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Summary. A design is proposed for randomized comparative trials with ordinal outcomes and prognostic subgroups. The
design accounts for patient heterogeneity by allowing possibly different comparative conclusions within subgroups. The com-
parative testing criterion is based on utilities for the levels of the ordinal outcome and a Bayesian probability model. Designs
based on two alternative models that include treatment-subgroup interactions are considered, the proportional odds model
and a non-proportional odds model with a hierarchical prior that shrinks toward the proportional odds model. A third design
that assumes homogeneity and ignores possible treatment-subgroup interactions also is considered. The three approaches are
applied to construct group sequential designs for a trial of nutritional prehabilitation versus standard of care for esophageal
cancer patients undergoing chemoradiation and surgery, including both untreated patients and salvage patients whose disease
has recurred following previous therapy. A simulation study is presented that compares the three designs, including eval-
uation of within-subgroup type I and II error probabilities under a variety of scenarios including different combinations of
treatment-subgroup interactions.
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1. Background

This article describes a design for a small single-center ran-
domized controlled clinical trial to evaluate the effectiveness
of nutritional prehabilitation (Nuprehab) for esophageal can-
cer patients who undergo esophageal resection preceded and
followed by chemoradiation therapy. Common postoperative
morbidities for patients who undergo esophageal resection
include anastomotic leak and stricture, chylothorax, delayed
emptying, or dumping syndrome, pulmonary complications
such as pneumonia, and cardiac complications such as atrial
fibrillation (Parekh and Iannettoni, 2007; Chen, 2014). The
Nuprehab is given prior to surgery as well as seven days after
surgery, with the aim to achieve oral immunomodulation with
an L-arginine based enteral formula. The motivation for the
trial is the hypothesis that providing patients with Nuprehab
may reduce the incidence of postoperative morbidity and mor-
tality via nutritional supplementation (see, e.g., Braga et al.,
2002; Waitzberg et al., 2006).

Patients will be randomized to receive either Nuprehab or
control, which is the standard of care. All patients will be
monitored for morbidity and mortality for 30 days following

[Corrections added on September 11, 2018, after first online publi-
cation: Acknowledgment section added]

their surgery. The trial’s primary outcome is Clavien–Dindo
postoperative morbidity (POM) score (Clavien et al., 1992;
Dindo et al., 2004; Clavien et al., 2009), which is ordinal
with six levels: 0 = normal recovery, 1 = minor complica-
tion, 2 = complication requiring pharmaceutical intervention,
3 = complication requiring surgical, endoscopic or radiolog-
ical intervention, 4 = life-threatening complication requiring
intensive care, and 5 = death. The worst POM score during
30 days post surgery will be recorded. The trial will enroll
approximately 60% primary and 40% salvage patients. Pri-
mary patients are treatment naive, whereas salvage patients
have been treated previously with chemoradiation therapy,
but not surgery, and their disease has recurred. Salvage
patients are expected to have fewer preoperative nutritional
deficiencies, but more preoperative comorbidities and worse
prognosis. Consequently, it is plausible that the efficacy of
Nuprehab may differ substantially for primary and salvage
patients.

In this article, we describe a design that accounts for the
possibility that Nuprehab may be clinically beneficial for one
of the subgroups but not the other. This is in sharp con-
trast with a more traditional “one-size-fits-all” approach that
ignores prognostic information and makes one recommenda-
tion for all patients about whether Nuprehab is clinically
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beneficial. We evaluate the design based on its probabilities
of recommending Nuprehab to each subgroup in four key
scenarios: (i) the “complete null” scenario where Nuprehab
does not improve POM scores for patients in either sub-
group; (ii) the “partial null” scenario where Nuprehab does
not improve POM scores for primary patients, but achieves
a targeted benefit for salvage patients; (iii) the “partial null”
scenario where Nuprehab achieves a targeted benefit for pri-
mary patients, but does not improve POM scores for salvage
patients; and (iv) the “complete alternative” scenario where
Nuprehab achieves targeted benefits in POM score reduction
for both primary and salvage patients. The proposed design
addresses the concern that, in the partial null scenarios (ii)
and (iii), a one-size-fits-all design will have an unacceptably
high (low) probability for recommending Nuprehab to the
non-benefiting (benefiting) subgroup.

