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Summary. We present a definition for the effective sample size of a parametric prior distribution in a
Bayesian model, and propose methods for computing the effective sample size in a variety of settings. Our
approach first constructs a prior chosen to be vague in a suitable sense, and updates this prior to obtain
a sequence of posteriors corresponding to each of a range of sample sizes. We then compute a distance
between each posterior and the parametric prior, defined in terms of the curvature of the logarithm of each
distribution, and the posterior minimizing the distance defines the effective sample size of the prior. For
cases where the distance cannot be computed analytically, we provide a numerical approximation based
on Monte Carlo simulation. We provide general guidelines for application, illustrate the method in several
standard cases where the answer seems obvious, and then apply it to some nonstandard settings.
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1. Introduction
A fundamental question in any Bayesian analysis is the
amount of information contained in the prior. For many com-
monly used models, the answer seems straightforward. For
example, it can be argued that a beta(a, b) distribution has
effective sample size (ESS) a + b. This is based on the fact
that a binomial variable Y from a sample of size n with success
probability θ following a beta(a, b) prior implies a beta(a +
Y, b + n − Y) posterior. In other words, given a sample of
size n, the prior sum a + b becomes the posterior sum a +
b + n. Thus, saying that a given beta(a, b) prior has ESS
m = a + b requires the implicit reasoning that the beta(a, b)
may be identified with a beta(c + Y , d + m − Y ) posterior
arising from a previous beta(c, d) prior having a very small
amount of information. A simple way to formalize this is to set
c + d = ε for an arbitrarily small value ε > 0 and solve for
m = a + b − (c + d) = a + b − ε.

More generally, one may match a given prior p(θ) with the
posterior qm(θ |Y ) arising from an earlier prior q0(θ) that is
chosen to be vague in a suitable sense and that was updated
by a sample of size m, and consider m to be the ESS of p(θ). In
this general formulation, p(θ), q0(θ), and qm(θ |Y ) play roles
analogous to those of the beta(a, b), beta(c, d), and beta(a +
Y , b + n − Y ) distributions given above. In some cases one
may find the hyperparameters of qm(θ |Y ) as a function of m,
compare qm(θ |Y ) with p(θ), and solve for m analytically. For

many parametric Bayesian models, however, this analytic ap-
proach does not work, and it is not obvious how to determine
the ESS of the prior. A simple example is the usual normal
linear regression model where the observed response variable
Y for predictor X has mean β0 + β1X and variance σ2, so that
θ = (β0, β1, σ

2). A traditional, technically convenient prior is
that (β0, β1) is bivariate normal and σ2 is inverse chi-squared,
with hyperparameters chosen either for computational conve-
nience or by elicitation. In either case, there is no obvious
answer to the question of what the ESS of the prior may be.
Moreover, for many commonly used choices of q0(θ), the joint
prior p(θ) cannot be matched with qm(θ |Y ) analytically.

Understanding the prior ESS is important when applying
Bayesian methods in settings with a small to moderate sam-
ple size. For example, when fitting a Bayesian model to a
data set of 10 observations, an a priori ESS of 1 is reason-
able, whereas a prior ESS of 20 implies that the prior, rather
than the data, dominates posterior inferences. If the prior is
elicited from a domain expert, then an informative prior is
desirable (Chaloner and Rhame, 2001; Garthwaite, Kadane,
and O’Hagan, 2005). In contrast, if the prior is only a tech-
nically convenient ad hoc choice, as is often the case in prac-
tice, then understanding the ESS may prompt the investigator
to reconsider the prior choice. Thus, it is important to have
a good idea of the prior’s ESS when interpreting one’s in-
ferences. This is especially important from the viewpoint of
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defending Bayesian methods against the concern that the
prior may inappropriately introduce artificial information.

In this article, we present a definition for the ESS of a
prior p(θ) in a Bayesian parametric model, and we provide
methods for computing the ESS in a wide variety of set-
tings. Our approach relies on the idea of constructing an
“ε-information” prior q0(θ), considering a sample Y of size
m and the posterior qm(θ |Y), and computing a distance
between qm(θ |Y) and p(θ) in terms of the curvature (sec-
ond derivatives) of log {p(θ)} and log {qm(θ |Y)}. The value
of m minimizing the distance is the prior ESS. For cases where
the distance cannot be computed analytically, we provide a
numerical approximation based on Monte Carlo simulations
from qm(θ |Y). In cases where θ is multivariate, one may
compute multiple ESSs, one associated with each of several
subvectors of θ .

Section 2 presents a motivating application and defines ε-
information priors and ESS. Computational methods are pre-
sented in Section 3. Section 4 gives guidelines for using ESS
computations in specific settings. Applications are described
in Sections 5 and 6, including discussions of connections be-
tween our proposed procedures and related methods given
by Spiegelhalter, Freedman, and Parmar (1994), Ibrahim and
Chen (2000), Hodges and Sargent (2001), and Spiegelhalter
et al. (2002). We close with a brief discussion in Section 7.

