, and set 
Xo = X1 = .05. The value = 1.05 corresponds to stage I11 
patients having .95 times the med(T) of stage I1 patients. The 
remaining parameters had null values T E  = .16, y = 1, and 
all q j  = 1. The alternative values y = .40 and T E  = .53 were 
set to correspond with an improvement of 25% over the null 
med(T), which was set by the physicians planning the trial. 
The values 770 = 71 = 772 = 3 0  were set to increase the mean 
survival by 25% under the simple exponential model of HT*, 
where T E  = ns = .16 and y = 1. 

To facilitate comparison, we used the same maximum 
number of patients (900) and maximum trial duration (72 
months) for all simulated trials. Two CDs were considered, 
the first having up to four tests at equally spaced information 
time intervals, the second having up to 18 tests at the same 
times used by the Bayesian design. For the Bayesian design, 
in the case where it is decided at time t* during phase I1 to 
proceed with phase 111, we assumed that it would take toRG 
= 9 months to organize phase 111, with phase I11 starting and 
accrual increasing 20-30 patients per month at time t* + 9. 

6.2 Computing 
We used Markov chain Monte Carlo (MCMC) methods to 
compute the predictive probabilities. For each of the 10,000 
simulated trials under the Bayesian design, after an initial 
burn-in of 100 iterations, every 10th sample obtained in 1000 
iterations of the Gibbs sampling procedure was retained for 
computing Pr(A > 0 I xJ(t)). To estimate each Pr($j(t) > p ) ,  
we obtained 50 data sets of the form X j ( t )  by first sampling 
50 values of Q from the posterior P(6’ 1 datat) and generating 
one such future data set from P ( T ,  Y 1 Q) for each 8. 

The numerical design parameters were determined in an 
initial simulation study to obtain a design with size 5.05 
under Ho and power 2.80 under HI. We used the following 
empirical rule. For each of the 50 pairs of simulated future 
data sets Xl(t) and X z ( t )  noted above, c#q(t) and @ z ( t )  and the 
binary indicators 11 = 1[q5l(t) > .98] and 12 = I[q52(t) > ,981 
were computed. If E:zlll,i = 50 or X!!!l12,i = 50, then 
stopping rule (i) was applied. If C& Il,i = 0 or Ef!!1 1z , i  = 
0, then stopping rule (ii) was applied, and so on. Alternative 

designs may be obtained by modifying the design parameters 
to obtain other size and power figures. 

While the nominal MCMC simulation sarnple size of 100 
might be considered small, preliminary simulations assessing 
the convergence of the Gibbs sampler indicated that the 
design parameters we chose were adequate. There is a trade- 
off between computing time and the use of a larger simulation 
sample size to improve the precision of the posterior estimates. 
While the simulation sample size during the design stage is 
limited by computing time, in the actual trial, we will base 
all inferences on a much larger posterior sample size to gain 
precision and ensure convergence of the Gibbs sampler. 

6.3 Results 
Table 1 summarizes the simulation results. The designs all 
have essentially the same Type I error under all three null 
hypotheses, Ho, HG, and HG*. The most striking resdt is 
that the Bayesian design has much shorter mean duration 
under Ho, HG, Hg*, and HF and much smaller mean sample 
size under all hypotheses while maintaining good overall 
significance level and power. Figure 3 gives box plots of the 
trial duration and sample size under Ha and HI for each of the 
three designs. The plots show that the achieved sample size 
distributions of the Bayesian design are both more variable 
and likely to be much smaller than those of the CDs. The 
advantage of the Bayesian design in terms of trial duration 
is also substantial. Under the CD with 5 4  tests, there is 
virtually no difference in mean trial duration under Ho and 
HI. In contrast, under the Bayesian design, the trial duration 
is much more variable and is, on average, 10 months shorter 
under Ho compared with HI ,  with the longer mean duration 
under Hi  about the same as that of the CD. The only case 
where the Bayesian design has substantially smaller power 
is the simple exponential model under the alternative H;* . 
Much of the Bayesian design’s advantage over the CD is 
because the model underlying the Bayesian design accounts 
for LC. Because the biological motivation for the NSCLC trial 
is based on HI ,  the investigators consider H;* a medically 
untenable hypothesis. 