The proposed design is frequentist in that it is specified
to provide specific probabilities of recommending Nuprehab
to a non-benefiting subgroup (i.e., type I error) and to a
benefiting subgroup for a particular targeted benefit (i.e.,
power). However, the decision to recommend Nuprehab for
a particular subgroup is based on a posterior probability
from a Bayesian model. Designs have been proposed that
are similar to our design in that they facilitate subgroup
specific recommendations, and stopping subsequent enroll-
ment for particular subgroups, see, for example, Brannath
et al. (2009), Wang et al. (2009), Rosenblum et al. (2016).
These designs do not involve an ordinal outcome, how-
ever.

We consider two alternative Bayesian probability models
that facilitate subgroup specific recommendations. The first
is the proportional odds (PO) cumulative logistic regression
model of McCullagh (1980) with a treatment-subgroup inter-
action parameter. The second is a non-proportional odds
(NPO) model with a hierarchical prior that shrinks toward
the PO model. Although NPO models have been proposed,
see, for example, Peterson and Harrell (1990), Bender and
Grouven (1998), Ishwaran (2000), Agresti (2010), as far as
we are aware, our formulation of the NPO model is novel,
and moreover this is the first proposal to use an NPO model
as the basis for comparing treatments in a randomized clini-
cal trial. Guo and Yuan (2017) use the dispersed cumulative
probit model of McCullagh (1980), which is a type of NPO
model, for personalized dose finding in a phase I/II study
of molecularly targeted agents. As we describe below, com-
pared with the PO model, treatment comparison based on
the proposed NPO model is more robust but more complex.
To obtain a practical design that deals with this complexity,
we propose a comparative testing criterion based on elicited
numerical utilities of the six POM scores. Our approach may
be considered a generalization of the utility-based design
proposed by Murray et al. (2016), which does not accommo-
date prognostic subgroups and uses a Dirichlet–multinomial
model.

The remainder of the article is organized as follows. In
Section 2, we discuss treatment comparison with ordinal out-
comes in general and our utility-based comparative criterion
in particular. In Section 3, we describe the PO and NPO mod-
els. In Section 4, we discuss practical design considerations,
including specifying targeted alternatives, analysis and mon-

itoring plan, controlling the probability of committing a type
I error, and sample size. In Section 5, we present the results
of a simulation study comparing the proposed design based
on either the PO or NPO model, and also a more traditional
design based on a PO model without a treatment-subgroup
interaction parameter. We conclude with a brief discussion in
Section 6.

2. Treatment Comparison

Each design compares the efficacy of Nuprehab relative to
standard of care using the six-level ordinal POM score. Com-
paring treatments based on an ordinal outcome is complicated
by the fact that, even when the probability of each outcome
level is known, it is not always clear whether one treatment is
superior to the other. A simple example is a three-level out-
come (Good, Intermediate, Poor) where treatment A gives
probabilities (0.30, 0.50, 0.20) and treatment B gives proba-
bilities (0.40, 0.30, 0.30). Since B has larger probabilities of
both Good and Poor compared to A, it is not clear whether
one treatment is superior to the other. Comparing the two
treatments requires additional information, such as a quan-
tification of the relative desirabilities of the three possible
events.

Accounting for prognostic subgroups further complicates
matters. To see this, denote Y = POM score, P = primary,
S = salvage, N = Nuprehab, C = control, and

πy(Sgp,Trt) = Prob(Y = y |Sgp,Trt) and

π+
y (Sgp,Trt) = Prob(Y ≤ y |Sgp,Trt),

for y = 0, . . . , 5, Sgp ∈ {P, S} and Trt ∈ {N, C}. Indexing Sgp
by x and Trt by a or a′, if

π+
y (x, a) ≥ π+

y (x, a′), for y = 0, 1, . . . , 4, and

π+
y (x, a) > π+

y (x, a′), for some y = 0, 1, . . . , 4,

then clearly treatment a is superior to a′ for patients in sub-
group x. By contrast, if

π+
y (x, a) < π+

y (x, a′), for some y = 0, 1, . . . , 4, and

π+
y (x, a) > π+

y (x, a′), for some y = 0, 1, . . . , 4,

then it is not clear whether a is superior to a′ for patients
in subgroup x. Stated formally, for a particular patient sub-
group, if the POM score distributions corresponding to each
treatment arm are stochastically ordered with strict inequal-
ity π+

y (x, a) > π+
y (x, a′) for at least one level y, then it is clear

which treatment is superior for that subgroup. By contrast, if
the POM score distributions corresponding to each treatment
arm are not stochastically ordered, then it is not clear whether
one treatment is superior to the other for that subgroup.