2. Effective Sample Size
The following example illustrates why it may be useful to
determine the ESS of a prior. We consider a design for a phase
I trial to determine an optimal dose combination X = (X1,
X2) of two cytotoxic agents (Thall et al., 2003). The toxicity
probability at X is given by the six-parameter model

π(X, θ) =
α1X

β1
1 + α2X

β2
2 + α3(X

β1
1 Xβ2

2 )β3

1 + α1X
β1
1 + α2X

β2
2 + α3(X

β1
1 Xβ2

2 )β3
, (1)

where all parameters in θ = (α1, β1, α2, β2, α3, β3) are
nonnegative. Under this model, if only agent 1 is adminis-
tered at dose X1, with X2 = 0, as in a single-agent phase
I trial, then π(X, θ) = π1(X1, θ 1) = α1X

β1
1 /(1 + α1X

β1
1 ) only

depends on X1 and θ 1 = (α1, β1). Similarly, if X1 = 0 then
π(X, θ) = π2(X2, θ 2) = α2X

β2
2 /(1 + α2X

β2
2 ) only depends on

X2 and θ 2 = (α2, β2). The parameters θ 3 = (α3, β3) char-
acterize interactions that may occur when the two agents
are used in combination. The model parameter vector thus
is partitioned as θ = (θ 1, θ 2, θ 3). Because phase I trials of
combinations generally require that each agent be previously
tested alone, it is natural to obtain informative priors on θ 1

and θ 2, but assume a vague prior on θ 3. Denoting by Ga(a,
b), the gamma distribution with mean a/b and variance a/b2,
the elicitation process (Thall et al., 2003, Section 3) yielded
the priors α1 ∼ Ga(1.74, 4.07), β1 ∼ Ga(10.24, 1.34) for the
effects of agent 1 alone, α2 ∼ Ga(2.32, 5.42), β2 ∼ Ga(15.24,
1.95) for the effects of agent 2 alone, and α3 ∼ Ga(0.33, 0.33),
β3 ∼ Ga(0.0008, 0.0167) for the interaction parameters.

Because doses must be selected sequentially in phase I trials
based on very small amounts of data, an important question
is: Which ESS may be associated with the prior? Our pro-
posed methods (Section 5, below) show that the overall ESS
of this prior is m = 1.5. However, informative priors on θ 1

and θ 2 were obtained and a vague prior on θ 3 was desired,
it also is important to determine the prior ESS of each sub-

vector. Applying our proposed methods yielded prior ESSs,
m1 = 547.3 for θ 1,m2 = 756.8 for θ 2, and m3 = 0.01 for θ 3.
The small value for m3 confirms that the prior on θ 3 reflects
little information about the interaction of the two agents. The
large numerical discrepancy between m = 1.5 and (m1, m2) =
(547.3, 756.8) is desirable. It reflects the fact that, for each i =
1, 2, “θ i” has a very different meaning in the submodel πi(Xi,
θ i) parameterized by θ i alone versus its meaning in the full
six-parameter model π(X, θ). See, for, example, Berger and
Pericchi (2001). From a geometric viewpoint, if π(X, θ) is
thought of as a response surface varying as a function of the
two-dimensional dose (X1, X2), because the edges of the sur-
face correspond to the submodels π1(X1, θ 1) where X2 = 0
and π2(X2, θ 2) where X1 = 0, the large values of m1 and
m2 indicate that the locations of the edges were well known,
whereas the small overall ESS m = 1.5 says that otherwise
very little was known about the surface. In practice, one would
report m1, m2, m3, and m to the clinician from whom the
priors were elicited. The clinician could then judge whether
m1 and m2 are reasonable characterizations of his/her prior
information about the single agents, and compare m to the
trial’s sample size. In the motivating application, a trial of
gemcitabine and cyclophosphamide for advanced cancer, the
large values of m1 and m2 were appropriate because there was
substantial clinical experience with each single agent, and the
small overall ESS also was appropriate because no clinical
data on the two agents used together were available and a
sample size of 60 patients was planned.

This example illustrates four key features of our proposed
method, namely, that (1) ESS is a readily interpretable index
of a prior’s informativeness, (2) it may be useful to compute
ESSs for both the entire parameter vector and for particular
subvectors, (3) ESS values may be used as feedback in the
elicitation process, and (4) even when standard distributions
are used, it may not be obvious how to define a prior’s ESS.

The intuitive motivation for the following construction is to
mimic the rationale, given in Section 1, as to why the ESS of a
beta(a, b) equals a + b. As a general Bayesian framework, let
f(Y | θ) denote the probability distribution function (pdf) of
an s-dimensional random vector Y, and let p(θ | θ̃) be the prior
on the parameter vector θ = (θ1, . . . , θd), where θ̃ denotes the
vector of hyperparameters. The likelihood of an independent
and identically distributed (i.i.d.) sample Ym = (Y 1, . . . ,Y m)
is then given by fm(Ym | θ) =

∏
m
i=1f(Y i | θ).

We define an ε-information prior q0(θ | θ̃ 0) by requiring it
to have the same mean, Eq0(θ) = Ep(θ), and correlations,
Corrq0(θj , θj′) = Corrp(θj , θj′), j 	= j ′, as p(θ | θ̃), while inflat-
ing the variances of the elements of θ so that Varq0(θj) 

Varp(θj), in such a way that q0(θ | θ̃ 0) has small informa-
tion but Varq0(θj) must exist for j = 1, . . . , d. Table 1 illus-
trates how to specify q0(θ | θ̃ 0) for several standard paramet-
ric priors. Given the likelihood fm(Ym | θ) and ε-information
prior q0(θ | θ̃ 0), we denote the posterior by qm(θ | θ̃ 0,Ym) ∝
q0(θ | θ̃ 0)fm(Ym | θ) and the marginal distribution under
p(θ | θ̃) by

fm(Ym | θ̃) =

∫
fm(Ym | θ)p(θ | θ̃) dθ . (2)

When θ̃ is fixed we write fm(Ym) for brevity. To define the
ESS(s), consider the following three cases based on p(θ | θ̃).
For implementation, we find it useful to distinguish between
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Table 1
Examples of ε-information prior distributions. The hyperparameters c, c1, and c2 are very large constants chosen to inflate the

variances of the elements of θ under q0.

