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A simulation study of outcome
adaptive randomization in multi-arm
clinical trials

J Kyle Wathen1 and Peter F Thall2

Abstract
Randomizing patients among treatments with equal probabilities in clinical trials is the established method to obtain
unbiased comparisons. In recent years, motivated by ethical considerations, many authors have proposed outcome adap-
tive randomization, wherein the randomization probabilities are unbalanced, based on interim data, to favor treatment
arms having more favorable outcomes. While there has been substantial controversy regarding the merits and flaws of
adaptive versus equal randomization, there has not yet been a systematic simulation study in the multi-arm setting. A
simulation study was conducted to evaluate four different Bayesian adaptive randomization methods and compare them
to equal randomization in five-arm clinical trials. All adaptive randomization methods included an initial burn-in with
equal randomization and some combination of other modifications to avoid extreme randomization probabilities. Trials
either with or without a control arm were evaluated, using designs that may terminate arms early for futility and select
one or more experimental treatments at the end. The designs were evaluated under a range of scenarios and sample
sizes. For trials with a control arm and maximum same size 250 or 500, several commonly used adaptive randomization
methods have very low probabilities of correctly selecting a truly superior treatment. Of those studied, the only adaptive
randomization method with desirable properties has a burn-in with equal randomization and thereafter randomization
probabilities restricted to the interval 0.10–0.90. Compared to equal randomization, this method has a favorable sample
size imbalance but lower probability of correctly selecting a superior treatment. In multi-arm trials, compared to equal
randomization, several commonly used adaptive randomization methods give much lower probabilities of selecting
superior treatments. Aside from randomization method, conducting a multi-arm trial without a control arm may lead to
very low probabilities of selecting any superior treatments if differences between the treatment success probabilities are
small.
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Introduction

Outcome adaptive randomization (AR) has been pro-
posed by many authors as an alternative to equal ran-
domization (ER), for comparing treatments A and B.
AR uses the interim outcome data to unbalance rando-
mization probabilities in favor of the treatment arm, or
arms, having currently higher empirical success rates.
Proponents of AR consider it more ethical than ER for
the patients enrolled in the trial because AR leads to
sample sizes, NA, and NB, on average unbalanced in
favor of the truly superior treatment. AR was proposed
by Thompson1 for binary outcomes. He suggested that,
assuming success probabilities pA and pB following
beta priors, the nth patient should receive treatment A
with probability rA, n = Pr(pB\pA j datan) and B with

probability rB, n = 1� rA, n: Adaptive statistical criteria
used to define AR probabilities similar to rA, n and rB, n

sometimes are called ‘‘randomized play-the-winner’’
rules.2,3 Many different AR methods have been pro-
posed, and clinical trials have been conducted using
various AR methods.4–10
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Use of AR in clinical trials remains controversial.
Critics argue that AR provides a small advantage in
sample size imbalance in favor of the superior treat-
ments, while introducing inferential problems that
decrease benefit to future patients. Discussions of AR
have been given by many authors.11–18 Berry has argued
that the greatest advantages of AR over ER may be
obtained in multi-arm trials. Thall et al.19 reported a
simulation study, for two-arm trials, comparing several
Bayesian AR methods to a group sequential design
using ER.20 Their simulations showed that, compared
to ER, AR methods often have a much lower probabil-
ity of selecting a truly superior treatment arm, much
larger estimation bias, produce distributions of NA and
NB with much greater variability and skewness, and
have a nontrivial probability of unbalancing NA and NB

in favor of the inferior treatment. Thus, only reporting
mean sample sizes from simulations may be very mis-
leading. The particular way an AR method is defined,
and other aspects of a trial design, can greatly affect the
overall design performance. Because there are numerous
ways to design a randomized trial, and many different
ways to define AR methods, statements about the com-
parative desirability of AR versus ER must be accompa-
nied by detailed explanations of these design specifics.