To provide a criterion for determining whether one treat-
ment is superior, we elicit numerical utilities U(Y = y) for all
levels of Y , and compare treatments using mean utilities,

U(π(Sgp,Trt)) =
5∑

y=0

U(Y = y) × πy(Sgp,Trt).
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These depend on the subgroup-treatment specific outcome
probabilities π(Sgp,Trt) and a utility function U(Y = y) that
quantifies the desirability of each outcome level. Following,
Houede et al. (2010), Thall and Nguyen (2012), and Murray
et al. (2016), we elicited {U(Y = y), y = 0, . . . , 5} from the
trial’s Principal Investigator, WH, so that the numerical
utilities reflect his familiarity with postoperative complica-
tions following esophageal resection. To do this, we first
set U(Y = 0) = 100 and U(Y = 5) = 0, and then asked WH
to specify numerical values for the intermediate levels, y =
1, . . . , 4, that reflect their desirability relative to the best and
worst levels. The numerical values that WH chose are:

U(Y = 0) = 100, U(Y = 1) = 80, U(Y = 2) = 65,

U(Y = 3) = 25, U(Y = 4) = 10, U(Y = 5) = 0.

These reflect that POM scores ≤2 are substantially more
desirable than POM scores ≥3. Because a larger mean util-
ity corresponds to better patient outcomes on average, if
U(π(x, a)) > U(π(x, a′)), then treatment a is superior to a′

for patients in subgroup x. Therefore, regardless of whether
π(x, a) and π(x, a′) are stochastically ordered, the mean
utilities provide an unambiguous criterion for comparing
treatments.

One important property of the mean utilities is a conse-
quence of the following theorem.

Theorem 1. If π(x, a) stochastically dominates π(x, a′),
then U(π(x, a)) > U(π(x, a′)) for all admissible U(Y) such that
U(Y = 0) > U(Y = 1) > · · · > U(Y = 4) > U(Y = 5).

Theorem 1 follows from first-order stochastic dominance
(Quirk and Saposnik, 1962); nonetheless, we provide a proof
in the supplementary materials. Consequently, when the POM
score distributions are stochastically ordered—and thus, it is
clear which treatment is superior without appealing to the
mean utilities—the proposed utility-based comparison is not
sensitive to the elicited numerical values in that a different set
of admissible values will result in the same conclusion. By con-
trast, when the POM score distributions are not stochastically
ordered, eliciting numerical values is necessary to determine
whether one treatment is superior. The proposed utility-based
comparison necessarily is sensitive to the elicited values in
that a different set of admissible values may result in a differ-
ent conclusion.

Since the POM score probabilities are unknown, we learn
about these using a Bayesian model with unknown parame-
ter θ and model-based mean utilities U(π(Sgp,Trt; θ)). Given
interim or final data D, our comparative testing criterion is
as follows . If

Prob
{
U(π(x, a; θ)) > U(π(x, a′; θ)) | D}

> pcut,

then we declare treatment a is superior to a′ for patients
in subgroup x. We specify pcut to control subgroup specific
type I error probabilities. We describe how to do this in
Section 4.

3. Probability Models

During the process of designing the trial, we considered
two Bayesian cumulative logistic regression models that both
include treatment-subgroup interaction parameters. The first
is a PO model, which is a popular regression model for ordi-
nal response variables, see, for example, McCullagh (1980),
Walters et al. (2001), Abreu et al. (2008). The restrictive
parametric assumption underlying the PO model often is
unrealistic, however. The second is a NPO model that relaxes
this assumption at the cost of greater model complexity.

3.1. Proportional Odds Model

Denote logit(q) = log{q/(1 − q)}. The PO model that we con-
sidered assumes

logit
{
π+

y (X,A; αy, β)
} = αy + β1 X + β2 A + β3 X A,

for y = 0, . . . , 4, (1)

where α0 ≤ · · · ≤ α4, X = −0.5 for primary, X = 0.5 for sal-
vage, A = −0.5 for control and A = 0.5 for Nuprehab. This
model is parsimonious in that it accounts for all treatment
and subgroup effects using three parameters, β = (β1, β2, β3).

Let ny(X, A) denote the number of patients with a POM
score equal to y in subgroup X and treatment arm A. We
assume observations are mutually independent, so that the
likelihood function for the unknown model parameters (α, β)
is

L(α, β | D) =
∏

y∈{0,...,5}

∏
X∈{−.5,.5}

∏
A∈{−.5,.5}

πy(X, A; α, β)ny(X,A),

(2)
where

π0(X, A; α, β) = π+
0 (X, A; α0, β),

πy(X, A; α, β) = π+
y (X, A; αy, β) − π+

y−1(X, A; αy−1, β),

for y = 1, . . . , 4,

π5(X, A; α, β) = 1 − π+
4 (X, A; α4, β),

and π+
y (X, A; αy, β), y = 0, . . . , 4, is defined in (1).

