
Biometrics , 2024, 80(4), ujae105 
https://do i.org/10.1093/b iomtc/ujae105 
Biome tric Me thodology 

ROMI: a randomized two-stage basket trial design to 

optimize doses for multiple indications 

Sh uqi Wa ng 

1 , Pete r F. Thall 1 , Ke n ta ro Takeda 

2 , Ying Yua n 

1 , * 

1 Depa rtme n t of B ios tatis tics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United St ate s, 2 Aste llas P h arm a Global 
D ev elopme n t Inc ., Northbr ook, IL 60062, United Sta tes 

* Corresponding author: Ying Yuan, Department of Biostat ist ics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United St ate s 
( yyua n@mda nde rson.org ). 

A B S T R A C T  

Opt imiz ing doses for mult iple indicat ions i s challeng ing. The pooled approach of finding a single optimal bio lo gical dos e (OBD) for all indi- 
ca tions ignor es tha t dose-r espon s e or dos e-toxicity curv es m ay differ betw e en indica tions, r esultin g in varyin g OBDs . Conv er sely, ind ication- 
spec i fic dose opt imizat ion often r equir es a l arge s amp le size. To address this ch allenge, w e propose a Randomize d tw o-stage baske t tri al design 

that Optimize s dose s in Mult iple Indicat ions (ROMI). In stage 1, for each indication, respon s e and toxicity ar e evalua ted for a high dose, which 

may be a previously obtained maximum t olerat ed dose, with a rule that stops accrual to indica tions wher e the high dose is unsafe or ineffe ctiv e. 
Indications not t erminat e d proc e e d to stage 2, where patie n ts a re ra ndomize d betw e e n the hi gh dose a nd a spec i fied lower dos e. A l at ent-clust er 
Bayesia n hie ra rchical model is e mplo yed to borrow inform ation betw e en indications, while considering the potenti al he tero geneity of OBD 

acr oss indica tions. Indica tion-spec i fic ut ilit ies are used to qua n tify respon s e-to xicity tr ade-offs. At the e nd of s tag e 2, for e ach indica tion with a t 
least one ac c e pt ab le dos e, the dos e with hi ghes t pos te rior mea n utility is sele cte d as optim al. Tw o v ersions of ROMI ar e pr esented, one using 
only stage 2 data for dose opt imizat ion and the other opt imiz ing doses using data from both st age s. Simul ation s show that both versions have 
desir able oper ating char acteristics c ompare d to designs that either ignore indications or optimize dose indepe nde n tly for each indication. 

KEY W OR DS : Bayesian hierarchical model; dose opt imizat ion; mult iple indicat ion s; Proj ect Optim us; ra ndomizat ion; ut ility. 
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1 I N T R O D U C T I O N 

onve n tional p has e I onco lo gy dos e-finding design s originally
er e motiva ted by trials of cyt ot oxic age n ts, whe r e the pr obabil-

ties of toxicity, πT (d) , and respon s e, πR (d) , increas e with dos e,
. This may not hold for targeted molecules or imm unothe ra-
ies, where πT (d) and πR (d) may take a v arie ty of different
h apes . For example, if the deliv ere d dose is sa tura ted in the pa-
ie n t, the πR (d) curve initially increases with d and then flat-
 ens t o a p l ateau. In such s e ttings, a p has e I maximum to lerated
ose (MTD) is undesirable because lower doses achieve simi-

ar πR (d) but re duc e πT (d) (Sachs et al., 2016 ). Thus, c onv en-
ion al ph ase I designs are unsuitable for most targeted age n ts
Shah et al., 2021 ; Thall et al., 2023b ). 
To addre ss the se issue s, the U.S. Food and Drug Admin-

stration (FDA) launched Project Optimus (U.S. Food and
rug Administration, 2022 ), and releas ed guid ance (U.S. Food

nd Drug Administration, 2024 ) to shift the dose-finding goal
rom ide n tifying a n MTD t o det e rmining a n optimal bio lo gi-
al dose (OBD) that maximizes a risk-be nefit tradeoff. Follo w -
ng the FDA’s re c ommendation to r andomiz e patie n ts a mong
os es, s everal dos e opt imizat ion desi gns, including ra ndomiza-

ion re c e n tly h av e be en propose d. Guo a nd Yua n ( 2023 ) pre-
e n ted a design (DROID) combining the dose-ranging frame-
 ork of non-onc o lo gy tri als with onco lo gy dos e-finding design s.
e c eiv e d: June 11, 2024; Revised: August 28, 2024; Accepted: Septe mbe r 10, 2024 
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ang et al. ( 2024 ) dev elope d a multip le-dos e r andomiz ed trial
MERIT ) desi gn that optimizes dos e bas ed on toxicity, and pro-
ided a n al gorithm t o det e rmine sa mple size. Thall et al. ( 2023a )
roposed a ge ne r aliz ed p has e I-II design that us es p has e I-II cri-
 eria t o ide n tify a s e t of candid ate dos es bas ed on respon s e and
o xicity, r andomiz es patients among the candidates, and selects
he best dose based on long-term tr ea tment s uc c ess . Zang et al.
 2024 ) extended that approach to a ge ne r aliz e d ph ase I -II -I I I de-
i gn, in tegrating it with a P h ase I I I trial to furthe r e nha nce the
esi gn’s efficie ncy. See Yua n et al. ( 2024 ) for a review. 
Ide n t ifying opt imal doses for mult iple indicat ions is more dif -

cult because one m us t accoun t for the possibility that the indi-
ations m ay h av e diffe re n t dose-outc ome curv es, a nd th us diffe r-
 n t OBD s. T he FD A’s guidance indicat es tha t “Differ ent dosages
ay be needed in diffe re n t dis eas e s e ttings or onco lo g ic di s eas es

ased on pote n tial diffe re nces in tumor biology, patie n t popula-
ion, tr ea tme n t s e t ting, and concurr ent therapies, among other
actors ” ( U.S. Food and Drug Administration, 2024 ). While a
 trai gh tforwa rd a pproach is to optimize dose indepe nde n tly for
ach indication, this may lead to a very large s amp le size. 
This pa pe r w as motiv ated b y a n ea rly p has e tri al at MD An-

e rson Ca nce r Ce n te r to ide n tify OBDs of a n a n ti -C D137 ag o-
ist in c ombin a tion with pembr o liz um ab and n ab-paclit axe l for

r ea ting met ast atic s o l id tumor s . Be cause the agonist induc es re-
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
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spon s es in CD8 + T-cells, it was expe cte d to c omple me n t a nd
e nha nce the efficacy of the immune checkpoint blockade pem-
bro liz um ab. D os es of pembro liz um ab and n ab-paclit axe l were
fixed at 200 mg and 220 mg/m 

2 , respe ctiv ely. The MTD of the
C D137 ag onis t was es tablished in a n all -come r dose escalation
trial with sev eral indications . The inv es ti gator was in te res ted in
conducting a dose optimization trial by randomizing patie n ts be-
tw e e n the MTD a nd a lowe r dos e. Four indication s we re s tud -
ied: es op hag e al and gastric cancer, head and neck cancer, Her2-
ne gativ e breast cancer, and ov ari an canc er. Sinc e the tr ea tment
mi gh t be ineffe ctiv e in some indications, one aim was to mini-
mize the s amp le sizes of indications with poor res ults . 

