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Abstract

A generalized phase 1-2-3 design, Gen 1-2-3, that includes all phases of clinical treat-

ment evaluation is proposed. The design extends and modifies the design of Chapple

and Thall (2019), denoted as CT. Both designs begin with a phase 1-2 trial including
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dose acceptability and optimality criteria, and both select an optimal dose for phase

3. The Gen 1-2-3 design has the following key differences. It uses phase 1-2 criteria to

identify a set of candidate doses rather than one dose. In an intermediate stage between

phase 1-2 and phase 3, it randomizes additional patients fairly among the candidate

doses and an active control treatment arm and uses survival time data to select an

optimal dose. It makes a Go / No Go decision of whether or not to conduct phase

3 based on a predictive probability that the optimal dose will provide a substantive

improvement over the control in survival time. A simulation study shows that the Gen

1-2-3 design has desirable operating characteristics compared to the CT design and

two conventional designs.

Keywords: Bayesian Design; Cell Therapy; Dose Finding; Phase 1-2 Clinical Trial;

Phase 1-2-3 Clinical Trial

1 Introduction

Conventionally, clinical evaluation of a potential new anti-disease agent, X, begins by using

early toxicity, YT , and possibly an early efficacy outcome, YE, to select an optimal dose,

d̂opt. This may be a maximum tolerated dose (MTD) based on YT in a phase 1 trial (Storer,

1989, 2001; O’Quigley et al., 1990; Babb et al., 1998; Liu and Yuan, 2015), or a dose based

on (YE, YT ) and possibly PK/PD data from a phase 2 or phase 1-2 trial (Ratain, 2014;

Zang et al., 2014; Yuan et al., 2016; Yan et al., 2018; Guo and Yuan, 2023). Denoting X

administered at dose d by X(d), once d̂opt is chosen, a confirmatory randomized phase 3

trial may be conducted to compare X(d̂opt) to a control treatment, C, based on survival or

progression-free survival (PFS) time, YS. In some settings, once d̂opt is chosen, a Go / No

Go decision of whether or not to conduct phase 3 is made by using currently available data

to decide whether X(d̂opt) is promising.

The convention of first evaluating safety and selecting a dose based on early outcomes,
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observed much sooner than YS, often with small sample sizes, is motivated by the desire

to complete the dose optimization process quickly. Unfortunately, this general strategy has

several very undesirable properties. If early phase sample sizes are too small to obtain reliable

inferences, then it is not unlikely that a selected dose d̂opt later will be found to be unsafe,

ineffective, or both, based on phase 3 or post approval clinical practice data (Shah et al.,

2021). If YE is ignored, or if (YE, YT ) are used for dose-finding but YE has a weak connection

to YS, then there is a high risk of selecting a dose that is suboptimal in terms of YS (Yuan

et al., 2016; Yan et al., 2018; Brock et al., 2021; Thall et al., 2023).

Basing inferences and decisions on early outcomes without accounting for YS in a clin-

ical trial may lead to poor decisions. This occurred during a randomized trial to compare

two preparative regimens, busulfan plus melphalan (B + M) and melphalan alone (M), for

autologous stem cell transplantation in multiple myeloma, based on response as the primary

outcome. An interim analysis showed that 6/44 (13.6 %) of B + M patients had responses

versus 13/32 (40.6%) of M patients, and a futility monitoring rule stopped the trial early. In

contrast, the estimated 12-month PFS probabilities were .90 for B +M and .77 for M , and

this superiority of B +M over M in terms of PFS persisted after accounting for prognostic

covariate effects in a regression analysis (unpublished). The trial was re-designed and com-

pleted using PFS time as the primary outcome (Bashir et al., 2019). This trial illustrates

potential consequences of the general fact that, while early response may be associated with

a better long term outcome, YE is not a surrogate for YS.

Many hybrid designs have been proposed to improve the reliability and efficiency of the

treatment evaluation process. Phase 1-2 designs select a dose or schedule based on both YE

and YT (Thall and Russell, 1998; Braun, 2002; Thall and Cook, 2004; Zhang et al., 2006;

Guo and Yuan, 2017; Liu et al., 2018; Yuan et al., 2016; Zhou et al., 2019; Lee et al., 2020;

Lin et al., 2020; Zhang et al., 2021). Thall et al. (2023) proposed a generalized phase 1-2

design, Gen 1-2, that optimizes dose based on both (YE, YT ) and remission duration. Many
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phase 2-3 designs have been proposed that combine treatment screening with confirmatory

evaluation (Thall et al., 1988; Schaid et al., 1990; Inoue et al., 2002; Stallard and Todd, 2003;

Korn et al., 2012).

Chapple and Thall (2019) (CT) proposed a phase 1-2-3 design paradigm that includes

the entire clinical treatment evaluation process. A phase 1-2-3 design begins by applying

a phase 1-2 design based on (YE, YT ), including rules to screen out unsafe or ineffective

doses, and adaptive randomization (AR) to reduce the chance of getting stuck at a sub-

optimal dose. A best acceptable dose, d̂ opt
ET , is selected based on (YE, YT , d) data, and a

group sequential (GS) phase 3 trial based on YS then is begun with patients randomized

fairly between X(d̂ opt
ET ) and C. At the first phase 3 GS decision, a re-optimized dose, d̂ opt

S , is

selected to maximize estimated mean survival time of X(d) among all acceptable doses. The

GS phase 3 trial then is completed with patients randomized between X(d̂ opt
S ) and C. CT

reported computer simulations showing that this design is greatly superior to the convention

of conducting phase 1-2 and using X(d̂ opt
ET ) in phase 3 without re-optimizing dose.

In this paper, we propose a generalized phase 1-2-3 design, which we call Gen 1-2-3,

that modifies and extends the CT design. Like the CT design, the Gen 1-2-3 design begins

by using a Bayesian phase 1-2 design based on (YE, YT ), and later selects a best dose d̂opt

based on survival time. A Gen 1-2-3 design may be considered a hybrid of a Gen 1-2 design

and a phase 3 design. The Gen 1-2-3 design has the following key differences from a CT

design. A Gen 1-2-3 trial includes either two or three stages. In stage 1, a phase 1-2 design’s

dose acceptability and optimality criteria based on (YE, YT , d) are used to assign patients to

doses and identify a set of candidate doses, Acan, rather than one dose. Similar strategy was

considered by Guo and Yuan (2023), who referred to Acan as the recommended phase 2 dose

set (RP2S). In stage 2, patients are randomized fairly among {X(d) : d ∈ Acan} and C and

followed to obtain their survival time data. At the end of stage 2, an optimal dose, d̂opt,

is selected from Acan to maximize the survival rate. A Go / No Go decision of whether or
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not to conduct a phase 3 trial then is made, based on the predictive probability (PP) that

the hazard ratio of X(d̂opt) versus C, computed using simulated future phase 3 data, will be

below a fixed threshold. The PP quantifies how promising X(d̂opt) is compared to C. If the

decision is “Go”, stage 3 consists of a phase 3 trial of X(d̂opt) versus C. If it is “No Go”,

stage 3 is not conducted and it is concluded that X(d̂opt) does not provide an improvement

over C.