d Distribution p(θ | θ̃) q0(θ | θ̃ 0)

1 Beta Be(α̃, β̃) Be(α̃/c, β̃/c)

1 Gamma Ga(α̃, β̃) Ga(α̃/c, β̃/c)
1 Univariate normal with known variance N(µ̃, σ̃2) N(µ̃, cσ̃2)
1 Scaled inverse χ2 Invχ2(ν̃, σ̃2) Invχ2(4 + c−1, ν̃σ̃2/2(ν̃ − 2))

2 Normal inverse χ2 N(µ̃, σ̃2/φ̃)∗ Invχ2(ν̃, σ̃2) N(µ̃, cσ̃2/φ̃) ∗ Invχ2 (4 + c−1, ν̃σ̃2/2(ν̃ − 2))
3 Dirichlet Dir(α̃1, α̃2, α̃3) Dir(α̃1/c, α̃2/c, α̃3/c)
3 Multivariate normal MVN(µ̃1, µ̃2, σ̃

2
1 , σ̃

2
2 , σ̃12) MVN(µ̃1, µ̃2, c

2
1σ̃

2
1 , c

2
2σ̃

2
2 , c1c2σ̃12)

these cases although, formally, cases 1 and 2 are special in-
stances of case 3.

Case 1: d = 1, with p(θ | θ̃) being a univariate parametric
model. For this case, we will define one ESS. Examples
include the beta, gamma, univariate normal with known
variance, and inverse χ2 distributions.

Case 2: d ≥ 2 with p(θ | θ̃) being a d-variate parametric
model. For this case, we will define one ESS. Examples in-
clude the Dirichlet and multivariate normal (MVN) distri-
butions.

The following case deals with settings where it is scien-
tifically appropriate to define two or more ESSs for p(θ | θ̃).

Case 3: d ≥ 2 with p(θ | θ̃) written as a product of

K parametric distributions, p(θ | θ̃) =
∏K

k=1 pk(θk, | θ̃k,
θ 1, . . . , θk−1), where θ = (θ 1, . . . , θK) is partitioned into
K subvectors, for 1 < K ≤ d. In this case, a vector of K
ESSs, one for each subvector, may be meaningful. An ex-
ample is a normal inverse χ2 distribution where (θ1, θ2) =
(σ2, µ), the variance and mean of a normal sampling model,
with p(θ1, θ2) = p1(σ

2) p2(µ |σ2) and σ2 ∼ Inv χ2(ν̃, σ̃2) and
µ |σ2 ∼ N(µ̃, σ2/φ̃). Here K = d = 2 and the two subvec-
tors of θ are the single parameters σ2 and µ. We will discuss
other examples in Sections 4 and 5.

To define the distance between p(θ | θ̃) and qm(θ | θ̃ 0,Ym)
in cases 1 and 2, the basic idea is to find the sample size,
m, that would be implied by normal approximations of the
prior p(θ) and the posterior qm(θ | θ̃ 0,Ym). This led us to use
the second derivatives of the log densities to define the dis-
tance. The real validation and justification of our definition,
however, comes from comparing the resulting ESS values with
the commonly reported ESS in standard settings. We carry
out these comparisons in Section 5.

Let θ̄ = Ep(θ) denote the prior mean under p(θ | θ̃). We
define

Dp,j(θ) = −∂2 log{p(θ | θ̃)}
∂θ2
j

,

and

Dq,j(m, θ ,Ym) = −∂2 log{qm(θ | θ̃ 0,Ym)}
∂θ2
j

, j = 1, . . . , d.

Denote Dp,+(θ) =
∑d

j=1 Dp,j(θ) and Dq,+(m, θ) =∑d

j=1

∫
Dq,j(m, θ ,Ym)fm(Ym) dYm. We define a distance

between p(θ | θ̃) and qm(θ | θ̃ 0,Ym) for sample size m as the

difference of the trace of the two information matrices,

δ(m, θ̄ , p, q0) = |Dp,+(θ̄) −Dq,+(m, θ̄)|. (3)

That is, we define the distance in terms of the trace of the
information matrix (second derivative of the log density) of
the prior p(θ | θ̃), and the expected information matrix of the
posterior qm(θ | θ̃ 0,Ym), where the expectation is with re-
spect to the marginal fm(Ym). When d = 1, because the
“+” subscript is superfluous, we write Dp(θ̄) and Dq(m, θ̄).

Definition 1: The ESS of p(θ | θ̃) with respect to the like-
lihood fm(Ym | θ) is the integer m that minimizes the distance
δ(m, θ̄ , p, q0).

Algorithm 1, below, will generalize this to allow noninteger-
valued m. An essential point is that the ESS is defined as a
property of a prior and likelihood pair, so that, for example, a
given prior might have two different ESS values in the context
of two different likelihoods.

The definition of the distance (3) involves some arbitrary
choices. We chose this definition after an extensive empiri-
cal investigation (not shown) of alternative formulations. In-
stead of evaluating the curvature at the prior mean, one
could use the prior mode. Similarly, one could marginalize
θ with respect to the prior, averaged over Ym with respect
to fm(Ym | θ) rather than the marginal fm(Ym), or use the
determinant rather than the trace of the information matrix.
One also could define δ(.) in terms of Kullback–Liebler diver-
gence, or variances. We investigated all of these alternatives
and evaluated the resulting ESS in each of several standard
cases, and found that the proposed distance (3) was best at
matching the results that are commonly used as ESS values.