To efficie n tly ide n tify a n OBD for each indication in this s e t-
ting, the two-stage basket trial design, ROMI, described in this
pa pe r was dev elope d. D enote indications by I 1 , · · · , I K and in-
dex st age s by s = 1 , 2 . We con sider s e t tings wher e an MTD of a
new age n t h as be en provide d, pos sib ly bas ed on a n ea rlie r p has e
I trial in one I k or all -come rs. The goal is to ide n tify a n OBD for
each I k based on binary toxicity and respon s e. Stage 1 of ROMI
focus es on s cree ning a hi gh dose, d H 

, which is the MTD that has
be en provide d, in each I k . Ac crual t o an I k is t erminat ed if it is
found that πR (d H 

) is unacce pt ably low or πT (d H 

) is unaccept-
ably hi gh, compa red to fixed limits spec i fied for I k . In stage 2, the
goal is to select an OBD for each I k , with patie n ts ra ndomized
betw e en d H 

and a prespec i fied lower dose, d L , while doing safety
and futility monitoring for each dose in each I k . To select OBDs,
a ROMI design r equir es elicited n ume rical ut ilit ies of the four
pos sib le (toxicity, respon s e) out come pairs t o comput e a deci-
sion cr iter ion . A Bayesi an hierarchical model is ass ume d th at al-
lows the I k ’s to h av e diffe re n t OBDs, a nd bor rows infor mation
betw e en the I k ’s . For each I k , the OBD is the ac c e pt ab le dos e with
maxim um pos te rior mea n utility. We prese n t tw o v ersions of the
ROMI desi gn. The firs t ve rsion uses only the ra ndomized s tage 2
d ata to s ele ct OBDs . The se c ond v ersion us es the d a ta fr om both
st age s, based on an extended hierarchical model ac c ounting for
pos sib le bi as due to drift of d H 

effects be tw e e n s t age s 1 and 2. 
In Section 2 , we prese n t the firs t ve rsion of the ROMI desi gn,

including the hie ra rchical mode l, de s cription s of each s tage, a n
i l lus trative exa mple, a nd guide line s for de termining s amp le size.
Section 3 prese n ts the se c ond v e rsion of the ROMI desi gn, in-
cluding a model elaboration to ac c ount for possible drift of d H 

effe cts betw e e n s t age s . Se ction 4 r eports simula tions tha t evalu-
a te the opera tin g chara cteristics of the ROMI designs and com-
pa re the m to desi gn s that choos e one dos e for all I k ’s or conduct
s eparate tri als within the I k ’s. We clos e with a dis cus sion in Sec-
tion 5 . 

2 N OTAT I O N  A N D  D E S I G N E L E M E N TS 

While a ROMI design can ac c ommoda te mor e th an tw o doses,
for simplicity and to control overall s amp le size, we wi l l restrict
a t te n tion to the case of two doses, { d L , d H 

} . A ROMI design with
more than two doses is described in Web A ppendix A . We con-
sider s e t tings wher e dos e ev aluation is bas e d on bin ary toxicity,
 T , a nd bina ry respon s e, Y R . In stage 1, all patie n ts a r e tr ea ted

with d H 

, and I k ’s for which d H 

is un s afe or ineffe ctiv e are scre ene d
out. I k ’s passing stage 1 screening go to stage 2, where patie n ts
a re ra ndomize d betw e e n d H 

a nd d L , a nd each dos e is s cre ene d in
each I k . At the end of stage 2, for each I k with at least one ac c ept-
ab le dos e, the OBD is defined as the dose maximizing pos te rior 
mean utility. 

The re mainde r of this section wi l l describe the firs t ve rsion of 
ROMI, where only stage 2 da ta ar e used to choose OBD s. T he 
se c ond v e rsion, which uses both the s tage 1 a nd s t age 2 dat a to
choose OBDs, is prese n ted in Section 3 . 

2.1 Stage 1 dose screening 

Denote the maximum stage s s amp le size for dose d � in I k by 
N �,k,s . Because only d H 

is evaluated in stage 1, N L,k, 1 = 0 for 
all k. For I k , when the maximum s amp le size N H,k, 1 of d H 

in 

stage 1 is rea ched, the a cce pt ability of d H 

is evaluated using 
tw o scre ening rules, c onstructe d using the approach of Thall 
and Rus s ell ( 1998 ) and Zhou et al. ( 2017 ), which is used by 
n ume rous desi gn s. Le t X T,H,k, 1 de note the n umbe r of toxici - 
ties and X R,H,k, 1 the number of respon s es among the N H,k, 1 pa- 
tie n ts with indication I k in stage 1. Denote the stage 1 count data 
by D 1 = { (N H,k, 1 , X T,H,k, 1 , X R,H,k, 1 ) , k = 1 , . . . , K} , and the
m argin al outc ome probabilities π j,�,k = Pr (Y j = 1 | d � , I k ) for 
j = R, T , � = H, L , and k = 1 , · · · , K. For each I k , πT,k de-
notes a fixed maximum acce pt able toxicity probability, and πR,k 
a fixed minimum respon s e pro babil ity, el icited from the clini- 
cal inves ti gators. The values of πT,k may be the same or similar 
acr oss indica tions, but values of πR,k may va ry subs ta n tially with 

k due to qualit ative ly diffe re n t definitions of respon s e a nd the r- 
ape utic expect a tions acr oss the I k ’s . Ac crual to I k is t erminat ed
at the end of stage 1 if d H 

is found likely to be exc essiv ely toxic, 
using the pos te rior s afe ty cr iter ion 

Pr (πT,H,k > πT,k | D 1 ) > c T,k, 1 , (1) 

or if it is found likely to be ineffica cious, usin g the pos te rior fu- 
tility cr iter ion 

Pr (πR,H,k < πR,k | D 1 ) > c R,k, 1 . (2) 

The cutoffs c T,k, 1 and c R,k, 1 are fixed at values such as 0.90 or 
0.95, calibrated by prelimina ry sim ul ation s to obtain good op- 
e rating cha racte ris tics, including a hi gh probability of s topping 
accrual to indications where d H 

is too toxic, with π true 
T,H,k > πT,k , 

or inefficacious, with π true 
R,H,k < πR,k . 

To evaluat e post erior probabilities in the stage 1 monitoring 
rules ( 1 ) and ( 2 ), we assume bet a - binomial mode ls, with non- 
inform ativ e priors π j,H,k ∼ Beta (0 . 1 , 0 . 1) , and li keli hoods 

X j,H,k, 1 | π j,H,k ∼ B i nom (N H,k, 1 , π j,H,k ) , j = R, T. 

By con ju gacy, the pos te riors a re 

π j,H,k | D 1 ∼ Beta (0 . 1 + X j,H,k, 1 , 0 . 1 + N H,k, 1 − X j,H,k, 1 ) . 

The monitoring rules also may be applied before the end of stage 
1, for example, after evaluating N H,k, 1 / 2 patie n ts in I k , and at 
N H,k, 1 . Each I k with ac c e pt able re sponse and toxicity rates for d H 

at the end of stage 1 is mov e d to stage 2, otherwise no dose is 
chosen for I k . 

2.2 Stage 2 dose opt imizat ion 

In stage 2, patients are r andomiz e d betw e en d H 

and d L . The aim 

is to ide n tify a n OBD for each I k , base d on indication-spe c i fic 
ut ilit ies U k (y T , y R ) for y T , y R ∈ { 0 , 1 } and k = 1 , · · · , K . For

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae105#supplementary-data
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TABLE 1 Example of indication-spec i fic utilities for tw o bin ary 
outc omes . 