In this article, we report a simulation study examining
four AR methods and ER in multi-arm clinical trials. A
multi-arm trial design may or may not (1) include a con-
trol arm, (2) restrict the randomization to a control arm
if it is included, (3) involve various rules for between-arm
comparisons or stopping an arm early, (4) enrich the
remaining arms with larger sample sizes when some arms
are terminated early, (5) select one best or possibly sev-
eral experimental treatments, and (6) include two or
more than two stages, or monitor continuously. Thus, to
obtain reasonable comparisons of randomization meth-
ods, the underlying designs must have qualitatively iden-
tical structures, decision rules, and maximum sample
size. To obtain results that are useful to practitioners, we
evaluate several relatively simple clinical trial designs and
AR methods, for five-arm trials that either do or do not
include a control arm. We consider Bayesian designs for
trials with binary outcomes that use either ER or one of
four specific AR methods.

Outcome AR methods

There are many ways to do AR.2,6,7,21,22 The Bayesian
AR methods considered here are similar to those previ-
ously studied for two-arm trials, generalized to accom-
modate multi-arm trials here.1,19,23 Index treatments by
k = 1, . . . ,K, and intermediate sample sizes by
n= 1, . . . ,N , for maximum overall sample size N.
Denoting response probabilities of the K treatments by
p1, . . . ,pK , the AR probabilities are defined in terms
of the K posterior probabilities

rk, n =Pr(pk =maxfp1, . . . ,pKg j datan), k = 1, . . . ,K,

ð1Þ

which sum to 1. Thus, r1, n, . . . , rK, n generalize the origi-
nal definition 1 given for K = 2:

It is well known that using fr1, n, . . . , rK, ng as AR
probabilities often leads to undesirable treatment
assignments due to ‘‘stickiness,’’ wherein an outcome
adaptive treatment assignment rule assigns a subopti-
mal treatment to an undesirably large number of
patients.24 With the above AR probabilities, if a truly
inferior treatment arm happens to have a higher early
success rate, it is likely to receive a larger proportion of
patients thereafter, and consequently, the trial design is
not likely to identify a truly superior treatment. Various
modifications of rk, n have been proposed to mitigate
stickiness. We consider AR methods that use different
combinations of three such modifications. The first is a
‘‘burn-in’’ wherein, initially, a fixed number of patients
are randomized equally among the arms, with AR
applied subsequently. The second replaces rk, n with

r
(c)
k, n =

(rk, n)
c

PK
j= 1 (rj, n)

c ð2Þ

for some c.0, with c= 0:50 used very commonly.
This shrinks rk, n toward .50, so the AR method is more
like ER, for which c= 0 and all r

(0)
k, n[ 1/K. The third

modification restricts e� rk, n� 1� e for small e.0: If
rk, n\e, then the AR probability for arm k is set equal
to e, and if rk, n.1� e, the AR probability is set equal
to 1� e, with the K resulting AR probabilities normal-
ized so that they sum to 1. A method using r

(c)
k, n

restricted to ½e, 1� e� will be denoted by AR(c, e):
All designs include a burn-in with the first 50

patients randomized equally among the arms, with
exactly 10 patients assigned to each arm. We first con-
sider AR(1, 0), which randomizes patients to arm k with
probability rk, n, a K-arm generalization of Thompson,1

but imposing a burn-in. The second method,
AR(0:5, 0), randomizes patients to arm k with probabil-
ity r

(0:5)
k, n given by equation (2). AR(0:5, 0) minimizes the

expected number of non-responders.11 The third
method, AR(n=2N , 0), generalizes Thall and Wathen’s23

two-arm trial method by applying equation (2) using
c= n=2N , for current sample size n= 1, . . . ,N : The
fourth method, AR(1, 0:10), uses rk, n with the restric-
tion 0:10� rk, n� 0:90: We thus evaluate AR(1, 0),
AR(0:5, 0), AR(n=2N , 0), AR(1, 0:10), and ER.