For case 3, a more general definition is required. A moti-
vating example is the logistic regression model, logit{π(X,
θ)} = β0 + β1X1 + β2X2, where d = 3, θ = (β0, β1, β2) and
βj ∼ N(µ̃j , σ̃

2
j) independently with θ̃ = (µ̃j , σ̃

2
j} for j = 0, 1,

2. In this case, the subvectors of interest are θ 1 = β0 and θ 2 =
(β1, β2), so two ESS values, m1 and m2, may be computed.
To accommodate case 3, we generalize (3) by defining a set
of K subvector-specific distances. Let γk be the set of indices
of the elements of θk, and denote Dk

p,+(θ) =
∑

j∈γk
Dp,j(θ)

and Dk
q,+(mk, θ)=

∑
j∈γk

∫
Dq,j(mk, θ ,Ymk

)fmk
(Ymk

) dYmk
.

For each k = 1, . . . ,K, we define the distance between
pk(θk | θ̃k, θ 1, . . . , θk−1) and qmk

(θk | θ̃ 0,k,Ymk , θ 1, . . . , θ k−1)
to be

δk(mk, θ̄ , p, q0) =
∣∣Dk

p,+(θ̄) −Dk
q,+(mk, θ̄)

∣∣. (4)
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Definition 2: Assume p(θ | θ̃) as in case 3. Let mk =
arg min δk(m, θ̄ , p, q0). We define (m1, . . . ,mK) to be the ESSs
for the prior p(θ | θ̃) with respect to the model fm(Ym | θ) and
the partition θ = (θ 1, . . . , θK).

3. Computational Methods
Let θ̄ = (θ̄1, . . . , θ̄d) denote the prior mean vector. With the
following algorithms, we generalize Definitions 1 and 2 to al-
low noninteger ESS values.

Algorithm 1, for cases 1 and 2: Let M be a positive integer
chosen so that, initially, it is reasonable to assume that m ≤
M .

Step 1. Specify q0(θ | θ̃ 0).
Step 2. For each m = 0, . . . ,M , compute δ(m, θ̄ , p, q0).
Step 3. The ESS is the interpolated value of m minimizing
δ(m, θ̄ , p, q0).

In practice, step 2 is carried out either analytically or using
the simulation-based numerical approximation as described
in Section 3.2.

Algorithm 2, for case 3: For each k = 1, . . . ,K, let Mk be
a positive integer chosen so that, initially, it is reasonable to
assume that mk ≤ Mk.

Step 1. Specify q0(θ | θ̃ 0) =
∏K

k=1 q0,k(θk | θ̃ 0,k, θ 1, . . . , θk−1).
Step 2. For each k = 1, . . . ,K, and mk = 0, . . . ,Mk, compute
δk(mk, θ̄ , p, q0).

Step 3. The ESS of θk is the interpolated value of mk mini-
mizing δk(mk, θ̄ , p, q0).

If the hyperparameter θ̃ of p(θ | θ̃) includes a degree of free-
dom (df) parameter ν̃, as with an inverse χ2, inverse gamma,
inverse Wishart, or t-distribution, then the corresponding
hyperparameter of q0(θ | θ̃ 0) is ν̃0 = ν̃min + ε, where ν̃min is
the smallest integer that ensures the second moments of
θ ∼ q0(θ | θ̃ 0) exist and ε > 0 is arbitrarily small. In such
cases, we add Dq,+(ν̃min, θ̄) −Dq,+(0, θ̄) to Dq,+(m, θ̄) and
add Dk

q,+(ν̃min, θ̄) −Dk
q,+(0, θ̄) to Dk

q,+(mk, θ̄) to ensure that
ESS > ν̃min.

For each m = 1, . . . ,M , when
∫
Dq,j(m, θ̄ ,Ym) ×

fm(Ym) dYm cannot be computed analytically, we use the
following simulation-based approximation. Given θ̄ = Ep(θ),
we first simulate Monte Carlo sample θ (1), . . . , θ (T ) from
p(θ | θ̃) for large T, for example, T = 100,000. For each

t = 1, . . . ,T , simulate Y
(t)
1 , . . . ,Y

(t)
M from fM (YM | θ (t)). Use

the Monte Carlo average T−1
∑T

t=1 Dq,j(m, θ̄ ,Y(t)
m ) in place of∫

Dq,j(m, θ̄ ,Ym)fm(Ym) dYm. For case 3, the same method

is used to evaluate Dk
q,+(mk, θ̄) in (4).

For regression models of Y as a function of a u-dimensional
predictor X, we extend Definition 1 by augmenting the regres-
sion model with a probability distribution gm(Xm | ξ) for the
covariates and prior r(ξ | ξ̃), usually assuming independence,
gm(Xm | ξ) =

∏
m
i=1 g(Xi | ξ). Then we define

fm(Ym)=

∫
fm(Ym |Xm, θ) gm(Xm | ξ) f(θ | θ̃) r(ξ | ξ̃) dθ dξ .

In this case, we simulate θ (1), . . . , θ (T ) from p(θ | θ̃) and

ξ (1), . . . , ξ (T ) from r(ξ | ξ̃), then simulate each X
(t)
1 , . . . ,X

(t)
M

from gM (XM | ξ (t)), and Y
(t)
i from f(Y i | θ (t), X

(t)
i ) for

each i = 1, . . . ,M , to obtain (Y
(t)
1 , X

(t)
1 ), . . . , (Y

(t)
M , X

(t)
M ).

Finally, we compute the Monte Carlo average T−1
∑T

t=1Dq,j

(m, θ̄ ,Y(t)
m ,X(t)

m ). For case 3, the same method is used to eval-
uate Dk

q,+(mk, θ) in (4).

4. Guidelines for Application
Before illustrating how the above methods for computing ESS
may be applied in particular cases, we provide general guide-
lines for using ESS values in some commonly encountered
settings of Bayesian inference.

