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ABSTRACT

Optimizing doses for multiple indications is challenging. The pooled approach of finding a single optimal biological dose (OBD) for all indi-
cations ignores that dose-response or dose-toxicity curves may differ between indications, resulting in varying OBDs. Conversely, indication-
specific dose optimization often requires a large sample size. To address this challenge, we propose a Randomized two-stage basket trial design
that Optimizes doses in Multiple Indications (ROMI). In stage 1, for each indication, response and toxicity are evaluated for a high dose, which
may be a previously obtained maximum tolerated dose, with a rule that stops accrual to indications where the high dose is unsafe or ineffective.
Indications not terminated proceed to stage 2, where patients are randomized between the high dose and a specified lower dose. A latent-cluster
Bayesian hierarchical model is employed to borrow information between indications, while considering the potential heterogeneity of OBD
across indications. Indication-specific utilities are used to quantify response-toxicity trade-offs. At the end of stage 2, for each indication with at
least one acceptable dose, the dose with highest posterior mean utility is selected as optimal. Two versions of ROMI are presented, one using
only stage 2 data for dose optimization and the other optimizing doses using data from both stages. Simulations show that both versions have

desirable operating characteristics compared to designs that either ignore indications or optimize dose independently for each indication.

KEYWORDS: Bayesian hierarchical model; dose optimization; multiple indications; Project Optimus; randomization; utility.

1 INTRODUCTION

Conventional phase I oncology dose-finding designs originally
were motivated by trials of cytotoxic agents, where the probabil-
ities of toxicity, 777 (d), and response, 7z (d), increase with dose,
d. This may not hold for targeted molecules or immunothera-
pies, where 77 (d) and 7 (d) may take a variety of different
shapes. For example, if the delivered dose is saturated in the pa-
tient, the 77z (d) curve initially increases with d and then flat-
tens to a plateau. In such settings, a phase I maximum tolerated
dose (MTD) is undesirable because lower doses achieve simi-
lar 75 (d) but reduce w7 (d) (Sachs et al., 2016). Thus, conven-
tional phase I designs are unsuitable for most targeted agents
(Shah et al.,, 2021; Thall et al., 2023b).

To address these issues, the U.S. Food and Drug Admin-
istration (FDA) launched Project Optimus (U.S. Food and
Drug Administration, 2022), and released guidance (U.S. Food
and Drug Administration, 2024) to shift the dose-finding goal
from identifying an MTD to determining an optimal biologi-
cal dose (OBD) that maximizes a risk-benefit tradeoff. Follow-
ing the FDA’s recommendation to randomize patients among
doses, several dose optimization designs, including randomiza-
tion recently have been proposed. Guo and Yuan (2023) pre-
sented a design (DROID) combining the dose-ranging frame-
work of non-oncology trials with oncology dose-finding designs.

Yang et al. (2024) developed a multiple-dose randomized trial
(MERIT) design that optimizes dose based on toxicity, and pro-
vided an algorithm to determine sample size. Thall et al. (2023a)
proposed a generalized phase I-II design that uses phase I-II cri-
teria to identify a set of candidate doses based on response and
toxicity, randomizes patients among the candidates, and selects
the best dose based on long-term treatment success. Zang et al.
(2024) extended that approach to a generalized phase I-II-III de-
sign, integrating it with a Phase III trial to further enhance the
design’s efficiency. See Yuan et al. (2024 ) for a review.

Identifying optimal doses for multiple indications is more dif-
ficult because one must account for the possibility that the indi-
cations may have different dose-outcome curves, and thus differ-
ent OBDs. The FDA’s guidance indicates that “Different dosages
may be needed in different disease settings or oncologic diseases
based on potential differences in tumor biology, patient popula-
tion, treatment setting, and concurrent therapies, among other
factors” (U.S. Food and Drug Administration, 2024). While a
straightforward approach is to optimize dose independently for
each indication, this may lead to a very large sample size.

This paper was motivated by an early phase trial at MD An-
derson Cancer Center to identify OBDs of an anti-CD137 ago-
nist in combination with pembrolizumab and nab-paclitaxel for
treating metastatic solid tumors. Because the agonist induces re-
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sponses in CD8+ T-cells, it was expected to complement and
enhance the efficacy of the immune checkpoint blockade pem-
brolizumab. Doses of pembrolizumab and nab-paclitaxel were
fixed at 200 mg and 220 mg/m?, respectively. The MTD of the
CD137 agonist was established in an all-comer dose escalation
trial with several indications. The investigator was interested in
conducting a dose optimization trial by randomizing patients be-
tween the MTD and a lower dose. Four indications were stud-
ied: esophageal and gastric cancer, head and neck cancer, Her2-
negative breast cancer, and ovarian cancer. Since the treatment
might be ineffective in some indications, one aim was to mini-
mize the sample sizes of indications with poor results.

To efficiently identify an OBD for each indication in this set-
ting, the two-stage basket trial design, ROMI, described in this
paper was developed. Denote indications by I, - - - , Ix and in-
dex stages by s = 1, 2. We consider settings where an MTD of a
new agent has been provided, possibly based on an earlier phase
I trial in one I or all-comers. The goal is to identify an OBD for
each Ii based on binary toxicity and response. Stage 1 of ROMI
focuses on screening a high dose, dy, which is the MTD that has
been provided, in each I;. Accrual to an I is terminated if it is
found that g (dgr ) is unacceptably low or 77 (dy ) is unaccept-
ably high, compared to fixed limits specified for I;. In stage 2, the
goal is to select an OBD for each I, with patients randomized
between dy; and a prespecified lower dose, d;,, while doing safety
and futility monitoring for each dose in each I;. To select OBDs,
a ROMI design requires elicited numerical utilities of the four
possible (toxicity, response) outcome pairs to compute a deci-
sion criterion. A Bayesian hierarchical model is assumed that al-
lows the Ii’s to have different OBDs, and borrows information
between the Ii’s. For each It, the OBD is the acceptable dose with
maximum posterior mean utility. We present two versions of the
ROMI design. The first version uses only the randomized stage 2
data to select OBDs. The second version uses the data from both
stages, based on an extended hierarchical model accounting for
possible bias due to drift of dy effects between stages 1 and 2.