Indication 1 

Y R = 1 Y R = 0 
Y T = 0 U 1 (0 , 1) = 100 U 1 (0 , 0) = 40 
Y T = 1 U 1 (1 , 1) = 60 U 1 (1 , 0) = 0 

Indication 2 

Y R = 1 Y R = 0 
Y T = 0 U 2 (0 , 1) = 100 U 2 (0 , 0) = 20 
Y T = 1 U 2 (1 , 1) = 80 U 2 (1 , 0) = 0 

Indication 3 

Y R = 1 Y R = 0 
Y T = 0 U 3 (0 , 1) = 100 U 3 (0 , 0) = 60 
Y T = 1 U 3 (1 , 1) = 40 U 3 (1 , 0) = 0 

Indication 4 

Y R = 1 Y R = 0 
Y T = 0 U 4 (0 , 1) = 100 U 4 (0 , 0) = 30 
Y T = 1 U 4 (1 , 1) = 70 U 4 (1 , 0) = 0 
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ach I k , one may e st ablish U k (y T , y R ) by s e tting U k (0 , 1) = 100
or the best outcome (no toxicity, respon s e), U k (1 , 0) = 0 for
he w orst outc ome (toxicity, no respon s e), and eliciting U k (0 , 0)
nd U k (1 , 1) from the p hysici an s. Tab le 1 gives a n ume rical ex-
mple of ut ilit ies for four indicat ions. Ut ility -b as ed p has e I-II
esi gns a re give n b y Thall a nd Nguye n ( 2012 ), Guo a nd Yua n
 2017 ), and Zhou et al. ( 2019 ), among many others. 
To do utility -b as ed dos e opt imizat ion for each I k based on the

 andomiz ed stage 2 data, denote the joint e lement ary outcome
robabilities for dose d � in I k by 

p �,k (y T , y R ) = Pr (Y T = y T , Y R = y R | d � , I k ) , 

for y T , y R ∈ { 0 , 1 } . (3) 

he mean utility of d � in I k is the probability wei gh ted ave rage 

U �,k = 

1 ∑ 

y T =0 

1 ∑ 

y R =0 

U k (y T , y R ) p �,k (y T , y R ) . (4) 

ollowing the utility -b ased BOIN12 design (Lin et al., 2020 ),
e take a quasi-binominal l ikel ihood a pproach b y defining
 ta nda rdized mea n ut ilit ies Q �,k = U �,k / 100 , called “quasi-
rob abilities” beca use they take values betw e e n 0 a nd 1. For each
 � and I k , let X �,k (y T , y R ) denote the number of patients in stage
 who expe rie nce the join t outcome (y T , y R ) , a nd de note the
 e ctor of counts for the four e lement ary outcome s by 

X �,k = ( X �,k (0 , 1) , X �,k (0 , 0) , X �,k (1 , 1) , X �,k (1 , 0) ) , (5) 

ith corresponding joint probability v e ctor p �,k . Thus, X �,k ∼
ultinom i al(N �,k, 2 , p �,k ) for each d � and I k . Given the stage 2

ata, we define normed utility-wei gh ted ave rage coun ts 

Z �,k = 

1 

100 

1 ∑ 

y T =0 

1 ∑ 

y R =0 

U k ( y T , y R ) X �,k ( y T , y R ) . 

ach Z �,k has domain (0, N �,k, 2 ), and may take non-in tege r val -
es . It m ay be in te rpreted as the n umbe r of “quasi -eve n ts” a mong

he N �,k, 2 patie n ts with indica tion I k tr ea ted with d � in stage 2.
iven the quasi-probability Q �,k , we denote the distribution of
 �,k induc e d b y the m ultinomial dis tribution of X �,k by Z �,k ∼
uasi − Binom (N �,k, 2 , Q �,k ) . 
To use the stage 2 data to sele ct OBDs, w e proc e e d as follows .
e ac c ommod ate he tero geneity among indications and facili-

a te borr owing informa tion betw e e n indications b y in troducing
 v e ctor of la t ent clus t er va ri ab les ζ = (ζ1 , · · · , ζK ) (Chu and
ua n, 2018a ; Che n a nd Le e, 2019 ; Take d a e t al., 2022 ), where ζk
 I[ Q H,k ≤ Q L,k ] , the indicator that d L has hi ghe r mea n utility

han d H 

in I k . Let N(μ, σ 2 ) denote a normal distribution with
ea n μ a nd va ria nce σ 2 , a nd IG (a, b) a n inve rse ga mma dis tri -

ution with pa ra mete rs a a nd b. Re call th at Z �,k is the n umbe r
f quasi -eve n ts a nd Q �,k is the quasi-probability for I k and d � in
 tage 2. De note θk = logit (Q L,k ) - logit (Q H,k ) , the d L -v ers us-
 H 

effect in I k , where logit (q ) = log { q/ (1 − q ) } for q ∈ [0 , 1] .
hus, θk is a function of U L,k , U H,k , and the probability v e ctors
 p �,k } . For the stage 2 data, we assume the Bayesian hierarchical

odel 

Z �,k | Q �,k ∼ Q uasi −B i nom (N �,k, 2 , Q �,k ) , 

for � = L, H, k = 1 , · · · , K , 

θk | ζk = g ∼ iid N(μg , τ
2 ) , for g = 0 , 1 , 

and each k = 1 , · · · , K . (6)

or priors, we assume 

μg ∼ N( ̃  μg , ̃  τ 2 
g ) , for g = 0 , 1 , and τ 2 ∼ IG (a, b) , 

 H,k ∼ Beta (c, d) , ζk ∼ Bernoulli (q ) , and q ∼ Beta (e, f ) , 

ith ̃  μg , ̃  τ 2 
g , a, b, c, d, e, f as fixed hype rpa ra mete rs . Sinc e p L,k

nd p H,k contribut e t o the stage 2 l ikel ihood only through the
uasi-probabilities Q L,k and Q H,k , one only ne e ds to spec i fy pri-
rs on these to complete the model. Since normal priors are spec-

fied on θk for each k, the model is comp le ted by spec i fying priors
n the Q H,k ’s. 
Hype rpa ra mete rs may be e st ablished b y a pplying the ap-

roach of Thall and Nguyen ( 2012 ) and Guo and Yuan ( 2017 ).
o do this, expe cte d respon s e and toxicity pro babilities are
licited from the clinici an s for each c ombin ation (d � , I k ) . These
rovide a basis for calculating a range of utility diffe re nces be-
w e en d L and d H 

on the logit scale, that is, for the θk ’s. One
ay s e t ˜ μ0 to the mean in the subs e t whe re θk < 0 , a nd s e t
 1 to the mean in the subs e t where θk ≥ 0 . Once ˜ μ0 and ˜ μ1 

 re es tablishe d, one m ay ass ume a coefficie n t of va riation of
, which s e ts ̃  τg = 2 μg (Guo a nd Yua n, 2017 ). The shrinkage
a ra mete r τ 2 ca n be assi gned a n inve rse ga mm a prior, s uch
s, IG( 0 . 0001 , 0 . 0001 ). Gelman ( 2006 ) and Chu and Yuan
 2018b ) noted that the IG( ε, ε) with ε → 0 does not r epr e-
e n t a non-inform ativ e prior, but in stead impos es strong shrink-
ge when the number of elements in the hierar chy (indica tions in
ur context) is small (eg, ≤ 6 ) unless the hete roge neity betw e en

ndica tions is extr e mely la rge. Unde r our model, this pote n tial
ro b le m is miti gated b y using ζ to pa rt it ion the indicat ions into
 

0 and I 

1 . Since indications in each of these subsets are likely to
e homogeneous, the strong shrinkage effect of the prior often
 nha nces the model’s pe rforma nce. As a s en sitivity an alysis, w e
onsider a Half-Cauchy distribution prior for τ 2 in Section 4.3 . 
For each I k where d H 

pas s es the stage 1 screening, in stage 2
atie n ts a re ra ndomize d betw e e n d H 

a nd d L . If R in te rim scree n-
ng a nalyses a re ca rried out for I k in stage 2, let n �,k, 2 ,r denote the
n te rim sa mple size for the k th indication at the r th stage 2 look.
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Let D 2 ,r denote the da ta a t r th in te rim look, a nd D 2 the final data
from stage 2. At the r th in te rim a nalysis, (Y T , Y R ) a r e evalua ted
for all patie n ts treated at each dose, and a dose is t erminat ed if it is
exc essiv ely toxic pe r crite ria ( 1 ) or ineffe ctiv e pe r crite ria ( 2 ). To
re duc e bias, futility monitoring re lie s s o lely on the stage 2 data.
In con tras t, s afe ty monitoring poo ls the stage 1 a nd s t age 2 dat a,
assuming toxicity probabilities will not change between st age s. 

