Selecting Therapeutic Strategies Based on Efficacy
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Therapy of rapidly fatal diseases often requires multiple courses of treatment. In each course, the treatment may achieve the desired
clinical goal (“response™), the patient may suryive without response (“failure™). or the patient may die. When treatment fails in a given
course, it is common medical practice to switch to a different treatment for the next course. Most statistical approaches to such settings
simply ignore the multicourse structure. They characterize patiemt outcome as a single binary variable, combine death and failure,
and identify only one treatment for each patient. Such approaches waste important information. We provide a statistical framework,
including a family of generalized logistic regression models and an approximate Bayesian method, that incorporates historical data while
accommodating multiple treatment courses. a trinary outcome in each course. and patient prognostic covariates. The framework serves
as a basis for data analysis, treatment evaluation, and clinical trial design. In contrast with the usual approach of evaluating individual
treatments. our methodology evaluates outcome-adaptive. multicourse treatment strategies that specify, within prognostic subgroups,
which treatment Lo give in each course. We deseribe a general approach for constructing clinical trial designs that may be tailored to
different multicourse settings. For each prognostic subgroup. based on a real-valued function of the covariate-adjusted probabilities of
response and death, the design drops inferior treatment strategies during the trial and selects the best strategy at the end, The methodology
is illustrated in the context of designing a randomized two-course, three-treatment acute leukemia trial with two prognostic covariates.
To validate the model and develop a prior, we first fit the model 1o a historical dataset. We describe a simulation study of the design
under several clinical scenarios. The simulations show that the method can reliably identify treatment—subgroup interactions based on

moderate sample sizes.
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1. INTRODUCTION

Therapy of rapidly fatal diseases often requires multi-
ple courses of treatment. The clinical goal is to achieve a
“response.” such as complete remission (CR) of leukemia,
50% shrinkage of a solid tumor. or resolution of infection.
Such responses are presumed to predict longer survival. The
other therapeutic outcomes are death during treatment and
“failure,” in which the patient survives therapy but does not
respond. Death during therapy is an unavoidable risk in oncol-
ogy trials involving acute or advanced disease where only
very aggressive, life-threatening treatments have any substan-
tive antidisease effect. Thus, in general, each treatment course
results in one of three possible outcomes: response, death, or
failure. When treatment fails after a given course, it is com-
mon medical practice to switch to a different treatment for
the next course. We consider settings where it is reasonable
to define outcome as a discrete variable observed within a
sufficiently short time period such that interim monitoring is
feasible. Most statistical approaches to this or similar settings
characterize patient outcome as a single binary variable by
collapsing the multicourse structure and combining death and
failure, and typically evaluate only one treatment for
each patient. Such approaches waste important information,
because each patient may receive several different treatments
over successive courses, these treatments may have interactive
effects, and the distinction between death and treatment fail-
ure is very important clinically.

In this article we provide a statistical framework for treat-
ment evaluation and adaptive clinical trial design and con-
duct in multicourse settings. We take a Bayesian approach.
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because it provides a natural basis for incorporating histori-
cal data and making inferences sequentially during the trial
and on its completion. The methodology is presented in the
context of the two-course chemotherapy trial that motivated
this research. The trial involves acute myelogenous leukemia
(AML) patients who previously achieved a CR but subse-
quently relapsed in less than 24 months. For these patients,
the outcome probabilities vary with age and the length of
first CR. Each patient receives either one or two courses of
chemotherapy. The three possible outcomes for each course,
determined within | month from initiation of that course’s
treatment, are CR, death, and failure (when the patient is alive
but has not achieved CR). The occurrence of either death
or CR, or the completion of two courses that are both fail-
ures, marks the end of the patient’s therapy. Patients with two
courses of treatment failure are given subsequent palliative
care. This definition of therapeutic outcome is motivated by
the poor overall survival time in AML patients who do not
achieve CR and the necessity of achieving CR as a precursor
to long-term survival. Hence. although no discrete early out-
come has been shown to be a perfect surrogate for survival
time, CR is a valuable and universally accepted early endpoint
in AML therapeutics. Moreover, once failure has occurred in
each of two courses, the probability of a subsequent CR is
very low. The trial includes the standard chemotherapy com-
bination of idarubicin -+ high-dose cytosine arabinoside (IDA).
and two experimental treatments, IDA + mylotarg (M) and
IDA + topotecan (T). For the first course, all patients are
randomized fairly among the three treatments. A patient for
whom IDA fails in the first course is randomized between
IDA +M and IDA +T for the second course. A patient for
whom either IDA+M or IDA+T fails in the first course must
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Figure 1. Schematic for Conduct of the AML Trial. R = response;

D = death; F = failure to respond but alive; T, = idarubicin + ara-C
(IDA); T, = IDA + mylotarg; T, = IDA + topotecan.

receive IDA in the second course, however, because it is con-
sidered unacceptable Lo give a patient experimental treatments
in both courses. Figure 1 illustrates this treatment assignment
algorithm,

The primary scientific goal of the trial is to select the best
two-course treatment strategy within each prognostic subgroup
based on the probabilities of CR and death. Trial conduct
is outcome-adaptive in that if interim data show a particular
treatment strategy to be inferior to the others within a sub-
group, then that strategy is dropped within that subgroup for
the remainder of the trial. The design thus comprises an algo-
rithm for assigning a treatment to each patient in each course,
interim safety monitoring rules, and, at the end of the trial,
treatment strategy selection within prognostic subgroups. The
method requires a real-valued objective function of the prob-
abilities of CR and death that quantifies the clinically accept-
able trade-off between these two outcomes. This function is
used as a basis for interim decision making and inferences at
the conclusion of the trial. In practice, the trade-off function
is elicited from the physicians planning the trial; we illustrate
how this may be done using contour plots as a graphical aid.

We use a generalized logistic regression model to character-
ize the probabilities of CR and death in each course as func-
tions of the patient’s treatments and prognostic covariates. The
model also allows for pairwise interactions between treatment
strategy, course, and covariates. Because the probabilities of
CR and death may vary with patient prognosis, different prog-
nostic subgroups may have different optimal treatment strate-
gies. In addition to its application in the context of trial design
and conduct, the regression model is also a useful analytic tool
for evaluating covariate and treatment strategy effects on the
probabilities of response and death based on existing data.