We specify the prior distribution for (α, β) such that
p0(α, β) = p0(α) × p0(β), where

p0(α) = p0(α0) ×
4∏

s=1

p0(αy | αy−1)

and p0(β) = p0(β1) × p0(β2) × p0(β3).

The exact prior distributional forms that we assume are

α0 ∼ t5(α
∗
0, 2.5), αy | αy−1 ∼ t5(α

∗
y, 2.5)[αy−1, ∞],

for y = 1, 2, 3, 4,

β1 ∼ t5(β
∗
1, 2.5), β2 ∼ t5(0, 2.5), β3 ∼ t5(0, 2.5),

(3)

where we write p0(θ)[L, U] to denote that p0(θ) has support
on the interval [L, U]. The above prior restricts α0 ≤ · · · ≤ α4
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Table 1
Elicited prior mean POM score probabilities in the control

arm for primary and salvage patients

POM score

Subgroup 0 1 2 3 4 5

Primary 0.50 0.20 0.10 0.10 0.05 0.05
Salvage 0.30 0.25 0.10 0.10 0.10 0.15

so that 0 ≤ π+
1 (X, A; α1, β) ≤ · · · ≤ π+

4 (X, A; α4, β) ≤ 1 for all
X ∈ {−.5, .5} and A ∈ {−.5, .5}, which is necessary to ensure
that the probability model is admissible. Following the recom-
mendations of Ghosh et al. (2017), we specify t-distributions
with a scale of 2.5 and five degrees of freedom. This specifi-
cation places about 90% of the prior probability mass on the
range of values within 5 of the prior mean, while the heavy
tails do not preclude more extreme values should the data
demand this. Because an effect size of 5 corresponds to a shift
from 0.01 to 0.99 on the probability domain between sub-
groups or treatment arms, the proposed prior specification
allows the observed data to dominate posterior inference.

We specify non-zero prior means, {α∗
y}4y=0 and β∗

1, to reflect
the prior information that WH provided about the POM score
probabilities of each subgroup in the control arm, which we
report in Table 1. Using π∗

y(x) to denote the prior probabilities
that WH provided for the subgroup corresponding to X = x,
and π+,∗

y (x) = ∑y

�=1
π∗

�(x), we set

α∗
y =

[
log

(
π+,∗

y (P)

1 − π
+,∗
y (P)

)
+ log

(
π+,∗

y (S)

1 − π
+,∗
y (S)

)]/
2,

for y = 0, . . . , 4, and

β∗
1 =

[
4∑

y=0

log

(
π+,∗

y (P)

1 − π
+,∗
y (P)

)
− log

(
π+,∗

y (S)

1 − π
+,∗
y (S)

)]/
5.

Because we set the prior means for β2 and β3 equal to
zero, a priori U(π(P, N)) = U(π(P, C)) and U(π(S, N)) =
U(π(S, C)). Therefore, a posteriori a non-zero mean utility
difference between treatment arms in either subgroup will
reflect the observed data, and not the prior.

The PO model assumes that the regression coefficients, and
thus the log-odds ratios, do not differ with the level of the
response variable. This is a strong parametric assumption that
often is unrealistic in practice, including the present context.
The PO model likely is popular since it facilitates treatment
comparison in that a utility function need not be elicited from
the clinician(s). To see this, note that for y = 0, . . . , 4 and
X = x,

π+
y(x, N;αy, β)= π+

y (x, C;αy, β) exp{β2+β3 x}
1−π+

y (x,C;αy,β)+π+
y (x,C;αy,β) exp{β2+β3 x} ,

π+
y (x, N;αy, β) is monotonically increasing in (β1 + β3 x)

such that π+
y (x, N;αy, β) = π+

y (x, C;α, β) when (β1 + β3 x) =

0. Therefore, for any U(Y = 0) < · · · < U(Y = 5),

if (β1 + β3 x) > 0, then U(π(x, N;β, α)) > U(π(x, C;β, α)),

and conversely,

if (β1 + β3 x) < 0, then U(π(x, N;β, α)) < U(π(x, C;β, α)).

Consequently, when posterior inference is based on the PO
model defined in (1), the utility function is superfluous. How-
ever, when the actual response distributions do not satisfy
the PO assumption, for example, they are not stochastically
ordered, the PO model may be misleading.