1. Prior elicitation. When eliciting a prior from an area
expert, ESS values may be provided as a readily inter-
pretable form of feedback. The area expert may use this
as a basis to modify his/her judgments, if desired, and
this process may be iterated. For example, in the moti-
vating example of Section 2, we would report the ESS val-
ues m1 = 547 and m2 = 756 to the investigator planning
the study. If his/her prior were based on earlier single-
agent trials with around 100 patients each, (s)he would
be prompted to revise the replies to the prior elicitation
questions.

2. Formalizing uninformative priors. Often an investigator
wishes to formalize vague prior information. The ESS
can be used to confirm that the chosen prior carries lit-
tle information, as desired. For example, in the motivat-
ing example in Section 2.1, the reported ESS m3 = 0.01
for the interaction parameter confirms that this prior is
vague.

3. Reviewing others’ analyses. When interpreting or formally
reviewing a Bayesian data analysis, the ESS of the ana-
lyst’s prior provides a tool for evaluating the reasonable-
ness of the analysis. In particular, if it is claimed that a
vague or uninformative prior was used, the ESS provides
an objective index to evaluate this claim. If appropriate,
one may alert the analyst if a prior appears to be overly
informative. Similarly, if an informative prior based on
historical data is used in the analysis, reporting the ESS
enables the reviewer to verify that the prior data are
given appropriate weight.

4. Sensitivity analyses. In performing a conventional
Bayesian sensitivity analysis in which prior parameters
are varied and corresponding posterior values of interest
are computed, the ESS of each prior may be computed
to enhance interpretation of this analysis. The ESS itself
may be used as an index of prior informativeness in such
a sensitivity analysis.

5. Designing outcome-adaptive experiments. When formulat-
ing a prior as part of a Bayesian model to be used in a
sequentially outcome-adaptive experiment, the ESS may
be used to calibrate the prior to ensure that the data,
rather than the prior, will dominate early decisions dur-
ing the trial.

6. Reviewing Bayesian designs. When interpreting or for-
mally reviewing a Bayesian design, such as that given in
a clinical trial protocol, the ESS of the prior provides
a tool for determining the extent to which the prior
may influence the design’s decisions. Currently, an im-
portant reservation about using Bayesian inference in a
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Table 2
Prior, likelihood, and corresponding posterior qm with respect
to the ε-information prior q0, and traditionally reported prior
effective sample size, ESS, for some common models. In line

three, we denote s2 =
∑m

i=1(Yi − ν̃0)
2.

p(θ | θ̃) f(Ym | θ) qm(θ | θ̃ ,Ym) ESS

Be(α̃, β̃) Bin(n, θ) Be(c−1α̃ + Y, c−1β̃ + m− Y ) α̃ + β̃

Ga(α̃, β̃) Exp(θ) Ga(c−1α̃ + m, c−1β̃ +
∑

Yi) α̃

Invχ2(ν̃, σ̃2) N(0, σ2) Invχ2(ν̃0 + m, ν̃0σ̃
2 +s2

ν̃0 +m ) ν̃

Dir(α̃) Mn(n, θ) Dir(c−1α̃ + S)
∑

α̃j

regulatory environment, such as the planning of clinical
trial protocols, is the difficulty of evaluating and judg-
ing the appropriateness of prior distributions in complex
probability models. The ESS provides a useful tool to
mitigate such concerns.

5. Validation with Standard Models
We validate the proposed definition of ESS by computing the
implied sample sizes in standard models (Table 2) for which
commonly reported prior-equivalent sample sizes exist. Fol-
lowing Gelman et al. (2004), we denote Be(α, β), Bin(n, θ),
Ga(α, β), Exp(θ), N(µ, σ2), Invχ2(ν, s2), Dir(α1, . . . ,αJ),
Mn(n, θ1, . . . , θJ), and BeBin(n, α, β) for the beta, binomial,
gamma, exponential, normal, scaled inverse χ2, Dirichlet,
multinomial, and beta-binomial distributions. The corre-
sponding ε-information priors are given in Table 1. For each
model in Table 2, the reported ESS matches the obvious
choice.

Example 1. Beta/binomial model. δ(m, θ̄ , p, q0) = {(α̃−
1)θ̄−2 +(β̃− 1)(1− θ̄)−2}−{(α̃/c+

∑m

Y =0Y fm(Ym)− 1)θ̄−2 +

(β̃/c+m−
∑m

Y =0Y fm(Ym)− 1)(1− θ̄)−2}, where fm(Ym)=

BeBin(n, α̃, β̃) and θ̄ = Ep(θ) = α̃/(α̃ + β̃). Figure 1 shows a
plot of δ(m, θ̄, p, q0) against m in the case θ̃ = (α̃, β̃) = (3, 7).
Using θ ∼ Be(3,7), the computed ESS is 10, matching the
commonly reported ESS in this case. Analogous plots (not

Figure 1. Plot of δ(m, θ̄, p, q0) against m for the beta/
binomial model with θ̃ = (α̃, β̃) = (3, 7).

shown) in all other cases examined below are very similar in
appearance to Figure 1.

Example 2. Gamma/exponential model. δ(m, θ̄, p, q0) = (α̃−
1)θ̄−2 − (α̃/c+ m− 1)θ̄−2, where θ̄ = α̃/β̃, and the ESS is
found analytically to be α̃, as desired.