The Gen 1-2-3 design includes two key screening parameters. A proximity parameter,

ρ ∈ [0, 1], determines whether a dose is close enough to being optimal so that it is included

in Acan, and a Go - No Go parameter, pU(Go) ∈ [0, 1], determines how large the estimated

PP that X(d̂opt) is promising compared to C must be in order to conduct phase 3. A CT

design may be obtained as a Gen 1-2-3 design by setting ρ = 1 to ensure that Acan includes

exactly one dose, setting pU(Go) = 0 to ensure that phase 3 always is begun, and later

re-setting ρ = 0 at the first GS decision of phase 3 to allow dose re-optimization.

Section 2 presents details of the Gen 1-2-3 design’s stages and decision criteria. Section

3 illustrates the design using the Bayesian utility-based phase 1-2 optimal interval design,

BOIN12 (Lin et al., 2020), assuming that p(YS | YE, YT , d) is a Weibull distribution. A

simulation study is presented in Section 4, including particular versions of the Gen 1-2-3 and

CT designs that may be considered comparable, and two conventional designs that only use

(YE, YT ) for dose selection. A brief discussion is given in section 5.

2 A Generalized Phase 1-2-3 Design Paradigm

2.1 Preliminaries

A Gen 1-2-3 design requires assumed regression models p(YE, YT | d,θET ) and p(YS |

YE, YT , d,θS), where θET and θS are parameter vectors, and θ = (θET ,θS). Like the CT

proposal, Gen 1-2-3 is a paradigm for constructing designs, since its component phase 1-2
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and phase 3 designs, regression models, and decision criteria may be tailored to accommo-

date the application at hand. For example, if the goal is to explore combinations of dose

and administration schedule for X, then the stages and decision rules are as described here,

but with the regression models suitably modified to include (dose, schedule) effects rather

than only doses. We first present a general form for the Gen 1-2-3 design paradigm, and in

section 3.2 we illustrate it with a particular design that will be used in the simulations.

Denote the time to treatment failure or independent right censoring by Y o
S , with δ =

I(Y o
S = YS). For each treatment τ = X(d) or C, denote m = ET for (YT , YE, τ) data and

m = S for (Y o
S , δ, τ) data. Index the design’s stages by k = 1, 2, 3, and let nk denote the

maximum sample size at stage k, with overall maximum sample size N = n1 + n2 + n3. To

keep track of datasets by outcome type and stage, let Dm,k denote the data for outcomes m

= ET or S at the end of stage k=1, 2, or 3. To keep track of data in terms of patients enrolled

during stages 1 and 2, let DnET ⊆ DET,1∪DET,2 denote the ET data from the first n patients

for n = 1, · · · , n12 = n1 + n2. Denote the doses of X to be studied by d = {d1, · · · , dJ}, and

denote d = d0 for C. As noted above, d may instead correspond to a set of (dose, schedule)

combinations of X to be evaluated, and the paradigm easily accommodates such settings,

with appropriate modifications of the regression models.

Following the Gen 1-2 paradigm, the main requirements for the phase 1-2 design used by

a Gen 1-2-3 design are that (i) YE and YT are discrete ordinal variables observed relatively

soon after initiation of treatment; (ii) decisions rely on a dose optimality criterion, φ(d,θ),

defined in terms of (YE, YT ); and (iii) the following two dose acceptability conditions are

imposed throughout. For fixed lower limit πE on πE(d,θ) and fixed upper limit πT on

πT (d,θ), given current data DnET , a dose d is acceptable if

Pr{πE(d,θET ) > πE | DnET} > .10 and Pr{πT (d,θET ) < πT | DnET} > .10. (1)
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Cutoffs other than .10 may be used in (1), with values in the range .05 to .20 generally

working well. For each sample size n ≤ n12, let An denote the set of acceptable doses

determined by (1). For each d ∈ An, the posterior mean dose optimality criterion is denoted

by φ̂n(d) = E{φ(d,θET ) | DnET}.

The regression model for the distribution of YS is formulated to borrow strength from

regression of YS on YE, YT , and d. Denote the joint probability πa,b(d,θ) = Pr(YE = a, YT =

b | d,θET ) for all possible values (a, b) of (YE, YT ). Recalling that d = d0 represents C, the

pdf of YS as a function of d is the mixture

fS(yS | d,θ) =
∑
a,b

fS|E,T (yS | YE = a, YT = b, d,θS) πa,b(d,θET ). (2)

We define the survival function at t as F S(t | X(d),θ) = Pr{YS > t | X(d),θ}.

2.2 Stages of a Generalized Phase 1-2-3 Design

If the early outcomes (YE, YT) are discrete ordinal variables then, for example, the phase 1-2

optimality criterion may be an expected utility φ(d,θ) =
∑

a,b U(yE, yT )πa,b(d,θ). If either

YE or YT has three or more possible values, then it is necessary to define binary versions

of these variables to that πE(d,θET ) and πT (d,θET ) may be defined in order to specify the

dose admissibility criteria (1).

To construct a Go / No Go rule, it will be necessary to consider the future failure time

data that would be available upon completion of a phase 3 trial, if it were conducted. This

is DfutureS,3 = {(Y o
S,i, δi, τi) : i = n12 + 1, · · · , N}, where τi denotes the ith phase 3 patient’s

treatment, which is either X(d̂opt) or C. At the end of stage 2, since DfutureS,3 consists of

potential outcomes that may or may not be observed depending on whether or not phase 3

is conducted, a predictive probability is used as the criterion for making the Go / No Go

decision. Let t∗S be the maximum follow up time for observing (Y o
S , δ). As depicted in Figure
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1, the design’s stages are as follows.

Stage 1. Use a phase 1-2 design based on (YE, YT) and the criterion function φ(d,θ) to

do sequentially adaptive dose-finding, subject to the dose acceptability rules (1). When n1

patients have been treated and evaluated, identify the RP2S, Acann1
⊆ d, computed from the

data DET,1, as follows. Denoting the estimated criterion function of the empirically best

acceptable dose by φ̂maxn1
= max{φ̂n1(d) : d ∈ An1}, the RP2S is

Acann1
= {d ∈ An1 : φ̂n1(d) ≥ ρ φ̂maxn1

}.

For example, if ρ = .70, then any acceptable dose with estimated optimality criterion at

least 70% of the maximum value is a candidate.

Stage 2. For each n = n1 + 1, · · · , n12, let Acann denote the current RP2S. When n2 patients

have been randomized and treated, they are followed for an additional time L ≤ t∗S, to

harvest survival time data for use in later treatment evaluation. The following two decisions

are made at the end of stage 2.