3.2. Non-Proportional Odds Model

To relax the assumption required by the PO model, that the
log-odds ratios do not differ with the response level, we pro-
pose a hierarchical cumulative logistic regression model that
assumes

logit
{
π+

y (X, A; αy, γy)
} = αy + γ1,y X + γ2,y A + γ3,y X A,

for y = 0, . . . , 4, (4)

where X and A are defined similarly as for the PO model. In
contrast with the PO model, the NPO model in (4) allows
different log-odds ratios at each response level y. We assume
that observations are mutually independent such that the like-
lihood function for the unknown parameters (α, γ) has the
same general form (2) as for the PO model.

We specify a hierarchical prior for (α, γ) as follows,

α0 ∼ t5(α
∗
0, 2.5), αy|αy−1,γy−1,γy∼t5(α

∗
y, 2.5)[αy−1+0.5|γ1,y−1−γ1,y|

+ 0.5|γ2,y−1 − γ2,y| + 0.25|γ3,y−1 − γ3,y|, ∞], for y = 1, 2, 3, 4,

γ1,y | β1, σ1 ∼ N(β1, σ
2
1), β1 ∼ t5(β

∗
1, 2.5), σ1 ∼ N(0, 1)[0, ∞],

γ2,y | β2, σ2 ∼ N(β2, σ
2
2), β2 ∼ t5(0, 2.5), σ2 ∼ N(0, 1)[0, ∞],

γ3,y | β3, σ3 ∼ N(β3, σ
2
3), β3 ∼ t5(0, 2.5), σ3 ∼ N(0, 1)[0, ∞].

(5)

The prior constraints on {αy}4y=1 ensure that 0 ≤
π+

1 (X, A; α1, γ1) ≤ · · · ≤ π+
4 (X, A; α4, γ4) ≤ 1 for all

X ∈ {−0.5, 0.5} and A ∈ {−0.5, 0.5}. These inequalities
hold when

αy ≥ αy−1 + 0.5|γ1,y−1 − γ1,y| + 0.5|γ2,y−1 − γ2,y| + 0.25|γ3,y−1

− γ3,y|, y = 1, 2, 3, 4,

which is reflected in our specification of the prior. The hierar-
chical structure that we propose in (5) shrinks toward the PO
model defined in (1). As σ2

1 → 0, σ2
2 → 0, and σ2

3 → 0, then
γ1,y → β1, γ2,y → β2, and γ3,y → β3, for y = 0, . . . , 4, and thus
the log-odds ratios become invariant to the outcome level.
Essentially, the NPO model in (4) adds a layer of additional
structure to the PO model in (1) that allows each effect to
deviate from the PO assumption. By using half-normal dis-
tributions with a unit standard deviation for σ1, σ2, and σ3,
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a priori the proposed NPO model prefers small deviations
from the PO model. This type of hierarchical NPO model
was alluded to as an alternative for PO models in the discus-
sion of McKinley et al. (2015), but they neither implemented
nor fully specified such a model. Because the proposed NPO
model allows the log-odds ratios to differ with the response
level, the model-based estimates of the response distributions
need not be stochastically ordered. Consequently, when pos-
terior inference is based on the NPO model, our proposed
utility-based comparative testing criterion facilitates treat-
ment comparison.

3.3. Posterior Estimation

We carry out posterior estimation for the PO and NPO mod-
els using JAGS via the R package R2jags (Plummer, 2003).
Posterior convergence tends to be immediate and autocorre-
lation tends to be low, likely due, in part, to our balanced
specification of the design matrix. We use the posterior sam-
ples from JAGS to calculate the four posterior probabilities
required for the utility-based comparative testing criterion
given in Section 2. Because the mean utilities are tractable
functions of the unknown model parameters for both the PO
and NPO models, obtaining posterior samples of the mean
utilities is straightforward. We provide freely-available, user-
friendly R software for implementation, see Supplementary
Materials.

4. Design Considerations

Although we use a Bayesian probability model for statisti-
cal inference, we design the trial to ensure certain desirable
frequentist operating characteristics (OCs), for example, 0.80
power under the targeted alternative with 0.05 probability
of making a type I error. We are concerned with the sub-
group specific power and type I error probability. That is,
when Nuprehab reduces the number and severity of postoper-
ative complications for a particular subgroup by the targeted
amount, we want our design to have 0.80 probability of cor-
rectly declaring N superior to C for patients in that subgroup.
By contrast, when Nuprehab does not reduce the number and
severity of postoperative complications for a particular sub-
group, we want our design only to have 0.05 probability of
incorrectly declaring N superior or inferior to C for patients
in that subgroup.