Trial designs

Each simulation case is determined by whether a
control arm is included, the maximum sample size
N = 250 or N = 500, decision rules, and randomization
method. All cases are five-arm trials. When a control
arm, C, is included, we index it by k =C and the four
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experimental arms by k = 1, 2, 3, 4: When C is not
included, we index the five experimental treatments by
k = 1, 2, 3, 4, 5: For all designs, we assume the response
probabilities, fpkg, are independent with beta (0:20,
0:80:) priors. Each design requires one parameter, aU ,
to define the treatment arm selection rule, determined
via preliminary simulations under the null scenario
where all fixed response probabilities equal 0.20.

When C is included, its response probability, pC, is
used as the comparator in the decision rules. These rules
may stop randomization to an experimental arm Ek due
to futility, or select an Ek as promising, based on the
posterior of pk � pC: If no control arm is included, one
possible approach is to use a fixed standard probability,
pC, for comparison. Unless pC is completely arbitrary,
this requires the assumption that there exists a standard
treatment with response probability known to equal pC,
that is, Pr(pC = pC)= 1. It also requires that the
numerical value pC, obtained in practice from previous
trials or clinical experience, will remain a valid com-
parator during the trial. This implies there are no
between-trial or trial-versus-historical effects. Because
these are very unrealistic assumptions, we do not con-
sider designs assuming a fixed standard. Thus, the
designs without a control arm that we consider make
decisions based on comparisons among the Ek ’s.

Multi-arm trials with a control arm

For each experimental arm, Ek , k = 1, 2, 3, 4, after the
initial burn-in, the following decision rules are applied
continuously during the trial.

FUTILITY. For each k = 1, 2, 3, 4, arm Ek is termi-
nated early due to futility if

Pr(pk.pC + 0:20 j datan)\0:01

If all four experimental arms are terminated, the trial
is stopped.

ENRICHMENT. If an Ek is terminated early for futi-
lity, the remaining patients, up to N, are randomized
among the remaining open arms.

SELECTION. If Ek is not terminated early, then at the
end of the trial Ek is selected if

Pr(pk.pC + 0:20 j datan).aU ð3Þ

The design thus allows more than one Ek to be
selected. It is typical practice to require a new treatment
to provide a minimal clinically significant improve-
ment, here specified to be d= 0:20. The futility rule
decreases the number of patients randomized to an Ek

that is very unlikely to achieve the targeted improve-
ment over C, and thus enriches the sample sizes of arms
having larger success probabilities. For each design, the

numerical value of aU is determined to ensure overall
false-positive probability 0.05 for the trial, with a false
positive defined as selecting any Ek in the null case
where all true pk = 0:20. The numerical value of aU

depends on the randomization method, the value of N
and the initial burn-in. Supplementary Table S1 gives
the numerical value of the cut-off aU used by each
design’s selection rule in each case. An alternative to
deriving aU in this way is to set it equal to a fixed value,
such as aU = 0:95. We chose to determine aU for each
design to obtain the same overall false-positive prob-
ability 0.05 in order ensure fair comparisons among the
randomization methods in terms of per-arm selection
probabilities, stopping probabilities, and sample size
distributions.

Multi-arm trials without a control arm

For trials without a control arm, the decision rules are
as follows:

FUTILITY. For each k = 1, 2, 3, 4, 5, accrual to Ek is
terminated due to futility if

Pr(pk.maxfpr : r 6¼ kg j datan)\0:01

ENRICHMENT. If an Ek is closed early for futility,
the remaining patients, up to maximum sample size N,
are randomized among the remaining open arms.

SELECTION. If Ek is not terminated early, at the end
of the trial Ek is selected if

Pr(pk.maxfpr : r 6¼ kg j datan).aU ð4Þ

At the end of the trial, the designs with a control
arm may select more than one Ek , whereas the designs
without a control arm may select at most one Ek :While
one might question why at most one Ek may be selected
in trials without a control arm, it is extremely unlikely
that two different pk ’s both will satisfy the criterion (4)
for any reasonably large aU : Moreover, in the cases of
no control arm, there is no required improvement, such
as the value d= 0:20 that is used in the selection rule.
If the selection criterion (4) was replaced by

Pr(pk.maxfpr : r 6¼ kg+ d j datan).aU

for d= 0:15 or 0.20, our simulations show that, for
N= 250 or 500 in a five-arm trial, this design would be
extremely unlikely to correctly select any Ek in many
scenarios where there actually are substantive differ-
ences among the pks.