Example 3. Univariate normal wth known variance. For
Y | θ ∼ N(θ, σ2) with σ2 known and prior θ | θ̃ ∼ N(µ̃, σ̃2),
so that θ̃ = (µ̃, σ̃2), one may compute analytically Dp(θ) =
−∂2log{p(θ | θ̃)}/∂θ2 = 1/σ̃2, and similarly, Dq(m, θ̄) = m/σ2.
Thus, δ(m, θ̄, p, q0) = |1/σ̃2 −m/σ2|, so the ESS = σ2/σ̃2, the
ratio of the known variance in the likelihood to the prior
variance of θ. In applying this model to a clinical trial set-
ting where θ is the difference between two treatment effects,
Spiegelhalter et al. (1994, Section 3.1.2) propose assuming
that σ̃2 = σ2/n0 to obtain a prior that “ . . . is equivalent to a
normalized likelihood arising from a (hypothetical) trial of n0

patients with an observed value µ̃ of the treatment difference
statistic.” Thus, in this case, the two methods for defining
prior ESS agree.

Example 4. Inverse χ2/normal model. We find an-
alytically that Dp(θ) = −(σ2)−2(ν̃ + 2)/2 + (σ2)−3ν̃σ̃2,
whereas

∫
Dq(m, θ̄,Ym)fm(Ym) dYm is obtained by

simulation. As explained in Section 3, the adjustment
factor {Dq(4, θ̄) −Dq,(0, θ̄)} is added to Dq(m, θ̄). For
θ̃ = (ν̃, σ̃2) = (20, 1),ESS = 20 = ν̃, as desired.

Example 5. Dirichlet/multinomial model. From Table 1, de-
note α̃ = (α̃1, . . . , α̃J), θ = (θ1, . . . , θJ) and S = (S1, . . . ,SJ)
with Sj =

∑m

i=1 Yji. Compute Dq,j(m, θ) analytically, as with

the beta−binomial. For d = 3 and θ̃ = (10, 15, 25), ESS =
50 =

∑
α̃j , as desired.

Example 6. Power priors. Ibrahim and Chen (2000) pro-
pose a class of “power priors” based on an initial prior
p0(θ | c0), a likelihood L(θ |D0) of historical data D0, and a
scalar prior parameter a0. The power prior is p(θ |D0, a0) ∝
L(θ |D0)

a0p0(θ | c0), so that a0 weights the historical data rel-
ative to the data that will be obtained in the future. To
see how one would compute the ESS of a power prior, con-
sider the beta/binomial model with a beta(1,1) initial prior
and D0 consisting of three successes in 10 historical trials.
The power prior is p(θ |D0, a0) = p(θ | (3, 10), a0) ∝ {θ3(1 −
θ7)}a0θ(1 − θ), and it follows easily (case 1) that ESS =
a010 + 2. More generally, the ESS of p(θ |D0, a0) is aoESS ×
{L(θ |D0)} + ESS {p0(θ | c0)}, the weighting parameter times
the ESS of the historical data likelihood treated as a function
of θ plus the ESS of the initial prior.

Hodges and Sargent (2001) derive a formula for the effective
degrees of freedom (EDF) of a richly parameterized model,
and illustrate this for a balanced one-way normal linear ran-
dom effects model for Nn observations {Y ij , i = 1, . . . ,N ,
j = 1, . . . ,n}, given by the likelihood Y i1, . . . ,Y in | θi,
σ2 ∼ i.i.d.N(θi, σ

2) for each i, and prior θ1, . . . , θN | µ̃, σ̃2 ∼
i.i.d. N(µ̃, σ̃2). They show that the EDF for this model is ρ =
(nN + φ)/(n + φ), where φ = σ2/σ̃2, the ratio of the resid-
ual variance and the prior variance. Recall from Example 3
that φ is the ESS of the simple normal model with known
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Table 3
Comparison of ESSs computed using the proposed method and the crude method that matches first
and second moments to a beta, for the logistic regression model, π(Xi, θ) = Pr(Y i = 1 |Xi, θ) =
exp(µ + βXi)/{1 + exp(µ + βXi)}, where the priors are µ ∼ N(µ̃µ, σ̃

2
µ) with µ̃µ = −0.1313 and

β ∼ N(µ̃β , σ̃
2
β) with µ̃β = 2.3980

Proposed method Crude method

σ̃2
µ = σ̃2

β m mµ mβ m̄∗ mX(1) mX(2) mX(3) mX(4) mX(5) mX(6)

0.52 37.1 22.7 101.3 18.2 23.5 18.2 17.0 16.6 16.8 17.3
1.02 9.3 5.7 25.3 4.5 4.1 4.7 4.8 4.6 4.4 4.2
2.02 2.3 1.4 6.3 1.3 1.0 1.4 1.5 1.5 1.3 1.2
3.02 1.0 0.6 2.8 0.7 0.5 0.8 0.8 0.8 0.7 0.7
5.02 0.4 0.2 1.0 0.4 0.3 0.4 0.4 0.4 0.4 0.3

m̄∗ = 6−1
∑6

z=1 mX(z) .

variance. In the limiting case with φ → ∞, that is, all θi are
equal, θi = µ, we find ρ = 1. In other words, for large ESS
and essentially only one group, Hodges and Sargent report
ρ ≈ 1. At the other extreme, for φ → 0, that is, for small
ESS and θi’s very different from each other, they report ρ ≈
N . However, such comparisons should not be overinterpreted.
EDF and ESS are quite different summaries. Formally, the
EDF is a function of the sample size n. In contrast, ESS is
not a function of n. Rather, it reports an equivalent sample
size for the given model.

Using an information-theoretic argument, Spiegelhalter
et al. (2002) also derive a measure for the effective number
of parameters in complex models, such as generalized linear
(mixed effects) models, pD, defined as the difference between
the posterior mean of the deviance and the deviance evalu-
ated at the posterior means of the parameters of interest. But,
similar to the EDF ρ, the nature of pD is different from the
proposed ESS. Formally, pD is a function of the data, whereas
the ESS is not.