In Section 2, we present the first version of the ROMI design,
including the hierarchical model, descriptions of each stage, an
illustrative example, and guidelines for determining sample size.
Section 3 presents the second version of the ROMI design, in-
cluding a model elaboration to account for possible drift of dy
effects between stages. Section 4 reports simulations that evalu-
ate the operating characteristics of the ROMI designs and com-
pare them to designs that choose one dose for all I}’s or conduct
separate trials within the I’s. We close with a discussion in Sec-
tion S.

2 NOTATION AND DESIGN ELEMENTS

While a ROMI design can accommodate more than two doses,
for simplicity and to control overall sample size, we will restrict
attention to the case of two doses, {d;,, di;}. AROMI design with
more than two doses is described in Web Appendix A. We con-
sider settings where dose evaluation is based on binary toxicity,
Yr, and binary response, Y. In stage 1, all patients are treated
with dg, and I ’s for which dy; is unsafe or ineffective are screened
out. Ii’s passing stage 1 screening go to stage 2, where patients
are randomized between dy and d;, and each dose is screened in

each I;. At the end of stage 2, for each I with at least one accept-
able dose, the OBD is defined as the dose maximizing posterior
mean utility.

The remainder of this section will describe the first version of
ROMI, where only stage 2 data are used to choose OBDs. The
second version, which uses both the stage 1 and stage 2 data to
choose OBDs, is presented in Section 3.

2.1 Stagel dose screening

Denote the maximum stage s sample size for dose d; in I by
Ny ks- Because only dyy is evaluated in stage 1, Ny ¢ = 0 for
all k. For I, when the maximum sample size Ny ;1 of dy in
stage 1 is reached, the acceptability of dyy is evaluated using
two screening rules, constructed using the approach of Thall
and Russell (1998) and Zhou et al. (2017), which is used by
numerous designs. Let Xt g ¢ 1 denote the number of toxici-
ties and Xy g .1 the number of responses among the Ny ¢ 1 pa-
tients with indication Iy in stage 1. Denote the stage 1 count data
byDl = {(NH,k,l’ XT,H,k,hXR,H,k,l)7 k= 1, ey K}, and the
marginal outcome probabilities 77; ¢ = Pr(Y; = 1 | d, I.) for
j=R,T,£=H,Landk=1,---,K. For each I, 1 de-
notes a fixed maximum acceptable toxicity probability, and 7 , ,
a fixed minimum response probability, elicited from the clini-
cal investigators. The values of 777 1 may be the same or similar
across indications, but values of 7 ; , may vary substantially with
k due to qualitatively different definitions of response and ther-
apeutic expectations across the I’s. Accrual to I is terminated
at the end of stage 1 if dy is found likely to be excessively toxic,
using the posterior safety criterion

Pr(wr i > Tk | Di) > crp, (1)

or if it is found likely to be ineflicacious, using the posterior fu-
tility criterion

Pr(JTR,H,k <Tpk | Dy) > CR k,1- ()

The cutoffs cr .1 and cg i1 are fixed at values such as 0.90 or
0.95, calibrated by preliminary simulations to obtain good op-
erating characteristics, including a high probability of stopping

accrual to indications where d is too toxic, with n;”ﬁ > Tk

or inefficacious, with ™ | < 7y .
To evaluate posterior probabilities in the stage 1 monitoring
rules (1) and (2), we assume beta-binomial models, with non-

informative priors 77 1 . ~ Beta(0.1, 0.1), and likelihoods

Xj ki | Timk ~ Binom(Ny 1, Tjnk), j=R,T.

By conjugacy, the posteriors are
7k | Dy ~ Beta(0.1 + X; p k1, 0.1 + Ny — Xjmk1)-

The monitoring rules also may be applied before the end of stage
1, for example, after evaluating Ny & 1/2 patients in I, and at
Ny t.1.Each I with acceptable response and toxicity rates for dy
at the end of stage 1 is moved to stage 2, otherwise no dose is
chosen for I.

2.2 Stage 2 dose optimization
In stage 2, patients are randomized between dyy and d;.. The aim
is to identify an OBD for each I, based on indication-specific
utilities Ux(yr, yr) for yr,yr € {0, 1} andk =1, --- , K. For
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TABLE 1 Example of indication-specific utilities for two binary

outcomes.

Indication 1

YR =1 YR =0
Yr=0 U,(0,1) = 100 U,(0,0) = 40
Yr=1 U, (1,1) =60 U,(1,0) =0

Indication 2

Yr =1 Yr =0
Yr=0 U,(0,1) = 100 U,(0,0) =20
Yr=1 U,(1,1) = 80 U,(1,0) =0

Indication 3

YR =1 YR =0
Yr=0 U;(0,1) = 100 U;(0,0) = 60
Yr=1 Us(1,1) = 40 Us(1,0) =0

Indication 4

YR =1 YR =0
Yr =0 U,(0,1) = 100 U,(0,0) = 30
Yr=1 U,(1,1) =70 U,(1,0) =0

each I, one may establish Ui (yr, yr ) by setting Ui (0, 1) = 100
for the best outcome (no toxicity, response), Ux(1, 0) = 0 for
the worst outcome (toxicity, no response), and eliciting Uy (0, 0)
and Ui (1, 1) from the physicians. Table 1 gives a numerical ex-
ample of utilities for four indications. Utility-based phase I-II
designs are given by Thall and Nguyen (2012), Guo and Yuan
(2017), and Zhou et al. (2019), among many others.

To do utility-based dose optimization for each I based on the
randomized stage 2 data, denote the joint elementary outcome
probabilities for dose d¢ in I by

pex(yr,yr) = Pr(Yr = yr, Ya = yr | de, Ii),
for yr,yr € {0, 1}. (3)
The mean utility of dy in I is the probability weighted average

U = Z Z Uk(yr, yr) pex(yrs yr)- (4)

yr=0 yr=0

Following the utility-based BOIN12 design (Lin et al., 2020),
we take a quasi-binominal likelihood approach by defining
standardized mean utilities Qy; = Uy /100, called “quasi-
probabilities” because they take values between 0 and 1. For each
dgand I, let Xy ¢ (yr, yr ) denote the number of patients in stage
2 who experience the joint outcome (yr, yr), and denote the
vector of counts for the four elementary outcomes by

Xk = (X (0, 1), X £(0,0), Xp (1, 1), X 1(1,0) ), (5)

with corresponding joint probability vector py . Thus, Xy ;. ~
Multinomial (Ng ., pe.x) for each d; and I;.. Given the stage 2
data, we define normed utility-weighted average counts

1 1
1

i = — U, s X, s .