Selection of a Best Candidate Dose. Under the mixture model (2), the survival function

F S(t | X(d),θ) evaluated at follow up time t∗S is used to select an optimal dose from Acann12
.

Given the data at the end of stage 2, the optimal dose d̂opt is defined as the dose in Acann12

with the largest posterior probability of having the largest F S(t∗S | X(d),θ), formally,

d̂opt = argmax
d∈Acan

n12

Pr

{
F S(t∗S | d,θ) = max

d′∈Acan
n12

F S(t∗ | d′,θ) | DET,1 ∪ DET,2 ∪ DS,2
}
. (3)

If desired, d̂opt may be selected using other criteria, such as the posterior mean of F S(t∗ | d,θ).

Go / No Go Decision Based on a Predictive Probability. After selecting dopt, the

Go / No Go decision of whether proceed to stage 3 (i.e., phase 3) to further evaluate its
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long-term efficacy YS will be made based on the PP of the hazard ratio (HR) of X(d) to C,

denoted by λ(d). Denote the future phase 3 data that would become available at the end

of phase 3, if it were conducted, by DfutureS,3 . A parameter λ ∈ (0, 1) must be specified to

determine whether the HR of X(d̂opt) versus C is small enough to infer that X(d̂opt) provides

a meaningful improvement in survival. At the end of stage 2, a Bayesian criterion that

quantifyies how superior X(d̂opt) will be compared to C at the end of phase 3 is

ξ(DfutureS,3 ) =def Pr{λ(d̂opt) ≤ λ | DS,2,DfutureS,3 }. (4)

Expression (4) is the posterior probability, given all future randomized data available at the

end of phase 3, that the HR of X(d̂opt) versus C is smaller than λ. In practice, the HR cutoff

λ might be chosen from the range .50 to .90. Define the phase 3 success indicator Ξ(DfutureS,3 )

= 1 if ξ(DfutureS,3 ) > pU and 0 otherwise, where pU may be chosen from the range .50 to .99.

If Ξ(DfutureS,3 ) = 1, this says that, based on all randomized data from stage 2 and a future

phase 3 trial, it is likely that the HR of X(d̂opt) compared to C is desirably small.

Since the future data DfutureS,3 are not available at the end of stage 2, the Go / No

Go decision is based on the predictive distribution of DfutureS,3 given the observed stage 2

randomized data, which we define as

p(DfutureS,3 | DET,2,DS,2) =

∫
θ

p{DfutureS,3 | θ}p(θ | DET,2,DS,2)dθ. (5)

This PP may be computed in the following steps. First, simulate a large sample of pa-

rameters {θ(1), · · · ,θ(B)} from the posterior p(θ | DET,2,DS,2). For each θ(b), simulate a

future phase 3 dataset, Dfuture,(b)S,3 using the mixture model (2). Evaluate the phase 3 suc-

cess indicator Ξ(Dfuture,(b)S,3 ) using a proportional hazard model fS,PH(yS | τ, λ(d̂opt)) for τ =

X(d̂opt) or C. In our simulation, we assumed an independent exponential-gramma model

for X(d̂opt) and C to obtain the posterior of λ(d̂opt). This approach is highly efficient in
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terms of computation, and previous research (Thall et al., 2005; Zhou et al., 2020), as well

as our simulation described later, has demonstrated its remarkable robustness in facilitating

Go/No-Go decisions. Nevertheless, other more sophisticated models, such as the piecewise

exponential model (Cai et al., 2014), can be entertained when desirable.

Repeating this for b = 1, · · · , B, the estimated PP of phase 3 success is the mean

P̂P =
1

B

B∑
b=1

Ξ(Dfuture,(b)S,3 ). (6)

The Go / No Go decision is to conduct phase 3 if P̂P > pU(Go). If the decision is No

Go, then do not conduct phase 3, and stop the treatment development process, with the

conclusion that X(d̂opt) is not promising compared to C. If the decision is Go, then continue

to stage 3.

Stage 3. Using the GS design, conduct phase 3 to test the difference between the survival

distributions of X(d̂opt) and C. Each patient is followed for up to t∗S months to harvest the

(Y o
S , δ, τ) data, for τ = X(d̂opt) or C. The toxicity rate for X(d̂opt) is stilled monitored in

stage 3 with the toxicity acceptable rule in (1), using the toxicity data accumulated from

stages 1 to 3.

3 Illustration of the Gen 1-2-3 Design

3.1 Dose-outcome models

In this section, we illustrate how a Gen 1-2-3 design may be constructed by describing a

particular case. We assume binary YT and YE and denote πa,b(d) = Pr(YE = a, YT = b | d)

for a, b ∈ {0, 1} and dose d, recalling that d = d0 represents C. Rather than formulating a

dose-response model, for each d we define the phase 1-2 parameter vector as the probabilities
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of the elementary events, θET (d) = (π0,0(d), π0,1(d), π1,0(d)), with π1,1(d) = 1 − {π0,0(d) +

π0,1(d)+π1,0(d)}. This model does not borrow strength between doses, but is very tractable,

as well as robust as it does not make any parametric assumption on dose-toxicity and -efficacy

curves. Given sample size n and dose d, denote the elementary event counts

Va,b,n(d) =
n∑
i=1

I(YE,i = a, YT,i = b, τi = d)

for a, b ∈ {0, 1}, and denote the vector of counts by Vn(d). For each d, denoting n(d) =∑n
i=1 I(τi = d), Vn(d) ∼ multinomial(n(d),θET (d)). We denote the concatenated vectors as

Vn = (Vn(0),Vn(1), · · · ,Vn(J)) and θET = (θET (0),θET (1), · · · ,θET (J)).

We assume that the failure time is Weibull with conditional hazard function

hS(t | YE, YT, d, θS) =
( γ
ψ

)( t
ψ

)γ−1
exp
{
β1YE + β2YT +

J∑
j=0

β3,jI(d = dj)
}
, t > 0, (7)

setting β3,0 = 0 for C, so θS = (γ, ψ, β1, β2, β3,1, · · · , β3,J). For sample size n ≤ n12 in stage 1

or 2, denote the early outcome data by DnET =
{

(YE,i, YT,i, d[i]); i = 1, · · · , n
}
, and denote the

randomized time-to-event data from stage 2 by DS,2 =
{

(Y o
S,i, δi, d[i]); i = n1 + 1, · · · , n12

}
.