6. Application to Some Nonstandard Cases
The following examples show how ESS values may be com-
puted in settings where no commonly agreed-upon ESS exists,
using the numerical approximations described earlier to ob-
tain δ(m, θ̄ , p, q0).

Example 7. Logistic regression. Thall and Lee (2003) use
a logistic regression model to determine a maximum toler-
able dose in a phase I clinical trial. Each patient receives
one of six doses 100, 200, 300, 400, 500, 600 mg/m2, de-
noted by x1, . . . ,x6, with standardized doses X(z) = log(xz) −
6−1

∑6
l=1 log(xl). The outcome variable is the indicator Y i =

1 if a patient i suffers toxicity, 0 if not. A logistic model π(Xi,
θ) = Pr(Y i = 1 |Xi, θ) = logit−1{η(Xi, θ)} with η(Xi, θ) =
µ + βXi is assumed, where logit−1(x) = ex/(1 + ex). Hence
d = 2, θ = (θ1, θ2) = (µ, β), and the likelihood for m patients
is

fm(Ym |Xm, θ) =

m∏
i=1

π(Xi, θ)Yi{1 − π(Xi, θ)}1−Yi .

Thall and Lee (2003) obtained independent normal
priors for µ and β, based on elicited mean π(X, θ) for
doses x2 = 200 and x5 = 500, and setting σ̃µ = σ̃β = 2

based on preliminary sensitivity analyses, which yielded
N(µ̃µ, σ̃

2
µ) = N(−0.1313, 22) and N(µ̃β , σ̃

2
β) = N(2.3980, 22).

For this application, Algorithms 1 and 2 may be applied
to compute one ESS of p(θ | θ̃) and two ESSs mµ and mβ

of the priors for µ and β, as follows. For step 1, specify
q0(θ | θ̃ 0) = N(µ̃µ, cσ̃

2
µ)N(µ̃β , cσ̃

2
β), with c = 10,000. Next,

compute Dp,1(θ) = (σ̃2
µ)

−1,Dp,2(θ) = (σ̃2
β)

−1,Dq,1(m, θ ,Ym,

Xm)=
∑m

i=1π(Xi, θ){1−π(Xi, θ)}, and Dq,2(m, θ ,Ym,Xm)=∑m

i=1 X
2
i π(Xi, θ){1−π(Xi, θ)}. Because Dq,1(m, θ ,Ym,Xm)

and Dq,2(m, θ ,Ym,Xm) depend on Xm but not on Ym, this
simplifies the simulation method given in Section 3.2. We
assume a uniform distribution on the six doses for the prob-
ability model g(Xi | ξ). Draw X

(t)
1 , . . . ,X

(t)
M independently

from {X (1), . . . ,X (6)} with probability 1/6 each, for t = 1, . . . ,
100,000. Then, using the plug-in vector θ̄ = (µ̄, β̄) = (µ̃µ, µ̃β),
compute δ(m, θ̄ , p, q0) for each m = 0, . . . ,M, δ1(mµ, θ̄ , p, q0)
for each mµ = 0, . . . ,M 1, and δ2(mβ , θ̄ , p, q0) for each mβ =
0, . . . ,M 2. As shown in Table 3, m = 2.3, mµ = 1.4, and
mβ = 6.3.

Because the standardized doses Xi were defined to be cen-
tered at 0, one may interpret mµ as the ESS for the prior
on the average effect, and mβ as the ESS for the dose effect.
The prior indicates greater knowledge about the effects of the
doses than about the average response. Because m = 2.3, af-
ter enrolling 3 patients, the information from the likelihood
starts to dominate the prior, as desired.

As a sensitivity analysis, Table 3 summarizes corresponding
results for σ̃2

µ = σ̃2
β = 0.52, 1.02, 3.02, and 5.02. As a basis for

comparison, we also include the ESS at each dose obtained
by the crude method of equating the mean and variance of
π(X (z), θ) at each dose to the corresponding values for a

beta, E(θ) = α̃/(α̃ + β̃), and Var(θ) = {E(θ)(1 − E(θ))}/(α̃ +
β̃ + 1), and solving for α̃ + β̃. We denote by m̄ the average of
the ESSs mX(1) , . . . ,mX(6) at the six doses, obtained in this
way. The results indicate that the crude method provides
smaller estimates of the ESS for σ̃2 < 5.02.

It also is useful to examine how the ESS in this example
would vary with a0 if one wished to reweight the prior by re-
placing it with a power prior {p(θ | θ̃)}a0 . Identifying p(θ | θ̃)
with L(θ |D0) in the set-up of Ibrahim and Chen (2000), and
considering the additional ESS of an initial prior to be neg-
ligible, the ESS may be computed by applying Algorithms 1
and 2 and setting the ε-information prior to be {q0(θ | θ̃ 0)}a0 .
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Table 4
ESSs for power priors {p(θ | θ̃)}a0 based on the prior
{p(θ | θ̃)} in the logistic regression example, using

hyperparameter values µ̃µ = −0.1313 and µ̃β = 2.3980, as in
Table 3, with σ̃2

µ = σ̃2
β = 4

a0 m mµ mβ

0.5 1.2 0.7 3.2
1 2.3 1.4 6.3
2 4.6 2.8 12.6
4 9.3 5.7 25.3

This yields the values summarized in Table 4. These values
illustrate, as in Example 6 given earlier, that the power a0

acts essentially as a multiplier in the ESS domain, aside from
the additive ESS of an initial prior.

