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Summary: Dynamic treatment regimes (DTRs) are effective vehicles for individualizing treatments for chronic

diseases such as cancers, AIDs, and mental illnesses. Sequential multiple assignment randomized trials (SMARTs)

provide a systematic process of constructing and evaluating DTRs. However, standard SMARTs ignore the potential

treatment effects observed in past patients from the trial and continue exposing patients to inferior treatments.

This, in practice, could result in decreased retention and lower treatment adherence. We developed a generalized

outcome-adaptive SMART (GO-SMART) design that allows between-subject adaption to alleviate the above concern

by imbalancing randomization probabilities for future patients in favor of the treatments observed to be more effective

in previous patients. We proposed estimators for making inferences about the embedded DTRs from GO-SMARTs.

Extensive simulation studies were conducted to evaluate the performance of GO-SMART compared to the classical

SMART design. The analytical and simulation results show that the proposed estimators are consistent and, compared

with the SMART design, the GO-SMART design treats significantly more participants with the optimal treatment

without sacrificing the statistical power and objective of the design.
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1 Introduction

Complex diseases such as cancers, AIDs, obesity, and mental illnesses commonly require

several stages of treatment, necessitating sequential medical decisions accounting for indi-

vidual patient characteristics and dynamic disease progression (Kidwell, 2014). Rules for such

individualized sequential decisions across stages are collectively known as dynamic treatment

regimes (DTRs) (Lavori and Dawson, 2000, 2004; Murphy, 2005). They are mappings of

patients’ intermediate disease outcome and treatment history to the current treatment

assignment (Kidwell, 2014). Sequential multiple assignment randomized trials (SMARTs)

provide a systematical process of constructing and evaluating DTRs from a causal inference

point of view (Ogbagaber et al., 2016; Kidwell, 2014; Liu et al., 2017). In contrast with

the standard RCTs, where individuals are assigned to all fixed pre-determined treatment

strategies or combinations, SMARTs closely mimic the clinical treatment process where

patients go through multiple stages of treatment and the treatment assignments at each

stage could depend on patient’s treatment history, disease status, and other characteristics

(Lavori and Dawson, 2000; Murphy, 2005; Dawson and Lavori, 2012; Kidwell, 2014).

In a SMART, participants are randomized to the available first-stage treatments at en-

rollment. They are then followed until some pre-specified event (e.g., response) triggers

the start of the next stage. Participants migrating to a new stage are re-randomized to

available treatment options at that stage (Cheung et al., 2015). The treatment options across

stages potentially include continuing the same regimen, switching to other alternatives, or

augmenting with other options to intensify the current treatment (Wang et al., 2022). For

example, Auyeung et al. (2009) proposed a SMART design of neurobehavioral treatment

for patients with malignant melanoma where two potential agents, escitalopram (ESC) or

methylphenidate (MPH), were assessed. At the first stage, participants were equally ran-

domized to ESC and MPH. Patients were evaluated for their Hamilton depression (HAMD)
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scores at week 6, and if the HAMD score was at most 11 (in clinical remission), the patient

was to continue current treatment for another 8 weeks in the second stage; however, if the

HAMD score was 12 or higher, they were equally randomized to the augmented treatment

(ESC+MPH) or to switch to the other agent.

Similar to standard randomized control trials (RCTs), the ethical dilemma of randomizing

patients equally to treatments, when data from earlier patients show clear benefit towards

some treatments, persists in SMARTs that potentially impedes its widespread use in real-

world (Bell et al., 2013; Liu et al., 2017). Traditional SMART design randomizes participants

equally to available options at each stage regardless of the likely benefit of the treatment

(Cheung et al., 2015; Wang et al., 2022). This, in theory, may potentially boost the statistical

power for identifying the optimal DTR (Murphy, 2005); however, randomizing patients

without considering the potential treatment effects estimated from previous therapeutic

experience may potentially damage the trust between patients and physicians (Thall and

Wathen, 2007). This may lead to reduced enthusiasm in participants about the trial and

consequently result in increased attrition and poor compliance (Liu et al., 2017). For example,

in the CATIE Schizophrenia Trial, 74% of patients (1061 out of 1432) discontinued their

assigned treatment in phase 1 before 18 months (Lieberman et al., 2005), and in the ExTENd

study of treatment for alcohol dependence, out of 302 participants, 52 and 41 dropped out

in the first and second stages respectively (Lei et al., 2012). In Kasari et al. (2014), attrition

rates increased over time with 10% by week 12, 14% by week 24, and 25% by week 36.

Response-adaptive randomization (RAR) has long been proposed as an alternative to the

standard RCTs (Thompson, 1933; Eisele, 1994; Wei and Durham, 1978; Karrison et al.,

2003; Rosenberger and Hu, 2004; Hu and Rosenberger, 2006; Zhang and Rosenberger, 2007;

Thall and Wathen, 2007; Rosenberger et al., 2012; Thall et al., 2015) to alleviate these issues

and to achieve collective benefit for more patients in the trial by assigning more patients
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to the better treatment (Williamson and Villar, 2020; Cheung et al., 2015), yet obtaining

the same goal of estimating treatment efficacy as would be in the case of RCTs. For newly

enrolled patients, RAR allows the randomization probabilities of treatment assignments to

be modified based on the response from previous patients (Chow and Chang, 2008).