At the end of stage 2, for each I k , when the maximum stage 2
s amp le sizes N L,k, 2 and N H,k, 2 are reached for the two doses, a
fin al an alysi s i s c onducte d t o det ermine the OBD. The t oxicity
monitoring rule ( 1 ) is applied for each dose based on D 1 ∪ D 2 ,
and futility monitoring is done based on the stage 2 data using
the rule Pr (πR,�,k < πR,k |D 2 ) > c R,k, 2 . For I k , the OBD is the
dos e that pas s e s both the toxicity and re spon s e require me n ts a nd
maximizes the pos te rior mea n s ta nda rd ized util ity, estim ate d un-
der the Bayesian hierarchical model. The dose optimization cri-
terion in I k is denoted by 

OBD k = argmax 
� = L,H 

̂ Q �,k 

= argmax 
� = L,H 

E{ Q �,k | D 2 } . (7)

2.3 Graphic a l i l lust ratio n of trial conduct 
Figur e 1 pr esents a schematic of trial conduct using the ROMI
design to determine the OBD, if it exists, betw e en tw o doses d L
and d H 

for each of four dis eas e subtypes (indication s). In stage
1, all patie n ts a r e tr ea t ed with d H 

, and t oxicity and respon s e are
monitored for each I k . Due to an un ac c e pt ably low re sponse rate
with d H 

, I 1 is dropped, while I 2 , I 3 , and I 4 are mov e d forward to
s tage 2, whe r e pa tie n ts a re ra ndomize d betw e e n d H 

a nd d L . A fi-
n al an alysi s i s c onducte d to evaluate each dose’s sa fety, re sponse
rate, a nd mea n utility. For I 2 , both doses h av e ac c e pt able toxicity
and respon s e rates, with d L sele cte d as the OBD based on pos-
te rior mea n utility. For I 3 a nd I 4 , d H 

is sele cte d as the OBD due
to its hi ghe r pos te rior mea n utility. Th us, the ROMI desi gn does
not ide n tify a n OBD for I 1 , ide n tifies d L as the OBD for I 2 , and
ide n tifies d H 

as the OBD for I 3 and I 4 . 

2.4 S ample s ize determinat ion 

The s amp le size for each I k in stage 1 of a ROMI design may be
det ermined t o control the false ne gativ e de cision probability of
the futility stopping rule ( 2 ). To do this, suppose that, for each
I k , a desirably high respon s e pro bability πR,k + δR,k can be spec-
ified, say for δR,k = 0.15, 0.20, or 0.25. The cut-off c R,k, 1 and
s amp le size N H,k, 1 may be calibrated to ge the r b y sim ul ation s o
tha t, for true r espon s e pro bability π true 

R,k = πR,k + δR,k , the fals e
ne gativ e early stopping probability is no la rge r tha n a spec i fied
sm all value, s uch as 0.10 or 0.05. In practic e, one m ay fix c R,k, 1 at
a l arge v alue, such as 0.90 or 0.95, and do a monotone search for
the s malle s t N H,k, 1 that e ns ures the spe c i fie d false ne gativ e early
stopp ing probab ility. 

To determine the sample size for each indication in stage 2, one
ca n firs t a pply the MERIT desi gn (Ya ng et al., 2024 ), which gives
a structured approach for calculating s amp le size in randomized
p has e II dos e optimization studies. To do this, for each I k , one
m ay be gin by spe c i fying the lower limit πR,k , a desirably high re-
spon s e pro bability πR,k + δR,k with δR,k = 0.15, 0.20, or 0.25 as
above, a n uppe r toxicity probabil ity l imit πT,k , and a desirably 
low toxicity probability πT,k − δT,k . One then spec i fies a maxi- 
mum lev el, s uch as 0.10 or 0.15, for the pr obability of incorr ectly 
ac c epting an undesirable dose (type I error rate), and a minimum 

lev el, s uch as 0.60, 0.70, or 0.80, for the probability of c orre ctly 
choosing an ac c e pt ab le dos e (power). The MERIT s amp le size 
N 

M 

�,k, 2 for dose d � and indication I k may be determined by a nu- 
me rical sea rch, to find the s malle st value th at c ontrols the type I 
error while a chievin g the desire d pow er. Sinc e MERIT ass umes 
equal randomization, for a ROMI design, one may restrict the 
ra ndomization b y requiring N 

M 

H,k, 2 = N 

M 

L,k, 2 . Softwa re for calcu- 
l ating s amp le size using the MERIT design is av ail ab le at Tri al
Design ( 2024 ). 

The MERIT design method may be used to determine 
the s amp le size for each indication indepe nde n tly. Compa red 

to a r andomiz ed tri al as suming homo g eneity, ho wever, the 
ROMI design allows infor mation bor rowing betw e en indica- 
tions, which m ay re duc e the p l anne d ov erall s amp le size while
sti l l preserving a given level of a ccura cy in selectin g the OBDs 
at the end of the trial. To exploit this, the stage 2 sample sizes 
{ N 

M 

L,k, 2 } and { N 

M 

H,k, 2 } obtained from the MERIT design may 
be adjus ted b y sim ulating the ROMI desi gn to achieve the de- 
sire d lev e l of re l iabil ity in the final dos e s election s. For exam-
p le, with K = 2 indication s and initi al stage 2 s amp le sizes 
(N 

M 

�, 1 , 2 , N 

M 

�, 2 , 2 ) = (30 , 25) , simul ation s of the trial using the 
ROMI desi gn ca n be c onducte d with spe c i fied s tage 1 sa mple
sizes { N H,k, 1 } , determined as described a bove, and se veral com- 
binations of stage 2 sample sizes, for example, (N �, 1 , 2 , N �, 2 , 2 ) = 

(30 , 25) , (25 , 25) , (20 , 25) , (30 , 20) , (25 , 20) , (20 , 20) , to
as s es s ope rating cha racte ris tics. The sa mple size chose n for 
stage 2 is based on the tradeoff between the a ccura cy of the fi- 
n al OBD sele ction for each I k and total trial sample size N = ∑ K 

k=1 (N H,k, 1 + N H,k, 2 + N L,k, 2 ) . If desired, the { N H,k, 1 } val- 
ues may be adjusted and the trial simul ation s repeated. 

3 U S I N G DATA  F R O M B OT H  STA G E S  

Combining data on d H 

from both stage 1 a nd s tage 2 may im- 
prov e the estim ate of d H 

-v ers us- d L effe cts for the OBD sele ction 

in each indication. This is s trai gh tforwa rd whe n it is reas onab le 
to ass ume th a t the da ta fr om st age s 1 and 2 a re excha ng e able:
simp ly poo l the d a ta fr om both st age s when calculating X �,k in 

( 5 ). How ev er, sinc e there is no randomization in stage 1, and pa- 
tie n ts a re ra ndomized to d H 

or d L in stage 2, there might be drift 
in the effect of d H 

on the outcomes between st age s, pos sib ly due 
t o t e mporal cha nges in patie n t cha racte ris tics or unknown fac- 
tors. In this case, simply pooling the data results in bias. 

To include stage 1 data on d H 

and ac c ount for potential tem- 
poral drif t , we exte nd the Bayesia n hie ra r chical model, r eferr ed 

to as version 2 of ROMI. The joint distributions p H,k (y R , y T ) , 
defined ea rlie r, a r e elabora t ed t o be stage-spec i fic distribu- 
tions p H,k,s (y R , y T ) for s = 1 and 2 and all I k . This pro- 
duce s st age-spec i fic mean ut ilit ies U H,k, 1 and U H,k, 2 , quasi- 
probabilities Q H,k, 1 and Q H,k, 2 , and betw e en-dose effe cts θk,s = 

logit (Q L,k,s ) − logit (Q H,k,s ) . Since no patie n ts a r e tr ea ted with 

d L in stage 1, how ev e r, for the s tage 2 selection only θk, 2 is rele- 
va n t for each I k . We ac c ount for the stage by letting Z �,k,s denote 
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FIGURE 1 A ROMI design example with four indications and two doses, d H 

and d L . OBDs are indicated by green circles. 
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the n umbe r of quasi -eve n ts a nd Q �,k,s the s ta nda rd ized util ity for
I k at dose d � in stage s = 1 or 2. Because d L is not evaluated in
stag e 1, e ach Z L,k, 1 = 0 . Thus, for d L , only Z L, 1 , 2 , · · · , Z L,K , 2
are defined and used in the stage 2 de cisions . 