0.k 100 Z Z k(}’T )’R) Z,k(yT )’R)

yr=0yr=0

Each Z; i has domain (0, N ), and may take non-integer val-
ues. It may be interpreted as the number of “quasi-events” among
the Ny 1, patients with indication I treated with dy in stage 2.
Given the quasi-probability Qg 1, we denote the distribution of
Zy¢ k. induced by the multinomial distribution of X, by Z; ;. ~

Quasi — Binom(Ny .2, Qr.)-
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To use the stage 2 data to select OBDs, we proceed as follows.
We accommodate heterogeneity among indications and facili-
tate borrowing information between indications by introducing
a vector of latent cluster variables £ = (¢, - -+, {x) (Chu and
Yuan, 2018a; Chen and Lee, 2019; Takeda et al., 2022), where i
=I[Qu.x < Qu ), the indicator that d; has higher mean utility
than dy in I;. Let N(1, 0%) denote a normal distribution with
mean y and variance 0%, and IG(a, b) an inverse gamma distri-
bution with parameters a and b. Recall that Z; ;. is the number
of quasi-events and Qg is the quasi-probability for I; and d; in
stage 2. Denote 6y = logit(Qr 1) - logit(Qg .« ), the dr-versus-
dy effect in I, where logit(q) = log{q/(1 — q)}forq € [0, 1].
Thus, 6y is a function of U i, U x, and the probability vectors
{pe.x}. For the stage 2 data, we assume the Bayesian hierarchical
model

Zok | Qo ~ Quasi—Binom(Ne k2, Qe ),
for{=L,H, k=1, ---,K,

Ol =g~ iidN(,ug, 1’2), for g=0,1,
andeachk =1, ---,K. (6)

For priors, we assume

g ~ N (I, ?;,2), for g=0,1, and 7> ~ IG(a, b),
Qg ~ Beta(c, d), & ~ Bernoulli(q), and q ~ Beta(e, f),

with ﬁg, ?;, a,b,c,d, e, fasfixed hyperparameters. Since py, ¢
and py i contribute to the stage 2 likelihood only through the
quasi-probabilities Qy, r and Qp x, one only needs to specify pri-
ors on these to complete the model. Since normal priors are spec-
ified on 6} for each k, the model is completed by specifying priors
on the Qg ’s.

Hyperparameters may be established by applying the ap-
proach of Thall and Nguyen (2012) and Guo and Yuan (2017).
To do this, expected response and toxicity probabilities are
elicited from the clinicians for each combination (dy, I.). These
provide a basis for calculating a range of utility differences be-
tween dj, and dy on the logit scale, that is, for the 6;’s. One
may set [l to the mean in the subset where 0 < 0, and set
/L1 to the mean in the subset where 6, > 0. Once /1y and /1,
are established, one may assume a coefficient of variation of
2, which sets T, = 241, (Guo and Yuan, 2017). The shrinkage
parameter 7> can be assigned an inverse gamma prior, such
as, 1G(0.0001, 0.0001). Gelman (2006) and Chu and Yuan
(2018b) noted that the IG(¢, €) with € — 0 does not repre-
sent a non-informative prior, but instead imposes strong shrink-
age when the number of elements in the hierarchy (indications in
our context) is small (eg, < 6) unless the heterogeneity between
indications is extremely large. Under our model, this potential
problem is mitigated by using ¢ to partition the indications into
Z°and Z". Since indications in each of these subsets are likely to
be homogeneous, the strong shrinkage effect of the prior often
enhances the model’s performance. As a sensitivity analysis, we
consider a Half-Cauchy distribution prior for 2 in Section 4.3.

For each I; where dyy passes the stage 1 screening, in stage 2
patients are randomized between dy and dy.. If R interim screen-
ing analyses are carried out for I in stage 2, let ny . » , denote the
interim sample size for the k" indication at the 7 stage 2 look.
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Let D, , denote the dataat " interim look, and D, the final data
from stage 2. At the " interim analysis, (Y7, Yz ) are evaluated
for all patients treated at each dose, and a dose is terminated if it is
excessively toxic per criteria (1) or ineffective per criteria (2). To
reduce bias, futility monitoring relies solely on the stage 2 data.
In contrast, safety monitoring pools the stage 1 and stage 2 data,
assuming toxicity probabilities will not change between stages.

At the end of stage 2, for each I, when the maximum stage 2
sample sizes Np, ., and N 1, are reached for the two doses, a
final analysis is conducted to determine the OBD. The toxicity
monitoring rule (1) is applied for each dose based on D; U D,,
and futility monitoring is done based on the stage 2 data using
the rule Pr(7g ¢ & < 7y (|D2) > cg k2. For I, the OBD is the
dose that passes both the ’toxicity and response requirements and
maximizes the posterior mean standardized utility, estimated un-
der the Bayesian hierarchical model. The dose optimization cri-
terion in I is denoted by

OBD;. = argmax @,k
¢=L.H

argmax E{Qu | D,}. (7)

{=L,H

2.3 Graphical illustration of trial conduct

Figure 1 presents a schematic of trial conduct using the ROMI
design to determine the OBD, if it exists, between two doses d,
and dy for each of four disease subtypes (indications). In stage
1, all patients are treated with dp, and toxicity and response are
monitored for each I;.. Due to an unacceptably low response rate
with dp, I is dropped, while I, I5, and I; are moved forward to
stage 2, where patients are randomized between dy and d;.. A fi-
nal analysis is conducted to evaluate each dose’s safety, response
rate, and mean utility. For I, both doses have acceptable toxicity
and response rates, with d, selected as the OBD based on pos-
terior mean utility. For I3 and L, dy is selected as the OBD due
to its higher posterior mean utility. Thus, the ROMI design does
not identify an OBD for I}, identifies d; as the OBD for I, and
identifies dy; as the OBD for I3 and I.