We compared the Bayesian design with the CD with up 
to 18 decisions to  determine whether the Bayesian design’s 
advantage may be due to the fact that it makes decisions 
more frequently. Increasing the maximum number of tests 
from 4 to 18 under the CD has the effect of greatly increasing 
its duration under all hypotheses but HT. This is due to the 
fact that, if additional interim tests are conducted, the earlier 
boundaries of the conventional group sequential test must be 
more extreme in order to maintain the same overall Type I 
error. 

Under Ho, accounting for accrual and the time required 
to evaluate Y ,  the Simon (1989) two-stage phase I1 design 
described earlier has a mean duration of 7 months, much 
less than the 20.4 months under the Bayesian phase II/III 
design. The situation is completely reversed under H;, where 
T E  > T S  but E has no survival advantage over S. In 
this case, the Simon design has probability .90 of correctly 
concluding that TE > TS and thus incorrectly leading to 
a phase I11 trial because this design ignores survival time. 
If T E  > T S ,  the conventional approach requires about 12.5 
months to complete a single-arm, two-stage phase I1 trial plus 
an additional 9 months to organize phase 111, during which no 
patients are accrued. Thus, under H;, on average, the total 
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Table 1 
Operating characteristics of the Bayesian and conventional designs under the six mixture 

model-based hypotheses. The  conventional designs allow up to either 4 o r  18 tests. 

No. of No. of No. of Conclude 
Hypothesis Design Duration patients LCs deaths E k S 

HO Bayesian 20.4 425 53 180 .03 
Conventional (4) 28.1 842 105 459 .05 
Conventional (1 8) 40.2 884 109 583, .05 

H1 Bayesian 30.7 640 189 306 .85 
Conventional (4) 29.5 884 262 512 .83 
Conventional (18) 40.7 888 263 534 .91 
Bayesian 21.6 453 134 197 .04 
Conventional (4) 28.1 842 249 460 .05 
Conventional (18) 40.2 884 262 584 .04 

H i *  Bayesian 21.7 452 56 193 .03 
Conventional (4) 28.5 854 106 46 1 .05 
Conventional (18) 40.4 884 110 558 .05 

H,* 

Bayesian 23.2 525 162 181 .97 
Conventional (4) 28.7 86 1 267 365 >.99 
Conventional (18) 27.9 799 246 322 >.99 

Conventional (4) 29.1 873 111 512 I79 

H; 

HT* Bayesian 29.2 576 74 296 .56 

Conventional (18) 42.2 879 112 573 .86 

time required under the conventional approach to correctly 
conclude that E 5 S is 37.5 months, compared with 21.6 
months under the Bayesian design. 

Under HI,  H;, or HT*, Table 1 and the box plots in Figure 

Trial Duration under Ho 

i 

Bayes CONV4 CONVl8 

Tdal Duration under H1 

1 
Bayes CONV4 CONV18 

Sam@ Size under Ho 

q - p -  

Bayes CONV4 CONVl8 

Sample Size under H1 

w j  I 
Bayes CONV4 CONVi8 

Figure 3. Sample size and trial duration distributions UII- 
der Ho and H1 for the Bayesian and conventional designs. 
Each box runs from p25 to p75, the dot denotes p50, and the 
whiskers extend to the nearest value not beyond 1.5x(p75 - 
p25) from the box, where p 4  is the qth percentile. 