To mode l st age 1 dat a on d H 

a nd s t age 2 dat a on { d L , d H 

} , we
assume a n exte nded Bayesia n hie ra r chical model tha t ac c ounts
for the use of stage 1 quasi-event values Z H,k, 1 with the stage 2
values Z L,k, 2 and Z H,k, 2 . For each I k , denoting the drift pa ra me-
ter βk = logit (Q H,k, 1 ) − logit (Q H,k, 2 ) , we assume 

Z H,k, 1 | Q H,k, 1 ∼ Q uasi −B i nom (N H,k, 1 , Q H,k, 1 ) , ( Stage1 ) 

Z �,k, 2 | Q �,k, 2 ∼ Q uasi −B i nom (N �,k, 2 , Q �,k, 2 ) , ( Stage2 ) 

for � = L, H, 

θk, 2 = logit (Q L,k, 2 ) − logit (Q H,k, 2 ) , 

θk, 2 | ζk = g ∼ iid N(μg , τ
2 ) , for g = 0 , 1 , (8)

with priors 

βk ∼ ωN(0 , σ 2 
spike ) + (1 − ω) N(0 , σ 2 

slab ) , 

μg ∼ N( ̃  μg , ̃  τ 2 
g ) , for g = 0 , 1 , τ 2 ∼ IG (a, b) , 

and ω ∼ U [0 , 1] , 

Q H,k, 2 ∼ Beta (c, d) , ζk ∼ Bernoulli (q ) , 

and q ∼ Beta (e, f ) . 

The v ari ance σ 2 
spike should be s e t to a small value, such as 0.01, to

c onc e n trate the prior spike’s mass near 0, while σ 2 
slab should be

m uch la rge r tha n σ 2 
spike to allow a broade r ra nge of non-ze ro val -

ues for βk . Following Gelman et al. ( 2008 ) and Guo and Yuan
( 2017 ), w e re gular ize the pr ior s o that the typical v ari ation of an
input v ari ab le is unlikely to caus e a dram atic ch ange in the re-
spon s e v ari ab le. For examp le, βk = 1 corresponds to be tw e en-
stage drift in Q �,k from 0.30 to 0.54. Based on the utility of I 1 in
Table 1 , a change of 0.24 in Q �,k corresponds to large shifts of 0.6
in πT,�,k or of 0.4 in πR,�,k . Since it is very unlikely that between-
stage drift would induce such la rge cha nges in the π j,�,k ’s, we s e t
σ 2 

slab = 0 . 5 

2 to ensure that a change in βk from one s ta nda rd de-
vi ation (s d) below to one s d above the mean is unlikely to caus e
a change of Q �,k exceeding 0.24. 

D e cision rules for version 2 of ROMI are as in Section 2.2 .
The only diffe re nc e is th at the pos te rior mea n of the s ta nda rd -
ized utility is estim ate d under the extended model ( 8 ), using data
from both st age s and ac c ounting for pos sib le drift of d H 

effects
betw e e n s t age s. 

4 S I M U L AT I O N  ST U D I E S  

4.1 S imulat ion sett ings 
This section reports simulations to evalua te opera tin g chara c-
te ris tics of the ROMI desi gns, a nd desi gns that eithe r i gnore
the I k ’s or conduct separate trials within I k ’s. We consider set-
tin gs with K = 4 , usin g dose a c c e pt abil ity l imits πT,k = 0 . 40
and πR,k = 0 . 25 for all k. For each I k , the maxim um s tage 1 sam-
ple size is 14, and the maximum stage 2 s amp le size per dose is
20, with one in te rim a nalysis pe rformed whe n the sa mple size
for each dose reaches 10. We c onstructe d sc en arios by varying
the n umbe r of effe ctiv e I k ’s and the OBD for each I k . The util-
ity tab le us e d for all I k ’s c orresponds to th at giv en for I 1 in Ta-
ble 1 . To cha racte rize as s oci ation be tw e e n Y R a nd Y T , for each
dose � = L, H and I k , given m argin al probabilities πT,�,k and 

πR,�,k , we s o lved for the j oint pro babilities { p �,k (y T , y R ) } so
that 

φ = 

p �,k (0 , 0) p �,k (1 , 1) − p �,k (1 , 0) p �,k (0 , 1) 
{ πR,�,k (1 − πR,�,k ) πT,�,k (1 − πT,�,k ) } 1 / 2 = . 25 . 

We s e t ˜ μ0 = −0 . 05 , ˜ μ1 = 0 . 05 , ˜ τ0 = ̃  τ1 = c = d = e =
f = 0 . 1 , τ 2 ∼ IG (0 . 0001 , 0 . 0001) , σ 2 

spike = 0 . 01 , and
σ 2 

slab = 0 . 5 

2 . 
We denote the fir st ver sion of ROMI design, which uses only 

st age 2 dat a for dose opt imizat ion, by R OMI -v1, and the sec- 
ond version, which uses da ta fr om both stages to optimize dose, 
by R OMI -v2. To as s es s the impact of clus te rin g I k ’s showin g
simil ar dos e-outcome pro babilities, we define the R OMI -v1-NC 

design to h av e the same structure as R OMI -v1 but using the 
Bayesia n hie ra rchical model without clus te ring. The firs t com- 
parator is the Pool design, which ignores I k ’s and determines 
the same OBD for all I k ’s based on the utility under a bet a - 
binominal mode l, Z � ∼ B i nom ( 

∑ 

k n �,k , Q � ) with a con ju gate 
prior Q � ∼ Beta (0 . 1 , 0 . 1) . The se c ond c omparator is the Inde-
pe nde n t desi gn, a two-dose ra ndomized desi gn done indepe n- 
de n tly for each I k , with the utility of each arm modeled using a 
bet a - binominal mode l, Z �,k ∼ B i nom (n �,k , Q �,k ) with a conju- 
gate prior Q �,k ∼ Beta (0 . 1 , 0 . 1) . 

For a fair comparison, the total maximum s amp le size for all 
design s w as s e t to N = 216 . In the Indepe nde n t desi gn, patie n ts
within each { I 1 , I 2 , I 3 , I 4 } were r andomiz e d betw e en the tw o
doses, with a maximum of 27 patie n ts pe r dose. For each I k , one 
in te rim a n alysis was c onducte d afte r 14 patie n ts. For the Pool
desi gn, one in te rim a n alysis was c onducte d whe n 108 patie n ts
wer e evalua ted. The same interim stopping rules were used for 
all designs, with cutoffs set to c T,k, 1 = c R,k, 1 = c R,k, 2 = 0 . 95 . A 

total of 2000 simul ation s w ere c onducte d for each c ombin ation 

of design and sc en ario. 

4.2 S imulat ion results 
Table 2 s umm a rizes sim ula tion r e sults of the Pool, Inde pe nde n t, 
R OMI -v1-NC, R OMI -v1, and R OMI -v2 designs across 11 sce- 
n arios, ass uming no drift in the effect of d H 

betw e e n s t age s. In
sc en ario 1, where no doses are effe ctiv e for any I k , the Pool design 

c orre ctly stops all trials with no OBD sele cte d for any I k 100% of 
the time. For each I k , the s topping pe rce n tage with no dose se- 
le cte d is 100 − ( % select d H 

+ % select d L ). The stopping per- 
ce n tage is about 94% for the Indepe nde n t desi gn a nd 98% for 
designs using the R OMI fr amework, including R OMI -v1-NC, 
R OMI -v1, and R OMI -v2. Compared to the Pool and Indepen- 
de n t desi gns, the ROMI desi gns provide subs ta n ti al s amp le size
sav ings, w ith about 42 fewer subjects than the Pool design and 

56 few er th an the Independent design. This large sample size re- 
duction for the ROMI designs in sc en ario 1, where neither dose 
is effe ctiv e, is due to the in te rim scree ning rule for d H 

a pplied b y
the ROMI designs after stage 1. 