2.4 Sample size determination

The sample size for each I in stage 1 of a ROMI design may be
determined to control the false negative decision probability of
the futility stopping rule (2). To do this, suppose that, for each
I, a desirably high response probability 77 , + dr « canbe spec-
ified, say for ég = 0.15, 0.20, or 0.25. The cut-off cg 1,1 and
sample size Ny ¢ 1 may be calibrated together by simulation so
that, for true response probability 73" = 7y . + g i, the false
negative early stopping probability is no larger than a specified
small value, such as 0.10 or 0.0S. In practice, one may fix cg 1 at
a large value, such as 0.90 or 0.95, and do a monotone search for
the smallest Ny 1 ; that ensures the specified false negative early
stopping probability.

To determine the sample size for each indication in stage 2, one
can first apply the MERIT design (Yang et al., 2024), which gives
a structured approach for calculating sample size in randomized
phase II dose optimization studies. To do this, for each I, one
may begin by specifying the lower limit 77 ., a desirably high re-
sponse probability 77, , + g x with &g k =0.15,0.20, 0r 0.25 as

above, an upper toxicity probability limit 77 1, and a desirably
low toxicity probability T — 87 . One then specifies a maxi-
mum level, such as 0.10 or 0.15, for the probability of incorrectly
accepting an undesirable dose (type I error rate), and a minimum
level, such as 0.60, 0.70, or 0.80, for the probability of correctly
choosing an acceptable dose (power). The MERIT sample size
Ngfk’z for dose dy and indication I; may be determined by a nu-
merical search, to find the smallest value that controls the type I
error while achieving the desired power. Since MERIT assumes
equal randomization, for a ROMI design, one may restrict the

randomization by requiring N% k2= Nﬁ"k ,- Software for calcu-
lating sample size using the MERIT design is available at Trial

Design (2024).

The MERIT design method may be used to determine
the sample size for each indication independently. Compared
to a randomized trial assuming homogeneity, however, the
ROMI design allows information borrowing between indica-
tions, which may reduce the planned overall sample size while
still preserving a given level of accuracy in selecting the OBDs
at the end of the trial. To exploit this, the stage 2 sample sizes
{ka,z} and {Nﬁ;I 1.} obtained from the MERIT design may
be adjusted by simulating the ROMI design to achieve the de-
sired level of reliability in the final dose selections. For exam-
ple, with K = 2 indications and initial stage 2 sample sizes
(Ngﬁ.z’ N%m) = (30, 25), simulations of the trial using the
ROMI design can be conducted with specified stage 1 sample
sizes {Ny .1}, determined as described above, and several com-
binations of stage 2 sample sizes, for example, (N 12, Np22) =
(30,25), (25,25), (20, 25), (30, 20), (25, 20), (20, 20), to
assess operating characteristics. The sample size chosen for
stage 2 is based on the tradeoff between the accuracy of the fi-
nal OBD selection for each I; and total trial sample size N =
Zle(NH,k,l + Ngt2 + Npi2)- If desired, the {Ny 1} val-
ues may be adjusted and the trial simulations repeated.

3 USING DATA FROM BOTH STAGES

Combining data on dy from both stage 1 and stage 2 may im-
prove the estimate of dy-versus-dy, effects for the OBD selection
in each indication. This is straightforward when it is reasonable
to assume that the data from stages 1 and 2 are exchangeable:
simply pool the data from both stages when calculating X ;. in
(5). However, since there is no randomization in stage 1, and pa-
tients are randomized to dyy or dy, in stage 2, there might be drift
in the effect of dy on the outcomes between stages, possibly due
to temporal changes in patient characteristics or unknown fac-
tors. In this case, simply pooling the data results in bias.

To include stage 1 data on dy and account for potential tem-
poral drift, we extend the Bayesian hierarchical model, referred
to as version 2 of ROML. The joint distributions py 1 (yr, y1),
defined earlier, are elaborated to be stage-specific distribu-
tions pus(yr,yr) for s=1 and 2 and all ;. This pro-
duces stage-specific mean utilities Ut and Up 1., quasi-
probabilities Qp .1 and Qy k2, and between-dose effects Oy ; =
logit(Qyr .s) — logit(Qm k). Since no patients are treated with
dy, in stage 1, however, for the stage 2 selection only 6y , is rele-
vant for each I. We account for the stage by letting Z; 1 ; denote
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Stage 1: Screening

A4 A 4 A 4

Indication 1 Indication 2 Indication 3 Indication 4

| J
|

{ Screening ]

Failed
(Futile) Passed Passed Passed
A
Indication 1 Indication 2 Indication 3 Indication 4
* terminate
the arm
Stage 2: Dose Optimization Introduce ' d
Indication 2 Indication 3 Indication 4
U I8 R o
Randomization
dy d dy d dy dy
| J
|
[ Clustered Bayesian hierarchical model borrows information J
i i e it e e
: Cluster with d;, as the OBD : Cluster with d;; as OBD :
I L 1
I [ Indication 2 I | [ Indication 3 Indication 4 I Borrow
I : I I information
| dy d, | ' d, dy d, | within clusters
I | |
e O s I ——— S (S ——— 1
Indication2 v Indication 3 v Indication4 | OBD selection
based on
dj, dy dy posterior mean
utility

FIGURE 1 A ROMI design example with four indications and two doses, dy and d;.. OBDs are indicated by green circles.

S
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the number of quasi-events and Qy . ; the standardized utility for
I at dose dy in stage s = 1 or 2. Because dj, is not evaluated in
stage 1, each ZL,k,l =0. ThU.S, for dL, only ZL,I,Z» T, ZL,K,Z
are defined and used in the stage 2 decisions.

To model stage 1 data on dy and stage 2 data on {d;, dy}, we
assume an extended Bayesian hierarchical model that accounts
for the use of stage 1 quasi-event values Zy i ; with the stage 2
values Zj . » and Zy 1 . For each I, denoting the drift parame-

ter B = logit(Qp 1) — logit(Qp.r.2), we assume
Zuka | Qe ~ Quasi—Binom(Nir k1, Quk.1), (Stagel)

Zyka | Quia ~ Quasi—Binom(Ny g2, Qui2),  (Stage2)
for { =L, H,

Ok 2 = logit(Qr.r.2) — logit(Qu r.2),

Ok | & = g ~ iid N(iy, t?), forg=0,1, (8)

with priors

B ~ oN(0,02,,) + (1 — w)N(0, 0,),

g ~ N ([, ?;), for g=0,1, >~ IG(a, b),
and w ~ UJ0, 1],

Qu.r2 ~ Beta(c,d), & ~ Bernoulli(q),
and g ~ Beta(e, f).