We met with WH to determine a practical targeted dif-
ference between the treatment arms for primary and salvage
patients. During our discussion, WH expressed his desire for
the trial to be powered to detect a 75% reduction in POM
scores ≥3 in each subgroup. We then derived a targeted mean
utility difference corresponding to this 75% reduction in POM
scores ≥3 in each subgroup as follows. For the anticipated
POM score probabilities in the control arm for each subgroup,
a 75% reduction corresponds to shifts in the probability of
POM scores ≥3 from 0.20 to 0.05 for primary patients, and
from 0.35 to 0.09 for salvage patients. Under the proportional
odds assumption, a 75% reduction in POM scores ≥3 corre-
sponds to the cumulative POM score probabilities and mean
utilities in Table 2. We designed the trial to target mean util-
ity differences of 17.3 = 92.8 − 75.5 in primary patients and
27.6 = 87.6 − 60.0 in salvage patients.

Whitehead (1993) derived a sample size formula for a tra-
ditional fixed-sample design with ordinal outcomes based on
a PO model, which is

n=12
[
	−1(1 − α/2)+	−1(1 − β)

]2
/{

δ2
[
1 −

∑5

y=0
(π∗

y)
3
]}

,

where 	(x) is the standard normal distribution evaluated
at x, α, and β are the desired type I and II error proba-
bilities, δ is the targeted log-odds ratio, and π∗

y = Pr(Y = y)
under the targeted alternative. Although we use our utility-
based comparative testing criterion proposed in Section 2,
we demonstrated earlier that for the PO model this criterion
is equivalent to a particular contrast of the regression coef-
ficients that is also the basis for Whitehead’s sample size
formula. Viewing each subgroup as a separate trial, under
their respective targeted alternatives, we need to enroll 56
primary and 38 salvage patients for α = 0.05 and β = 0.20.
Assuming 60% of the enrollees will be primary patients, we
need to enroll 94 patients to achieve these subgroup sample
sizes. Because the PO model borrows strength across sub-
groups for estimating the intercept parameters, {αy}4y=0, we
expect the above sample size calculation to be conservative.
When the PO assumption holds, we expect our NPO model to
have less power than our PO model, though only slightly less
as we specify an informative half-standard normal distribution
as the prior for σ1, σ2 and σ3 in (5).

In the trial, patients are assigned to the two treatment
arms using stratified block randomization with blocks of size
four. Thus, for each block of four patients within each sub-
group, two patients will receive Nuprehab and two will receive
control. This will ensure that the treatment arms will have
similar numbers of patients from each subgroup throughout
the trial. Given the modest sample size requirements, one
interim analysis will be done half-way through the trial. At
this point, using our utility-based comparative testing cri-
terion, the design will decide whether to continue enrolling
patients from each subgroup. If one treatment is declared
superior to the other for a certain subgroup at the interim
analysis, then no additional patients from that subgroup will
be enrolled. Otherwise, enrollment of patients from that sub-
group will continue until the final analysis.

To control the probability of committing a type I error, we
use a maximum duration alpha-spending approach such that
f (t) = α × (t/Tmax)

3, where Tmax denotes the maximum trial
duration, see Jennison and Turnbull (1999,Section 7.2.3). To
do this, we set pcut = 	(z) where z corresponds to the rel-
evant threshold for the test statistic in a frequentist group
sequential analysis, which we calculate using the R package
gsDesign. With one interim analysis at the mid-point of the
trial, this gives probability thresholds at the interim and final
analyses of 0.997 and 0.976, respectively. Due to the asymp-
totic normality of the posterior distribution in general, see,
for example, Gelman et al. (2014,Section 4), these thresholds
control the type I error asymptotically. However, we use com-
puter simulation to verify that our design controls type I error
for the planned sample size. To be conservative, we aim to
enroll up to 100 patients. Given the anticipated accrual rate
of two patients per month, the interim and final analyses are
expected to be performed at 26 and 51 months, respectively.
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Table 2
Targeted alternative for each subgroup in terms of the cumulative POM score probabilities and the corresponding mean utility

POM score

Subgroup Treatment arm ≤0 ≤1 ≤2 ≤3 ≤4 Mean utility

Primary Nutritional prehabilitation 0.83 0.92 0.95 0.98 0.99 92.8
Primary Control 0.50 0.70 0.80 0.90 0.95 75.5
Salvage Nutritional prehabilitation 0.71 0.87 0.91 0.94 0.97 87.6
Salvage Control 0.30 0.55 0.65 0.75 0.85 60.0

5. Simulation Study

In this section, we describe a simulation study that we car-
ried out to evaluate and compare the frequentist OCs of the
proposed design, under each of the PO and NPO models
defined in Section 3. For further comparison, we considered a
one-size-fits-all design based on a PO model that assumes

logit
{
π+

y (X, A; αy, β)
} = αy + β1 X + β2 A, for y = 0, . . . , 4.