Simulation study design

Under the Bayesian formulation, the probabilities,
pC,p1, . . . ,p4 in the case with a control arm, or
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p1, . . . ,p5 in the case without a control arm, are ran-
dom. We distinguish between these random quantities
and corresponding assumed fixed probabilities,
denoted using pk in place of pk , that are used to define
scenarios and simulate data. In all simulation scenarios,
we assumed fixed null response rate 0.20. We consider
three scenarios. In the null scenario, all pk = 0:20.
Given fixed targeted improvement d= 0:20, the least
favorable configuration has one experimental
pk = 0:20+ d and all other pk = 0:20.Thus,
pC = p1 = � � � = p3 = 0:20 and p4 = 0:20+ d= 0:40 if
there is a control arm, and p1 = � � � = p4 = 0:20 with
p5 = 0:20+ d= 0:40 if there is no control arm. The
least favorable configuration is determined, in the case
with a control arm, by assuming that (1) no experimen-
tal pk is between pC and pC + d and (2) at least one
experimental arm has pk � pC + d: The least favorable
configuration is the vector of p1, . . . , pK values that
minimizes the probability, under (1) and (2), that at
least one Ek for which pk � pC + d is selected. The
name ‘‘least favorable configuration’’ is somewhat mis-
leading, since the requirements (1) and (2) are quite
strong, and they ensure that it is relatively easy to iden-
tify the one Ek providing a d improvement over pC:
This motivates the third, more realistic ‘‘staircase’’ sce-
nario, for which the pk ’s are 0.20, 0.25, 0.30, 0.35, and
0.40.

Simulation results for trials with a control
arm

In Tables 1 and 2, �n(95% CI) denotes the mean and
(2.5th and 97.5th) percentiles of each per-arm sample
size distribution.

In practice, an AR-based design with a large sample
size imbalance favoring a superior arm is unlikely to be

used if it has substantially lower probability of cor-
rectly selecting E4 than ER. Table 2 shows that, under
the least favorable configuration with p4 = 0:40 and
N = 250, AR(1,0), AR( 1

2
, 0) and AR( n

2N
, 0) all have

very low probability of correctly selecting E4, between
0.44 and 0.48, compared to AR(1, 0.1) and ER, which
have probability of correct selection values 0.67 and
0.66. One reason for this large loss in probability of
correct selection for AR(1,0), AR( 1

2
, 0) and AR( n

2N
, 0)

is that each gets stuck randomizing patients to E4 very
early in the trial, resulting in a smaller �n for C. The AR
methods have �n ranging from 23 to 35, with the widest
95% CI (11, 70) for AR(1

2
, 0), compared to �n= 72 and

95% CI (37, 110) for ER. AR(1, 0.1) provides a favor-
able sample size imbalance, with �n= 127 for E4 com-
pared to �n= 70 with ER. To ensure false-positive
probability 0.05, the cut-off aU in the selection rule (3)
must be larger for AR(1,0), AR( 1

2
, 0) and AR( n

2N
, 0)

compared to AR(1, 0.1) or ER, resulting in much
smaller Pr(Select E4) for the first three AR methods .