The variance 62, should be set to a small value, such as 0.01, to

spike
concentrate the prior spike’s mass near 0, while 07, should be

much larger than O';n.ke to allow a broader range of non-zero val-

ues for f. Following Gelman et al. (2008) and Guo and Yuan
(2017), we regularize the prior so that the typical variation of an
input variable is unlikely to cause a dramatic change in the re-
sponse variable. For example, B = 1 corresponds to between-
stage drift in Qg x from 0.30 to 0.54. Based on the utility of I; in
Table 1, a change 0f 0.24 in Qy ;. corresponds to large shifts of 0.6
inmr ¢ orof 0.4in g g k. Since it is very unlikely that between-
stage drift would induce such large changes in the 77; ¢ i’s, we set
Gjab = 0.5 to ensure that a change in S from one standard de-
viation (sd) below to one sd above the mean is unlikely to cause
a change of Qy 1 exceeding 0.24.

Decision rules for version 2 of ROMI are as in Section 2.2.
The only difference is that the posterior mean of the standard-
ized utility is estimated under the extended model (8), using data
from both stages and accounting for possible drift of dy effects
between stages.

4 SIMULATION STUDIES

4.1 Simulation settings

This section reports simulations to evaluate operating charac-
teristics of the ROMI designs, and designs that either ignore
the Ii’s or conduct separate trials within Ii’s. We consider set-
tings with K = 4, using dose acceptability limits 777 ; = 0.40
and 77, ;. = 0.25 forall k. For each I, the maximum stage 1 sam-
ple size is 14, and the maximum stage 2 sample size per dose is
20, with one interim analysis performed when the sample size
for each dose reaches 10. We constructed scenarios by varying

the number of effective Ii.’s and the OBD for each Ii. The util-
ity table used for all I;’s corresponds to that given for I; in Ta-
ble 1. To characterize association between Yz and Y7, for each
dose £ = L, H and I, given marginal probabilities 77 ¢ x and
TTR.¢.ky We solved for the joint probabilities {p¢ r(yT, yr)} so
that

_ per(0.0per(1. 1) — peie(1, 0)pe(0.1)
{mrex(1 = 7p o) en (1 — wre))t?
We set o= —0.05, 1; =0.05, o =T =c=d=¢=
f=0.1, t*~1G(0.0001,0.0001), a;m.ke =0.01, and
o;, =0.5%

We denote the first version of ROMI design, which uses only
stage 2 data for dose optimization, by ROMI-v1, and the sec-
ond version, which uses data from both stages to optimize dose,
by ROMI-v2. To assess the impact of clustering I;’s showing
similar dose-outcome probabilities, we define the ROMI-v1-NC
design to have the same structure as ROMI-v1 but using the
Bayesian hierarchical model without clustering. The first com-
parator is the Pool design, which ignores I;’s and determines
the same OBD for all I;’s based on the utility under a beta-
binominal model, Z; ~ Binom(}_, n¢ x, Q;) with a conjugate
prior Q; ~ Beta(0.1, 0.1). The second comparator is the Inde-
pendent design, a two-dose randomized design done indepen-
dently for each I, with the utility of each arm modeled using a
beta-binominal model, Zy ;. ~ Binom(ny i, Qs.) with a conju-
gate prior Qy ;. ~ Beta(0.1,0.1).

For a fair comparison, the total maximum sample size for all
designs was set to N = 216. In the Independent design, patients
within each {I, I, I3, I} were randomized between the two
doses, with a maximum of 27 patients per dose. For each I, one
interim analysis was conducted after 14 patients. For the Pool
design, one interim analysis was conducted when 108 patients
were evaluated. The same interim stopping rules were used for
all designs, with cutoffs setto crp1 = cr k.1 = cr.k2 = 0.95.A
total of 2000 simulations were conducted for each combination
of design and scenario.

4.2 Simulation results

Table 2 summarizes simulation results of the Pool, Independent,
ROMI-v1-NC, ROMI-v1, and ROMI-v2 designs across 11 sce-
narios, assuming no drift in the effect of dy between stages. In
scenario 1, where no doses are effective for any I, the Pool design
correctly stops all trials with no OBD selected for any I 100% of
the time. For each I, the stopping percentage with no dose se-
lected is 100 — ( % select djy + % select dy,). The stopping per-
centage is about 94% for the Independent design and 98% for
designs using the ROMI framework, including ROMI-v1-NC,
ROMI-v1, and ROMI-v2. Compared to the Pool and Indepen-
dent designs, the ROMI designs provide substantial sample size
savings, with about 42 fewer subjects than the Pool design and
56 fewer than the Independent design. This large sample size re-
duction for the ROMI designs in scenario 1, where neither dose
is effective, is due to the interim screening rule for dyy applied by
the ROMI designs after stage 1.

In scenarios 2 and 3, only I; responds to treatment. In scenario
2, dy is the true OBD for I;. ROMI-v2 and Independent de-
sign have the highest OBD correct selection percentages (CSPs),
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TABLE 2 Simulation results for the Pool, Independent, ROMI-v1-NC, ROMI-v1, and ROMI-v2 designs.