Journal of the American Statistical Association, March 2002

Table 1. Outcome Counts for Each Course and Treatment
Combination in the Historical AML Data

Treatments Outcome

t ts CR Death # Patients
Course 1

0 84 (.27) 66 (.21) 316
1 50 (.56) 18 (.20) 89
2 13 (.04) 41 (13) 309
Course 2

0 0 14 (17) 24 (.29) 82
0 1 5 (.36) 5 (.36) 14
0 2 0 (.00) 5 (.22) 23
1 0 1(.14) 5 (.71) 7
1 1 1 (.50) 0 (.00) 2
1 2 0 (.00) 0 (.00) 3
2 0 4 (.11) 12 (.34) 35
2 1 3(.33) 3 (.33) 9
2 2 4 (.02) 26 (.16) 159

NOTE: Row probabilities are given in parentheses. 0= high dose ara-C, 1 = allogeneic bone
marrow transplant, and 2 = chematherapy without ara-C,

As the first step in developing a design. we fit the model to
historical data from 714 AML patients treated at M.D. Ander-
son Cancer Center between 1990 and 1999. This analysis
served to validate the model, obtain informative distributions
of model parameters unrelated to treatment, and also obtain
reasonable numerical values of parameters for use in a simu-
lation study of the design. Like the patients in the trial being
planned. each historical patient previously achieved CR but
later relapsed and then received salvage therapy in an attempt
to reinduce remission. The salvage treatments were allogeneic
bone marrow transplant, combination chemotherapy contain-
ing high-dose ara-C. or chemotherapy not including ara-C.
The data for each patient consisted of prognostic covariates
and the treatment and outcome in each of one or two courses.
A summary of the empirical outcome probabilities in each
course, ignoring prognostic covariates, is given in Table 1.

In Section 2 we describe the probability model and approx-
imate Bayesian method that serve as the basis for treatment
evaluation and trial design. We describe a general strategy for
constructing trial designs in Section 3. In Section 4 we sum-
marize our analysis of the historical data. We describe the
AML trial design in Section 5, and summarize a simulation
study of the design in Section 6. We close with a discussion
in Section 7.

2. PROBABILITY MODELS

2.1 A Two-Course Model

Denote by (s, 1) the two-course treatment strategy wherein
the patient receives treatment 7, in the first course and, if the
first course results in failure, receives 7, in the second course.
Denoting IDA, IDA M, and IDA+T by T,. T,, and T,
the AML trial design allows for the four two-course strategies
S={(1. 0).(2, 0),(0, 1),(0, 2)}. Although strategies (1,2)
and (2, 1) are not permitted in the AML trial, in general the
methodology allows for § to contain any two-course combina-
tion, including strategies of the form (s, s) that give the same
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treatment in both courses. Each two-course strategy (s, 1) has
five possible outcomes. Therapy may end in the first course
with either response or death with 7. or failure with 7 in
the first course may be followed by response, death, or failure
with T, in the second course.

For each patient baseline prognostic covariate vector Z =
(Zy.....Z,), the goal is 1o select the best two-course
treatment strategy (s./) from & based on the probabilities
Epls 1. Z) of achieving CR and &,(s.1.Z) of death. For
course ¢ = | or 2, let 7. denote the treatment index 0, 1. or
2. and let ¥, and Y, denote the indicators of response and
death, so that ¥, =1—7Y, =Y, indicates tailure. Because
there is no second course if ¥, = 0, for completeness we
define Y, =Y, =0 and 7. =0 in this case. Denote the prob-
ability of outcome k = R, D. or F with T, in course | by

i (5L Z) =Pt Yoy =1 | Z, 7y =], (1)

and the probability of outcome k with T, in course 2 alter a
tailure with 7, in course | by

Talss s Z)= Pi[¥s=1 | &, si=5.Ym=L5=F. [2)

Aside from covariates, 7, is a function of 7, alone, whereas
M, 18 a function of both 7, and 7,. Because one of R, D, or
F must occur in each course and the occurrence of either R
or D, or two treatment failures, marks the end of the patient’s
therapy, for any strategy (s, t),

o) (5. L)+ 7 (5, Z) + (8, 2) Y mals,tZ)=1. (3)

k=R.D.F

The likelihood function of the ith patient thus takes the form

[Wtr(Tn-Z;Hr"“

L= ]_[

k=R.D.F
Yir
Yy s /
# [1 [7ma(m. 70, 2)]" . (4
r=R.F
with £ =TT"_, £, the likelihood of a sample of n patients.

2.2 A Generalized Logistic Model

The following generalized logistic model (cf. Agresti 1990,
chap 9.2) accounts for trinary outcomes, the two-course treat-
ment structure, and prognostic covariates. The formulation
also accommodates an arbitrary number of treatments and
any collection of two-course treatment sequences formed from
them. In addition to its use as a basis for clinical trial design
and conduct, this regression model is also very useful per se
when the primary goal is to analyze existing data consisting
of trinary outcomes with covariates.

For outcome k = R or D, treatment strategy (s, ). and
covariates Z, denote the linear components corresponding to
courses 1 and 2 by

q
M (8. Z) = py + e (8) + Z h"k: '!'gu(s}l Z;, (5)

=1
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and

NMals, 8, Z) = py +a (D)4 B (s5.8)

q
+ 3w+ L(0+8,17,. (6)

=1

subject to the 2(g+ 1) constraints
Zn’,‘.(.\') — Zcr,,(.\'} =)
and

Y A= 8y =0; =l q. (7)

Our application includes ¢ = 2 covariates, and hence 6 con-
straints, so we set a; (0) =0 and £, (0) =0 for k = R. D and
j=1.2. That is, we use s =0 as the baseline treatment group.