Example 8. Two-agent dose–response model. The next ex-
ample is the one described earlier in Section 2—a design to
find acceptable dose combinations of two cytotoxic agents
used together in a phase I trial. Recall the definition of π(X,
θ) given in equation (1). The likelihood for m patients with
toxicity indicators Ym = (Y 1, . . . ,Y m) and dose pairs Xm =
(X1, . . . ,Xm) is

f(Ym |Xm, θ) =

m∏
i=1

π(Xi, θ)Yi{1 − π(Xi, θ)}1−Yi . (5)

Based on (5) and the gamma priors given in Section 2,
for this case, Algorithm 1 is used to compute one ESS,
m, of p(θ | θ̃). The three ESSs m1, m2, and m3 for
θ 1, θ 2, and θ 3 can be computed using Algorithm 2. In
step 1, with c = 10,000, q0(θ | θ̃ 0) =

∏3
k=1Ga(ãk,1/c, ãk,2/c) ×

Ga(b̃k,1/c, b̃k,2/c). In step 2, we computed Dp,1(θ) = (ã1,1 −
1)α−2

1 , . . . ,Dp,6(θ) = (b̃3,1 − 1)β−2
3 analytically. The numerical

methods given in Section 3 give δk(mk, θ̄ , p, q0) for k = 1, 2,
3, yielding the values m = 1.5, m1 = 547.3, m2 = 756.8, and
m3 = 0.01, as reported earlier.

Example 9: Linear regression. The last example is a linear
regression model used to analyze a small data set (Y 1,
X1), . . . , (Y 10, X10), where Y i is December rainfall and Xi is
November rainfall for 10 consecutive years i = 1, . . . , 10 (Con-
gdon, 2001). The sampling model is Y i |Xi, θ ∼ N(µi, 1/τ)
with µi = α + β(Xi − X̄) and τ denoting the precision
where X̄ is the sample average of the original predictor,
so θ = (θ1, θ2, θ3) = (α, β, τ). Let N(x;m, s) indicate
that the random variable x is normally distributed with
moments (m, s). In Congdon (2001), an independent
prior p(θ) = p1(θ1, θ2 | θ̃ 1, θ̃ 2) · p2(θ3 | θ̃ 3) is assumed, with
p1(θ1, θ2) = N(θ1; µ̃α, σ̃

2
α) ·N(θ2; µ̃β , σ̃

2
β) and p2 = Ga(ã, b̃).

Congdon (2001) uses µ̃α = µ̃β = 0, σ̃2
α = σ̃2

β = 1000, ã = b̃ =
0.001. Algorithm 2 was used to compute two ESSs: m1 for
p1(θ1, θ2 | θ̃ 1, θ̃ 2) and m2 of p2(θ3 | θ̃ 3). The plug-in vector
is θ̄ = Ep(θ) = (µ̃α, µ̃β , ã/b̃). In step 1, specify q0(θ | θ̃ 0) =
q0,1(θ1 | θ̃ 0,1)q0,1(θ2 | θ̃ 0,2)q0,2(θ3 | θ̃ 0,3) = N(µ̃α, cσ̃

2
α)N(µ̃β , cσ̃

2
β) ×

Ga(ã/c, b̃/c), with c = 10,000. In step 2, compute analytically
Dp,1 (θ) = (σ̃2

α)−1, Dp,2(θ) = (σ̃2
β)

−1, Dp,3(θ) = (ã− 1)τ−2,

Dq,1(m1, θ ,Ym1 ,Xm1)= (cσ̃2
α)−1 + τm1, and Dq,3(m2, θ ,Ym2 ,

Xm2) = (ã/c− 1)τ−2 +m2 τ
−2/2. For this case, only Dq,2(m1,

θ ,Ym1 ,Xm1) = (cσ̃2
β)

−1 + τ
∑10

i=1 X
2
i depends on X. Following

the methods in Section 3, we simulated X
(t)
1 , . . . ,X

(t)
M1

∼
i.i.d.N(0, 1) for t = 1, . . . , 100,000 to obtain m1 = 0.001
and m2 = 0.002. We interpret the reported ESSs as evidence
of very vague priors. As a sensitivity analysis, we also
computed the ESSs of two alternative priors p′(θ | θ̃) =
N(0, 100) N(0, 10) Ga(1, 1) and p′′(θ | θ̃) = N(0, 1) N(0, 1)
Ga(2, 2), which gave m1 = 0.06 and m2 = 2.0 for p′(θ | θ̃),
and m1 = 1.0 and m2 = 4.0 for p′′(θ | θ̃).

7. Discussion
The methods proposed in this article are useful in Bayesian
analysis, particularly in settings with elicited priors or where
the data consist of a relatively small number of observations.
By computing ESSs, one may avoid the use of an overly in-
formative prior in the sense that inference is dominated by
the prior rather than the data. As noted in our guidelines
for application, other uses of ESS values include interpret-
ing or reviewing others’ Bayesian analyses or designs, using
the ESS values themselves to perform sensitivity analyses in
the prior’s informativeness, and calibrating the parameters of
outcome-adaptive Bayesian designs.

Extension of our methods to accommodate hierarchical
models is not straightforward. This is a potentially impor-
tant area for future research, because it would be useful to
compute ESS values in such settings. Other potential appli-
cations involving more complicated problems include mixture
priors synthesizing multiple component priors, or the class of
ε-contaminated priors, where ε reflects the amount of uncer-
tainty in the prior information (Greenhouse and Wasserman,
1995).

8. Supplementary Materials
The R program to compute ESS values and instructions for
using this program are available under the Paper Informa-
tion link at the Biometrics website http://www.biometrics.

tibs.org.
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