Probability (%) of selecting the dose as OBD

I L I I
Design dH dL dH dL dH dL dH dL CSP N
Scenario 1

e, 0.40 0.30 040 030 040 030 0.40 0.30

L 0.05 0.05 005 005 005 005 0.05 0.05

U,y 27 31 27 31 27 31 27 31
Pool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 113
Independent 2.1 3.3 2.5 4.0 2.5 2.8 2.9 3.3 NA 127
ROMI-v1-NC 13 0.9 0.5 0.6 0.6 0.7 1.3 0.7 NA 71
ROMI-v1 13 0.9 0.5 0.6 0.6 0.7 1.3 0.7 NA 71
ROMI-v2 13 0.9 0.5 0.7 0.7 0.8 1.3 0.8 NA 71
Scenario 2

mine, 0.2 0.15 040 030 040 030 0.40 0.30

e, 0.4 03 005 005 005 005 0.05 0.05

[ 56 52 27 31 27 31 27 31
Pool 5.5 0.8 5.5 0.8 5.5 0.8 5.5 0.8 5.5 128
Independent 69.8 30.2 2.6 3.1 2.8 2.8 3.0 33 69.8 149
ROMI-vI-NC 64.5 35.0 0.7 1.0 0.9 0.8 1.0 0.7 64.5 107
ROMI-v1 65.0 34.4 0.7 1.0 0.9 0.8 1.0 0.7 65.0 107
ROMI-v2 69.7 29.8 0.7 1.1 0.9 0.8 1.0 0.8 69.7 107
Scenario 3

e, 025 0.15 040 030 040 030 0.40 0.30

T 0.4 0.40 005 005 005 00 0.05 0.0

Uy 54 58 27 31 27 31 27 31
Pool 4.0 4.3 4.0 43 4.0 43 4.0 43 43 135
Independent 32.1 68.0 24 33 2.7 33 2.6 3.1 68.0 149
ROMI-v1-NC 30.6 68.2 0.9 0.5 0.9 0.6 11 1.0 68.2 107
ROMI-v1 30.6 68.3 0.9 0.5 0.9 0.6 1.1 1.0 68.3 107
ROMI-v2 30.0 68.9 0.9 0.6 0.9 0.7 1.2 1.0 68.9 107
Scenario 4

Tk 0.2 0.15 040 030 040 030 0.20 0.15

e, 0.4 03 005 005 005 005 0.40 0.30

Uy 56 52 27 31 27 31 56 52
Pool 63.0 244 630 244 630 244 63.0 244 630 185
Independent 68.7 313 2.4 32 2.7 3.3 69.3 30.7 69.0 170
ROMI-v1-NC 72.6 27.0 0.7 0.8 1.0 L1 70.6 287 716 143
ROMI-v1 70.3 29.2 0.7 0.8 1.0 1.1 66.5 327 684 143
ROMI-v2 72.6 26.9 0.8 0.8 1.0 1.1 68.8 305 707 143
Scenario §

e 0.25 0.15 040 030 040 030 0.25 0.15

TR 04 0.4 005 005 005 005 0.40 0.40

U,y 54 58 27 31 27 31 54 58
Pool 244 71.7 244 717 244 717 244 717 717 202
Independent 32.1 67.9 2.4 29 2.7 33 30.3 69.8 688 171
ROMI-vI-NC 272 71.7 0.5 1.2 1.1 0.9 274 71.6 717 143
ROMI-v1 314 67.4 0.5 1.2 1.1 0.9 29.9 692 683 143
ROMI-v2 31.0 68.0 0.5 12 1.1 0.9 28.6 70.5  69.2 143
Scenario 6

e, 0.40 0.30 020 015 020 015 0.20 0.15

e, 0.05 0.05 040 030 040 030 0.40 0.30

Uy 27 31 56 ) 56 52 56 52
Pool 714 286 714 286 714 286 71.4 286 714 210
Independent 33 32 701 299 679 321 68.2 319 687 192
ROMI-vI-NC 12 1.0 740 254 739 252 73.2 260 737 178
ROMI-v1 12 1.0 69.6 298 680 310 67.8 313 685 178

ROMI-v2 1.2 1.0 72.0 27.4 70.8 28.3 71.1 28.1 71.3 178
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TABLE 2 Continued
Probability (%) of selecting the dose as OBD
I L I In

Design dH dL dH dL dH dL dH dL CSP N
Scenario 7

w040 030 025 015 025 015 025 0.5

JTK“Z,C 0.05 0.05 0.40 0.40 0.40 0.40 0.40 0.40

Uy 27 31 54 58 54 58 54 s8
Pool 14.8 85.3 14.8 85.3 14.8 85.3 14.8 85.3 85.3 216
Independent 2.7 3.4 31.8 68.2 32.0 68.0 312 68.9 68.4 194
ROMI-v1-NC 1.3 1.0 25.4 73.9 24.9 74.0 239 75.2 74.4 179
ROMI-v1 1.3 1.0 31.2 68.0 30.2 68.6 28.0 71.2 69.3 179
ROMI-v2 1.3 0.9 28.6 70.7 29.0 69.9 26.0 73.2 71.2 179
Scenario 8

w040 030 020 015 025 015 025 0I5

w008 005 040 030 04 040 040  0.40

Uy 27 31 56 52 54 58 54 58
Pool 30.4 69.7 30.4 69.7 30.4 69.7 30.4 69.7 56.6 218
Independent 2.7 3.6 68.5 31.5 313 68.7 322 67.8 68.3 193
ROMI-v1-NC 1.4 1.0 47.7 51.6 36.2 62.7 35.8 63.3 57.9 179
ROMI-v1 1.4 1.0 61.4 38.0 33.7 65.2 33.0 66.2 64.3 179
ROMI-v2 1.4 1.0 62.5 36.9 32.3 66.7 31.1 68.1 65.7 179
Scenario 9

T[;”fk 0.2 0.15 0.2 0.15 0.2 0.15 0.2 0.15

i 0.4 0.3 0.4 03 0.4 03 0.4 0.3

Uy 56 52 56 52 56 52 56 52
Pool 81.8 18.2 81.8 18.2 81.8 18.2 81.8 18.2 81.8 216
Independent 69.9 30.1 69.4 30.6 68.6 3L.S 67.3 32.7 68.8 214
ROMI-v1-NC 77.8 21.6 78.3 21.1 77.7 214 77.4 21.8 77.8 214
ROMI-v1 71.7 27.8 70.9 28.6 70.8 28.4 71.2 28.0 71.2 214
ROMI-v2 75.1 24.4 74.4 25.1 74.4 24.7 74.0 25.2 74.5 214
Scenario 10