We characterize the regression of the outcomes Y, =
(Yeis Y ) and Y5 = (Vs Yo ) on treatment strategy (s. 1) and
covariates Z by the probability functions

exp{ny, (5. Z)}
L +expi{mg (s. Z)} +exp{ny, (5. Z))

(s, L) = (8)
and
exp{ (s, 1. Z))

. (9
L +expi{mp(s, 1. Z)} +exp{n(s. 1. Z))

Mgy 1y L) ==

where £ = R or D, with each @, = | — (7, + 7)) =
/[ +exp(my.) +exp(n,.)]. Under this generalized logistic
model. for each & = R or D, the intercept of 7, is decom-
posed into the baseline mean ;. the main effect a,(y) of
treatment s, and, for course 2, the additional effect 8, (s, 1) of
t as a salvage treatment following failure with 5. Similarly, the
coelficient of Z, for outcome Y, is decomposed into the base-
line parameter ;. the treatment effect g;;(s), and the course
2 effect 6,;. Viewing (. m,) as a function of treatment,
course, and covariates, it we write B,(s.t) = B, + B, (v, 1)
with 3, Bi(s. 1) = 0 for each k. then ., B, and vy are the
treatment, course, and covariate main effects and B*, €. and
& are the [treatment x course|, [treatment x covariate|, and
[covariate x course| interactions. If there are m treatments
and r,, two-course strategies, then. subject to the constraints,
the vector (.. 3.p%) of intercept parameters has dimen-
sion 2(m +r,) and the vector (y.L. &) of covariate effect
parameters has dimension 2¢(m4 1), so that the overall model
dimension is p = 2(g +m+qgm+r, ). For the AML trial,
p =30, because g =2, m =3, and r,, = 4.

The probability of overall outcome & = R or D, in either
one or two courses, with the treatment strategy (s.1) for a
patient with covariates Z is

Els LY =Ty (5, Z) + e (8, L) 7585 1, Z). (10)
We use the overall probabilities &(s.7.Z) = (&4(s.1,Z),
&p(s, 1, 2)) of response and death as the basis for both interim
safety monitoring and treatment strategy selection, because
these are what matter clinically. Because &(s,1,Z) is two-
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dimensional, using this criterion to compare treatment strate-
gies is problematic. We thus define an objective function (seec
Sec. 2.4) that reduces &(s,7,Z) to a single real number by
quantifying the trade-off between the probability of response
and the risk of death.

2.3 An Approximate Bayesian Method

In addition to providing a practical framework for for-
mulating interim monitoring and treatment strategy selection
criteria, the following Bayesian formulation also facilitates
interpretation and explanation to medical colleagues, many of
whom think and behave like Bayesians. To meet the practical
demands of evaluating and explaining the design to a broad
audience, we also compute the design’s frequentist OCs. Thus
our approach may be regarded as a hybrid of Bayesian and
frequentist methods.

We use the following computational approximation.
Assume a priori that 8 is multivariate normal, denoted by
0~ N(py. ). Under the usual frequentist large-sample the-
ory, the MLE @ of @ is approximately multivariate normal,
denoted 0 |0~ N (0, X). It follows from Bayes’s theorem that,
a posteriori, 8 | 0~N(Bb, B), where B=(X"'+0"")"" and
b=37"0+0Q "p, (Lindley and Smith 1972). This approach
has been used by many authors, including Dixon and Simon
(1991) in the context of Bayesian subset selection and Faraggi
and Simon (1997) in proportional hazards regression. The
method is straightforward, because it relies on multivari-
ate normal distributions. The necessary computations include
deriving the MLE, computing an estimator X of the covari-
ance matrix, and generating multivariate normal posterior sam-
ples using a Cholesky decompesition. It may be implemented
with standard statistical software and provides a practical alter-
native to more computationally intensive methods, such as
Markov chain Monte Carlo (MCMC).

2.4  An Obijective Function

The following function of &,(s, t,Z) and &,(s. 1. Z) quan-
tifies the trade-off between these two probabilities. We use it
as a basis for both interim monitoring and treatment selection.
Temporarily suppress the argument (s, 1. Z). The function ¢
is constructed so that all pairs (&g, &) for which ¢(&g, &p)
equals a given constant are equally desirable. The process
of eliciting ¢ from the physicians planning the trial may be
facilitated by interactively modifying (&,, &;,) while viewing
b(&y. €) on a computer screen.

For the AML trial, we began with the family of linear objec-
tive functions ¢ = a&,+ bé&, in the triangular two-dimensional
domain of (&, £,) over a range of (a, b) values with a > 0 >
b. We determined ¢ by specifying two equations and solving
for @ and b. The null value (&, &,) = (.40, .40) corresponding
to all patients in the historical data was assigned ¢ =0, and
the desirable goal (&g, &,) = (.50, .15) was assigned ¢ = 1.
The values (0 and | for ¢ in these two cases were chosen
purely for numerical convenience. After examining plots of the
resulting linear contours, we decided that ¢ should increase
more rapidly in &, for smaller values of &, especially for £,
near (0. We thus considered functions of the more general form

d(Ep, €p) = alp+bE,, (11)
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with @ > 0 > b and ¢ = 0. Given the foregoing two con-
straints, a third equation to determine ¢ was given by the
value of &, that would be required to still have ¢ =1 if
there were no fatalities, that is, the value of &, such that
(€4, 0) = (.50, .15) = 1. After examining contour plots cor-
responding to several different values of &, using the three-
parameter version of ¢, we specified this to be &, = .30. A
contour plot of the resulting ¢, which is characterized by
a=3.333, b= -2.548 and ¢ =.707, is given in Figure 2.
Other functional forms for ¢ could be used. provided that
¢ increases in &, and decreases in &;,. The shape of its
contours should provide a reasonably flexible graphical repre-
sentation of the trade-off between &, and &, that reflects the
physicians’ goals and opinions. The particular shape of our
trade-off function contours is one of several geometries in the
two-dimensional parameter plane that have been proposed
to characterize the trade-off between safety and efficacy.
To define hypotheses for tests based on bivariate outcomes,
Willan and Pater (1985) used two parallel lines that partition
the plane into three hypotheses, Jennison and Turnbull (1993)
and Bryant and Day (1995) used various rectangular regions,
and Thall and Cheng (1999) proposed polygonal regions.
The probability model, probabilities of response and death
in each course, overall probabilities of response and death,
and objective function constitute a parametric hierarchy. The
mapping 0 — (s, t, Z) = (g (5. Z), 7y, (8, Z), Tpo(s, 1, Z),
Tpa(s, 1, L)) reduces the parameter vector to the probabili-
ties of response and death in each course using the strat-
egy (s, 1) in prognostic group Z. Next, mapping (s, 1, Z) —
&(s, t, Z) into the two-dimensional triangular region illustrated
in Figure 2 limits attention to the overall two-course prob-
abilities of response and death. The final real-valued map-
ping &(s. 1. Z) — ¢(&(s, 1, Z)) induces an ordering among the
strategies, thus providing a basis for comparison and selection.

