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SUMMARY

A two-stage design which selects the best of several experimental treatments and
compares it to a standard control is proposed. The design allows early termination with
acceptance of the global null hypothesis. Optimal sample size and cut-off parameters are
obtained by minimizing expected total sample size for fixed significance level and power.
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1. INTRODUCTION

In clinical research where there are several experimental treatments E,, ..., Ex of
interest, often too few patients are available to evaluate each relative to a standard
‘control’ therapy C. A common approach in such a circumstance is to first select the
experimental treatment E, which appears most promising based on uncontrolled pilot
studies, and then compare E, to C in a large randomized clinical trial. When such pilot
studies are performed at different institutions, treatment effects typically are confounded
with many other factors. Moreover, the usual error rate computations associated with
comparative testing do not account for the preliminary selection process. Consequently,
the overall procedure may be neither effective nor efficient for identifying an experimental
treatment which is an improvement over C.

In this paper we propose a new approach to the problem of identifying the best of K
experimental treatments and determining whether it is superior to a control. We deal
with the binomial setting where patient response may be characterized as either success
or failure, with 6, the success probability for E,; k=0 corresponds to C. For ease of
notation assume 6,<...< x. We propose a two-stage procedure which allows early
termination with acceptance of Hy: 6,= 6, =...= 6y, with design parameters chosen to
minimize expected total sample size. The design and accompanying generalized definitions
of size & and power 1 — 3 are given in § 2. The algorithm used for optimization is described
in § 3. Numerical results are presented in § 4, followed by a discussion of the relative
merits of the proposed design.
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2. THE DESIGN

Let a(p) =sin"' vp. At stage s, denote by n, the number of patients in each treatment
arm, X, the number of successes in the jth arm and define

Z,=(4n,)a(X;/n;) (j=0,1,...,K;s=1,2).

Denote n=n,+n,, m=n,/n and let y, be the test cut-off at stage s. For prespecified
values of the design parameters n,, n,, y;, ¥, the trial is carried out as follows.

Stage 1. Randomize (K +1)n, patients equally to C, E,, ..., Ex. If

1
T, :% 121’%{ (Z_]l —Zo)> i
then select the treatment E, having the highest observed success rate and proceed to a
second stage. If T, <y, then stop and accept H,.

Stage 2. Randomize 2n, additional patients equally to E, and C. If

1 L 3
T,= % {7 Z,1—Zo))+ (1 —7)(Z,2— Z02)} > 2

then reject H, and conclude 6, > 6,; if T,=< y, then accept H,.

The first stage is a combined selection procedure and test, in that the empirically best
experimental treatment is compared to the control. However, the design allows a new
treatment to be judged superior to the control only after a second stage, based upon data
from 2n patients. We shall formally assume that a tie at max; (Xj;) is broken by
randomizing fairly at stage 1, although such a tie is rather unlikely. In practice the use
of other objective criteria, such as teoxicity, would provide a clinically reasonable alterna-
tive to randomization.

The stage 1 and 2 summary statistics are weighted in T, to minimize the asymptotic
variance. Both T, and T, are defined on the standard normal scale to facilitate interpreta-
tion of y, and y,.

We shall broaden the usual definitions of size and power to account for the hybrid
nature of the proposed procedure. An experimental treatment E, is said to be ‘chosen’
if E, is selected at stage 1 and H, is rejected in favour of the alternative 6, > 6, at stage
2. The ‘size’ of the procedure is the probability that any E, is chosen when H, holds.
To develop a definition of power, let §; and &, be constants (0<8,<8,<1—6,) such
that, from a medical viewpoint, the success rate 6,+ 8, is only a marginal improvement
over 6, while 6,+ 8, is a clinically significant improvement. Any E; for which 6, = 6,+ 6,
is considered ‘acceptable,” and we shall assume that (i) at least one E; is acceptable, and
(ii) no 6; lies in the interval (6,+8,, 65+ 8,). The second assumption is made because
no statistical procedure can effectively discriminate between groups whose means are
arbitrarily close. The ‘power’ function is now defined as 1 —8(6) equal to the probability
of an acceptable choice given 6 =(6,, 6,, ..., 0k).