Tl 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15

T 040 040 040 040 040  0.40 0.4 0.40

Uy 54 58 54 58 54 58 54 58
Pool 16.9 83.1 16.9 83.1 16.9 83.1 16.9 83.1 83.1 216
Independent 33.0 67.0 31.6 68.4 33.2 66.8 31.3 68.7 67.7 216
ROMI-v1-NC 21.3 77.6 21.3 77.8 22.0 76.8 222 76.9 77.3 214
ROMI-v1 27.0 71.9 27.0 72.2 29.0 69.8 27.0 72.2 71.5 214
ROMI-v2 26.0 72.9 24.0 75.2 26.5 72.4 24.3 74.9 73.8 214
Scenario 11

w020 015 020 01S 025 015 025  0.IS

T, 0.40 030 040 030 040 040 040 040

Uy 56 52 56 3) 54 58 54 58
Pool 50.9 49.1 50.9 49.1 50.9 49.1 50.9 49.1 50.0 216
Independent 69.2 30.8 68.9 31.1 30.2 69.8 31.6 68.5 69.1 215
ROMI-v1-NC 54.9 44.4 54.3 45.1 43.8 §S.1 42.4 56.7 58.3 214
ROMI-v1 63.4 36.0 62.1 37.4 36.0 62.9 36.0 63.1 62.9 214
ROMI-v2 64.3 358.1 64.2 35.2 35.6 63.4 352 64.0 64.0 214

Abbreviations: CSP: correct selection percentage; N: average total sample size.

Values for the true OBD of each indication are given in boldface. Doses are indexed by ¢ = L, H and indications by k =1, 2, 3, 4.

69.7% and 69.8%, respectively. The ROMI-vl and ROMI-v1-
NC designs have CSPs 4.7% and 5.2% lower than ROMI-v2. The
Pool design, which ignores indications, stopped 93.7% of trials
with a CSP of just 5.5%. Compared to the Independent design,
the ROMI designs save 42 subjects on average. A similar sam-
ple size saving is seen in scenario 3, where the true OBD for I;
is dy.. In this case, the Pool design has a very low CSP of 4.3%,

while the Independent and ROMI designs have similar CSPs of
around 68%.

In scenarios 4 and 5, two indications respond to the treatment.
In scenario 4, where the true OBD is dy; for I} and I, the ROMI
designs outperform the Pool and Independent designs in both
CSP and sample size saving. ROMI-v2 has a CSP of 70.7%, com-
parable to the highest CSP of 71.6% achieved by ROMI-v1-NC.
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TABLE 3 Sensitivity analysis of ROMI designs with efficacy drift of djy effects between stage 1 and stage 2.

Probability (%) of selecting the dose as OBD

I, L I I,
Design dH dL dH dL dH dL dH dL CSp
Positive Drift
Scenario 9
ROMI-v1 72.0 27.0 71.8 27.0 71.3 27.2 72.1 26.6 71.8
ROMI-v2 72.1 26.9 71.5 274 72.1 26.4 71.7 27.0 71.8
Scenario 10
ROMI-v1 28.3 70.3 27.2 71.7 27.4 70.7 27.0 71.3 71.0
ROMI-v2 23.6 75.0 22.2 76.8 22.8 75.2 219 76.4 75.8
Scenario 11
ROMI-v1 62.8 36.0 61.6 37.2 354 62.7 36.6 61.7 62.2
ROMI-v2 60.6 38.3 59.9 38.9 31.7 66.5 31.5 66.8 63.4
Negative Drift
Scenario 9
ROMI-v1 71.8 27.8 71.4 28.1 71.7 27.8 71.9 27.5 71.7
ROMI-v2 77.3 22.4 77.4 22.1 78.3 21.2 77.4 22.0 77.6
Scenario 10
ROMI-v1 27.4 71.9 26.4 72.8 28.4 71.0 25.6 73.9 72.4
ROMI-v2 28.2 71.1 25.1 74.2 27.4 72.0 254 74.1 72.8
Scenario 11
ROMI-v1 64.9 34.6 62.2 374 36.1 63.2 36.8 62.6 63.2
ROMI-v2 68.5 31.1 67.0 32.6 39.5 59.9 389 60.6 64.0

Abbreviations: CSP: correct selection percentage.

Values for the true OBD of each indication are given in boldface. Doses are indexed by £ = L, H and indicationsby k = 1, 2, 3, 4.

Itis about 2% higher than ROMI-v1 and Independent, and 7.7%
higher than Pool. The ROMI designs save an average of 27 sub-
jects compared to the Independent design and 42 subjects com-
pared to the Pool design. In scenario S, where dj, is the true OBD,
ROMI designs save 28 subjects compared to the Independent
design and up to 59 compared to the Pool design. The CSP of
ROMI-v2 is 69.2%, and ROMI-v1 is 68.3%, similar to Indepen-
dent but about 2.5% lower than ROMI-v1-NC and Pool, both
with a CSP of 71.7%. Since the Pool design ignores indications
and selects the same OBD for all It, it has high false-positive rates
of selecting ineffective doses for non-responsive indications. In
scenario 4, Pool selects an ineffective dose for I, and I3 87.4% of
the time, rising to 96.1% in scenario S. In contrast, the probabil-
ity of selecting an ineffective dose for these indications is 5.6%
with Independent and 1.8% with ROMI designs.

Across scenarios 6, 7, and 8, where I; is insensitive to treat-
ment, the ROMI designs save an average of 14 subjects com-
pared to the Independent design and 35 compared to the Pool
design. In scenario 6, dy is the true OBD for L, I3, and I,
while in scenario 7, dy, is the OBD. Under heterogeneous sce-
narios where some indications are non-responsive and respon-
sive Ii’s share the same OBD, ROMI-v1-NC, and ROMI-v2 show
larger CSPs compared to the Independent design, with increases
of 5% and 2.5% in scenario 6, and 6% and 2.8% in scenario
7. These improvements show the benefit of borrowing infor-
mation across indications. ROMI-vl has a CSP similar to the
independent design. The Pool design is effective in selecting
the OBD for responsive indications but fails to terminate in-
effective doses for non-responsive I;, with a 100% chance of

choosing an ineffective dose. ROMI-v1-NC has the highest CSP
due to the strong shrinkage but underperforms in scenarios
where the OBD varies across responsive indications, such as sce-
nario 8. In scenario 8, dy is the true OBD for I,, while d} is the
true OBD for I3 and I;. The CSPs of ROMI-vl and ROMI-v2
are 4% and 2.6% lower than the Independent design but outper-
form ROMI-v1-NC, with CSP improvements of 6.4% and 7.8%,
respectively. This shows the benefit of clustering indications un-
der the Bayesian hierarchical model in ROMI-v1 and ROMI-v2.
The Pool design has the lowest CSP, about 56.6%, and the high-
est probability of selecting an ineffective dose for I;.