Denoting the Weibull pdf by fS and survivor function by F S, the likelihood for the data at

the end of stage 2 is

L(Dn12
ET ,DS,2 | θ) =

n12∏
i=1

1∏
a=0

1∏
b=0

{πa,b(d[i])}I[YE,i=a,YT,i=b]

×
n12∏

i=n1+1

{
fS(Y o

S,i | YE,i, YT,i, d[i],θS)
}δi{

F S(Y o
S,i | YE,i, YT,i, d[i],θS)

}1−δi
.(8)

To complete the Bayesian model, we assume the non-informative priors

(
π0,0(d), π0,1(d), π1,0(d)

)
∼ Dirichlet(0.25, 0.25, 0.25, 0.25),
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with γ and ψ ∼ Gamma(0.01, 0.01), and β1, β2, β3,1, · · · , β3,J ∼ iid N(0, 102). We use MCMC

to compute the posterior for θ given the data D12 = Dn12
ET ∪ DS,2.

The marginal survivor function at the end of follow-up is the probability weighted average

F S(t∗S | X(d),θ) =
1∑

a=0

1∑
b=0

F S(t∗S | YE = a, YT = b, d,θS)πa,b(d). (9)

3.2 A utility-based Gen 1-2-3 design

Under this dose-outcome model, the following steps may be used to conduct a utility-based

Gen-1-2-3 design. Dose-finding in stage 1 is done using the BOIN12 design (Lin et al., 2020),

which relies on a numerical utility score for each of the four possible outcomes of (YE, YT ).

To establish a utility, we first assign the score U1,0 = 100 to the most desirable outcome

(YE = 1, YT = 0), and U0,1 = 0 to the least desirable outcome (YE = 0, YT = 1). Using these

two utilities as boundaries, we then ask the clinicians to provide their subjective utility scores

U1,1 for (YE = 1, YT = 1), and U0,0 for (YE = 0, YT = 0). Table 1 provides an illustrative

example. The mean utility of dose d based on (YE, YT ), normed to take values between 0

and 1, is

U(d,θET ) =
1

100

1∑
a=0

1∑
b=0

Ua,bπa,b(d),

which is used as a phase 1-2 dose optimality criterion, φ(d,θET ). The utility approach has

several advantages (Zhou et al., 2019; Lin et al., 2020). It is scalable and readily accommo-

dates ordinal YE and YT , as well as more than two endpoints (Liu et al., 2018). In addition,

it is general and contains the marginal-probabilities-based risk-benefit tradeoff method as a

special case. Lastly, as Ua,b directly links to the clinical outcomes of patients, it can be easily

interpreted and understood by clinicians.

The BOIN12 design treats U(d,θTE) as a “probability” and uses the quasi-binomial

method to estimate its posterior starting with a non-informative Beta(0.5, 0.5) prior. The
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design uses the posterior of U(d,θET ) to make dose escalation and de-escalation decisions,

and adaptively allocates patients to the dose that optimizes the posterior mean of φ(d,θET ).

The dose-finding algorithm of the BOIN12 design is given by (Lin et al., 2020). A Gen 1-2-3

trial with the above utility-based phase 1-2 component may be conducted as follows:

Stage 1. Enroll the first cohort of patients at a pre-specified starting dose. For each subse-

quent cohort, use the BOIN12 design to choose doses, up to n1 patients.

Stage 2. For sample sizes n = n1 + 1, · · · , n1 + n2, if Acann is empty, terminate the trial.

Otherwise, randomize each cohort of patients fairly among C and the doses in Acann . When

desirable, Acann can be updated after treating each cohort. At the end of stage 2, continue

to follow patients for an additional of L months to collect PFS time data (Y o
S , δ). Select

the optimal dose d̂opt based on the survival probability F S(t∗S | X(d),θ), and make the Go

/ No Go decision based on the PP. Details for calculating PP are provided in the online

supporting materials. If the decision is No Go, the trial is stopped with the conclusion that

X(dopt) is not promising compared to C.

Stage 3. If the Go decision is made, then a GS phase 3 trial is conducted to compare the

survival time distributions of X(d̂opt) and C. In addition, the toxicity profile of X(d̂opt)

is still monitored in stage 3 during each interim analysis and the final test to ensure the

safety of the selected optimal dose. For each interim decision k = 1, · · · , K − 1, after n3,k

patients have been enrolled and followed for PFS, do two-sided tests for superiority or futility

using a logrank test based on the combined data DS,2 ∪ DS,3. Denoting the approximately

normal test statistic computed from the logrank statistic by Z, for the futility bound bk

and superiority bound b̄k, stop the trial if |Z| < bk for futility, |Z| > b̄k for superiority, or

Pr{πT (d,θET ) < πT | DnET} ≤ .10 for toxicity. Otherwise, do the final test when a total of

n3 patients have been enrolled and followed for PFS at X(d̂opt) and C in stage 3.

As a result of the dose selection process at the end of stage 2, the use of the standard
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hypothesis testing method based on the combined data DS,2 ∪DS,3 may result in an inflated

type I error rate. There are several ways to address this issue. One such approach involves

using a combination test (Bauer and Köhne, 1994), which combines the p-value based on

DS,2 (after applying the closing test procedure (Markus et al., 1976)) with the p-value based

on DS,3. In this case, the standard GS boundaries, such as the O’Brien-Fleming boundary

(O’Brien and Fleming, 1979), can be used as bk and b̄k. This approach effectively controls

the family-wise error rate (FWER), but may be conservative in some cases. For the Gen

1-2-3 design, the FWER is defined as the probability that any dose from the new treatment

is selected at the end of stage 3, assuming that there is no existing dose with both acceptable

toxicity and superior survival in comparison to the control.

Another simpler and often more powerful approach involves leveraging the built-in Go/No

Go decision, which deflates the type I error rate, to cancel out the inflation caused by the

dose selection process. Thus, the standard GS boundaries can still be used. Specifically, the

cutoff pU(Go) is calibrated under the null hypothesis that none of the doses are effective with

respect to YS using simulation, such that the FWER is controlled at the nominal value. This

is the approach we employed in our simulation, and we found that a cutoff of pU(Go) = 0.5

or higher is often sufficient to cancel out the type I error inflation and effectively control

FWER.

The maximum sample size n3 in stage 3 depends on the accumulated numbers of patients

treated with X(d̂opt) and C, because we fix the maximum sample size for the GS design to be

nGSD rather than fixing n3. For example, suppose that a GS design is planned in stage 3 with

an interim analysis in the middle of the trial using a maximum sample size of nGSD = 500,

and 15 and 15 patients have been treated at X(d̂opt) and C in stage 2. In stage 3, we first

enroll 250-30=220 patients before the interim analysis and then, if stage 3 is continued, enroll

the additional 250 patients after the interim analysis, which gives n3 = 220 + 250 = 470.
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4 Simulation Studies

4.1 Simulation Settings

We conducted simulations to evaluate the operating characteristics (OCs) of the utility-

based Gen 1-2-3 design presented in the last section. Let πtrueT (dj) be the true toxicity

probability, πtrueE (dj) the true short-term response probability, and F
true

(t∗S, dj) the true

survival probability at follow up time t∗S. We evaluated the design’s performance under eight

scenarios having a variety of different patterns for πtrueT (dj), π
true
E (dj) and F

true
(t∗S, dj), shown

in Figure 2.