3. A GENERAL DESIGN STRATEGY

Our overall strategy for trial design and conduct is as fol-
lows. The first step is to formulate a generalized logistic
model that accommodates the particular multicourse struc-
ture of the trial at hand, including the k-nary outcome and
the maximum number of courses. Denote the subvector of 8
comprising parameters corresponding to specific treatments by
0, = (o, B*. L) and the vector of baseline parameters not spe-
cific to any treatments by 0, = (p.vy. 8. B). Let 0, denote
the treatment-specific parameter vector corresponding to the
treatments in the historical data y,. We make a sharp distinc-
tion between 8, and the effects 8, of the treatments to be
studied in the trial being planned.

Starting with a reasonably noninformative prior on 8 =
(04.0;,). the model is fit to x, and, based on the MLE
(éﬂ,ﬁr(H,), the approximate Bayesian method is used to
obtain the marginal posterior (0, | ;). On specifying a suit-
able prior f(0;) on the vector 8, of new treatment param-
eters, the prior of 8 = (0. 0;) at the start of the trial is
f(0, | xy) f(0,). All inferences during the trial and at its
conclusion are based on posteriors obtained from maximum
likelihood estimates (MLEs) of (8,,0;) from the trial data,
again using the approximate Bayesian method. Thus all of the



Thall, Sung, and Estey: Selecting Therapeutic Strategies

33

o
=

2

Death
0.6

Probability of
0.4

0.2

0.0

0.4
Probability of

0.0 02 (2.0

a0, .40) : 1

P
~(.50,.15)

0.6 1.0

Response

Figure 2. Contour Plot of the Objective Function ¢( &y, £,) = 3.333¢, — 2.5488]°.

information from the historical data used in the trial design
and conduct is contained in f(0, | ;). and in particular 0,
has dimension 4(g+1).

Denoting a given J-course treatment strategy by 7 =
(f;.....1;) and the vector of probabilities of the possible out-
comes with T over J courses by (), comparison of differ-
ent multicourse treatment strategies is based on a real-valued
objective function ¢(£(7)) elicited from the physician(s) plan-
ning the trial. Interim decisions to drop comparatively infe-
rior strategies and selection of a best strategy at the end
of the trial may be based on posterior probabilities such as
Pr{¢(&(7))) < d(E(7:)) | x]. on posterior means, or on pre-
dictive probabilities. Inferences may be made for prognostic
subgroups so that, for example, strategy 7, may be best for
one subgroup, whereas strategy 7, is best for another. Given
a maximum sample size and criteria for interim decisions, the
design’s operating conditions {OCs) may be evaluated via sim-
ulation, with design parameters calibrated on that basis. The
OCs may include the sample size distribution, probabilities of
dropping treatment strategies during the trial, and final strategy
selection probabilities. We have found it useful to compute the
design’s OCs under several different clinical scenarios, each
characterized by fixed probabilities of the possible outcomes.

4. ANALYSIS OF THE HISTORICAL DATA

For all model fits reported here, both in analysis of the his-
torical data and in fitting models to simulated datasets, a priori
all parameters in each model were assumed to be iid normal
random variables with mean 0 and variance 10. In settings
where the parameters are known to be dependent, incorporat-
ing this into the prior might improve the design’s efficiency.

The prognostic covariates used in the model-based analysis
of the historical data were the binary indicators of whether the
patient’s age was under 50 years and whether the patient’s ini-
tial remission duration prior to entering the trial was at least |

year. Thus g = 2, and there were four prognostic subgroups.
For example, the group having worst prognosis comprised the
older patients with short initial CR duration, whereas the best
prognostic group comprised the younger patients with long
initial CR duration. There were m = 3 treatments, and the
treatment effects in the model correspond to allogeneic bone
marrow transplant (s = 1) and chemotherapy not including ara-
C (s =2) relative to the baseline treatment group comprised
of chemotherapy containing high-dose ara-C (s = (). Because
there were r, = 9 different two-course treatment combina-
tions, the full model has a total of p =40 parameters.

Starting with the full model and including 6, through-
out, we obtained a more parsimonious model by successively
eliminating entries from the parameter vector 0, pertain-
ing to treatments in the historical data. We considered only
hierarchical models. Because the two elements of each pair
Li(s) = (Lg () £p () act together. we either included or
deleted both entries. For model comparison, we used the
maximized log-likelihood, the posterior parameter variances,
and the Bayes information criterion (BIC) (Kass and Raftery
1995),

BIC(M) = log £(0,) — 1/2 py log(n). (12)
where p,, is the number of parameters in model M. In par-
ticular, the BIC penalizes the log-likelihood for larger p,,.

The fitted models that we considered are summarized in
Table 2. We first eliminated the vector B* of treatment—
course interactions (model 3), because this increased the BIC
greatly, much more than the increase obtained by eliminating {
(model 2). Moreover, under the full model, the absolute value
of the posterior mean of each entry of * was small compared
to its standard deviation. Next, focusing on the four pairs of
treatment—covariate interactions, {{;(s), j = AGE,DUR, 5 =
1. 2], we successively eliminated pairs in a stepdown man-
ner. We stopped with model 4, our final model, because
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Table 2. Summary of Modeis Fit to the Historical Data

Model Parameters dropped p log £(@) BIC
1 None (full model) 40 —796 —928
2 ¢ 32 —801 -906
3 B 24 —801 —881
4 B’ Lace(1)Lace(2), Lounl2) 18 —803 —862
5 Bt 16 —807 -859

Pr{l, pee(l) > 0| data} = .95; hence it was appropriate to
retain the pair pp(1).