3 are conservative with respect to the trial duration compari- 
son for the Bayesian design and CDs. If we account for accrual 
and follow-up time in phase I1 and the 9 months required to 
organize phase I11 using the conventional approach, a some- 
what different comparison emerges. The Simon two-stage de- 
sign described earlier requires 6 months if it stops after 21 
patients and 12.5 months if it stops after 51 patients. If it 
is decided to proceed with phase 111, the entire phase II/III 
process takes 21.5 months plus the duration of phase 111. This 
yields total mean durations of 9.1, 45.4, and 46.7 months un- 
der Ho, HG, and HI, respectively, under the conventional ap- 
proach, compared with 20.4, 21.6, and 30.7 months using the 
Bayesian design. Thus, in terms of actual time invested, the 
Bayesian design risks spending an additional 11.3 months in 
the null case but saves on average 23.8 months under H,* and 
16 months under HI.  Some of the advantage of the Bayesian 
design under El,* and H1 is attributable to the mixture model 
and some to the fact that it does not delay accrual between 
phase I1 and phase 111. To make a somewhat more fair com- 
parison, one may assume that there is no delay between phase 
I1 and phase 111 with the conventional design. Under this as- 
sumption, simply subtracting 9 months from the trial dura- 
tions with the conventional design yields mean durations of 
36.4 months under H,* and 37.7 under HI ,  still much larger 
than the corresponding values 23.8 and 16 with the Bayesian 
design. 

If this advantage is disregarded, however, and the Bayesian 
design is compared with the CD with D = 54, a natural 
question is whether proceeding beyond 54 months is worth- 
while. Under HI, only 3.5% of the trials simulated under 
the Bayesian design exceeded 54 months. Among these, the 
Bayesian design has power .76 of correctly concluding E + S.  
In comparison, among the simulated conventional trials that 
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Figure 4. Posterior and predictive probabilities for two 
typical simulated trials. Left panel. Based on a trial sim- 
ulated under Ho that concludes E 3 S at 32 months. Right 
panel. Based on a trial simulated under HI that concludes 
E + S at 44 months. In both panels, “Posterior” refers to 
Pr(A > 0 1 datat), “Predictive 1” is Pr(&(t , t  + 12) > .98), 
and “Predictive 2” is Pr(&?(t ,  72) > .98). 

went beyond 54 months, a log-rank test based on the 54- 
month data would have rejected the null with mean proba- 
bility .41, whereas a log-rank test based on the data at the 
end of the study concluded E > S with probability .63. This 
illustrates an important advantage of the Bayesian approach 
namely, that it is likely to continue in cases where the results 
at t = 54 favor E but are not statistically significant. In con- 
trast, using conventional methods, this situation is typically 
dealt with at the regulatory level by requiring that a second 
phase I11 trial be conducted. 

Figure 4 illustrates how the decision criteria operate during 
the trial. The left panel is based on a trial simulated under 
Ha. Although the posterior probabilities Pr[A > 0 I datat] 
indicate some improvement with the experimental therapy E 
over the conventional S ,  the predictive probabilities indicate 
that E + S is not likely. In contrast, in the right panel, a trial 
simulated under Hi indicates E + S with both posterior and 
predictive probabilities increasing in t .  The figure illustrates 
that &(t, s) and 4 2 ( t ,  s) are more sensitive to t than Pr[A > 
0 I datat] and thus together provide a more flexible basis for 
decision making. 

The Bayesian mixture model uses the LC data to update 
the distributions of xs and X E  while also accounting for the 
effects of ( X / T S , X E )  on survival. To assess the extent to which 
this contributes to the method’s performance, we reran the 
simulations with the LC probabilities fixed rather than ran- 
dom under the Bayesian model. Assuming that Pr(ns  = X E  = 
.16) = 1, the OCs are essentially the same under Ho but mean 
(duration, number of patients, power) change from (30.7, 640, 
35) in Table 1 to (11.5, 234, .01) under HI.  Thus, stopping 
the model from learning about T S  and T E  may destroy the 
method’s power. The opposite action of successively increas- 
ing one of the prior variances of { A o , A ~ } ,  {vo1v1,q2}, 7 ,  or 
P from 1 to 100 only has a substantive effect on the design’s 
OCs for var(qj) = 100, where the mean (duration, number of 
patients, power) become (14.1, 295, .42) under Ho and (14.6, 
297, 3 3 )  under HI. This indicates that this prior variance 
should be carefully controlled. 