As comparators, we used two conventional utility-based phase 1-2 designs followed by a

phase 3 design, referred to as Conv 1 and Conv 2. The Conv 1 design consists of stages 1 and

2 of the Gen 1-2-3 design, but does not use any YS data to make decisions in these stages.

Rather, an optimal dose d̂optET is selected by maximizing the posterior mean of U(d,θET ), and

X(d̂optET ) is used in phase 3 if

Pr
{
πE(X(d̂optET ),θET ) > πE(C,θET ) | DET,1 ∪ DET,2

}
> 0.8.

This is a Go / No Go rule based on the ET data but no survival time data, and the decision

criterion is a posterior probability rather than a predictive probability involving simulated

future data. If phase 3 is conducted, the same GS design used by Gen 1-2-3 is used in the

phase 3 portion of the Conv 1 design. The Conv 2 design is similar to the Conv 1 design,

with the two differences that (1) C is excluded from the phase 1-2; and (2) there is no Go

/ No Go decision between phase 1-2 and phase 3, so phase 3 always is conducted. We also

considered a modified version of the CT design as a comparator. The original CT design

used the EffTox phase 1-2 design, which relies on a regression model with parametric dose-

response and dose-toxicity curves to borrow strength between doses, and an efficacy-toxicity
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trade-off contour as a criterion for dose selection (Thall and Cook, 2004; Thall et al. 2014).

To obtain a more fair comparison, we modified the CT design by using the same BOIN12

design and mean utility objective function in stages 1 and 2 of the Gen 1-2-3 design in the

application. We refer to this as the CT-B12 design.

For the admissibility criteria (1), we set πT = 0.35 and πE = 0.20. The fixed follow up

window for Y o
S was t∗S = 6 months. We also set the additional follow-up time to harvest

survival time data from all patients in stage 2 who have been randomized and treated, prior

to selection of optimal dose, to L = 1 month. Patients were treated in cohorts of size 3 in

stage 1 and size 5 in stage 2, assuming a mean accrual rate of 1 cohort per month in stages

1 and 2 and 10 patients per month in stage 3. The maximum sample sizes were n1 = 30,

n2 = 50, and nGSD = 500 for the phase 3 GS design. The remaining design parameters were

ρ = 0.5, λ = 0.85, pU = 0.8 and pU(Go) = 0.5, determined from preliminary simulation

studies.

As data generation models for the simulation studies, to obtain (YE, YT ) we first simulated

latent variables W = (WE,WT ) following a bivariate normal distribution with mean (0,0),

variances 1, and correlation .10. We then defined

YE =

 0 if WE < κE(dj)

1 if WE ≥ κE(dj)
, YT =

 0 if WT < κT (dj)

1 if WT > κT (dj)

with the cut-offs κE(dj) and κT (dj) chosen to obtain the maginal probabilities πtrueE (dj) and

πtrueT (dj) for each dj specified under each scenario. To generate survival times, we assumed

that t∗S = 6, and that [YS | YE, YT , d] followed a piecewise exponential (PE) distribution with

survival function

F YS(t | YE, YT , d) = exp{−t/λ̃(t, YE, YT , d)}, 0 < t ≤ t∗S,
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where the log hazard function takes the piecewise form

log{λ̃(t, YE, YT , d)} =

 β̃01 + β̃E1YE + β̃T1YT +
∑J

j=0 γ̃j1I[d = dj] if 0 < t ≤ 3

β̃02 + β̃E2YE + β̃T2YT +
∑J

j=0 γ̃j2I[d = dj] if 3 < t ≤ 6,

setting γ̃01 = γ̃0,2 = 0 and d = d0 for C. Since t∗S = 6, the parameters κE(dj), κT (dj),

β̃01, β̃02, β̃E1, β̃E2, β̃T1, β̃T2, and γ̃j1, γ̃j2 were derived under each scenario to match the pre-

determined values of πtrueT (dj), π
true
E (dj) and F

true
(t∗S, dj) for j = 0, · · · , 5. For theoretical

consistency, if desired, the final interval for defining the PE hazard may be extended to be

infinite to ensure that the distribution of all possible YS is well-defined.

4.2 Simulation Results

Table 2 summarizes OCs of the Gen 1-2-3, Conv 1, Conv 2 and CT-B12 designs, including

optimal dose selection percentages at the end of stage 2, final treatment selection percentages

at the end of stage 3, mean number of patients treated at each dose and C, mean trial

duration by month, mean overall sample size, the mean percentage of Go decisions, and the

mean percentage of the Go decision with the true optimal dose given that a Go decision is

made (in parentheses). All results are based on 5,000 simulated replicates of the trial using

each design.

Scenario 1 is a null case where no dose d gives X(d) with better survival than C. Because

a Go / No Go decision is included in the Gen 1-2-3 and the Conv 1 designs, both may stop

the trial early, at the end of stage 2. The Gen 1-2-3 design correctly selects C 94.7% of the

time, with a similar value 94.8% for the Conv 1 design. This percentage drops to 77.4%

for the Conv 2 design and 45.2% for the CT-B12 design. Gen 1-2-3 and Conv 1 have much

shorter trial durations of 33.7 and 43.3 months, and much smaller sample sizes of 198.7 and

283.8, compared to respective durations 65.7 and 62.5 and sample sizes 479.4 and 447.2 for
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the Conv 2 and CT-B12 designs. In addition, the Gen 1-2-3 has only a 32.5% chance of

conducting phase 3. These results quantify the substantial advantage obtained by including

a Go / No Go rule.

In scenario 2, d4 is truly optimal with the highest F
true

(t∗S, X(d4)) = 0.60, whereas d5

has the highest mean utility U
true

(X(d5)) = 62. The Gen 1-2-3 design has the highest

percentage, 56.4%, of correctly selecting d4 as optimal, and a 80.9% chance of making a

Go decision, and 69.7% of the Go decision eventually goes to d4, whereas the optimal dose

selection percentages for d4 are 12.2%, 30.9% and 21.2% under the Conv 1, Conv 2 and CT-

B12 designs. For patient allocation, the Gen 1-2-3 design assigns an average of 81.8 patients

to d4, compared to 31.8, 57.2, and 42.3 for the Conv 1, Conv 2 and CT-B12 designs. The

Conv 1 and Conv 2 designs assign most patients, 50.7 and 108.1, to d5, which has the highest

mean utility. The CT-B12 design assigns patients evenly among the doses, with the numbers

ranging from 34.1 to 58.3. For trial duration and mean sample size, the designs with a Go

/ No Go decision, Gen 1-2-3 and Conv 1, have better results than Conv 2 and CT-B12. In

scenario 3, d2 is truly optimal dose and has the highest mean utility. The Gen 1-2-3 design

again outperforms the other designs, with at least a 30% higher correct treatment selection

percentage, and it also assigns at least 26 more patients to d2.