Posterior means and corresponding MLEs of the parame-
ters in the final model are given in Table 3. The signs of the
estimates {d@,(s).k = R, D. s = 1,2} of the main treatment
effects show that. relative to high-dose ara-C, transplant had
higher rates of both CR and death, whereas nonara-C chemo
had lower rates of both events. The well-known fact that the
CR rate decreases and the death rate increases in a second
course of treatment after failure in a previous course is borne
out by the relationship 8, <0 < BD.

The signs of the remaining parameter estimates in Table 3
should be interpreted in the context of the generalized logis-
tic model’s algebraic structure, which differs from that of
the usual logistic model. For example, although the fact that
Vi pue = 0 considered per se might seem to imply the model
predicts a higher probability of death for patients with a longer
initial CR duration, this is not the case. The effect of a given
covariate on 77, is determined by all of that covariate’s coef-
ficients. including those indexed by both R and D. The numer-
ical values of Y purs Fo.ours Srour(1)s and &y pur(l) act
together so that 7, decreases and 7y, increases with longer
initial CR duration, as should be the case on medical grounds.
This illustrates the fact that these four parameters act together
algebraically for each treatment to determine (g, 7 )- Sim-
ilarly. these parameters and (8 5. 8, ») act together to deter-
mine the effect of Z, on (. 7). Table 4, which gives
the predicted and empirical overall CR and death probabilities
within each prognostic group for patients who received high
dose ara-C in both courses, shows that the fitted model gives
predictions that make sense for the four prognostic subgroups.
Table 4 illustrates the importance of accounting for progno-
sis. because &, increases and &, decreases with increasing CR
duration and with younger age. and these changes are quite
large. Moreover, the good agreement between the model-based
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Table 3. MLEs and Posterior Means of the Generalized
Logistic Model Parameters for the Historical Data

Estimates
Parameter MLE Bayesian

iy —1.354 —1.34 .,
ag(1) 1.74 4 1.72 44
ag(2) —2.14 4 -2134
Hp —684 —68 5
ap(1) 56 44 56 45
wp(2) —1.06 14 -1.06 15
Br .46 - A7 5
Bo AT g5 46 2
Ya.oun 1.57 5 1.54 53
YrAGE 225 22 57
Yo oun 005, —.01 4
YoaGe —44 55 —~44 55
QVH.DUH(” *-26,?5 7 -28,?1
Lp.puall 1.36 45 1.3 5
dr.0uR —.64 —.60
O ace 08¢ 084,
Bpoun —-.99., —.95.4
Bp ace Ad 4 A4y

NOTE: Standard deviations are given as subscripts,

estimates and the corresponding empirical values provides a
further validation of the model.

5. TRIAL CONDUCT

Aside from technical details related to accounting for two
courses. the trinary outcome, and four prognostic subgroups,
in principle the conduct of the AML trial is straightforward.
Patients are randomized fairly among the acceptable treat-
ments at each of two stages. using dynamic allocation to bal-
ance on the two covariates. Halfway through the trial, a safety
monitoring rule is applied within each prognostic subgroup to
drop any treatment strategy that is comparatively inferior. The
stage 2 randomization thus accounts for all strategies that are
dropped within each prognostic subgroup after stage 1. At the
end of the trial, the best strategy for each prognostic subgroup
is selected. Formally, the trial is conducted as follows.

Stage 1. Randomize n/2 patients fairly among the three
treatments for their first course of therapy. using the Pocock
and Simon (1975) algorithm to balance on Z| and Z,. Patients
who fail with 7, in their first course are randomized between
T, and T, for their second course. All patients who fail with

Table 4. Estimated Two-Course Probabilities of Response and Death, and Objective Function Values, by Prognostic
Group, for Historical Patients Treated with High-Dose ara-C in Both Courses

Model-Based Empirical
CR duration Age éa & b &y & & n
Short Old 194 52, —.95,, A6, A4 g —90,, 29
Short Young 27 40 —-42,, B 5 40 4 -31, 30
Long old 54, 255 85, B34 BT 1.10 5 1
Long Young .65 14 A6gg 1.48 ¢ 62 56 A6 1.40,5 12

NOTE: Standard devialions are given as subscripts.
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cither T, or T, in course | are treated with 7, in course 2. If

Pr|d(s.t.Z) > d(u, v, Z) | data] > 95 (13)

for distinet strategies (5. 1) and (u, v). then drop strategy (u, v)
in patient subgroup Z.

Stage 2. Randomize n/2 additional patients among the
treatments in each course as in stage |, subject to the con-
straints imposed by dropping any treatment strategies. Once
n patients have been treated and evaluated. for each Z select
the two-course strategy, among those not dropped in that sub-
aroup, for which the posterior mean of (5. 1, Z) is largest.

6. SIMULATION STUDY

The simulations were designed 1o provide a reasonable
reflection of actual trial conduct. Although the purpose of
the trial is to learn about the treatment-related parameters
6, = (a.B", L). we use the historical data to obtain prelim-
inary knowledge about the nontreatment-related parameters
0, = (r.v.6.B). An important point is that the particular
treatments in the historical data and thus the corresponding
parameters 0, are different from the treatments and param-
eters 0, to be studied in the trial being planned. The values
of B, per se are not relevant to inferences about either 6,
or the treatment strategies in the trial. In fitting each simu-
lated dataset, we applied the approximate Bayesian method
using the posterior f(0, | y,,) from the fitted historical data,
under the model summarized in Table 3, as the prior of the
nontreatment-related parameters 0, and noninformative iid
N (0, 10) priors for the treatment effect parameters in 0.