7. Robustness 
To examine the design’s behavior under nonexponentially dis- 
tributed survival times, we consider the Weibull with hazard 
function h(t)  = cACtC-l. Because med(T) varies with c if the 
other model parameters are fixed, to evaluate sensitivity to 
c, we first fixed y = .40, 17 = ,O = 1, and T S  = X E  = .16 
and solved for (.,A) pairs with .75 5 c 5 1.25 yielding the 
null med(T) = 15.5. For HI,  we used the same (c,X) pairs 
and solved for ( P , x E )  pairs yielding med(T) = 19.375. The 
results are summarized in Table 2. While both designs show 
negligible changes under Ho, their properties change substan- 
tively with ( c , A , ~ , x E )  under HI,  with the only exception 
that the conventional design’s sample size is quite stable un- 
der all cases. While the power of both designs is sensitive to 
(c, A, ,O, X E )  under HI,  the Bayesian design shows a smaller 
loss of power in the most extreme case considered. 

8. Discussion 
We have shown, via simulation in the context of a particular 
trial, that the use of mixture model-based predictive prob- 
abilities as decision criteria may provide substantial savings 
in time and sample size compared with conventional group- 
sequential designs having similar overall significance level and 

Table 2 
Operating characteristics of the Bayesian design ( B )  and conventional 

design with up  to  18 tests (C18) under Weibull survival t ime 
distributions Pr(T > t )  = exp{-(At)c}. W e  fixed 77 = 1 and xs = .16 

( C l  A) (.75, ,034) (1.00, .048) (1.25, ,059) 

Ho y = l  (P,  “ E )  (1.0, .16) (1.0, .16) (1.0, .16) 

B C18 B C18 B C18 

Duration 19.7 40.7 19.5 40.5 19.3 40.3 
Number of patients 410 884 415 884 414 884 
Pr(conc1ude E S) .03 .05 .03 .05 .03 .04 

Hi  y = . 4  (P, “ E )  (1.047, ,525) (1.050, .531) (1.053, .536) 

B C18 B C18 B C18 

Duration 33.7 46.5 29.9 42.9 27.0 37.9 
Number of patients 623 888 616 888 593 886 
Pr(conc1ude E > S) .62 .52 .86 .82 .94 .94 
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power. Our use of the mixture model is motivated by the 
desire to use more of the available information, specifically 
both Y and T .  We do not assume that Y is a surrogate for T 
but only that P(T 1 Y = y) varies with y .  Randomizing from 
the start allows the conventional sharp division between phase 
I1 and phase I11 to be replaced by a process of repeatedly 
deciding whether to stop the trial or expand it by adding new 
institutions without wasting the phase I1 data. Additional 
flexibility is obtained by allowing the confirmatory decision 
of whether E + S to be made in phase 11. 

The idea of combining phase I1 and phase I11 within the 
same trial is not new. Thall, Simon, and Ellenberg (1988) 
propose a two-stage design for trials with binary outcomes 
in which a selection stage is followed by a second-stage com- 
parison of t,he selected experimental treatment to a standard. 
Schaid, Wieand, and Therneau (1990) provide a similar design 
for time-to-event outcomes. A common goal of these designs 
is to control the overall Type I and Type I1 error rates of 
the entire procedure. We also do this, but we use (Y,T)  as 
the outcome rather than only one of the two and we allow 
decisions to be made much more frequently. 