Inspired by RAR, some attempts have been made to apply “between-patients” adaptive

randomization to SMARTs. Lee et al. (2015) employed a model-based Q-learning Bayesian

objective function and applied ε-greedy adaptive randomization in a two-cycle phase I/II

does-finding trial, where the adaption is both “within-patients” and “between-patients” in

the sense that the Cycle 2 actions depended on individual patient’s cycle one dose and

outcome, and the posterior predictive distribution of treatment effectiveness estimated from

other patients’ data. Cheung et al. (2015) proposed a SMART with adaptive randomization

(SMART-AR) design in a Q-learning framework to adapt the randomization probabilities

using the historical and empirical randomization probabilities. However, both of these ap-

proaches would potentially require a longer duration and larger sample size than SMART

as they need sufficient data to accurately estimate the treatment effectiveness and the Q-

function before adaptation. Besides, it may not be robust to misspecification of the models

at each stage. Chao et al. (2020) proposed a Bayesian group sequential small n SMART

(snSMART) design that allows for removing the worst-performing treatment arm through a

pre-specified number of interim analyses. However, this design is only applicable to a three-

arm trial and is proposed for comparing treatment effects, not DTRs. Recently, Wang et al.

(2022) proposed a response-adaptive SMART (RA-SMART) design that used treatment

response data from the first stage to skew randomization probabilities in the second stage

in favor of more promising treatments. However, this design only used first-stage efficacy

information to guide the adaptation in the second stage. The lack of utilizing the second

stage efficacy information potentially results in reduced statistical power.
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In this article, we propose a generalized outcome-adaptive SMART (GO-SMART) design

that allows adaptation of the randomization probabilities in both stages of a two-stage

SMART, based on the information from all previous patients in the trial. We aim to improve

adherence and retention by assigning more patients to those promising DTRs based on pre-

vious patients data without sacrificing the objective of efficiently evaluating and comparing

DTRs. Since there are many variations of SMARTs, we will primarily consider a two-stage

SMART design described in Thall et al. (2007) as an example to simplify the description

of our adaptive schemes. The remainder of this paper is organized as follows: In Section

2, we introduce the framework, notation, and assumptions relevant to this work. The new

generalized outcome-adaptive randomization scheme is introduced in Section 3 for a two-

stage SMART design. In Section 4, we define various estimators for valid inference from the

proposed design and demonstrate their consistency. In Section 5, we evaluate the performance

of the GO-SMART design compared to classical SMART and RA-SMART designs (Wang

et al., 2022) through extensive simulation studies. We conclude in Section 6 with some

discussions and future directions.

2 Framework, notation, and assumptions

We consider a two-stage SMART design described in Thall et al. (2007). Suppose that at en-

rollment (stage I), each patient is randomized to a set of treatments A = {As, s = 1, . . . , J}.

The goal is to achieve a response, a binary indicator of cure, remission, or improvement.

Following a fixed period of follow-up, responders to the initial treatment either discontinue

treatment or continue the same treatment, depending on the type of disease and response.

Patients who do not respond to the initial treatment at stage I are then re-randomized to

a set of alternative treatments excluding the treatment they received initially. This study

design allows one to estimate and make inferences about J(J−1) dynamic treatment regimes

(DTRs), namely, d(Aj, Al), Aj, Al ∈ A, j 6= l, where the regime d(Aj, Al) stands for “Treat
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with treatment Aj, if no response, treat with treatment Al.” Figure 1 shows an example of

such a two-stage SMART design with three treatment options A = {A1, A2, A3}. Overall, six

DTRs, d(A1, A2), d(A1, A3), d(A2, A1), d(A2, A3), d(A3, A1) and d(A3, A2) can be assessed

at the conclusion of the study.

[Figure 1 about here.]

We now formalize the quantities of interest in terms of patient-specific potential outcomes.

Let Y a
1 denote the potential response indicator (1 for a response, 0, otherwise) at the end of

stage I if the patient received treatment a, and let Y ab
2 be the potential response indicator

at the end of stage II if the patient received treatment b (b 6= a) in that stage following no

response at stage I, a, b ∈ A = {A1, . . . , AJ}, b 6= a. Then, the overall potential outcome

Y {d(a, b)} under the treatment regime d(a, b) can be written as

Y {d(a, b)} = Y a
1 + (1− Y a

1 )Y ab
2 ,

where a, b ∈ A, a 6= b. Our first goal is to estimate the overall response rates for the J(J − 1)

regimes d(a, b), a, b ∈ A, a 6= b, and to find the corresponding optimal treatment regime. The

overall response rate, π(a, b) under regime d(a, b) is defined as

π(a, b) = E[Y {d(a, b)}] = πa1 + (1− πa1)πab2 , (1)

where πa1 = E(Y a
1 ) = Pr{Y a

1 = 1} is the stage I response rate for patients receiving treatment

a, and πab2 = E(Y ab
2 | Y a

1 = 0) = Pr{Y ab
2 = 1 | Y a

1 = 0} is the response rate for patients who

received a in stage I, did not respond, and subsequently received b (b 6= a). The optimal DTR

among the J(J−1) regimes, d(a∗, b∗), is defined as the best treatment regime with the highest

response rate, s.t. (a∗, b∗) = argmax
a,b∈A,a6=b

π(a, b). Note that for patient i, Yi{d(Aj, Al)}, Aj, Al ∈

A, j 6= l represent the set of all potential overall response outcomes. In practice, only one

among J(J − 1) potential outcomes Yi{d(a, b)} can be observed if patient i follows strategy



6 Biometrics, Month Year

d(a, b), (a 6= b ∈ A). The other potential outcomes will be the unobserved counterfactual

outcomes for patient i (Rubin, 1974; Splawa-Neyman et al., 1990).