In sc en arios 2 and 3, only I 1 responds to treatme n t. In sce na rio 

2, d H 

is the true OBD for I 1 . R OMI -v2 a nd Indepe nde n t de-
sign h av e the hi ghes t OBD c orre ct sele ction perc ent age s (CSPs), 



Biometrics , 2024, Vol. 80, No. 4 � 7 

TA BLE 2 Simulat ion results for the Pool , Indepe nde n t, R OMI -v1-NC, R OMI -v1, and R OMI -v2 designs. 

Probability (%) of selecting the dose as OBD 

I 1 I 2 I 3 I 4 
Design d H 

d L d H 

d L d H 

d L d H 

d L CSP N 

Sc en ario 1 
π true 

T,�,k 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 
π true 

R,�,k 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
U 

true 
�,k 27 31 27 31 27 31 27 31 

Pool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 113 
Indepe nde n t 2.1 3.3 2.5 4.0 2.5 2.8 2.9 3.3 NA 127 
R OMI -v1-NC 1.3 0.9 0.5 0.6 0.6 0.7 1.3 0.7 NA 71 
R OMI -v1 1.3 0.9 0.5 0.6 0.6 0.7 1.3 0.7 NA 71 
R OMI -v2 1.3 0.9 0.5 0.7 0.7 0.8 1.3 0.8 NA 71 
Sc en ario 2 

π true 
T,�,k 0.2 0.15 0.40 0.30 0.40 0.30 0.40 0.30 

π true 
R,�,k 0.4 0.3 0.05 0.05 0.05 0.05 0.05 0.05 

U 

true 
�,k 56 52 27 31 27 31 27 31 

Pool 5.5 0.8 5.5 0.8 5.5 0.8 5.5 0.8 5.5 128 
Indepe nde n t 69.8 30.2 2.6 3.1 2.8 2.8 3.0 3.3 69.8 149 
R OMI -v1-NC 64.5 35.0 0.7 1.0 0.9 0.8 1.0 0.7 64.5 107 
R OMI -v1 65.0 34.4 0.7 1.0 0.9 0.8 1.0 0.7 65.0 107 
R OMI -v2 69.7 29.8 0.7 1.1 0.9 0.8 1.0 0.8 69.7 107 
Sc en ario 3 

π true 
T,�,k 0.25 0.15 0.40 0.30 0.40 0.30 0.40 0.30 

π true 
R,�,k 0.4 0.40 0.05 0.05 0.05 0.05 0.05 0.05 

U 

true 
�,k 54 58 27 31 27 31 27 31 

Pool 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.3 135 
Indepe nde n t 32.1 68.0 2.4 3.3 2.7 3.3 2.6 3.1 68.0 149 
R OMI -v1-NC 30.6 68.2 0.9 0.5 0.9 0.6 1.1 1.0 68.2 107 
R OMI -v1 30.6 68.3 0.9 0.5 0.9 0.6 1.1 1.0 68.3 107 
R OMI -v2 30.0 68.9 0.9 0.6 0.9 0.7 1.2 1.0 68.9 107 
Sc en ario 4 

π true 
T,�,k 0.2 0.15 0.40 0.30 0.40 0.30 0.20 0.15 

π true 
R,�,k 0.4 0.3 0.05 0.05 0.05 0.05 0.40 0.30 

U 

true 
�,k 56 52 27 31 27 31 56 52 

Pool 63.0 24.4 63.0 24.4 63.0 24.4 63.0 24.4 63.0 185 
Indepe nde n t 68.7 31.3 2.4 3.2 2.7 3.3 69.3 30.7 69.0 170 
R OMI -v1-NC 72.6 27.0 0.7 0.8 1.0 1.1 70.6 28.7 71.6 143 
R OMI -v1 70.3 29.2 0.7 0.8 1.0 1.1 66.5 32.7 68.4 143 
R OMI -v2 72.6 26.9 0.8 0.8 1.0 1.1 68.8 30.5 70.7 143 
Sc en ario 5 

π true 
T,�,k 0.25 0.15 0.40 0.30 0.40 0.30 0.25 0.15 

π true 
R,�,k 0.4 0.4 0.05 0.05 0.05 0.05 0.40 0.40 

U 

true 
�,k 54 58 27 31 27 31 54 58 

Pool 24.4 71.7 24.4 71.7 24.4 71.7 24.4 71.7 71.7 202 
Indepe nde n t 32.1 67.9 2.4 2.9 2.7 3.3 30.3 69.8 68.8 171 
R OMI -v1-NC 27.2 71.7 0.5 1.2 1.1 0.9 27.4 71.6 71.7 143 
R OMI -v1 31.4 67.4 0.5 1.2 1.1 0.9 29.9 69.2 68.3 143 
R OMI -v2 31.0 68.0 0.5 1.2 1.1 0.9 28.6 70.5 69.2 143 
Sc en ario 6 

π true 
T,�,k 0.40 0.30 0.20 0.15 0.20 0.15 0.20 0.15 

π true 
R,�,k 0.05 0.05 0.40 0.30 0.40 0.30 0.40 0.30 

U 

true 
�,k 27 31 56 52 56 52 56 52 

Pool 71.4 28.6 71.4 28.6 71.4 28.6 71.4 28.6 71.4 210 
Indepe nde n t 3.3 3.2 70.1 29.9 67.9 32.1 68.2 31.9 68.7 192 
R OMI -v1-NC 1.2 1.0 74.0 25.4 73.9 25.2 73.2 26.0 73.7 178 
R OMI -v1 1.2 1.0 69.6 29.8 68.0 31.0 67.8 31.3 68.5 178 
R OMI -v2 1.2 1.0 72.0 27.4 70.8 28.3 71.1 28.1 71.3 178 
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TA BLE 2 Cont inued 

Probability (%) of selecting the dose as OBD 

I 1 I 2 I 3 I 4 
Design d H 

d L d H 

d L d H 

d L d H 

d L CSP N 

Sc en ario 7 
π true 

T,�,k 0.40 0.30 0.25 0.15 0.25 0.15 0.25 0.15 

π true 
R,�,k 0.05 0.05 0.40 0.40 0.40 0.40 0.40 0.40 

U 

true 
�,k 27 31 54 58 54 58 54 58 

Pool 14.8 85.3 14.8 85.3 14.8 85.3 14.8 85.3 85.3 216 
Indepe nde n t 2.7 3.4 31.8 68.2 32.0 68.0 31.2 68.9 68.4 194 
R OMI -v1-NC 1.3 1.0 25.4 73.9 24.9 74.0 23.9 75.2 74.4 179 
R OMI -v1 1.3 1.0 31.2 68.0 30.2 68.6 28.0 71.2 69.3 179 
R OMI -v2 1.3 0.9 28.6 70.7 29.0 69.9 26.0 73.2 71.2 179 
Sc en ario 8 

π true 
T,�,k 0.40 0.30 0.20 0.15 0.25 0.15 0.25 0.15 

π true 
R,�,k 0.05 0.05 0.40 0.30 0.4 0.40 0.40 0.40 

U 

true 
�,k 27 31 56 52 54 58 54 58 

Pool 30.4 69.7 30.4 69.7 30.4 69.7 30.4 69.7 56.6 215 
Indepe nde n t 2.7 3.6 68.5 31.5 31.3 68.7 32.2 67.8 68.3 193 
R OMI -v1-NC 1.4 1.0 47.7 51.6 36.2 62.7 35.8 63.3 57.9 179 
R OMI -v1 1.4 1.0 61.4 38.0 33.7 65.2 33.0 66.2 64.3 179 
R OMI -v2 1.4 1.0 62.5 36.9 32.3 66.7 31.1 68.1 65.7 179 
Sc en ario 9 