There is an extensive literature on the use of auxiliary vari- 

A fully Bayesian approach would make explicit use of deci- 
sion theory (Berry, Wolff, and Sack, 1994; Berry and Stangl, 
1996). This would replace the problem of obtaining the deci- 
sion rules and their numerical cutoffs, as we have done, with 
that of formulating a loss function and specifying its numeri- 
cal parameter values. As shown by Stallard, Thall, and White- 
head (1999), even in the context of a single-arm phase I1 trial, 
this is a nontrivial process. We have not taken a decision the- 
oretic approach here for practical reasons. The NSCLC trial is 
a registration trial, and current negotiations indicate that the 
U.S. regulatory agencies involved look favorably on the pro- 
posed design, despite its novelty. Our goal is to bring about 
the actual use of this new statistical methodology to conduct 
the NSCLC trial. Decision theory, while scientifically ideal, 
would introduce a level of innovation that would make the 
design unlikely to be approved for actual use. We feel that 
the design described here, once approved at the regulatory 
level and actually used in clinical trial conduct, will provide 
a basis for the future use of Bayesian methods in phase I11 
trials, including those based on decision theory. 

RESUME 
ables to  improve inferences. Lagakos (1976, 1977) utilizes the 
time to a nonfatal event to improve survival time estimation. 
Our formulation is similar in that Y plays the role of Lagakos’ 
time-to-event variable, although here the observation of Y at 
t o  and its discreteness lead to a rather different model formu- 
lation. In a particular case, COX (1983) quantifies the amount 

Nous proposons pour I’extension en continii B des essais clin- 
iques comparatifs un dispositif skquentiel bayksien adapt6 aux 
essais de phase II/III. Le dispositif suppose un mklange de 
mod&les param6triques, il est la fois sur des durbes de 
survie et la Su,..enue d’6vknements discre& prkcoces affectant 
kventuellement la survie. Les Datierits sont randomisks entre 

of information lost due to censoring that is recovered by an 
auxiliary variable. Pepe (1992) factors the likelihood into the 
components P(T I Z)P(Y  I T ,  2) on the set where both T and 
Y are observed and P(Y 1 2) on the set where Y but not T is 
observed. Fleming et al. (1994) give a general method for in- 
corporating auxiliary variables by augmenting the estimating 
equations of the Cox regression model (1972). Finkelstein and 
Schoenfeld (1994) consider time-dependent auxiliary variables 
on disease progression for improving nonparametric survival 
estimates. Hogan and Laird (1997) model the joint distribu- 
tion of (Y,T) by considering a mixture in which the com- 
ponents are P(Y I T )  and P(T) ,  with Y denoting repeated 
measurements possibly subjcct to missing data. Nam and Ze- 
len (2001) derive statistical tests to verify whether a clinical 
intermediate endpoint induces a change in the survival dis- 
tribution. In the same spirit, we take a Bayesian approach, 
model P(Y I 2) and P(T I Y, 2, W ) ,  and factor the likelihood 
in terms of whether Y is observed. As shown by the simu- 
lations with nonrandom T S  and TE, much of our method’s 
advantage over conventional designs may be attributed to the 
Bayesian mixture model. 

Bayesian methods for clinical trials have been proposed for 
many years, dating at  least to Anscombe (1963). Differences 
between the Bayesian and frequentist approaches and imped- 
iments to using the former are discussed in Berry (1993). In 
the present article, we use the Bayesian approach as a tool 
for deriving a design having good frequentist properties. In 
a similar application, Berry et al. (2001) consider whether to 
shift from dose-finding in phase I1 to a confirmatory phase 
I11 trial on the basis of a decision analysis, with the goal to 
maximize expected profit. The same idea could be used in 
the present context by considering the costs associated with 
extending accrual to additional renters. 

les groupes traitements dans le petit nombre de centre im- 
pliquks dans I’essai de phase 11. Les probabilit6s prkdictives 
de conclure $I la supkrioritk du traitement & l’essai servent de 
base aux decisions, soit d’arrgter prkcocement l’essai, soit de 
continuer la phase 11, soit de passer a la phase I11 en incorpo- 
rant des nouveaux centres B l’ktude. Des ktudes de simulation 
dans le contexte de cancers du poumon non a petites cellules 
indiquent que la mkthode proposke requiert des khantillons 
substantiellement plus petits et des essais de durke moindre, 
tout en conservant seuil et puissance globales des tests con- 
ventionnels des dispositifs d’essais skquentiels de phase 111. 
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