Suppose there are n patients in the study, and the observed data can be described as

{I1i(Aj), Y1i, (1− Y1i)[I2i(Al), Y2i]} , i = 1, . . . , n;Aj, Al ∈ A, j 6= l,

where Y1i is the observed response for patient i in stage I, Y2i is the observed response for

patient i if they proceed to stage II, and Iki(x) is the indicator for receiving treatment x in

stage k, k = 1, 2, x ∈ A. Note that if patient i has achieved response through the first stage

of treatment, the second stage treatment/response will be non-existent, and hence, in our

notation, these quantities are preceded by the first stage non-response indicator (1 − Y1i).

The observed overall response for patient i, Yi, can then be written as Yi = Y1i+(1− Y1i)Y2i.

To estimate the overall response rates under DTRs and make valid inferences, as is

customary in the literature of causal inference (Ko et al., 2003; Cole and Frangakis, 2009), we

assume that consistency, sequential randomization, and positivity assumptions hold under

the standard Neyman-Rubin causal framework (Splawa-Neyman et al., 1990; Rubin, 1974).

In addition, we assume that, by design, the randomization probability of assigning patient

i to treatment Aj could depend only on the observed outcome and treatment assignment of

previous {i− 1} patients. In Web Appendix A, we provide details about the assumptions.

3 GO-SMART design

In this section, we propose a GO-SMART design that dynamically adapts the randomization

probabilities in both stages based on accumulated information from previous patients in the

study. GO-SMART design aims to assign more patients to more promising treatments/DTRs

by skewing the randomization probabilities based on the accumulated information on re-

sponse rate during the trial. This “between-patient” adaption is implemented for both stage

I and stage II randomization probabilities. In stage I, the randomization probability for
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assigning treatment Aj to subject i , namely P 1
j,i, is allowed to depend on all previous (i−1)

patients’ stage I information:

P 1
j,i = Pr{I1i(Aj) = 1 | H1i},

where H1i is the accumulated first-stage information in the trial until the randomization of

the ith patient. More specifically,

H1i = {(Y1k, I1k (A1) , . . . , I1k (AJ))k=1,...,i−1}.

Note that although for simplicity, it is assumed here that the first-stage response information

is available for all previous (i−1) patients, the algorithm described below will apply even if it

is available only for a subset of the (i− 1) patients. Similarly, the randomization probability

for assigning treatment Al to subject i in Stage II following a non-response to Aj in stage I,

denoted by P 2
jl,i, is allowed to depend on all previous (i− 1) patients’ available stage I and

stage II information as follows:

P 2
jl,i = Pr {I2i (Al) = 1 | I1i (Aj) = 1, Y1i = 0, H2i} .

where H2i is the accumulated information collected immediately prior to the second stage

randomization of the ith patient. In particular, we proposed two types of adaptive schemes

with different stage II adaptation rules. sFigure 1 describes the sketch of the adaptive

randomization algorithm, which is detailed below.

GO-SMART ADAPTAION ALGORITHM

Stage I: Let p0 be a pre-specified burn-in proportion, and n0 = bp0nc < n is referred to

as the first-stage burn-in sample, where bxc means the greatest integer less than or equal

to x. Then, for i = 1, . . . , n0, we randomize patient i to treatment Aj, Aj ∈ A with equal

probability, i.e. P 1
j,i = 1/J . For i = n0+1, . . . , n, patient i is randomized to treatment Aj ∈ A

with probability

P 1
j,i ≡ P 1

j,i(c, ε) = min
[

max
{
P 1
j,i(c), ε

}
, 1− ε

]
,
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where P 1
j,i(c) =

(
π̂
Aj

{1,{i−1}}

)c/∑J
k=1

(
π̂Ak

{1,{i−1}}

)c
, and π̂

Aj

{1,{i−1}} = P̂ r{Y Aj

1i = 1 | H1i} is the

first-stage response probability for treatment Aj from the previous {i − 1} patients in the

trial. The constant c ∈ [0, 1] is a tuning parameter to control the degree of dependence of the

randomization probability on the observed response rates, and ε ∈ (0, 1) is a randomization

constraint parameter that bounds the randomization probabilities away from the boundaries

of 0 and 1.

Stage II: Let p1 be a pre-specified stage II burn-in proportion and n1 = bp1nc, (n0 < n1 <

n) be the second-stage burn-in sample. Responders in Stage I will stop the treatment (or

continue the same treatment), whereas the non-responders will be re-randomized in this

stage to alternative treatments with probability:

P 2
jl,i =


1

J−1 , i = 1, . . . , n0,

P 2
jl,i(c, ε) ≡ min

[
max

{
P 2
jl,i(c), ε

}
, 1− ε

]
, i = n0 + 1, . . . , n1,

P 2∗
jl,i(c, ε) ≡ min

[
max

{
P 2∗
jl,i(c), ε

}
, 1− ε

]
, i = n1 + 1, . . . , n,

where P 2
jl,i(c) =

(
π̂Al

{1,{i−1}}

)c/∑
k 6=j

(
π̂Ak

{1,{i−1}}

)c
, and π̂Al

{1,{i−1}} = P̂ r{Y Al
1i = 1 | H1i}, as

defined before. The adapted randomization probability P 2∗
jl,i(c) for patients randomized in the

second stage after the first n1 patients uses second-stage treatment information. We propose

two ways of adaptation, leading to two forms of GO-SMART design.