Thall and Wathen23 and Thall et al.19 showed that,
in the two-arm case, there is a significant risk that
AR(1,0) and AR( 1

2
, 0) will get stuck randomizing more

patients to the inferior treatment arm. To determine
whether this holds in the multi-arm case, we calculate
hm =Pr(NC.Nk +m) for m = 10, 20, or 30 for each
method. When some Ek is superior, hm is the probabil-
ity that a method will randomize at least m more
patients to the inferior control arm than to Ek : An AR
procedure having hm much larger than that obtained
with ER is undesirable. Under the least favorable con-
figuration with p4 = 0:40, using AR(1, 0.1), on average,
127 patients are treated with E4 compared to 70 using
ER, so an additional 57 patients are treated with E4 as
a result of using AR(1, 0.1), which has h10 = 0:05 com-
pared to 0.23 for ER. The reason that ER has larger

Table 1. Simulation results for designs with a control arm in the null scenario with all pk = 0:20, for N= 250. �n = mean per-arm
sample size. Each hm = Pr(NC.Nk +m), the probability that the number of patients randomized to arm C is at least m larger than
the number randomized to arm Ek: Values in the row E1-E4 are per-arm.

Method Arm Pr(Select) Pr(Stop) �n(95% CI) h10,h20,h30

AR(1,0) C – – 33 (10, 63) –
E1-E4 0.01 0.67 42 (10, 135) 0.4, 0.27, 0.15

Total 202 (70, 250)
AR( 1

2 , 0) C – – 40 (13, 69) –
E1-E4 0.01 0.74 40 (10, 109) 0.44, 0.32, 0.19

Total 200 (70, 250)
AR( n

2N , 0) C – – 38 (13, 65) –
E1-E4 0.01 0.73 40 (10, 116) 0.43, 0.3, 0.18

Total 199 (70, 250)
AR(1, 0.1) C – – 38 (20, 63) –

E1-E4 0.01 0.74 41 (10, 124) 0.44, 0.3, 0.16
Total 200 (70, 250)

ER C – – 58 (17, 98) –
E1-E4 0.01 0.81 36 (10, 82) 0.6, 0.45, 0.33

Total 200 (70, 250)
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h10 than AR(1, 0.1) is that, if E4 is dropped and the
trial continues, ER assigns more patients to Cs than
AR(1, 0.1). Thus, results of the two-arm case cannot be

extended to the multi-arm setting. In this case, AR(1,
0.1) achieves a very favorable patient imbalance in
favor of E4 compared to ER while maintaining

Table 2. Simulation results for designs with a control arm in least favorable configuration scenario,
pC = p1 = p2 = p3 = 0:20, p4 = 0:40, for N= 250. �n = mean per-arm sample size. Each hm = Pr(NC.Nk +m), the probability
that the number of patients randomized to arm C is at least m larger than the number randomized to arm Ek: Values in the row
E1 � E3 are per-arm.

Method Arm Pr(Select) Pr(Stop) �n(95% CI) h10,h20,h30

AR(1, 0) C – – 23 (10, 58) –
E1-E3 0.02 0.40 23 (10, 69) 0.28, 0.15, 0.08
E4 0.44 0.07 152 (11, 201) 0.04, 0.03,0.02

Total 244 (140, 250)
AR( 1

2
, 0) C – – 34 (11, 70) –

E1-E3 0.02 0.56 29 (10, 70) 0.42, 0.29, 0.18
E4 0.46 0.07 123 (10, 177) 0.05, 0.04,0.02

Total 243 (130, 250)
AR( n

2N , 0) C – – 31 (12, 63) –
E1-E3 0.02 0.52 27 (10, 68) 0.39, 0.25, 0.13
E4 0.48 0.07 132 (11, 179) 0.04, 0.03,0.02

Total 243 (120, 250)
AR(1, 0.1) C – – 35 (23, 60) –

E1-E3 0.03 0.58 27 (10, 66) 0.44, 0.26, 0.11
E4 0.67 0.07 127 (10, 177) 0.05, 0.04,0.02

Total 243 (130, 250)
ER C – – 72 (37, 110) –

E1-E3 0.02 0.78 34 (10, 71) 0.73, 0.64, 0.56
E4 0.66 0.08 70 (10, 109) 0.23, 0.07, 0.03

Total 243 (130, 250)