The following result will be utilized to compute power; the proof is given in the
Appendix.

THEOREM 1. Under assumptions (i) and (ii), 1 — B(0) is minimized for given 6,, 6, and
62 when 01 =00 = 0[(_1 = 00+ 51 and 0]( = 00+ 52.
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The configuration 6* minimizing 1— 8(0) will be called least favourable, and hereafter
power will be computed exclusively under 6*, where only Ex is acceptable. Writing
B*=pB(6%), it follows that 1—B*, the probability that Ex is chosen given 6*, is

Zl Zl pr {Xo, = X0, Xx1=xx | 0*}H{a(xx/n,) —a(xo/n,) > J’1/\/(2n1)}

x0=0 x =0
Xpr{M|Xg,=xk; 0%} pr{T,> y,| Xo1 = X0, Xi1=xx; 6%}, (1)

where I is the indicator function, and M denotes the event that Xy, = max; (Xj,) and
Ex wins the randomization in case of a tie. Denote the binomial mass and cumulative
distribution functions by b(x; n, p) and B(x; n, p), respectively. The first factor in (1) is
simply b(xo; ny, 6)b(xk; ny, 65+ 8,), while

pI'{M|XK1:xK;0*}

K_l{b(oa nla 00+61)}K_1 (xK :0):
— K—-1 1 K_l . —1—i

'Zo ]—+I< j )‘{b(xx; ny, 6+ 8)}{B(xg —1; ny, 6+ 51)}1( = (xx >0).

=

Denote A, = a(0,+8,)—a(6,) (s=1,2).Since (Z,,— Z,,)/2 is asymptotically normal
with mean (2n,)*A, and variance 1, the last factor in (1) may be approximated by

1—® {J’z_ (2/n)*[n{a(xx/n,) — a(xo/ny)}+ nzAz]}
(1—m) ’
where @ is the standard normal distribution function. The size is computed by evaluating
(1) at 8, = 8,=0 and multiplying the result by K.
It follows from the approximate normality of each Z; that (1) is asymptotically
equivalent to

(2)

J. o (wo) J X & (Wi )[D{wk +2(A2_A1)\/"1}]K71{1 —®(y%)} dwg dwy, (3)

y

where

Yo~ (W/z)%(WK — W) — (2"2)%A2
(1—m)* ’

and ¢ is the standard normal density. Thus asymptotically the size is independent of 6,
and the power depends on 6 only through A, and A,.

The formulation (1) is studied, rather than an approximation of (3) via numerical
integration, because the former is more accurate. The only numerical approximation used
is that required for evaluation of (2), and this is done to avoid a fourfold sum. In addition,
the optimal stage 2 sample size n, is sufficiently large, for all designs considered, to
ensure high accuracy of the normal approximations for (Zx,— Z,,)/+2 in evaluating (2).

The approach here is to choose the design parameters n,, n,, y,, y, to minimize
expected total sample size E(N)=(K +1)n,+2n, pr (T, > y,) subject to the constraints
imposed by specifying a and 1—8*. Since pr (T,> y,) depends on 6, minimization may
be carried out under H,, 6™ or with E(N) averaged over a specified prior. See, for
example, Hald (1975), Colton & McPherson (1976), Jennison (1987), or Case, Morgan
& Davis (1987). In the present context, the goal is to obtain reasonable designs which
perform well under both H, and 6*. We thus derive designs to minimize the simple
average sE(N|Hy)+3E(N|6%*).

y¥ =}’1‘/2+ Wo_2A2\/n1, y;< =
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3. DERIVATION OF OPTIMAL DESIGNS

All designs given here correspond to a =0-05, §,=0-05, §,=0-20, with K =2,3,4;
6,=0-2,0-4,0-6,and 1 —B*=0-70, 0-75, 0-80. The range of values for 1 — 8* is somewhat
lower than conventional power figures since it accounts for both the selection and test
in choosing an acceptable treatment.