GO-SMART AR-1 use the stage II cumulative conditional efficacy information among

those who did not respond in stage I to guide the second stage randomization probabilities

for non-responders. More specifically, define: P 2∗
jl,i(c) = (π̂

AjAl

{2,{i−1}})
c
/∑

k 6=j(π̂
AjAk

{2,{i−1}})
c, and

π̂
AjAl

{2,{i−1}} = P̂ r{Y AjAl

2i = 1 | Y Aj

1i = 0, I1i(Aj) = 1, H2i} is the conditional probability of

responding to Al given the patient did not respond to Aj, estimated from the first {i− 1}

patients.

GO-SMART AR-2 use the cumulative efficacy for the corresponding DTR to guide the
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second stage randomization probabilities for non-responders to define

P 2∗
jl,i(c) =

{
π̂{i−1}(Aj, Al)

}c/∑
k 6=j

{
π̂{i−1}(Aj, Ak)

}c
,

with π̂{i−1}(Aj, Al) = P̂ r{Yi{d(Aj, Al)} = 1
∣∣∣I1i(Aj) = 1, H2i} is the overall response rate

of DTR d(Aj, Al) estimated from the previous {i− 1} patients.

4 Inference about Embedded DTR from GO-SMART design

In this section, we present four estimators for overall response rate π(Aj, Al) associated with

DTR d(Aj, Al), Aj, Al ∈ A, j 6= l. We provide corresponding variance estimators and evaluate

consistency. Details about the proof of the Theorems in this section can be found in Web

Appendix B. To facilitate the construction of the estimators, let us define n1j =
∑n

i=1 I1i(Aj),

r1j =
∑n

i=1 I1i(Aj)Y1i, n2jl =
∑n

i=1 I1i(Aj)(1 − Y1i)I2i(Al), and r2jl =
∑n

i=1 I1i(Aj)(1 −

Y1i)I2i(Al)Y2i to be the number of patients assigned to Aj in stage I, the number of patients

responded to Aj in stage I, the number of patients assigned to Al in stage II upon a no-

response to Aj in stage I, and the number of patients responded to Al in stage II after a no-

response to Aj in stage I, respectively. We further define π̂
Aj

1 = r1j/n1j and π̂
AjAl

2 = r2jl/n2jl

to be the proportion of first-stage responder among patients assigned to Aj in stage I and

the proportion of second-stage responders among those who received Al in the second stage

following a non-response in the first stage to Aj.

4.1 Sample mean estimator

The simplest and perhaps the most naive estimator of π(Aj, Al) is the sample mean estimator,

which in the case of our binary response is essentially the sample proportion of responders

among all patients in the sample who are treated following the DTR d(Aj, Al). In terms of

observed data from GO-SMART:

π̂SM(Aj, Al) =
r1j + r2jl
r1j + n2jl

, (2)
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which is the ratio of the number of overall responders and the number of patients treated

under d(Aj, Al). An approximate formula for the variance estimator is given by the corre-

sponding formula for the variance of a sample proportion, namely,

V̂ ar{π̂SM(Aj, Al)} =
π̂SM(Aj, Al)(1− π̂SM(Aj, Al))

r1j + n2jl

.

The sample mean estimator is an inconsistent estimator for the true DTR response rate (See

Web Appendix B-2).

4.2 G-estimator

A G-estimator (Murphy, 2005; Bembom and van der Laan, 2007) for the overall response

rate under DTR d(Aj, Al) is obtained by plugging in the estimated stage I and stage II

sample response rates in the RHS of Equation (1) for a = Aj and b = Al. More specifically,

the G-estimator of π(Aj, Al) can be written as:

π̂G(Aj, Al) = π̂
Aj

1 + (1− π̂Aj

1 )π̂
AjAl

2 . (3)

Using the delta method, an approximate variance estimator for π̂G(Aj, Al) can be given by

V̂ ar{π̂G(Aj, Al)} ≈ (1− π̂AjAl

2 )2V̂ ar(π̂
Aj

1 ) + (1− π̂Aj

1 )2V̂ ar(π̂
AjAl

2 ),

where V̂ ar(π̂
Aj

1 ) = π̂
Aj

1 (1− π̂Aj

1 )
/
n1j, V̂ ar(π̂

AjAl

2 ) = π̂
AjAl

2 (1− π̂AjAl

2 )
/
n2jl.

Theorem 4.1 (Consistency for G-estimator): Under the consistency, sequential random-

ization, and positivity assumptions, and assuming that the randomization probabilities in both

stages are bounded away from zero for each patient, we have the following results:

(1) π̂
Aj

1

p−→ π
Aj

1 as n→∞, for any Aj ∈ A.

(2) π̂
AjAl

2

p−→ π
AjAl

2 as n→∞, for any Aj, Al ∈ A, j 6= l.