In scenario 4, doses d2, d3, d4, and d5 all have the same PFS probability 0.60 at six months,

but d4 and d5 have unacceptably high toxicity rates of 0.40 and 0.50. Thus, there are two

true optimal treatments, X(d2) and X(d3), in this scenario. However, X(d2) is preferable due

to its much smaller toxicity probability 0.05, compared with 0.30 for X(d3). The Gen 1-2-3

design performs well compared to the Conv 1 and CT-B12 designs, with a 76.6% chance of

selecting a true optimal treatment. Between the two true optimal treatments, the Gen 1-2-3

design slightly favors X(d2), with a higher treatment selection percentage of 46.8% and a

larger number of patients, 77.8. This is because the Gen 1-2-3 design uses the posterior mean

utility for dose screening and randomization in stage 2, and the utility function accounts for
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toxicity. The Conv 2 design has a slightly better performance than the Gen 1-2-3 design in

this scenario. That is because the Conv 2 selects the optimal dose based on the mean utility,

and doses d2 and d3, which are the true optimal doses in terms of survival, happen to have

better mean utility values than other doses in scenarios 4. Besides, there is no Go/ No Go

decision equipped for the Conv 2 design, which further improves the power of the design.

However, as noticed in scenario 1, the Conv 2 design fails to control the FWER if there is no

existing optimal dose. Additional simulation results, for scenarios 5, 6, 7, and 8, are given

in Table S1 of the online supplementary materials. The results are qualitatively similar to

those obtained for scenarios 1, 2, 3, and 4.

4.3 Sensitivity Analyses

We performed additional simulations to explore the sensitivity of the Gen 1-2-3 design to

several of is parameters. The results are summarized in the online supporting information.

The simulations in Table 2 were based on pU(Go) = 0.5 for the Go / No Go decision. Table

S2 summarizes the OCs of the Gen 1-2-3 design using each of the values pU(Go) = 0, 0.5

and 0.9, where pU(Go) = 0 implies that phase 3 always is conducted. As expected, larger

pU(Go) is more favorable under the null scenarios 1 and 5, while smaller pU(Go) is more

favorable when a truly optimal experimental treatment X(dj) exists for j = 1, · · · , or 5, in

scenarios 2 – 4 and 6–8. Considering both null and alternative scenarios, it appears that

pU(Go) = 0.5 is the best selection to obtain generally good performance. A possible reason

that pU(Go) = 0.5 works well is that the Go/No Go decision serves as a screening rule, and

when making a screening decision, it may be more desirable to use a relatively low cut-off

value that primarily eliminates very unpromising doses. If a dose d for which X(d) in fact

does not improve survival compared to C passes the Go/No Go decision, the chance of it

passing the subsequent GS test and being selected as an effective treatment still is low.

Table S3 shows the effects of using different randomization methods in stage 2. We denote
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equal randomization in Table 1 by ER, and consider two alternative methods. Method 2,

referred to as Half, randomizes half of the patients to C and uses AR for the doses in Acann .

Method 3 uses AR to randomize patients among C and the doses in Acann . The results show

that ER and AR give very similar overall performances, and both outperform Half. It thus

appears that stage 2 of the Gen 1-2-3 design does not require the use of AR.

Table S4 studies the effect of different additional follow up times L on the OCs of the

Gen 1-2-3 designs. The results confirm that larger L improves the Go / No Go decision, and

therefore can generally give better performances for optimal treatment selection and patient

allocation. The changes in mean sample size are minimal, but the total trial duration is

prolonged. In practice, L should be chosen, based on preliminary simulations, in terms of

the tradeoff among correct treatment selection, patient allocation, and trial duration.

Table S5 considers different types of candidate dose sets. In Table S5, an alternative

Acann1
was defined that uses only the n1 patients in stage 1 and keeps this set unchanged

thereafter. The results show that these two ways to define a candidate dose set yield similar

performances. In particular, Acann performs slightly better than Acann1
under the null scenarios

and Acann1
is slightly better than Acann under the alternative scenarios. Also, using Acann1

can

increase the mean sample size slightly.

Table S6 investigates different parametric models to generate the survival outcomes for

the simulation studies. In addition to the piece-wise exponential distribution used in Table

1, the Weibull and log-logistic distributions are also considered in this Table. The results

show that different distributions to generate survival outcomes give very similar OCs, which

confirms the robustness of the proposed exponential-gamma model.

Lastly, the FWER using the Gen 1-2-3 design is also evaluated. Table S7 lists various

representative scenarios for FWER evaluation. In particular, scenarios S1 and S2 represent

cases where all the doses are safe but none of them has better survival than the control. In

scenarios S3 and S4, doses d4 and d5 are overly toxic, and there is either no existing dose
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with better survival (scenario S3), or the dose with higher survival rate is unsafe (scenario

S4). In scenarios S5 and S6, all the doses are overly toxic. Figure S1 depicts the empirical

FWER of the Gen 1-2-3 design under these scenarios. The results show that the Gen 1-2-3

can well control the overall FWER around a nominal level of 5%.

5 Discussion

Stages 1 and 2 of a Gen 1-2-3 design may be thought of as a refined dose screening and

selection process based on both early and late outcomes. Stage 1 uses efficacy and toxicity

with conventional phase 1-2 design machinery to assign patients sequentially to doses, screen

out unsafe or ineffective doses, and reduce the original dose set to the RP2SAcann1
. This step in

stage 1 is important because identifying a candidate dose set rather than selecting one optimal

dose allows the dose space to be explored more fully based on survival time in subsequent

steps. Stage 2, which may be regarded as a link between sequentially adaptive dose finding

and phase 3, has four key elements. (1) Including C ensures that each X(dj) evaluation

is based on a comparison to C, and (2) randomization ensures that these comparisons are

unbiased. (3) In contrast with conventional phase 1-2 designs, the dose optimization criterion

is based on survival time YS, rather than on the early (YE, YT ) outcomes. Finally, (4) stage

2 includes a Go / No Do decision based on a PP of X(dopt) superiority over C in terms

of survival. This greatly reduces the risk of wasting phase 3 resources on an agent that is

unlikely to provide a survival benefit over C.

In terms of trial conduct, the main additional practical requirement of a Gen 1-2-3 design

is the inclusion of stage 2 between a phase 1-2 design and phase 3, including computations

for the decisions, dose screening, and randomizations made by the computer program. Due

to its additional structure and complexity, the necessary computer simulations required to

construct a design may be time-consuming, and certainly will require careful planning and
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interactions between statisticians and physician investigators. The simulations indicate that

this additional effort is warranted, since they show that the Gen 1-2-3 design has very

desirable properties compared to more conventional approaches. R code for implementing

the Gen 1-2-3 design is available from https://github.com/yongzang2020.
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Bauer, P. and Köhne, K. (1994) Evaluation of experiments with adaptive interim analyses.