We specify the same prior distributions for α, β1, and β2 as
for the PO model defined in (3). For this design, using the
same two-stage group sequential structure that controls the
probability of committing a type I error at 0.05, if Prob(β2 >

0 | D) > pcut , then we declare N superior to C for patients in
both subgroups. Conversely, if Prob(β2 < 0 | D) > pcut , then
we declare N inferior to C for patients in both subgroups. We
compare the designs based on their probabilities of declaring
N superior (or inferior) to C across a range of scenarios. To
assess the decision criteria, we used 10,000 posterior samples
following 500 warm-up samples. For all three models, poste-
rior sampling took about 4 seconds for an interim analysis

with 50 observations, and about 7 seconds for a final analysis
with up to 100 observations.

Table 3 reports the true POM score distributions for each
scenario. We used the same POM score distribution to gen-
erate observations for the control arm in each subgroup for
every scenario, that is, P0 for primary patients and S0 for
salvage patients. Each patient had a 60% chance of belong-
ing to the primary subgroup throughout. Scenario 1 is the
complete null case where N provides no benefit to patients
in either subgroup. Scenarios 2 and 3 are treatment-subgroup
interaction cases where N provides the targeted benefit to
patients in one subgroup, and no benefit to patients in the
other subgroup. Scenario 4 is the complete alternative case
where N provides the targeted benefit to patients in both
subgroups. The PO assumption holds for Scenarios 1–4. Sce-
narios 5 and 6 are treatment-subgroup interaction cases, and
Scenario 7 is a complete alternative case, but the PO assump-
tion does not hold. In particular, the log-odds ratio comparing
treatment arms corresponding to POM scores ≤0 and ≤1 are
smaller than those corresponding to POM scores ≤2, ≤3, and
≤4, but the targeted 75% reduction in POM scores ≥3 is still
achieved in each subgroup. This reflects a benefit that greatly

Table 3
Simulation scenarios defined by the POM score distributions in each subgroup and treatment arm, and the corresponding

mean utility

POM score
True POM Score
distribution ≤0 ≤1 ≤2 ≤3 ≤4 Mean utility

P0 0.50 0.70 0.80 0.90 0.95 75.5
P1 0.83 0.92 0.95 0.98 0.99 92.8
P2 0.67 0.85 0.95 0.98 0.99 88.8

S0 0.30 0.55 0.65 0.75 0.85 60.0
S1 0.71 0.87 0.91 0.94 0.97 87.6
S2 0.53 0.80 0.91 0.94 0.97 82.8

POM score distribution Mean utility difference

Scenario P,C P,N S,C S,N P S

1 P0 P0 S0 S0 0.0 0.0
2 P0 P1 S0 S0 17.3 0.0
3 P0 P0 S0 S1 0.0 27.6
4 P0 P1 S0 S1 17.3 27.6
5 P0 P2 S0 S0 13.3 0.0
6 P0 P0 S0 S2 0.0 22.8
7 P0 P2 S0 S2 13.3 22.8
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Table 4
Simulation results. We report the proportion of simulated trials in which N was declared superior (inferior) to C, and the

average sample size. The correct decision is indicated in boldface. Reported figures are based on 5000 simulated trials.

Primary Salvage
Average

Design Sup. Inf. Sup. Inf. sample size

Scenario 1 (Complete null)

Traditional 0.022 0.025 0.022 0.025 99.7
Stratified PO 0.022 0.025 0.020 0.025 99.8
Stratified NPO 0.029 0.028 0.029 0.032 99.5

Scenario 2 (Partial null–PO)

Traditional 0.509 0.000 0.509 0.000 95.5
Stratified PO 0.774 0.000 0.038 0.017 94.9
Stratified NPO 0.763 0.000 0.048 0.022 93.7

Scenario 3 (Partial null–PO)

Traditional 0.417 0.000 0.417 0.000 96.6
Stratified PO 0.040 0.015 0.784 0.000 96.5
Stratified NPO 0.047 0.016 0.782 0.000 95.4

Scenario 4 (Complete alternative–PO)