The search algorithm proceeded with n, fixed in an outer loop, then y, fixed at a value
in a discrete domain having grid width 0-025 to locate local minima. For each n, and
y,, the two equations in size and power were solved for y, and 7 to an accuracy of £10~*
for both @ and 1 —B%*, using a least-squares algorithm due to Shrager (1970). Then E(N)
was computed based upon the smallest integer n,=n,(7 ' —1). Regarded as a function
of y, for n, fixed, E(N) has two distinct local minima E, and E,, say, in all cases. An
exhaustive search for y, along the T, domain

(2n)a(xk/ny) —a(xe/n)}  (0<xo, Xk <n,)

in the neighbourhoods of E, and E, was carried out to obtain the minimum for given
n,. As a function of n, this minimum is unimodal, thus yielding the global optimum.

For n, outside an integer domain of width up to about 20 in the cases considered,
both E, and E, rapidly increase with y,, until no solution for 7 and y, exists. The value
of y, yielding min (E,, E,) is quite distinct for 6,=0-2 or 0-6, but often is unique only
up to one or two decimal places for 6,=0-4. For example, 0-485=< y, < 0-606 minimizes
E(N) for the design with K =4, 8,=0-4 and 1—-B*=0-75 in Table 1. In such cases, a
value of y, near the centre of the optimizing interval is given. The values a and 1—8*
are rather more sensitive to changes in y,, so that the tabled cut-off y, is fully accurate
to all digits reported, given the method of computation.

4. NUMERICAL RESULTS

Optimum design parameters are presented in Table 1, along with other numerical
values which describe each design’s behaviour.

The values of n, are close to the sample sizes conventionally used for pilot or ‘phase
I’ studies in clinical cancer research. This is desirable since it would be difficult to
persuade clinical investigators to use a design having a substantially larger selection
stage. The values of n, and n, in Table 1 all are based upon the prespecified increments
8,=0-05 and §,=0-20, the latter chosen to correspond to the target improvement in
response rate used in many clinical trials of advanced cancer. The optimum n, increases
with K for fixed 6, and 1— 8%, essentially because Ex must overcome more competing
treatments in order to be selected at stage 1. This was also found to be the case by Simon,
Wittes & Ellenberg (1985) for randomized phase II trials without a control group. For
K and 1-B* fixed, the values of n, and n, are larger for 6,=0-40 than for 6,=0-20 or
0-60, probably due to the fact that A,, as computed on the sin™' square root scale, is
somewhat smaller at 6,=0-40.

The inclusion of a control arm at stage 1 allows use of the pooled statistic T, for
comparison of E, to C at stage 2. Thus, the sample size 2n available for that comparison
is only moderately larger than that required for a single-stage two-sample test. The stage
2 cut-off values of y, are more extreme than the conventional one-sided test cut-off 1-645.
This may be regarded as an adjustment for the stage 1 selection process, and it is consistent
with the fact that y, increases with K. The increase in y, over 1-645 is rather moderate
in all cases, with conditional stage 2 test sizes ranging from 0-022 to 0-037.
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Table 1. Designs having minimal E(N) for given K, 6,, 1—B*, a =0-05, §, =0-05 and

8,=0-20
K 6o 1-8* n, n; N Y2 E(N) Niax To y*
2 0-2 0-70 30 44 0-787 1-787 141-71 178 0-667 0-030
0-75 36 44 0-730 1-818 163-71 196 0-640 0-026
0-80 40 52 0-689 1-812 187-64 224 0-626 0-025
2 0-4 0-70 36 50 0-684 1-811 172-99 208 0-588 0-027
0-75 40 58 0-590 1-808 197-36 236 0-575 0-026

0-80 47 62 0-580 1-822 226-53 265 0-557 0-023

2 0-6 0-70 27 45 0-578 1-794 139-62 181 0-589 0-028
0-75 31 50 0-543 1-798 159-54 193 0-584 0-026

0-80 36 55 0-500 1-803 183-68 218 0-563 0-023
3 0-2 0-70 33 55 0-762 1-902 205-09 242 0-571 0-046
0-75 38 59 0-709 1-916 23333 270 0-548 0-042
0-80 48 57 0-835 1-926 266-97 306 0-619 0-035
3 0-4 0-70 39 64 0-591 1-917 247-09 284 0-492 0-042
0-75 47 63 0-550 1-944 280-89 314 0-469 0-036