(3) π̂G(Aj, Al)
p−→ π(Aj, Al) as n→∞, for any Aj, Al ∈ A, j 6= l.
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4.3 Inverse probability of randomization weighted estimators

Since patients in GO-SMART are potentially randomized with unequal probabilities, it is

natural to consider inverse probability of randomization weighted (IPRW) estimators (Robins

et al., 1994; Ko and Wahed, 2012). This estimator takes the form

π̂IPRW (Aj, Al) =
1

n

n∑
i=1

{
Y1iI1i(Aj)

P 1
j,i

+
(1− Y1i)I1i(Aj)I2i(Al)

P 1
j,iP

2
jl,i

}
Yi. (4)

The estimated variance of IPRW estimator can be approximated by

V̂ ar{π̂IPRW (Aj, Al)} ≈
1

n2

n∑
i=1

[{
Y1iI1i(Aj)

P 1
j,i

+
(1− Y1i)I1i(Aj)I2i(Al)

P 1
j,iP

2
jl,i

}
Yi − π̂IPRW (Aj, Al)

]2
.

Theorem 4.2 (Consistency for IPRW estimator): Under the assumptions of consistency,

sequential randomization, and the randomization probabilities being bounded away from 0 and

1 for all patients, we have

π̂IPRW (Aj, Al)
p−→ π(Aj, Al) as n −→∞,∀Aj, Al ∈ A, j 6= l.

4.4 IPRW estimator with normalized weights

Another widely used estimator for DTR response rate is the normalized inverse probability

of randomization weighted (NIPRW) estimator, which uses the sum of individual weights

instead of the sample size in the denominator of IPRW estimator. The NIPRW estimator is

defined as

π̂NIPRW (Aj, Al) =

∑n
i=1Wjl,iYi∑n
i=1Wjl,i

, (5)

where

Wjl,i =
Y1iI1i(Aj)

P 1
j,i

+
(1− Y1i)I1i(Aj)I2i(Al)

P 1
j,iP

2
jl,i

.

The variance of this estimator can be estimated approximately by

V̂ ar{π̂NIPRW (Aj, Al)} ≈
1

n2

n∑
i=1

{
Wjl,i(Yi − π̂NIPRW (Aj, Al))

}2
.
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Theorem 4.3 (Consistency for NIPRW estimator): Under Theorem 4.2, consistency, se-

quential randomization, and bounding the randomization probabilities away from 0 and 1 for

all patients, we have

π̂NIPRW (Aj, Al)
p−→ π(Aj, Al) as n −→∞,∀Aj, Al ∈ A, j 6= l.

5 Simulation Study

In order to demonstrate the operating characteristics of the GO-SMART design in compar-

ison to the classical SMART design, we simulated clinical trials under various conditions.

The two designs are assessed along with the RA-SMART design (Wang et al., 2022) based

on their ability to (1) produce unbiased estimates of overall response rates for DTRS, (2)

identify optimal DTR, and (3) treat more patients with more effective treatment/DTR.

5.1 Population

We simulated trials with three potential treatment options, that is, A = (A1, A2, A3) un-

der 8 scenarios. Table 1 summarizes the true parameter values for stage I response rate,

π
Aj

1 , Aj ∈ A, and conditional response rate in stage II given non-response in stage I,

π
AjAl

2 , Aj, Al ∈ A, j 6= l. The response rate under regime d(Aj, Al), π(Aj, Al), was calculated

based on Equation (1). Under each scenario, we compared the GO-SMART AR-1 and GO-

SMART AR-2 with the classical SMART design and the RA-SMART design. Each scenario is

characterized by three aspects: (1) whether the optimal DTR involves the optimal first- and

second- stage optimal treatment options, more specifically, whether aopt1 = argmax
a∈A

πa1 = a∗

such that (a∗, b∗) = argmax
a,b∈A,a 6=b

π(a, b) and (aopt2 , bopt2 ) = argmax
a,b∈A,a6=b

πab2 = (a∗, b∗), (2) the effect size

(how different the optimal DTR is from the next optimal DTR in terms of overall response

rate), and (3) how different the optimal DTR is from the worst DTR in terms of overall

response rate.

Scenario S0 is the null scenario where all first-line and second-line options work the same,
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leading to no (or all) optimal DTR. Scenarios S1 to S3 are designed so that the optimal DTR

is d(A1, A3) and it involves optimal stage I treatment (A1 = argmax
a∈A

πa1) and conditional stage

II optimal treatment options (A1, A3) = argmax
(a,b)∈A,a 6=b

πab2 . In S1, the optimal DTR response rate

(0.70) is 0.42 higher than that for the worst DTR, while in S2, the response rate for optimal

DTR is 0.30 higher than the worst DTR. Both in S1 and S2, the optimal DTR has only 0.05

higher response rate compared to the next best DTR, whereas in S3, the optimal DTR differs

from the next best DTR by a larger margin of 0.21. In S4, the optimal DTR contains the

optimal stage I treatment but does not contain the stage II optimal conditional treatment.

From S5 to S7, the optimal DTR does not involve the optimal stage I treatment. Additionally,

in S5, there are no differences in the effectiveness of the first-stage treatments. In scenarios

S6 and S7 low DTR response rates (all less than 0.30) are investigated with varying effect

sizes and the optimal DTR is initialized with the inferior treatment. In S7 though, the worst

DTR does not involve the inferior treatment from stage I, whereas in all other scenarios, the

worst DTR initializes with the inferior treatment in stage I.

[Table 1 about here.]

5.2 Data generation

In all scenarios, for each individual i in the population, the first-stage potential outcome Y
Aj

1i

was drawn from a Bernoulli distribution with probability π
Aj

1 , for j = 1, 2, 3. The second-

stage potential outcome given non-response in the first stage Y
AjAl

2i | Y Aj

1i = 0 was drawn

from a Bernoulli distribution with probability π
AjAl

2 , j = 1, 2, 3; j 6= l. Overall, six DTRs,

d(Aj, Al), j = 1, 2, 3; j 6= l were assessed at the conclusion of each trial.