Table 3. Simulation results for designs with a control arm in staircase scenario, (pC, p1, p2, p3, p4)= (0:20, 0:25, 0:30, 0:35, 0:40) for
N= 250. �n = mean per-arm sample size. Each hm = Pr(NC.Nk +m), the probability that the number of patients randomized to arm
C is at least m larger than the number randomized to arm Ek:

Method Arm Pr(Select) Pr(Stop) �n(95% CI) h10,h20,h30

AR(1, 0) C – – 20 (10, 51) –
E1 0.05 0.24 27 (10, 74) 0.17, 0.08, 0.04
E2 0.11 0.16 40 (10, 113) 0.12, 0.06, 0.03
E3 0.22 0.10 62 (10, 158) 0.08, 0.04, 0.02
E4 0.40 0.06 101 (10, 185) 0.05, 0.03, 0.02

AR( 1
2 , 0) C – – 28 (11, 60) –

E1 0.06 0.33 32 (10, 73) 0.25, 0.16, 0.08
E2 0.14 0.22 44 (10, 93) 0.17, 0.11, 0.06
E3 0.26 0.13 60 (10, 121) 0.10, 0.07, 0.04
E4 0.45 0.06 84 (11, 149) 0.05, 0.04, 0.03

AR( n
2N , 0). C – – 26 (11, 55) –

E1 0.06 0.31 31 (10, 72) 0.24, 0.13, 0.06
E2 0.13 0.21 42 (10, 97) 0.16, 0.09, 0.04
E3 0.25 0.12 61 (10, 130) 0.09, 0.06, 0.03
E4 0.45 0.07 90 (10, 156) 0.05, 0.04, 0.02

AR(1, 0.1) C – – 33 (23, 54) –
E1 0.10 0.36 31 (10, 70) 0.29, 0.16, 0.05
E2 0.21 0.22 41 (10, 99) 0.19, 0.10, 0.04
E3 0.38 0.13 58 (10, 131) 0.11, 0.07, 0.03
E4 0.61 0.06 86 (11, 151) 0.06, 0.04, 0.02

ER C – – 58 (40, 93) –
E1 0.08 0.49 39 (10, 65) 0.50, 0.38, 0.31
E2 0.22 0.29 46 (10, 72) 0.36, 0.24, 0.19
E3 0.44 0.15 51 (10, 79) 0.26, 0.14, 0.10
E4 0.66 0.07 55 (11, 86) 0.21, 0.07, 0.05
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Pr(Select E4) and reducing the likelihood of randomiz-
ing patients to inferior treatments.

In the staircase scenario, it is much more difficult to
discriminate among the Ek ’s. Table 3 summarizes the
simulations in this case for trials including C with
N = 250. Compared to ER, AR(1, 0.1) has sightly
smaller probabilities of selecting E3 or E4, which have
p3 = 0:35 and p4 = 0:40: This is due to the fact that E1,
E2, and E3 remain in the trial longer because these
treatments provide some improvement over C, limiting
the number of patients treated with E4, and reducing
the probability that any AR method will select E4: Still,
AR(1, 0.1) assigns more patients to the better treatment
arms, on average. Additionally, h10,h20, and h30 each
are smaller for AR(1, 0.1) compared to ER. Compared
to AR(1, 0.1) or ER, the probabilities of selecting the
best arms E4 or E5 are much smaller for AR(1,0),
AR( 1

2
, 0) and AR( n

2N
, 0).

Tables 2 and 3 show that, for designs with a control
arm and N = 250 patients, in the least favorable config-
uration or staircase scenarios, the highest probabilities
of selecting the best arm are 0.66 or 0.67, obtained by
AR(1, 0.1) or ER. A trial probably would not be con-
ducted if there were only a 66% chance of selecting an
Ek achieving the targeted improvement. In practice, one

would either increase N, increase the false-positive rate,
or both. Supplementary Tables S1–S3 summarize the
simulations in the three scenarios for N = 500 with a
control arm. Table S3 shows that N = 500 gives much
larger probabilities of selecting superior Ek ’s in the
staircase scenario, with E4 selected with probabilities
0.84 by AR(1, 0.1) and 0.86 by ER, while the other
three AR methods have substantially inferior perfor-
mance. Tables S2 and S3 show that, under the least
favorable configuration, for N = 500, the probability of
stopping superior arm E4 is 0.08–0.09 for AR(1,0.01). If
desired, these Pr(Stop) values may be made smaller by
reducing the futility stopping rule cut-off to a value
smaller than .01, such as .005, but the price would be
smaller per-arm sample sizes for E4 and consequently
lower Pr(Select) values.