0-80 52 75 0-500 1-936 320-37 358 0-457 0-034
3 0-6 0-70 32 51 0-530 1-928 201-04 230 0-496 0-039

0-75 37 55 0-509 1-935 227-94 258 0-490 0-036
0-80 42 62 0-472 1-938 260-28 292 0-471 0-032
4 0-2 0-70 36 61 0-721 1-984 267-26 302 0-496 0-055

0-75 44 62 0-868 1-983 303-14 344 0-583 0-049
0-80 51 65 0-800 2:004 345-64 385 0-555 0-043

4 0-4 0-70 45 69 0-675 1-987 321-58 363 0-512 0-049
0-75 49 77 0-550 2-004 364-32 399 0-404 0-046
0-80 58 84 0-700 2-001 414-47 458 0-471 0-041

4 0-6 0-70 35 58 0-529 2-002 262-05 291 0-440 0-047
0-75 42 61 0-717 2-000 296-28 332 0-520 0-042
0-80 48 66 0-655 2:014 337-10 372 0-486 0-037
E(N)z%{E(NIHo)'*‘E(Ni 6%)}; Niax= (K +1)n,+2n,; 70=pr (T, < y,| Hp)
v* = pr (choose suboptimal E, | 6*)

The discreteness of the design parameter space in general and the shallowness of E(N)
as a function of y, for 6,=0-40 tend to obscure consistent patterns in the design with
regard to power and the number K of experimental agents. However, the optimal designs
all terminate early with probability about 3 when H, is true. This is a highly desirable
property, since acceptance at stage 1 obviates randomization of an additional 2n, patients
for a second stage. The values of 7o=pr (T, <y,| H,) are given in Table 1.

The error of choosing one of the K —1 suboptimal treatments under 6* is highly
undesirable. While this decision is not a type II error, since H, is not accepted, it does
imply a failure of the trial to correctly detect an important treatment advance. The
probability y* of this third type of error is small for all designs given here, as shown in
the last column of Table 1.

Table 2 presents comparisons between the optimal two-stage designs presented here
and the balanced case of single-stage designs of Dunnett (1984), for the case 6,= 0-20.
Although Dunnett’s designs were developed for a slightly different formulation of the
problem, the least favourable configuration of his formulation, with 8§ =0, is identical
to the least favourable configuration of our formulation. Dunnett’s designs provide more
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Table 2. Comparison of sample sizes for Dunnett balanced one-stage and
proposed optimal two-stage designs at a =0-05, 6,=0-20, §, =0-05, 5, =

0-20
Dunnett Optimal two-stage
K 1-pB* N (K+1)n, E(N|H,) E(N|6%) Ninax
2 0-70 189 90 119-3 166-1 178
0-75 213 108 139-7 187-7 196
0-80 240 120 1589 216-4 224
3 0-70 284 132 179-2 231-0 242
0-75 316 152 205-3 261-4 270
0-80 356 192 235-4 298-5 306
4 0-70 385 180 241-5 293-0 302
0-75 425 220 2717 334-6 344
0-80 475 255 3129 378-4 385

information about those experimental treatments not chosen as best essentially because
none is discarded early. This is an advantage of single-stage designs. For identifying one
‘acceptable’ or best treatment, however, the balanced single-stage designs are quite inferior
to the two-stage designs given here. Note that even the maximum possible sample sizes
of the corresponding two-stage designs are smaller than the fixed sample sizes of Dunnett’s
balanced designs in each case. Analogous comparisons for 8,=0-40 and 0-60 yielded
similar results. Although unbalanced single-stage designs are not strictly comparable to
the two-stage designs presented here, the total sample size of the single-stage designs
could be reduced by optimizing the ratio of the number of patients placed on the control
treatment to the number on each of the experimental treatments. Dunnett provides
examples where savings of up to 10% can be achieved using a ratio of about 2 for
parameter values of interest here.