Under the SMART design, as is customary, the first stage randomization probabilities

were fixed to be P 1
j,i = 1

3
for all i = 1, ..., n and j = 1, 2, 3, the second stage randomization

probabilities were fixed at 1
2

for nonresponders (P 2
jl,i = 1

2
for all i = 1, ..., n and l 6= j ∈ 1, 2, 3).

First-stage responders stopped treatment in stage II. Under the RA-SMART, data were
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generated following Wang et al. (2022), where the first stage randomization probabilities

were fixed to be P 1
j,i = 1/3 for all i = 1, ..., n and j = 1, 2, 3, and the observed response

rate for first n0 = bp0nc patients were used to determine the observed inferior treatment

Aτ̂ = argmin
Aj∈T

π
Aj

1(n0)
, π̂

Aj

1(n0)
=
∑n0

i=1 I1i(Aj)Y1i
/∑n0

i=1 I1i(Aj). In the second stage, the first

n0 = bp0nc patients were randomized equally to the two treatments they did not receive in

the first stage, that is, P 2
jl,i = 0.5 for all i = 1, ..., n0 and l 6= j ∈ 1, 2, 3. For the remaining

n − n0 patients, the second-stage randomization probabilities were modified to be smaller

for the identified inferior treatment. For details, please see Wang et al. (2022). The burn-in

proportion p0 was varied between 0.25 and 0.5, and the adjusted randomization probability

for inferior treatment in the second stage was set to be 0.2.

For the GO-SMART design, patients were assigned to treatments following the algorithm

proposed in Section 3. As suggested in Wathen and Thall (2017), we set ε = 0.1 to bound the

randomization probabilities between [0.1, 0.9]. For the tuning parameter c, common values

considered in the literature include c = 0.5, 1, and i/(2n), where i is the current sample size

when a new patient is to be randomized, and n is the trial’s total sample size. sFigure 2 in the

Web Appendix D shows how the tuning parameter c skews the randomization probability

away from 0.5 in the second stage of a three-treatment scenario for various values of the

previously observed response rates. The lower the c, the closer to 0.5 the randomization

probability is. As c increases the randomization probability skews more towards the better-

performing treatment. The more separation there is between the response rates, the further

away the randomization probabilities are from 0.5 regardless of the value of c. A value of

c = i/(2n) was recommended by (Thall and Wathen, 2007), where c ranges from (n0+1)/n to

0.5. We tested multiple values of c ∈ {0.25, 0.5, 0.75, 1, i/(2n), i/n} for GO-SMART designs.

However, in our simulations with GO-SMART, we found that c = 1 and c = i/n performed

better than other choices of c. In the following section, we presented the results for c = i
n
.
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The simulation results for c = 1 and c = i
2n

are presented in the Web Appendix E. The

response rate for each DTR was estimated using the sample mean estimator in Equation

(2), the G-estimator in Equation (3), the IPRW estimator in Equation (4), and the NIPRW

estimator in Equation (5). The burn-in proportions (p0, p1) were varied between (0.25, 0.5)

and (0.5, 0.75). For each scenario, we simulated 10,000 Monte Carlo trials. The operating

characteristics were evaluated under two different total sample sizes, n = 300 and n = 600.

5.3 Simulation results

5.3.1 Estimation of DTR response rate

We evaluate estimators based on the coverage probability, calculated as the proportion of

times the corresponding 95% Wald confidence interval contained the true response rate for

the DTR. As illustrated in Figure 2, under both the null and the alternative scenarios, the

sample mean estimators resulted in a very low coverage ranging from 0.10 to 0.60. This

is not surprising because the sample mean estimator is an inconsistent estimator of the

DTR response rate, as demonstrated theoretically in Web Appendix B-2, and shown in the

Web Appendix E sFigure 3 that the sample mean estimators had large biases ranging from

0.06 to 0.16. This is consistent with the findings reported in Thall et al. (2015). Therefore,

we excluded this estimator from further evaluations regarding the power and the expected

number of responses. Overall, the remaining three estimators (G-, IPRW, NIPRW) performed

well under SMART, RA-SMART, and GO-SMART designs with coverage probabilities close

to the nominal level of 0.95.

[Figure 2 about here.]

5.3.2 Type I error and power of identifying the optimal DTR

[Figure 3 about here.]
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The Type I error and power are calculated as the proportion of 10, 000 Monte-Carlo

simulations for which the designed optimal DTR is estimated to be optimal under the null and

alternative scenarios, respectively. Figure 3 presents the Type I error for sample sizes n = 300

and n = 600. SMART, RA-SMART, and GO-SMART - all three designs lead to Type I errors

close to the nominal level of 1/6. Note that the coverage probabilities are sometimes slightly

lower than 1/6 for IPRW estimators under the RA-SMART design, however, they are all

within the Monte Carlo margin of error ±1.96 ∗
√

(1/6) ∗ (1− 1/6)/10000 = ±0.007.