6.1 Clinical Scenarios

Because the two-course, trinary outcome setting considered
here is more complex than a single-course selection trial based
on a univariate outcome, our design and criteria for evaluating
its performance necessarily also are more complex. To pro-
vide a conceptual framework for what follows, we first briefly
review the analogous single-course setting with a univariate
outcome where the goal is to select the best among & treat-
ments based on estimates of their means o= (.. ...
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Without loss of generality, assume that g, = --- < u,. For a
randomized trial to select a single best treatment. let w, be a
null value and let g, + & be a desirable target, where 6 is a
clinically significant improvement over p,. The null configu-
ration u" is the k-vector having all w, = p,,, whereas the Jeas
favorable configuration (LFC) p* has g, = =, = My
and g, = p, + 6 (cf. Gibbons, Olkin, and Sobel 1977, Chapter
1.3). It can easily be shown that among the set of . having no
entries between , and w,+ 6 and at least one entry = g, + 6.
the LFC minimizes the probability of correct selection (PCS)
of treatment £. Because the PCS under ' increases with sam-
ple size, n, given p, and & one may determine n to achieve a
given PCS. In the present setting, one may regard the two con-
tours on which (&, &,) =0 and 1 as two-dimensional gen-
eralizations of the points p, and g, -8 in the one-dimensional
case.

The two clinical scenarios given in Table 5 may be regarded
as multidimensional generalizations of the LFC in the one-
dimensional case. We use these scenarios. along with one
more complex scenario that is not tabled, as a basis for
evaluating the selection design and for determining sample
size. Because we account for trinary outcomes. two treatment
courses. and four patient prognostic groups, our parametric
characterizations of clinical settings are necessarily more com-
plex than those in the univariate single-course case. Conse-
quently, there are more qualitatively different cases than the
two, described above, that typically are considered in the one-
dimensional case. The three scenarios under which we evalu-
ate the design’s OCs here were chosen Lo cover a reasonable
range of cases that may actually obtain in practice. and they
should illustrate the design’s essential properties.

We determined each scenario in Table 5 by first speci-
fying values for the 14 probabilities {7 (5. 0). 7, (s..0)]
corresponding to Z = 0 and then using these values to
determine the 14 parameters (p. o, ) via o one-to-one
transformation. These parameters in turn determine the linear
components  1;,(s,0) and 9,,(s.1,0). The probabilities
{7 (s, Z), ms (5.1, Z)} for Z # 0 were obtained by adding
the covariate adjustment terms (y-+8/[¢ = 2]|)'Z to the lin-
ear components 11, (5. 0) and n, (s, 1. 0) using the posterior
means of y and & from the historical data. To obtain covari-

Table 5. Operating Characteristics of the Design Under Scenarios A and B for the Prognostic Subgroup With Short
CR Duration and Younger Age

Decision probabilities

Treatment Number of
Scenario strategy &a & &b Selected Dropped early patients
A . 1) 46 25 55 [ 76] 03 77
(0.2 22 32 -39 04 [32] 5.3
(1,0) 22 32 — 39 .08 10.4
2, 0) 22 32 -39 11 109
B ©, 1) 35 50 —.40 09 |.36] 5.2
0,2) 22 32 -39 06 5.2
(1, 0) 54 30 72 (77 04 11.6
(2, 0) 22 32 -39 .08 10.4

NOTE: Correct decision probabilities are enclosed in boxes.
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ate adjusted probabilities in the simulations, the value of Z for
each simulated patient was chosen randomly using the histori-
cal frequencies of the four prognostic groups, which were .42
for (CR duration, Age) = (Short, Old), .35 for (Short, Young).
.11 for (Long, Old), and .12 for (Long, Young).

Because the probabilities for each scenario vary with Z,
to conserve space we present numerical values corresponding
to the prognostic group with short CR duration and younger
age. Z = (0, 1), because this is a reasonably representative
subgroup. For each scenario, the corresponding probabilities
and values of ¢ for the other three prognostic subgroups
vary in a manner analogous to the estimates in Table 4. Sup-
pressing the argument Z = (0, 1) in ;. for brevity, the null
scenario (not tabled) corresponds to (g, mp,) = (.16, .22)
and (s, Tps) = (.09,.17); hence &, = 22, &, = .32, and
¢ = —.39, regardless of treatments, based on the historical
probabilities in this prognostic group. Scenario A is obtained
by changing the course 2 probabilities (. (0, 1), 75,(0, 1)),
corresponding to salvage with T, following a course 1 fail-
ure with Ty, from the null values (.09,.17) to (.47,.06). The
result is that, in terms of the objective function ¢, strategy
(0, 1) is greatly superior to the other three strategies. Scenario
A is analogous to the LFC in the one-dimensional setting,
although cases with ¢(0,1) > ¢(0,2) = ¢H(1,0) = H(2.0)
may be obtained in various ways. Scenario B is obtained from
the null scenario by changing (g, (1), 7,, (1)) from (.16, .22)
to (.52,.27) and (7. (0, 1), m,(0, 1)) from (.09,.17) to
(.30, .46). That is, under scenario B, T, increases the prob-
abilities of both response and death in both courses, a phe-
nomenon commonly encountered in testing experimental treat-
ments for AML. In this case, ¢(1,0) > ¢(0,2) = $(2,0) >
(0, 1), so that strategy (0, 1) is worst and (1,0) is best. Sce-
nario C includes a treatment—covariate interaction in which
T, is a superior salvage treatment overall, but also increases
the death rate in older patients. The probabilities characteriz-
ing this scenario were obtained by parameterizing the model
using the indicator Z}., of older age, so that larger values
of {}, sqe(1) correspond to higher death rates among older
patients treated with 7, in either course. We obtained the
probabilities for this scenario by starting with scenario A and
increasing £, sqe(1) from O to 3. For example, among older
patients with short CR duration treated with strategy (0,1), this
has the effect of changing the two-course response and death
rates from &,(0, 1) = .35 and &,(0, 1) = .37 under scenario A
to £,(0,1)=.17 and £,(0, 1) = .70 under scenario C. Many
other clinical scenarios may be hypothesized, and in fact we
evaluated the design under a larger set of scenarios containing
the three described here.