Biometrics, 50, 1029–1041.

Braun TM. (2002) The bivariate continual reassessment method: extending the CRM to

phase I trials of two competing outcomes. Controlled Clinical Trials 23: 240-256.

Brock K, Homer V, Soul G, Potter C, Chiuzan C, and Lee S. (2021) Is more better? An

analysis of toxicity and response outcomes from dose-finding clinical trials in cancer. BMC

Cancer 21: 777.

Cai C, Liu S, Yuan Y. (2014) A Bayesian design for phase II clinical trials with delayed

responses based on multiple imputation. Statistics in Medicine 33(23):4017-4028.

Chapple, A. G. and Thall, P. F. (2019) A hybrid phase I-II/III clinical trial design allowing

dose re-optimization in phase III (with discussion). Biometrics 75: 371-381.

Chapple, A.G. and Thall, P.F. (2020) Comparison of phase I-II designs with parametric or

semi-parametric models using two different risk-benefit trade-off criteria. Contemporary

Clinical Trials 97: 106099.

Guo B, Yuan Y. (2017) Bayesian phase I/II biomarker-based dose finding for precision

medicine with molecularly targeted agents. Journal of American Statistical Association

112: 508-520.

Guo B, Yuan Y. (2023) DROID: dose-ranging approach to optimizing dose in oncology drug

development. Biometrics In press.

Korn, E. L., Freidlin, B., Abrams, J. S., Halabi, S. (2012). Design issues in randomized phase

II/III trials. Journal of Clinical Oncology 30: 667-671.

Inoue LYT., Thall P.F., and Berry D.A. (2002) Seamlessly expanding a randomized phase

II trial to phase III. Biometrics 58: 823-831.

23



Lee J, Thall PF, Msaouel P. (2020) A phase I-II design based on periodic and continuous

monitoring of ordinal disease severity and the times to toxicity and death. Statistics in

Medicine 39: 2035-2050.

Lin, R., Zhou, Y., Yan, F., Li, D. and Yuan, Y. (2020) BOIN12: Bayesian optimal inter-

val phase I/II trial design for utility-based dose finding in immunotherapy and targeted

therapies. Journal of Clinical Oncology Precision Oncology 4: 1393-1402.

Liu S, Yuan Y. (2015) Bayesian optimal interval designs for phase I clinical trials. Journal

of the Royal Statistical Society: Series C64: 507-523.

Liu S, Guo B, Yuan Y. (2018) A Bayesian phase I/II design for immunotherapy trials. Journal

of American Statistical Association 113: 1016-1027.

Markus, R., Pertiz, E. and Gabriel, K.R. (1976) On closed testing procedures with special

reference to ordered analysis of variance. Biometrika, 63, 655–660.

O’Quigley J., Pepe M., Fisher L. (1990) Continual reassessment method: A practical design

forPhase I clinical trials in cancer. Biometrics 46: 33-48.

O’Brien PC, Fleming TR. (1979) A multiple testing procedure for clinical trials. Biometrics

35, 549–556.

Ratain, M. (2014) Redefining the primary objective of phase Ioncology trials. Nature Reviews:

Clinical Oncology, 11: 50-504.

Ratain, M., Tannock, I. and Lichter, A. (2021) Dose optimization of Sotorasib: is the US

Food and Drug Administration sending a message? Journal of Clinical Oncology, 39:

3423-3426.

Schaid, D.J., Wieand, S., and Therneau, T. (1990) Optimal two-stage screening designs for

survival comparisons. Biometrika, 77: 507-513.

24



Shah, M., Rahman, A., Theoret, M. and Pazdur, R. (2021) The drug dosing conundrum in

oncology-when less is more. The New England Journal of Medicine, 385: 1445-1447.

Stallard, N. and Todd, S. (2003). Sequential designs for phase III clinical trials incorporating

treatment selection. Statistics in Medicine, 22: 286-703.

Storer BE. (1989) Design and analysis of phase I clinical trials. Biometrics 45: 925-937.

Storer BE (2001) An evaluation of phase I clinical trials in the continuous dose-response

setting. Statistics in Medicine 20: 2399-2408.

Thall, P.F., Simon, R., and Ellenberg, S.S. (1988). Two-stage selection and testing designs

for comparative clinical trials. Biometrika 75: 303-310.

Thall, P., Russell, K. (1998) A strategy for dose-finding and safety monitoring based on

efficacy and adverse outcomes in phase I/II clinical trials. Statistics in Medicine 27, 4895-

4913.

Thall PF, Cook JD. (2004) Dose-finding based on efficacy-toxicity trade-offs. Biometrics 60:

684-693.

Thall, P.F. (2008). A review of phase 2-3 clinical trial designs. Life time Data Analysis 14:

37-53.

Thall PF, Nguyen HQ. (2012) Adaptive randomization to improve utility-based dose-finding

with bivariate ordinal outcomes. Journal of Biopharmaceutical Statistics 22: 785-801.

Thall, P. F. (2020) Statistical Remedies for Medical Researchers. Springer Nature Switzer-

land.

Thall PF, Wooten LH, Tannir NM. (2005) Monitoring event times in early phase clinical

trials: some practical issues. Clinical Trials 2(6): 467-478.

25



Thall PF., Zang Y. and Yuan Y. (2023) Generalized phase I-II designs to increase long term

therapeutic success rate. Pharmaceutical Statistics in press.

Yan, F., Thall, P. and Yuan, Y., (2018) Phase I–II clinical trial design: a state-of-the-art

paradigm for dose finding. Annals of Oncology 29: 694-699.

Yin, G., Chen, N. and Lee, J.J. (2018) Bayesian adaptive randomization and trial monitoring

with predictive probability for time-to-event endpoint. Statistics in Biosciences 10: 420-

438.

Yuan Y, Nguyen HQ, Thall PF. (2016) Bayesian Designs for Phase I-II Clinical Trials.

Chapman & Hall/CRC.

Zang, Y., Lee, J. and Yuan, Y. (2014) Adaptive designs for identifying optimal biological

dose for molecularly targeted agents. Clinical Trials 11: 319-327.

Zang Y, Lee JJ. (2017) A robust two-stage design identifying the optimal biological dose for

phase I/II clinical trials. Statistics in Medicine 36: 27-42.

Zhang W, Sargent DJ, Mandrekar S. (2006) An adaptive dose-finding design incorporating

both toxicity and efficacy. Statistics in Medicine 25: 2365-2383.

Zhang Y, Cao S, Zhang C, Jin IH, Zang Y. (2021) A Bayesian adaptive phase I/II clinical

trial design with late-onset competing risk outcomes.Biometrics 77: 796-808.

Zhou H, Chen C, Sun L, Yuan Y. (2020) Bayesian optimal phase II clinical trial design with

time-to-event endpoint. Pharmaceutical Statistics 19(6):776-786.