π true 
T,�,k 0.2 0.15 0.2 0.15 0.2 0.15 0.2 0.15 

π true 
R,�,k 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 

U 

true 
�,k 56 52 56 52 56 52 56 52 

Pool 81.8 18.2 81.8 18.2 81.8 18.2 81.8 18.2 81.8 216 
Indepe nde n t 69.9 30.1 69.4 30.6 68.6 31.5 67.3 32.7 68.8 214 
R OMI -v1-NC 77.8 21.6 78.3 21.1 77.7 21.4 77.4 21.8 77.8 214 
R OMI -v1 71.7 27.8 70.9 28.6 70.8 28.4 71.2 28.0 71.2 214 
R OMI -v2 75.1 24.4 74.4 25.1 74.4 24.7 74.0 25.2 74.5 214 
Sc en ario 10 

π true 
T,�,k 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 

π true 
R,�,k 0.40 0.40 0.40 0.40 0.40 0.40 0.4 0.40 

U 

true 
�,k 54 58 54 58 54 58 54 58 

Pool 16.9 83.1 16.9 83.1 16.9 83.1 16.9 83.1 83.1 216 
Indepe nde n t 33.0 67.0 31.6 68.4 33.2 66.8 31.3 68.7 67.7 216 
R OMI -v1-NC 21.3 77.6 21.3 77.8 22.0 76.8 22.2 76.9 77.3 214 
R OMI -v1 27.0 71.9 27.0 72.2 29.0 69.8 27.0 72.2 71.5 214 
R OMI -v2 26.0 72.9 24.0 75.2 26.5 72.4 24.3 74.9 73.8 214 
Sc en ario 11 

π true 
T,�,k 0.20 0.15 0.20 0.15 0.25 0.15 0.25 0.15 

π true 
R,�,k 0.40 0.30 0.40 0.30 0.40 0.40 0.40 0.40 

U 

true 
�,k 56 52 56 52 54 58 54 58 

Pool 50.9 49.1 50.9 49.1 50.9 49.1 50.9 49.1 50.0 216 
Indepe nde n t 69.2 30.8 68.9 31.1 30.2 69.8 31.6 68.5 69.1 215 
R OMI -v1-NC 54.9 44.4 54.3 45.1 43.8 55.1 42.4 56.7 55.3 214 
R OMI -v1 63.4 36.0 62.1 37.4 36.0 62.9 36.0 63.1 62.9 214 
R OMI -v2 64.3 35.1 64.2 35.2 35.6 63.4 35.2 64.0 64.0 214 
Ab brevi ation s: CSP: correct selection pe rce n tage; N: average total s amp le size. 
Values for the true OBD of each indication are given in boldface. Doses are indexed by � = L, H and indications by k = 1 , 2 , 3 , 4 . 
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69.7% and 69.8%, respe ctiv ely. The R OMI -v1 and R OMI -v1-
NC designs h av e CS Ps 4.7% and 5.2% low er th an R OMI -v2. The
Pool design, which ignor es indica tions, stopped 93.7% of trials
with a CSP of just 5.5%. Compared to the Independent design,
the ROMI designs save 42 subjects on ave rage. A simila r sa m-
p le size s aving is s een in s c en ario 3, where the true OBD for I 1
i s d L . In thi s cas e, the Poo l design h as a v ery low CS P of 4.3%,
while the Indepe nde n t a nd ROMI desi gns h av e similar CS Ps of 
around 68%. 

In sc en arios 4 and 5, two indications respond to the tr ea tme n t. 
In sc en ario 4, where the true OBD is d H 

for I 1 and I 4 , the ROMI 
desi gns outpe rform the Pool a nd Indepe nde n t desi gns in both 

CSP a nd sa mple size saving. R OMI -v2 has a CSP of 70.7%, com- 
parable to the highest CSP of 71.6% achieved by R OMI -v1-NC. 
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TA BLE 3 Sensit ivity a nalysis of ROMI desi gns w ith efficac y drift of d H 

effe cts betw e e n s tage 1 a nd s tage 2. 

Probability (%) of selecting the dose as OBD 

I 1 I 2 I 3 I 4 
Design d H 

d L d H 

d L d H 

d L d H 

d L CSP 

Positive Drift 
Sc en ario 9 

R OMI -v1 72.0 27.0 71.8 27.0 71.3 27.2 72.1 26.6 71.8 
R OMI -v2 72.1 26.9 71.5 27.4 72.1 26.4 71.7 27.0 71.8 

Sc en ario 10 
R OMI -v1 28.3 70.3 27.2 71.7 27.4 70.7 27.0 71.3 71.0 
R OMI -v2 23.6 75.0 22.2 76.8 22.8 75.2 21.9 76.4 75.8 

Sc en ario 11 
R OMI -v1 62.8 36.0 61.6 37.2 35.4 62.7 36.6 61.7 62.2 
R OMI -v2 60.6 38.3 59.9 38.9 31.7 66.5 31.5 66.8 63.4 

Nega t ive Drift 
Sc en ario 9 

R OMI -v1 71.8 27.8 71.4 28.1 71.7 27.8 71.9 27.5 71.7 
R OMI -v2 77.3 22.4 77.4 22.1 78.3 21.2 77.4 22.0 77.6 

Sc en ario 10 
R OMI -v1 27.4 71.9 26.4 72.8 28.4 71.0 25.6 73.9 72.4 
R OMI -v2 28.2 71.1 25.1 74.2 27.4 72.0 25.4 74.1 72.8 

Sc en ario 11 
R OMI -v1 64.9 34.6 62.2 37.4 36.1 63.2 36.8 62.6 63.2 
R OMI -v2 68.5 31.1 67.0 32.6 39.5 59.9 38.9 60.6 64.0 

Ab brevi ation s: CSP: correct selection pe rce n tage. 
Values for the true OBD of each indication are given in boldface. Doses are indexed by � = L, H and indications by k = 1 , 2 , 3 , 4 . 
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t is about 2% hi ghe r tha n R OMI -v1 and Independent, and 7.7%
i ghe r tha n Pool. The ROMI desi gn s s a ve an a verage of 27 sub-

e cts c ompare d to the Indepe nde n t desi gn a nd 42 s ubje cts c om-
ared to the Pool design. In sc en ario 5, where d L is the true OBD,
OMI design s s av e 28 s ubje cts c ompare d to the Indepe nde n t
esi gn a nd up to 59 c ompare d to the Poo l design . The CSP of
 OMI -v2 is 69.2%, and R OMI -v1 is 68.3%, similar to Indepen-
e n t but about 2.5% lower than R OMI -v1-NC and Pool, both
ith a CSP of 71.7%. Since the Pool design ignor es indica tions

nd selects the same OBD for all I k , it has high false-positive rates
f selecting ineffective doses for non-responsive indications. In
c en ario 4, Poo l s ele cts an ineffe ctiv e dose for I 2 and I 3 87.4% of
he time, rising to 96.1% in sc en ario 5. In c ontrast, the probabil-
ty of selecting an ineffective dose for these indications is 5.6%

ith Indepe nde n t a nd 1.8% with ROMI desi gns. 
Acros s s c en arios 6, 7, and 8, where I 1 is in s en sitive to tr ea t-
e n t, the ROMI desi gn s s a ve an a v erage of 14 s ubje cts c om-

ared to the Independent design and 35 c ompare d to the Pool
esign . In s c en ario 6, d H 

is the true OBD for I 2 , I 3 , and I 4 ,
hile in sc en ario 7, d L is the OBD. Under he tero geneous s ce-
a rios whe r e some indica tions ar e non-r esponsive and respon-
ive I k ’s share the same OBD, R OMI -v1-NC, and R OMI -v2 show
a rge r CSPs compared to the Indepe nde n t desi gn, with increases
f 5% and 2.5% in sc en ario 6, and 6% and 2.8% in sc en ario
. These improve me n ts show the be nefit of borrowing infor-
a tion acr oss indica tions. R OMI -v1 has a CSP similar to the