Figure 4 compares the power of SMART, RA-SMART, and GO-SMART designs for n =

600 under different scenarios. First we note that the powers achieved for scenarios S1 and

S3 are similar to those for scenarios S2 and S4, respectively, even though S3 and S4 result

in larger powers than S1 and S2 regardless of the designs and estimation methods. This

shows that the difference between the optimal DTR and the worst DTR in terms of response

rates does not affect the statistical power of the design; however, the difference between the

optimal DTR and the next best DTR, as one would expect, affects the power. The larger

this difference is, the higher the power is. The similarity of estimated powers in scenarios

S3 and S4 shows that when the optimal DTR involves the optimal stage I treatment, the

powers do not get affected by whether it involves the optimal stage II treatment or not. A

comparison of scenarios S1, S2, S3, and S4 to scenarios S5 and S6 shows that whether the

optimal DTR involves the optimal stage I treatment or not affects the power depending on

the design. In scenarios S5 and S6, where the optimal DTR does not involve the optimal

stage I treatment, both the RA-SMART and GO-SMART adaptive designs are less powerful

compared to the traditional SMART design. However, GO-SMART is still more powerful

than RA-SMART design in these scenarios. On the other hand, in scenarios S1, S2, S3, and

S4, where the optimal DTR contains the optimal stage I treatment, the GO-SMART design

is more powerful than the SMART and RA-SMART designs. The power estimates in scenario
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S6, where low true DTR response rates are assumed (ranging in [0.107, 0.297]), show that

the power is not affected by the overall response rate; rather, it depends on the difference in

the response rate between the optimal and the next best DTRs.

Across almost all scenarios, the IPRW estimators have lower power compared to the G-

estimator and the NIPRW-estimator. This is due to the fact that the IPRW estimator has

a larger variance compared to the G- and NIPRW estimators. Similar results have been

observed in Ko and Wahed (2012) and Valente et al. (2020).

[Figure 4 about here.]

When the sample size is small and/or the response rates for DTRs are close to each other,

it is challenging to identify the optimal DTR. In such cases, it might be of interest to identify

a set of best DTRs rather than a single optimal DTR. The set consists of the best DTR and

the adjacent ones with response rates within a pre-specified neighborhood of the optimal

DTR. In our simulations, we examined the power of identifying the best set of DTRs within

a 0.05 neighborhood of the optimal DTR response rates. In such cases, the power is defined

as the proportion of simulated trials for which the optimal DTR is contained in the estimated

best DTR set. For n = 300 and scenario S1, sFigure 4 in the Web Appendix E shows that the

powers are effectively increased by identifying the proportion of sets containing best DTRs.

5.3.3 Total number of responders in the trial, and number of patients treated with the

true optimal and worst DTRs

As is evident from the results above, GO-SMART design maintains Type I error at the

nominal level and achieves similar or better power in identifying the optimal DTR compared

to traditional SMART. The biggest advantage of the GO-SMART design over the SMART

and the RA-SMART designs is its ability to benefit more patients in the trial than its

counterparts. This can be examined by computing the average of the total number of

responses in the trial as well as the number of patients treated with the true optimal and
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worst DTRs. For n = 600, sFigure 5 in Web Appendix E shows the average of the total

number of responders in the trial. For scenario S1, where the DTR response rate varied

between 0.28 and 0.70, when (p0, p1) = (0.25, 0.5), GO-SMART AR-1 and AR-2 designs

resulted in 326 and 324 total number of responders out of the 600 randomized compared

to 309 and 311 under SMART and RA-SMART designs respectively. Similarly, in scenario

S6 where DTR response rate varied between 0.107 and 0.297, when (p0, p1) = (0.25, 0.5),

GO-SMART AR-1 and AR-2 designs had on average 111 and 108 total responders compared

to 106 and 104 in SMART and RA-SMART designs, respectively.

Figure 5 shows the average number of patients treated with the optimal and the worst

DTRs. Regardless of the value of (p0, p1) and scenario, the GO-SMART designs assign more

patients to the optimal DTR and fewer patients to the worst than the SMART and RA-

SMART designs; and between two forms of adaptations within GO-SMART, AR-1 assigns

more patients to optimal DTR and fewer patients to worst DTR than AR-2 does. For

example, in S2, when (p0, p1) = (0.5, 0.75) GO-SMART AR-1 and AR-2 designs on average

treat 174 and 172 patients with the optimal DTR compared to 150 for SMART and 135

for RA-SMART. Whereas in the same scenario, GO-SMART AR-1 and AR-2 designs, on

average, treat 99 and 100 patients with the worst DTR compared to 120 for SMART and

120 for RA-SMART. Noticeably, in S2 and S3, where the optimal DTR involves inferior

treatment in stage II, the RA-SMART design assigns less patients to the optimal DTR,

and in S7, where the worst DTR does not involve the inferior treatment, the RA-SMART

design assigns more patients to the worst DTR compared to the SMART design. However,

GO-SMART is still favorable in this scenario because the adaptive randomization scheme

depends on the rank of the response rates in both stages.

[Figure 5 about here.]
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6 Discussion

In this article, we propose a general outcome-adaptive SMART or GO-SMART design that

allows the randomization probabilities in all stages to be modified based on the accumu-

lated information from all previous patients. As shown through simulation studies, the

GO-SMART design achieves similar power as classical SMART in identifying the optimal

DTR but results in more patients achieving response in the trial compared to SMART.

Thus, GO-SMART is expected to improve the acceptability of treatment assignments and,

consequently, the adherence as it increases the likelihood of response by assigning significantly

more patients to the optimal DTR and fewer patients to the worst DTR than the classical

SMART.