The advantage of information borrowing increases with the
number of responsive indications, shown by scenarios 9, 10, and
11, where all indications respond to treatment, resulting in com-
parable sample sizes across all designs. In homogeneous scenar-
ios where OBDs are consistent across indications, the Pool and
ROMI designs have higher CSPs than the Independent design.
For example, in scenario 9, ROMI-vl shows a 2.4% increase
in CSP, ROMI-v2 a 5.7% increase, and ROMI-v1-NC a 9% in-
crease, compared to Independent. The Pool design has the high-
est CSP of 81.8%, essentially because its homogeneity assump-
tion happens to be correct in this scenario. In the heterogeneous?
scenarios, the OBD varies across responsive indications. For ex-
ample, in scenario 11, dy is the true OBD for I; and L, and
dr is the true OBD for I3 and I;. ROMI-vl and ROMI-v2 have
CSPs about 5% lower than the Independent design, but outper-
form ROMI-v1-NC by 9%. The Pool design shows the poor-
est performance, correctly selecting the OBD with only a 50%
CSP.
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(a) Correct selection percentage for 3 indications

[ Ignore indications [l Separate trials within indications [l ROMI-v1 no clustering [~ ROMI-v1 i ROMI-v2

Homogeneous | |

Heterogeneous' | |

Heterogeneous?

100 OBDs: dy(0),d,(3)

75

50

Percentage

25

0 No OBDs
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OBDs: dH(l)l dL(l) OBDs: dH(l), dL(Z)

o 353-770'36?.869'9

A1 A2 A3
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Scenario

(b) Average total sample size for 3 indications

M ignore indications [l Separate trials within indications [ll ROMI-v1 no clustering [/ ROMI-v1 Jll ROMI-v2
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1 2

Heterogeneous
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FIGURE 2 For three indications, () correct selection percentages and (b) average total sample sizes for the Pool design that ignores
indications, Independent design that conducts separate trials within indications, ROMI-v1 with no indication clustering, ROMI-v1 with

clustering, and ROMI-v2 with clustering. In homogeneous scenarios, OBDs are identical across indications. Heterogeneous
some non-responsive indications and identical OBDs among responsive indications. In Heterogeneous

responsive indications.

4.3 Sensitivity analyses

We examined the performance of ROMI-v1 and ROMI-v2 in the
presence of gy i drift for dyy between stages, exploring the im-
pacts of both positive and negative drifts. Table 3 gives simula-
tion results where 77g p  increased by 0.02S from stage 1 to stage
2 in the upper portion of the table, and decreased by 0.025 in the
lower portion. This increment corresponds to 25% of the max-
imum 7R g — 7R 1. difference of .10 in our simulation set-
tings. In each of scenarios 9-11, all I’s are responsive to both di
and d. Compared to ROMI-vl, ROMI-v2 demonstrates similar
or better accuracy in selecting OBD across all scenarios. Thus,
ROMI-v2 does a good job of handling drift in response rates be-
tween stages.

! scenarios include

? scenarios, OBDs vary among

We also evaluated the performance of the ROMI designs for a
trial with either K = 3 or K = 6 indications, illustrated in Fig-
ures 2 and 3. The ROMI designs reduce sample size compared
to the Pool and Independent designs when some I;’s are non-
responsive to treatment. As expected, the Pool design has the
highest CSP when all indications have the same dose-outcome
curves but performs very poorly when the dose-outcome curves
vary across indications. ROMI-v2 shows similar or superior
OBD selection compared to ROMI-v1. For trials with K = 3
indications, ROMI-v2 is comparable to the Independent de-
sign and outperforms ROMI-v1-NC when OBDs vary across re-
sponsive indications in accurately selecting OBDs. The perfor-
mance of ROMI-vl and ROMI-v2 improves as the number of
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M ignore indications [l Separate trials within indications ll ROMI-v1 no clustering [/ ROMI-v1 [l ROMI-v2
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(b) Average total sample size for 6 indications

B ignore indications [l Separate trials within indications ll ROMI-v1 no clustering || ROMI-v1 [ll ROMI-v2
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FIGURE 3 For six indications, () correct selection percentages and (b) average total sample sizes for the Pool design that ignores indications,
Independent design that conducts separate trials within indications, ROMI-v1 with no indication clustering, ROMI-v1 with clustering, and

ROMI-v2 with clustering. In homogeneous scenarios, OBDs are identical across indications. Heterogeneous
non-responsive indications and identical OBDs among responsive indications. In Heterogeneous

indications.

indications increases. In scenario B2, where K = 6 indications
are responsive, the CSP values of the ROMI-v1 and ROMI-v2
designs are 9.4% and 12.6% higher than the Independent design,
respectively. Detailed results are provided in Web Appendix B.

As a final sensitivity analysis, we evaluated the ROMI designs,
assuming that the shrinkage parameter follows a Half-Cauchy
distribution. Simulation results are given in Web Appendix C.
While this provides greater robustness, it reduces information
borrowing.

S DISCUSSION

ROMI eftectively identifies and discontinues indications not re-
sponsive to treatment, substantially reducing sample size com-
pared to designs that ignore indications or optimize dose inde-

! scenarios include some

? scenarios, OBDs vary among responsive

pendently for each indication. When dose-outcome curves dif-
fer between indications, ROMI accurately identifies indication-
specific OBDs. The version of ROMI that uses information from
both stages shows similar or higher accuracy in OBD selection
compared to the version that ignores stage 1 data on dy. Com-
pared to conducting separate trials within indications, the sec-
ond version of ROMI has greater accuracy in identifying the
OBD if it is the same across indications. When the OBDs vary
across indications, the accuracy of the ROMI design is slightly
lower than the Independent design, but it still outperforms
the design with ROMI structure but does not cluster similar
indications. For a larger number of indications, the performance
of the ROMI design improves.

As a future study, it may be worthwhile to develop a Bayesian
hierarchical model accounting for count variables Xy . Stage 1
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screening of ROMI is based on the assumption that d cannot
be less effective than d; . If this is invalid, stage 1 can be removed,
with randomization for all indications throughout. In addition
to efficacy and toxicity, endpoints such as pharmacokinetics or
quality of life, may be included in the final OBD selection.
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