6.2 Simulation Results

The trial was simulated 4000 times under each clinical sce-
nario. The values in Tables 5 and 6 and reported in the text are
the means over these repetitions. Each simulated dataset was
fit via maximum likelihood using the full 30-parameter model
specified by (5)~(9) for s =0, 1, or 2 and the four strategies
(5,0)=1(0,1).(0,2), (1.0), and (2, 0). The Bayesian decision
criteria used in each simulated trial were computed using the
approximate method described in Section 2.3. The sample size
of 96 patients used throughout was chosen to obtain a correct
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selection probability = .75 in the (Short CR duration, Younger
age) prognostic subgroup under scenario A.

The OCs in Table 5 indicate that under each of a reasonable
set of possible clinical scenarios, the design has a good proba-
bility of correctly selecting the best two-course treatment strat-
egy. The tabled correct selection probabilities are substantial
improvements over the probability (.25) of guessing the best
strategy in the absence of empirical evidence. Unfortunately,
this practice is quite common in clinical settings where sev-
eral treatment strategies are available and one strategy must be
selected. The numerical results should be interpreted in terms
of the numerical valyes of the probabilities that characterize
each scenario and the fact that, of the 96 patients in the trial,
on average the sample sizes in the subgroups are only 39.2 in
(Short, Old), 34.4 in (Short, Young). 11.2 in (Long, Old), and
11.2 in (Long, Old).

The variation in the selection probabilities of the three infe-
rior strategies under scenario A, from .04 to .11, is due to the
facts that the course 2 sample sizes are not fixed. Rather, they
depend on the numbers of failures in each course | treatment
group and the imbalance in the course 2 randomization. In
the (Short, Young) subgroup, on average (1/3) x34.4=11.5
patients are randomized to each of the three treatments in
course 1. Because all three treatments have the same course |
failure rate 7, (s, (0, 1)) = .62 in the (Short, Young) subgroup
under scenario A, this yields about 7, (0, (0, 1))11.5=7.1
patients who fail in course | with T, and are randomized
equally between T, and T, in course 2. Hence about 3.6
patients receive each of strategies (0, 1) and (0,2). In con-
trast, on average 7.1 patients receive strategy (1.0) and 7.1
receive strategy (2,0). This also explains why on average
fewer patients receive the best strategy (0, 1) than receive
either (1, 0) or (2,0) under scenario A, which otherwise may
seem counterintuitive.

Table 6 summarizes the results under scenario C. illustrat-
ing the design’s ability to select the best strategy within each
prognostic subgroup. Because treatment 1 has a higher death
rate among older patients under this scenario, it is desirable
to have a relatively low probability of selecting either strat-
egy (0,1) or (1,0) in either of the two prognostic groups
with older patients. Equivalently. it is desirable to select either
(2.0) or (0, 2) for older patients. This has probabilities .87 in
the (Short, Old) subgroup and .76 in the (Long, Old) subgroup,
and on average only 39.3 and 11.0 patients are treated in
these two subgroups. These subgroup-specific selection prob-
abilities should be compared to the value (.50) that would
be obtained by guessing. The much smaller correct selection
probability (.42) for the optimal strategy (0, 1) in the (Long,
Young) subgroup is due to its much smaller sample size of
11.3, although this probability is still much larger than the
value (.25) obtained by guessing. The fact that the design per-
forms well under scenario C may be attributed to the adaptive
nature of the two-course treatment strategy and borrowing of
strength by the parametric model across the various treatment
strategy and prognostic subgroup combinations.

The interim decision rule (13) that drops inferior treatments
has a very small effect on the selection probabilities, but yields
a design that on average treats more patients with the superior
strategies. For example, under scenario A, if the interim rule
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Table 6. Operating Characteristics of the Design Under Scenario C, Where Strategy (0, 1) is Superior Overall but T, in
Either Course Greatly Increases the Death Rate in Older Patients

Prognostic group

Decision probabilities

Treatment
CR Dur Age strategy b Selected Dropped early # Patients
Short Old (0, 1) -1.33 13 6.6
©, 2) — 91 07 9.1
(1.0 ~232 00 76
2.0 -9 [43] 16 16.1
Short Young (0, 1) 55 .06 7.4
(0, 2) —.39 06 5.3
(1, 0) -39 10 11.0
2, 0) —.39 12 [30] 10.6
Long old ©, 1) —47 24 [30] 22
©, 2) .03 [35] A7 25
(1, 0) ~2.21 00 2.2
@, 0) ~.03 27 4.2
Long Young ©, 1) 1.48 [42] 19 2.0
0, 2) 73 10 1.7
(1, 0) 73 24 3.8
(2. 0) 73 24 a7

NOTE: Correct decision probabllities are enclosed in boxes.

is not used, then the total number of patients in all prognostic
groups treated with the best strategy (0. 1) drops from 21.1 to
15.4, so that about 6 more patients among the 96 receive the
best treatment strategy due to interim monitoring. The effect
of interim monitoring under scenario C is greater, with on
average 8.7 (41.4 —32.7) more patients among the 96 receiv-
ing one of the best strategies in their prognostic group due to
the interim monitoring rule. Because dropping this rule corre-
sponds to using an upper probability cutoff of 1 in (13), the
question arises as to whether this cutoff may be calibrated to
improve the design’s OCs. We thus repeated the simulations
summarized in Tables 5 and 6 using cutoffs 90 and .99. As
the cutoff is increased over this range, the design’s overall
safety drops, but there is no clear pattern in its effect on the
selection probabilities. It appears that the design’s safety and
selection probabilities may depend in a complex way on both
the cutoff and the parameterization of each scenario.