Compared to the existing RA-SMART design, our design has the following advantages:

First, GO-SMART allows “between-patients” adaption in both the first and second stages.

Instead of reducing the randomization probability of the observed inferior arm in adapting

second-stage randomization probabilities, we propose two types of adaptive schemes that

allow the second-stage randomization probabilities to be modified based on the conditional

treatment efficacy or the dynamic treatment regime. Both schemes utilize first and second-

stage treatment efficacy information from previous patients and hence result in increased

efficiency. Second, unlike RA-SMART, GO-SMART successfully treats more patients using

optimal DTR than SMART when the optimal DTR involves the inferior treatment in stage

II. Third, the proposed GO-SMART design can be flexibly generalized to other SMART

designs with different treatment options across stages. This is beyond the scope of this paper

and will be elaborated in a future paper.

Despite excellent operating characteristics achieved by GO-SMART, some limitations of

the design deserve further consideration. First, in the GO-SMART design, we aim to find

the optimal DTR, which is defined as the DTR with the maximum estimated response
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rate. This is implemented in the proposed design based on a simple numeric comparison of

the point estimates and fails to incorporate uncertainty in the estimation. One alternative

we considered in the simulation studies is to identify a set of best DTRs that are within

some pre-specified threshold. There are also other ways to define the set of best DTRs,

e.g., those with estimated response rates above a fixed threshold. Second, our formulation

ignores multiple comparisons of DTR response rates. The multiple comparisons with the best

(MCB) methodology might potentially be employed to formalize this idea (Hsu, 1981, 1984).

Third, to simplify the conceptual framework, we did not incorporate covariates in the design.

However, in practice, it is also very common to observe auxiliary covariate information. It

is worthy to generalize the GO-SMART by including the observed covariates in the design

process (e.g., in determining the updated randomization probabilities). Fourth, we put the

same weight on the response in the first stage and that in the second stage. However, in

reality, there are different viewpoints on what is desirable in a given response trajectory.

Perhaps the quicker the response, the better the health outcomes. Finally, the proposed

GO-SMART design will not be easily applied to clinical trials where clinical endpoints are

delayed or need to wait a very long time to observe. In this case, instead of the “true” clinical

endpoint, a surrogate endpoint that is quicker and easier to measure may be considered as

the outcome to apply the proposed adaptive scheme.
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Figure 1. A two-stage SMART design with three potential treatment choices A1, A2, A3.
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Figure 2. Coverage probability for estimating response rates under various DTRS for
SMART, RA-SMART, and GO-SMART designs when n = 600 under scenarios S0 and S1.
The black dashed lines represent 0.95 expected coverage probability.
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Figure 3. Type I error of identifying the designated optimal DTR under SMART, RA-
SMART, and GO-SMART designs for sample sizes n = 300 and n = 600. Black horizontal
line equals 1/6, the expected type I error under the null, where all DTRs have the same
response rate.
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Figure 4. Power of identifying the designated optimal DTR through various designs:
SMART, RA-SMART, and GO-SMART (AR-1 and AR-2) for n = 600 under scenarios
S1-S6 described in Table 1.
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Figure 5. Number of patients treated with the true optimal DTR and the worst DTR in
SMART, RA-SMART, and GO-SMART designs with n = 600 for scenario S2, S3, S5, and
S7.
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Table 1
Eight scenarios are studied in the simulations reflecting various features of the two-stage three-treatment DTR
framework. First three rows provides the first stage response rates, next six rows in the first block of the table

provides the assumed second-stage response rates under six potential treatment sequences, and the last six rows
provide the overall response rates under the six DTRs.

Parameter S0 (H0) S1 S2 S3 S4 S5 S6 S7

πA1
1 0.3 0.5∗ 0.5 0.5 0.5 0.3 0.05 0.05

πA2
1 0.3 0.35 0.35 0.35 0.35 0.3 0.07 0.07

πA3
1 0.3 0.2 0.2 0.2 0.2 0.3 0.06 0.06

πA1A2
2 0.35 0.3 0.3 0.06 0.06 0.6 0.06 0.1

πA1A3
2 0.35 0.4 0.4 0.4 0.4 0.15 0.26 0.26

πA2A1
2 0.35 0.35 0.35 0.35 0.35 0.2 0.1 0.1

πA2A3
2 0.35 0.2 0.2 0.2 0.2 0.25 0.09 0.09

πA3A1
2 0.35 0.25 0.25 0.25 0.25 0.3 0.15 0.15

πA3A2
2 0.35 0.1 0.4 0.4 0.45 0.4 0.08 0.08

π(A1, A2) 0.545 0 .65 ∗∗ 0.65 0.53 0.53 0.72 0.107 0.145
π(A1, A3) 0.545 0.7 0.7 0.7 0.7 0.405 0.297 0.297
π(A2, A1) 0.545 0.578 0.578 0.578 0.578 0.44 0.163 0.163
π(A2, A3) 0.545 0.48 0.48 0.48 0.48 0.475 0.154 0.154
π(A3, A1) 0.545 0.4 0.4 0.4 0.4 0.51 0.201 0.201
π(A3, A2) 0.545 0.28∗∗∗ 0.52 0.52 0.56 0.58 0.135 0.135

* Bold indicates the response rate for the optimal DTR and optimal stage I/II treatment;
** Italicized indicates the response rate for the second best DTR;
*** Underlined indicates the response rate for the worst DTR.