5. DISCUSSION

The numerical results for the proposed two-stage designs indicate desirable operating
characteristics under both H, and 6*. The alternative considered here specifies an interval
(6,+8,, 0,+8,) between the success rates of ‘'one acceptable and K —1 unacceptable
experimental treatments. The designs given in Table 1 are thus most appropriate for
situations where at most one experimental treatment is likely to be a substantial improve-
ment over C. While the probability of an acceptable choice would decrease with 6,— 6,,
the loss due to choosing a suboptimal treatment would also decrease. Naturally, the
optimal designs given here will perform well under admissible configurations more
favourable than 6*, that is when any suboptimal treatment has rate 6, < 6,+ 8, or when
one or more 6,> 6,+ 6,.

Perhaps the most important practical feature of this design is the use of a randomized
first stage to select an experimental treatment for further study. Although small pilot
studies still might be necessary to determine tolerable dosages, the randomized selection
approach avoids institutional effects which confound and obscure treatment differences.

The designs proposed here obviously are not applicable to all clinical situations. First,
we have assumed the outcome is binary and quickly observed. The design could easily
be generalized to accommodate survival data, but its efficiency would be limited severely
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by long survival times. Secondly, for some diseases sufficiently many patients are available
to allow comparison of each experimental treatment to the control. The design proposed
here does not provide such information. Designs such as those proposed by DeMets &
Ware (1982), Lan, Simon & Halperin (1982) or Ellenberg & Eisenberger (1985) permit
early termination when interim results are not favourable for a single experimental
treatment. These could be generalized to accommodate several experimental treatments,
dropping treatment arms as the trial progresses.

Sylvester & Staquet (1980) used a decision-theoretic framework for determining the
sample size of a phase II clinical trial for a single experimental treatment. The loss
function for each patient is proportional to the difference between the response probability
for the treatment assigned and that of a standard control. Losses are considered both
for patients in the phase II screening study and for those in a possible subsequent phase
I1I study, and over the time horizon until a superior treatment is found. The sample size
of the phase III study, time horizon, and prior distribution for the response probability
to the experimental treatment all are assumed known.

Although there is a large literature on ranking and selection (Gibbons, Olkin & Sobel,
1977; Gupta & Panchapakesan, 1979; Santner & Tamhane, 1984), such methods have
seen little use in clinical trials. Most clinical trials require a quantification of evidence
concerning the relative merits of two or more treatments, rather than only a sélection of
one. Dunnett’s (1984) procedure formally incorporates selection into the decision making
process, but without the possibility of early termination.

Whitehead (1986) has studied a problem similar to that considered here, but where
the number of experimental treatments is large relative to the number of available patients.
His approach requires a prior distribution for 6,,..., 6x and does not permit early
termination.’ Whitehead’s approach and ours may be regarded as complementary in that
they are directed toward somewhat different clinical situations. Both are attempts to
improve the efficiency of a program of treatment development when more than one new
treatment is available.

APPENDIX
Proof of Theorem 1
Let A={K—-m+1,..., K} denote the indices of acceptable treatments, where |A|=m =1 by
assumption. Thus 6 satisfies
01<...<Ogk_m<0p+68;, O+&<0k_ps...<6bg. (A1)
For fixed {€(0,1) let U,, ..., Ux be independent random variables, each uniformly distributed

on [0, £], and denote by Z;,, the stage 1 statistic based upon X, + U, rather than X;; (1<j<K).
Since a(p)=sin""Vp is strictly monotone and ¢ <1, no strict inequalities among {Z,,1<j<K}
are altered by replacing each Z;; with Z;,,, but this acts as a fair randomization device in the
event of a tie. Thus the probability of an acceptable choice is

pr {max (Zjl_:) > max (Zrlg), Z,, =max (Zjl) > Zy +)’1\/2, T,> }’2}~ (A2)
jeA reA jeA
Since Z;;, and Z; are stochastically increasing in 6; for each j and s, it follows that (A2) is
minimized subject to (A1) when 6, = 6,+ 6,,for1<j<K -m,and 6, = 6,+8,,for K—m+1=<r<
K. If m>1, then (A2) is strictly decreased by switching one element from A to A‘, hence the
minimum is achieved when m =1.
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