ndepe nde n t desi gn . The Poo l design is effe ctiv e in sele cting
he OBD for responsive indications but fails to terminate in-
ffe ctiv e doses for non-responsive I 1 , with a 100% chance of
hoosing an ineffe ctiv e dose. R OMI -v1-NC has the hi ghes t CSP
ue to the strong shrinkage but underperforms in sc en arios
he re the OBD va ries acr oss r esponsive indica tions, s uch as sc e-
 ario 8. In sc en ario 8, d H 

is the true OBD for I 2 , while d L is the
rue OBD for I 3 and I 4 . The CSPs of R OMI -v1 and R OMI -v2
 re 4% a nd 2.6% lowe r tha n the Indepe nde n t desi gn but outpe r-
orm R OMI -v1-NC, with CS P improv e me n ts of 6.4% a nd 7.8%,
espe ctiv ely. Thi s show s the be nefit of clus te ring indications un-
er the Bayesian hierarchical model in R OMI -v1 and R OMI -v2.
he Pool design has the lowest CSP, about 56.6%, and the high-

st probability of selecting an ineffective dose for I 1 . 
The adva n tage of infor mation bor ro wing incre ases with the
 umbe r of responsive indications, shown by sc en arios 9, 10, and
1, wher e all indica tions r espond to tr ea tme n t, res ulting in c om-
arab le s amp le sizes across all designs. In homogeneous sc en ar-

os where OBDs are consistent across indications, the Pool and
OMI designs h av e higher CS Ps th an the Independent design.
or examp le, in s c en ario 9, R OMI -v1 shows a 2.4% increase

n CSP, R OMI -v2 a 5.7% increase, and R OMI -v1-NC a 9% in-
r ease, compar ed to Indepe nde n t. The Pool design has the high-
st CSP of 81.8%, es s e n ti ally becaus e its homo geneity as sump-
ion ha ppe ns to be c orre ct in this sc en ario. In the he tero geneous 2 
c en ar ios, the OBD var ies acr oss r esponsive indica tions. For ex-
mp le, in s c en ario 11, d H 

is the true OBD for I 1 a nd I 2 , a nd
 L is the true OBD for I 3 and I 4 . R OMI -v1 and R OMI -v2 h av e
SPs about 5% lower than the Independent design, but outper-

orm R OMI -v1-NC b y 9%. The Pool desi gn shows the poor-
s t pe rforma nce, correctly selecting the OBD with only a 50%
SP. 
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FIG URE 2 Fo r three in dicatio ns , (a) c orre ct sele ction perc ent age s and (b) average total s amp le sizes for the Pool design that ignores 
indications, Indepe nde n t desi gn th at c onducts s eparate tri als within indication s, R OMI -v1 with no indication clus te ring, R OMI -v1 with 

clus te ring, a nd R OMI -v2 with clus te ring. In homoge ne ous sc en arios, OBDs are identical across indications. Hete roge ne ous 1 sc en arios include 
some non- re sponsive indications and identical OBDs among responsive indications. In Hete roge ne ous 2 sc en arios, OBDs vary among 
r esponsive indica tions. 
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4.3 Sen s it ivity analyses 
We examined the perform anc e of R OMI -v1 and R OMI -v2 in the
presence of πR,H,k drift for d H 

betw e e n s t age s, exploring the im-
pacts of both positive and negative drifts. Table 3 gives simula-
tion results where πR,H,k increased by 0.025 from stage 1 to stage
2 in the upper portion of the tab le, and decreas ed by 0.025 in the
lower portion. This incr ement corr esponds to 25% of the max-
im um πR,H,k − πR,L,k diffe re nce of .10 in our sim ul ation s e t-
tin gs. In ea ch of sc en arios 9–11, all I k ’s are responsive to both d H 

a nd d L . Compa red to R OMI -v1, R OMI -v2 de mons trates simila r
or better a ccura cy in selecting OBD across all sc en arios . Thus,
R OMI -v2 does a good j o b of handling drift in respon s e rates be-
tw e e n s t age s. 
We als o ev aluate d the perform anc e of the ROMI designs for a 
trial with either K = 3 or K = 6 indications, i l lustrated in Fig- 
ures 2 and 3 . The ROMI designs re duc e sample size c ompare d 

to the Pool a nd Indepe nde n t desi gns whe n some I k ’s are non- 
re sponsive to treatme n t. As expe cte d, the Pool design h as the 
hi ghes t CSP whe n all indications h av e the s ame dos e-outcome 
curves but performs very poorly when the dose-outc ome curv es 
v ary acros s indication s. R OMI -v2 shows similar or superior 
OBD sele ction c ompare d to R OMI -v1. For trials with K = 3 

indications, R OMI -v2 is comparable to the Indepe nde n t de- 
si gn a nd outpe rforms R OMI -v1-NC whe n OBDs va ry acr oss r e- 
spon sive indication s in accurately s ele cting OBDs . The perfor- 
m anc e of R OMI -v1 and R OMI -v2 improves as the number of 
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FIG URE 3 Fo r six in dicatio ns , (a) c orre ct sele ction perc ent age s and (b) average total s amp le sizes for the Pool design tha t ignor es indica tions, 
Indepe nde n t desi gn that conducts separate trials within indications, R OMI -v1 with no indication clus te ring, R OMI -v1 with clus te ring, a nd 

R OMI -v2 with clus te ring. In homogeneous sc en arios, OBDs are identical across indications. Hete roge ne ous 1 sc en arios include some 
non- re spon sive indication s and identical OBDs among responsive indications. In Hete roge ne ous 2 sc en arios, OBDs vary among responsive 
indications. 
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ndica tions incr eases . In sc en ario B2, where K = 6 indications
r e r esponsiv e, the CS P values of the R OMI -v1 and R OMI -v2
esi gns a re 9.4% a nd 12.6% hi ghe r tha n the Indepe nde n t desi gn,
espe ctiv ely. D etaile d res ults are provided in Web Appendix B . 

As a final s en sitivity an alysis, w e evaluate d the ROMI designs,
ss uming th at the shrinkage pa ra mete r follows a Half-Cauchy
is tribution. Sim ula tion r esults ar e give n in Web Appe ndix C .

hile this provides greater ro bustnes s, it re duc es inform ation
orrowing. 

5 D I S  C U S S  I O N 

OMI effe ctiv ely ide n tifies a nd discon tin ues indications not re-
ponsive to tr ea tme n t, subs ta n ti ally reducing s amp le size com-
ared to designs that ignore indications or optimize dose inde-
e nde n tly for each indication. When dose-outc ome curv es dif-
er betw e en indications, ROMI ac curately ide n t ifies indicat ion-

spec i fic OBD s. T he version of ROMI that uses information from
oth st age s shows simila r or hi ghe r a ccura cy in OBD selection
 ompare d to the version that ignores stage 1 data on d H 

. Com-
are d to c onducting s eparate tri als within indication s, the s ec-
nd version of ROMI has gr ea ter a ccura cy in ide n tifying the
BD if it is the same across indications. When the OBDs vary

cr oss indica tions, the a ccura cy of the ROMI design is slightly
ow er th an the Independent design, but it sti l l outperforms
he design with ROMI structure but does not cluster similar
ndication s. For a l a rge r n umbe r of indications, the pe rforma nce
f the ROMI design improv es . 
As a future study, it may be worthwhile to develop a Bayesian

ie ra rchical model ac c ounting for c oun t va riable s X �,k . St age 1

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae105#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae105#supplementary-data
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screening of ROMI is based on the assumption that d H 

cannot
be less effe ctiv e th an d L . If this is invalid, stage 1 can be remov e d,
with randomization for all indications throughout. In addition
to efficacy and toxicity, e ndpoin ts such as p harmaco kine tics or
quality of life, may be included in the final OBD s election . 
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