Zhou Y, Lee JJ, Yuan Y. (2019) A utility-based Bayesian optimal interval (U-BOIN) phase

I/II design to identify the optimal biological dose fortargeted and immune therapies. Statis-

tics in Medicine 38: 5299-5316.

26



Figure 1: Schematic for the Gen 1-2-3 design.
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Figure 2: Dose-outcome curves for the scenarios in the simulation study. The red, green,

and blue curves are πtrueT (dj), π
true
E (dj) and F

true
(t∗S, dj). The dashed line shows F

true
(t∗S, C)

for the control. The doses with unacceptable toxicity probabilities and short-term response
probabilities are given in red.
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Table 1: An example of a utility table for two binary outcomes.

YT = 0 YT = 1
YE = 0 u0,0 = 40 u0,1 = 0
YE = 1 u1,0 = 100 u1,1 = 60
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Table 2: Optimal dose selection %, final treatment (Trt) selection %, mean number of pa-
tients treated with each dose level and the control (0∗), mean trial duration, and mean sample
size. Boldface indicates results for the true optimal decision. True toxicity probabilities
> .35 and short-term response probabilities < .2 are given in red.

Dose levels Trial Sample Go
Design 0∗ 1 2 3 4 5 Dur size %

Scenario 1
πtrue
T (dj) .20 .15 .30 .35 .40 .45
πtrue
E (dj) .30 .30 .60 .40 .20 .10

U
true

(dj) 50.0 52.0 64.0 50.0 36.0 28.0

F
true

(t∗S , dj) .40 .25 .40 .35 .30 .20
Gen 1-2-3 Dose % 1.2 26.1 50.9 18.9 2.9 0 33.7 198.7 32.5

Trt % 94.7 2.8 1.1 1.1 0.3 0
# Pats 75.6 30.7 62.1 25.1 4.5 0.8

Conv 1 Dose % 1.4 17.8 70.2 10.4 0.2 0.0 43.3 283.8 52.3
Trt % 94.8 2.5 1.3 1.4 0.0 0.0
# Pats 117.5 26.5 114.9 21.6 2.5 0.8

Conv 2 Dose % 1.4 16.9 73.0 8.5 0.2 0.0 65.7 479.4 100
Trt % 77.4 16.3 3.8 2.3 0.2 0.0
# Pats 200.1 64.1 180.4 30.9 3.0 0.8

CT-B12 Dose % 1.6 43.1 24.6 22.3 6.7 1.7 62.5 447.2 100
Trt % 45.2 41.8 1.4 5.0 4.9 1.7
# Pats 200.1 99.0 75.3 52.8 16.7 3.3

Scenario 2
πtrue
T (dj) .10 .02 .05 .10 .15 .20
πtrue
E (dj) .30 .10 .20 .30 .40 .50

U
true

(dj) 54.0 45.2 50.0 54.0 58.0 62.0

F
true

(t∗S , dj) .30 .10 .20 .40 .60 .30
Gen 1-2-3 Dose % 0.1 0.9 5.5 20.4 64.0 9.1 48.1 312.6 80.9

Trt % 29.2 0.3 2.0 11.7 56.4 0.4 (69.7)
# Pats 126.1 11.7 18.2 48.1 81.8 26.7

Conv 1 Dose % 0.1 2.0 6.1 16.8 32.4 42.6 34.9 207.2 36.3
Trt % 83.0 0.2 0.3 3.4 12.2 0.9 (33.6)
# Pats 73.3 11.7 14.5 25.3 31.8 50.7

Conv 2 Dose % 0.0 1.4 5.1 15.1 30.9 47.5 61.5 435.3 100
Trt % 51.2 1.4 4.4 10.1 30.9 2.0
# Pats 177.6 14.6 26.6 51.1 57.2 108.1

CT-B12 Dose % 0.0 22.9 21.8 21.9 21.2 12.2 58.9 409.2 100
Trt % 23.3 22.9 16.6 14.9 21.2 1.1
# Pats 177.5 34.1 55.9 58.3 42.3 41.1
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Table 2 (continued)
Dose levels Trial Sample Go

Designs 0∗ 1 2 3 4 5 duration size %
Scenario 3

πtrue
T (dj) .10 .05 .10 .20 .40 .50
πtrue
E (dj) .30 .15 .40 .45 .50 .50

U
true

(dj) 54.0 47.0 60.0 59.0 54.0 50.0

F
true

(t∗S , dj) .30 .20 .60 .40 .30 .30
Gen 1-2-3 Dose % 0.1 2.5 73.2 18.4 4.8 1.0 46.6 297.5 81.7

Trt % 26.3 0.7 63.1 9.9 0.0 0.0 (77.2)
# Pats 120.7 15.8 93.9 47.9 15.8 3.5

Conv 1 Dose % 0.1 1.6 27.8 39.3 26.1 5.1 40.1 253.4 45.3
Trt % 77.2 0.3 9.2 12.0 1.1 0.2 (20.3)
# Pats 98.1 14.5 32.4 58.6 39.7 10.2

Conv 2 Dose % 0.1 1.0 32.5 38.7 24.4 3.3 62.7 446.7 100
Trt % 37.4 0.7 32.5 27.8 1.3 0.3
# Pats 183.4 18.2 67.8 109.5 58.4 9.4

CT-B12 Dose % 0.2 27.8 31.4 19.7 16.5 4.4 60.5 425.2 100
Trt % 33.1 22.2 31.4 12.3 0.7 0.3
# Pats 186.8 67.9 58.8 60.2 40.9 10.7

Scenario 4
πtrue
T (dj) .10 .02 .05 .30 .40 .50
πtrue
E (dj) .30 .20 .40 .40 .40 .40

U
true

(dj) 54.0 51.2 62.0 52.0 48.0 44.0

F
true

(t∗S , dj) .30 .30 .60 .60 .60 .60
Gen 1-2-3 Dose % 0.0 4.1 50.5 32.3 10.5 2.6 47.0 294.3 92.2

Trt % 17.0 0.4 46.8 29.8 5.9 0.1 (83.1)
# Pats 119.7 23.5 77.8 50.2 18.2 5.0

Conv 1 Dose % 0.0 4.1 48.0 33.2 11.8 2.9 30.4 164.0 33.1
Trt % 67.2 0.0 14.2 12.5 5.0 1.1 (80.7)
# Pats 54.3 17.0 43.3 32.0 13.8 3.7

Conv 2 Dose % 0.0 3.2 50.2 32.0 11.4 3.2 51.6 336.3 100
Trt % 2.9 0.3 50.2 32.0 11.4 3.2
# Pats 128.1 25.4 93.8 59.1 22.8 7.0

CT-B12 Dose % 0.0 27.2 22.3 31.3 14.2 5.0 52.6 345.8 100
Trt % 26.3 0.9 22.3 31.3 14.2 5.0
# Pats 147.4 63.3 54.7 49.9 22.8 7.9
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