Table 4 compares Pr(Select E4) for N = 250 and
N = 500 under the least favorable configuration when
p4 = 0:40. When N = 500, AR(1, 0.1) and ER have
Pr(Select E4) values 0.87 and 0.85. Compared to ER,
although AR(1, 0.1) has a much more disperse sub-
sample size distribution for E4, on average AR(1, 0.1)
randomizes many more patients to E4. The Pr(Select
E4) values 0.77, 0.67, and 0.53 for AR( n

2N
, 0), AR( 1

2
, 0),

and AR(1,0) are much smaller. AR( 1
2
, 0)would require

Table 4. Simulation results for designs with a control arm comparing N= 250 and N= 500 in least favorable configuration
scenario, p1 = p2 = p3 = pC = 0:20, p4 = 0:40. Values of �n = mean per-arm sample size and 95% CI are for E4.

N= 250 N= 500

AR(1,0) Pr(Select E4 ) 0.44 0.53
�n( 95% CI ) 152( 11, 201) 369 (11, 444)

AR( 1
2 , 0) Pr(Select E4 ) 0.46 0.67

�n( 95% CI ) 123( 11, 177) 319 (11, 413)
AR( n

2N
, 0) Pr(Select E4) 0.48 0.77

�n( 95% CI ) 132( 11, 179) 321 (11, 406)
AR(1, 0.1) Pr(Select E4) 0.67 0.87

�n( 95% CI ) 127( 11, 177) 313 (11, 403)
ER Pr(Select E4) 0.66 0.85

�n( 95% CI ) 70( 10, 109) 175 (13, 238)

Table 5. Simulation results for designs without a control arm in the null scenario p1 = � � � = p5 = 0:20, for N= 250. Each
hm = Pr(NE1

.NEk
+m), the probability that the number of patients randomized to arm C is at least m larger than the number

randomized to arm Ek: All values are per-arm.

Method Pr(Select) Pr(Stop) �n(95% CI) h10,h20,h30

AR(1, 0) 0.01 0.19 50 (10, 137) 0.42, 0.35, 0.28
Total 250 (250, 250)

AR( 1
2 , 0) 0.01 0.26 50 (10, 110) 0.41, 0.33, 0.26

Total 249 (250, 250)
AR( n

2N , 0) 0.01 0.25 50 (10, 118) 0.41, 0.34, 0.27
Total 249 (250, 250)

AR(1, 0.1) 0.01 0.24 50 (10, 128) 0.41, 0.34, 0.26
Total 250 (250, 250)

ER 0.01 0.32 50 (10, 97) 0.32, 0.23, 0.2
Total 248 (250, 250)
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N = 500 patients to obtain the same Pr(Select E4) as
AR(1, 0.1) and ER with only N = 250. A trial utilizing
AR(1, 0) would require more than double the sample
size to obtain the same Pr(Select E4) as AR(1, 0.1) or
ER. A general conclusion is that AR(1, 0.1) provides
more patients with superior treatment while maintain-
ing acceptable Pr(Select E4), for N = 500 in a five-arm
trial with a control.