Traditional 0.978 0.000 0.978 0.000 74.7
Stratified PO 0.841 0.000 0.850 0.000 87.4
Stratified NPO 0.842 0.000 0.853 0.000 84.6

Scenario 5 (Partial null–NPO)

Traditional 0.215 0.001 0.215 0.001 98.5
Stratified PO 0.314 0.001 0.032 0.019 98.9
Stratified NPO 0.347 0.001 0.043 0.025 98.0

Scenario 6 (Partial null–NPO)

Traditional 0.239 0.001 0.239 0.001 98.3
Stratified PO 0.036 0.019 0.462 0.000 98.7
Stratified NPO 0.042 0.021 0.503 0.000 97.7

Scenario 7 (Complete alternative–NPO)

Traditional 0.710 0.000 0.710 0.000 92.1
Stratified PO 0.387 0.000 0.528 0.000 96.6
Stratified NPO 0.434 0.000 0.584 0.000 94.8

reduces severe postoperative complications, but affects the
rate of minor postoperative complications to a lesser
degree.

Table 4 reports the proportion of trials in which N was
declared superior (inferior) to C, and the average sample size.
In Scenario 1, that is, the complete null case, all three designs
control the within subgroup probability of making a type I
error near 0.05. In Scenario 4, that is, the complete alternative
case, the two stratified designs have greater than 0.80 power
of declaring N superior to C in each subgroup. Excepting Sce-
nario 4, the three competing designs are unlikely to stop early,
which is reflected by the average sample sizes near 100. Com-
pared to the stratified design based on the PO model, when
the PO assumption holds, for example, Scenarios 2, 3, and 4,
the stratified design based on the more flexible NPO model

has similar power for declaring N superior to C in the ben-
efiting subgroup(s), and when the PO assumption does not
hold, for example, Scenarios 5, 6, and 7, the NPO model has
larger power of declaring N superior to C in the benefiting
subgroup(s). The power for each design is lower when the PO
assumption does not hold, which is not surprising as the mean
utility differences are smaller in these cases. Compared to the
traditional design, when both subgroups benefit, for example,
Scenarios 4 and 7, the stratified designs have less power for
declaring N superior to C in both subgroups, but when only
one subgroup benefits, for example, Scenarios 2, 3, 5, and 6;
the stratified designs have greater power of declaring N supe-
rior to C in the benefiting subgroup, and are far less likely
to incorrectly declare N superior to C in the non-benefiting
subgroup.
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6. Discussion

In this article, we have proposed a design for comparing treat-
ments in two prognostic subgroups based on ordinal outcomes.
The design was motivated by a trial comparing the effec-
tiveness of nutritional prehabilitation (NuPrehab) against the
standard of care for improving postoperative outcomes in pri-
mary and salvage patients who undergo esophageal resection.
We considered two Bayesian cumulative logistic regression
models for statistical inference, a proportional odds (PO)
model and a hierarchical non-proportional odds (NPO) model
that shrinks toward the PO model. Based on the results of our
simulation study, we determined that the design based on the
NPO model has preferable frequentist operating characteris-
tics. In particular, when the PO assumption is satisfied the
NPO model has similar probability of recommending NuPre-
hab in the benefiting subgroup(s), whereas when the PO
assumption is not satisfied the NPO model can have substan-
tially higher probability of recommending NuPrehab in the
benefiting subgroup(s).

We also compared our stratified medicine design with a
more traditional design that does not facilitate subgroup
specific recommendations. If both subgroups benefit from
NuPrehab, then the traditional design is more likely to recom-
mend its use in each subgroup. However, when only one of the
two subgroups benefits from NuPrehab, the traditional design
is less likely to recommend its use in the benefiting subgroup
and more likely to recommend its use in the non-benefiting
subgroup. Because substantial treatment effect heterogene-
ity between primary and salvage patients is plausible in the
motivating trial, we find the stratified medicine design based
on the NPO model appealing. In another context, if this
design is not appealing, then including a model selection
between a model with and a model without an interaction
term may provide an avenue for achieving a design with more
appealing operating characteristics. Another alternative is to
consider a prior for the interaction parameter(s) that facili-
tates borrowing substantial strength for the treatment effect
across subgroups, perhaps in a data-dependent manner. These
are avenues for future research.

7. Supplementary Materials

Web Appendices with a proof of Theorem 1 referenced in Sec-
tion 2, and R software referenced in Section 3 for implementing
the probability models and reproducing the simulation study
is available with this article at the Biometrics website on
Wiley Online Library.
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