The underlying probability model includes parameters char-
acterizing not only treatments, courses, and covariate effects,
but also all pairwise interactions between these three fac-
tors. A much simpler version of the model containing only
main effects is given by 7, (s, Z) = + e, () + X7_, v, Z,
and m5(s. 1. Z) = (1, Z)+ B Although this model’s com-
parative simplicity may seem appealing, its use results in
ereatly degraded OCs. For example, the probability of cor-
rectly selecting the optimal strategy (0, 1) for (Short, Young)
patients under scenario A decreases from .76 under the full
model to .24 under the simpler model, whereas the respective
probabilities of dropping the three inferior strategies decrease

from .32, 34, and 29 (Table 5) to .12, .05, and .I8. A
similar guestion is what may result from basing the design
on the empirical probabilities of response and death rather
than using model-based estimates. This empirical approach
reduces the correct selection probability by about .10 under
each of the three scenarios. This is as expected, because
the regression model borrows strength across prognostic sub-
groups and courses, whereas the purely empirical approach
does not.

Recall that, in developing a trial design as described in
Section 3, we used the historical data only to provide the
marginal posterior f(8; | x;) of the baseline, nontreatment-
related parameters. Repeating the simulations under models
other than model 4 in Table 2 showed that the operating char-
acteristics of the AML trial design were relatively insensitive
to which model was chosen, apparently because f(®; | x;)
changed very little between these models. For example, under
scenario A, using either model | or model 3 yielded selection
probabilities all within .019 and early dropping probabilities
all within .024 of the corresponding values for model 4 given
in Table 5, with most of the probabilities identical to two dec-
imal places and no systematic variation. Similarly. the number
of patients treated in each course were all within .16 of the
corresponding values for model 4. These differences appear to
be due mainly to simulation variability.

To check the approximate Bayesian method, we recomputed
the posteriors under several models in Table 2 using MCMC
(Gilks, Richardson, and Spiegelhalter 1996). Each MCMC
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computation was based on 100,000 runs with a burn-in sam-
ple of 10,000. The two methods gave similar posteriors, with
a few large differences for parameters with a posterior mean
very small relative to its standard deviation, that is, with
marginal posterior centered around 0 and very disperse. Under
model 4. the posterior approximate mean(std) of {5 (1)
was —.28(.71), compared to —.16(.72) using MCMC: the
approximate mean(std) of v, 5 was —.01(.31), compared to
—.02(.29) using MCMC; and the approximate mean(std) of
B ace was .08(.64) compared to .10(.48) using MCMC. The
posterior means of the remaining 15 parameters differed by
< 8%, with each difference well within the posterior standard
deviation.

7. DISCUSSION

We have proposed a method for the design and conduct of
clinical trials in which patient outcome in each of two courses
is trinomial, including the possibilities of both a desirable clin-
ical outcome und death. and the scientific goal is to select
a best two-course treatment strategy within each of several
patient prognostic subgroups. The methodology is based on
a generalized logistic model accounting for courses, multiple
treatment strategies, and patient covariates. The method may
be adapted to a wide variety of clinical settings, because its
main requirements are that patient outcome can be observed
relatively soon after the start of treatment and characterized
by a trinomial variable. Our simulation results in the context
ol our motivating application indicate that, compared to maore
conventional selection trials, the design has attractive proper-
ties under a wide range of clinical scenarios.

We have used an approximate Bayesian method to compute
the probability criteria underlying the interim monitoring rule
and final selection. Given that we evaluate the design in terms
of frequentist OCs and that we do not use decision theory, a
natural question is whether the Bayesian formulation is needed
at all, Although we consider the Bayesian formulation to be
more natural, the design could be implemented by substituting
a frequentist rule for the Bayesian criterion (13) and selecting
treatment strategies using the MLEs (s, 1, Z). For example,
the criterion for dropping an inferior strategy (u, v) could be
that

dls 1. Ly — (. v.Z) > a((s. 1), (u,v). 2)7"

for some (s.1). where &((s.¢). (v, v). Z) is an estimate of
the standard deviation of the foregoing difference and z* is
chosen to control a given overall error rate among the pair-
wise comparisons. However, specifying the cutoff 27 in this
way 1s essentially the same as adjusting the probability cutoff
95 used in (13), and, moreover, the ordering of the posterior
means of the distinct strategies of (s, ¢, Z) is virtually iden-
tical to that obtained from their MLEs. Thus in practice, the
two approaches should yield designs with similar properties.
Numerous extensions and modifications of the design
described here are possible. Lavori and Dawson (2000) pro-
posed a biased-coin within-subject adaptive randomization
method to compare multicourse treatment strategies. A sim-
ple generalization of the AML trial design is to allow for
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more than two courses. This may be motivated by, for exam-
ple. a trial of multiple treatments for a life-threatening infec-
tion, with the trinary outcome {alive and not infected, alive
and infected. dead} in each course. In such seltings, a patient
may be treated until either the infection is resolved. the patient
dies, or death is nearly certain regardless of additional treat-
ment. A more complicated extension in the context of AML
therapy would be to follow patients who achieve CR for an
additional time period and record whether the patient is still
in CR, has relapsed. or has died. with patients who relapse
randomized among two or more salvage therapies. The set of
possible outcomes would be more complex, because each CR
is now partitioned into three subevents, and there are more
treatments. If “patient success™ were defined as the patient
achieving CR in a given course and remaining in CR for the
subsequent period, then this would be similar to the definition
of patient success used in the prostate cancer trial described
by Thall, Millikan, and Sung (2000). A very different type of
extension would use the times to the events rather than dis-
cretizing them. This would require a multivariate event time
model in place of the generalized logistic model, possibly
treating the times to response and failure as nonfatal com-
peting risks. with the distribution of subsequent survival time
depending on whether response or failure has occurred. Using
event times could potentially provide a more informed eval-
uation of treatment strategies. especially because the time to
achieve response has a profound elfect on subsequent survival
time in AML. Such a design also could account for relapse
after response and the salvage therapy administered at relapse.
Practical implementation would require addressing the issues
of model complexity, the logistics of continuously monitoring
multiple event times, and sample size.

An important question is whether Bayesian decision theory
may yield a design with better properties. Such an approach
could be based on the use of ¢ as a utility function, or
possibly a more complex utility that also accounts for costs,
as in Stallard. Thall, and Whitehead (1999). Because such an
approach is very different from that taken here, it is a topic
for future research.

[Received July 2000, Revised August 2001, [
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