Simulation results for trials without a
control arm

Each design without a control arm was calibrated to
have a 1% chance of selecting each treatment in the
null scenario (Table 5). In the least favorable configura-
tion scenario with p5 = 0:40 and N = 250, Table 6
shows that all methods provide Pr(Select E4) for E4

ranging from 0.75 to 0.82, and all of the hm values are
relatively small for E4. If the only cases considered were
the null and the least favorable configuration, then it
might seem that running a multi-arm trial including a
control arm is foolish. However, the opposite is true.
Table 7 shows that, in the staircase scenario, for
N = 250, the probabilities of selecting the best treat-
ments are extremely low, ranging from 0.19 to 0.26,
compared to approximately 0.65 when a control arm is
included. The main reason for this large drop is that,
without a control arm, comparison among the Ek ’s is
extremely difficult if the differences between the pks are
small. Supplementary Table S6 shows that, in the stair-
case scenario, even if the overall maximum sample size
is increased to N = 500, the selection probabilities for
E5 range from 0.33 to 0.39 for any randomization
method, with selection probabilities at most 0.04 for
any of E1, . . . ,E4:

Discussion

A general conclusion is that, for multi-arm trials, AR(1,
0), AR( 1

2
, 0), and AR( n

2N
, 0) should not be used. If one

wishes to use some AR method in a multi-arm trial, if
an initial burn-in is imposed, the superior performance
of AR(1, 0.1) indicates that it is important to restrict
the domain of possible AR probabilities by bounding
them away from 0 and 1. Given the apparent popularity
of AR(1,0) and AR(0.50, 0), this is a very important
result. While we have not examined other hybrid meth-
ods, such as AR(.50, .10) or AR(n/2N, .10), the simula-
tions suggest that these may perform well compared to
AR(1, .10) or ER. The numerical limit e cannot be arbi-
trary, since, for example, AR(0.50, 0.20) would be close
to ER in a five-arm trial. ER does the best job of select-
ing treatments having pk ’s that are superior but close to
each other.

In practice, it is not unlikely that two or more pk ’s
may be close to each other, so the staircase scenario
may be closer to reality than the least favorable config-
uration. When the pk ’s are close to each other, it is very
difficult to select any Ek if no C is included as a com-
parator. The simulations in the staircase scenario indi-
cate that conducting a multi-arm trial without a control
arm may be a waste of resources, for any randomiza-
tion method, and it is best to include a control arm in a
multi-arm selection trial.

Many elaborations and alternative cases are possi-
ble, including time-to-event or multivariate outcomes,
accounting for covariates, and evaluating AR methods
for multi-arm trials in the presence of drift. This latter
issue is closely related to so-called platform designs,
which allow experimental arms to enter a trial after it
has started.25 These are important areas for future
simulation study.

Table 6. Simulation results for designs with no control arm in the least favorable configuration scenario p1 = p2 = p3 = p4 = 0:20
and p5 = 0:40, for N= 250. �n = mean per-arm sample size. Each hm = Pr(NE1

.NEk
+m), the probability that the number of patients

randomized to arm E1 is at least m larger than the number randomized to arm Ek: Values in the row E1 � E4 are per-arm.

Method Arm Pr(Select) Pr(Stop) �n(95% CI) h10,h20,h30

AR(1, 0) E1-E4 0 0.58 24 (10, 72) 0.27, 0.15, 0.08
E5 0.78 0.02 141 (11, 199) 0.03, 0.02,0.02

Total 236 (90, 250)
AR( 1

2 , 0) E1-E4 0 0.74 29 (10, 74) 0.32, 0.21, 0.13
E5 0.81 0.02 102 (14, 164) 0.03, 0.02,0.02

Total 217 (80, 250)
AR( n

2N , 0) E1-E4 0 0.71 27 (10, 69) 0.31, 0.19, 0.1
E5 0.82 0.02 107 (13, 169) 0.02, 0.02,0.01

Total 216 (70, 250)
AR(1, 0.1) E1-E4 0 0.68 26 (10, 71) 0.30, 0.17, 0.08

E5 0.80 0.02 123 (17, 184) 0.03, 0.02,0.02
Total 228 (80, 250)

ER E1-E4 0 0.79 36 (10, 89) 0.34, 0.26, 0.19
E5 0.75 0.02 61 (13, 103) 0.07, 0.02,0.01

Total 205 (70, 250)
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