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Bayesian Dose-Finding in Two Treatment Cycles
Based on the Joint Utility of Efficacy and Toxicity

Juhee LEE, Peter F. THALL, Yuan JI, and Peter MÜLLER

This article proposes a phase I/II clinical trial design for adaptively and dynamically optimizing each patient’s dose in each of two cycles of
therapy based on the joint binary efficacy and toxicity outcomes in each cycle. A dose-outcome model is assumed that includes a Bayesian
hierarchical latent variable structure to induce association among the outcomes and also facilitate posterior computation. Doses are chosen
in each cycle based on posteriors of a model-based objective function, similar to a reinforcement learning or Q-learning function, defined
in terms of numerical utilities of the joint outcomes in each cycle. For each patient, the procedure outputs a sequence of two actions, one
for each cycle, with each action being the decision to either treat the patient at a chosen dose or not to treat. The cycle 2 action depends
on the individual patient’s cycle 1 dose and outcomes. In addition, decisions are based on posterior inference using other patients’ data,
and therefore, the proposed method is adaptive both within and between patients. A simulation study of the method is presented, including
comparison to two-cycle extensions of the conventional 3 + 3 algorithm, continual reassessment method, and a Bayesian model-based
design, and evaluation of robustness. Supplementary materials for this article are available online.

KEY WORDS: Adaptive design; Bayesian design; Dynamic treatment regime; Latent probit model; Phase I-II clinical trial; Q-learning.

1. INTRODUCTION

Medical treatment often involves multiple cycles of therapy.
Physicians routinely choose a patient’s treatment in each cycle
adaptively based on the patient’s history of treatments and clin-
ical outcomes. In such settings, a patient’s therapy is not one
treatment, but rather a sequence of treatments, each chosen us-
ing an adaptive algorithm of the general form “observe → treat
→ observe → treat → · · · ” etc. This paradigm is known as
a dynamic treatment regime (DTR) (Lavori and Dawson 2001;
Murphy, van der Laan, and Robins 2001; Murphy 2003; Moodie,
Richardson, and Stephens 2007), multistage treatment strategy
(Thall, Millikan, and Sung 2000; Thall, Sung, and Estey 2002)
or treatment policy (Lunceford, Davidian, and Tsiatis 2002;
Wahed and Tsiatis 2004). In oncology, treatment in each
cycle may be a chemical or biological agent, radiation ther-
apy, or some combination of these. DTRs also are used for
chronic diseases, including behavioral disorders (Collins et al.
2005; Almirall, Ten Have, and Murphy 2010) and drug or alco-
hol addiction (Murphy, Collins, and Rush 2007; Murphy et al.
2007). Unfortunately, most clinical trial designs ignore the ac-
tual DTRs being used, and instead evaluate the treatments given
initially as if patient outcome were due to them alone, rather
than the entire DTR.

There is an extensive literature on adaptive dose-finding de-
signs for phase I and phase I/II clinical trials (see Chevret 2006;
Yin 2012). In actual conduct of such trials, the attending physi-
cian uses a DTR to make multicycle decisions for each patient.
Depending on the patient’s history of doses and outcomes, the
dose given in each cycle may be above, below, or the same as the
dose given previously, or therapy may be terminated due to ex-
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cessive toxicity or poor efficacy. Since typical early-phase trial
designs ignore such within-patient multicycle decision making,
the “optimal” dose chosen by such a design actually pertains
only to the first cycle of therapy.

While statistical methods for DTRs have seen limited appli-
cation in actual clinical trials (Rush, Trivedi, and Fava 2003;
Thall, et al. 2007; Wang et al. 2012), recently there has been
extensive research to develop or optimize DTRs in medicine,
including semiparametric methods (Wahed and Tsiatis 2006),
reinforcement learning (Zhao et al. 2011), and sequential multi-
ple assignment randomized trials (Murphy and Bingham 2009).
The aim is to better reflect the intrinsically multistage, adaptive
structure of what physicians actually do, in both trial design
and analysis of observational data. This methodology had its
origins in research to define and estimate causal parameters in
complex longitudinal data, pioneered by Robins (1986, 1993,
1997, 1998), and applied to the analysis of AIDS data (Hernan,
Brumback, and Robins 2000; Robins, Hernan, and Brumback
2000).

The problem of optimizing each patient’s doses given in mul-
tiple cycles based on efficacy and toxicity in phase I/II trials
has not been addressed formally. Phase I/II designs typically
optimize the initial dose using between-patient adaptive rules.
A review is given by Zohar and Chevret (2007). For phase I
trials involving multiple cycles of therapy, Braun, Yuan, and
Thall (2005) proposed a Bayesian design with between-patient
adaptive rules based on time-to-toxicity to optimize the number
of cycles (“schedule”) given a fixed dose. Braun et al. (2007)
extended this to allow per-administration dose to vary, and
jointly optimized dose and schedule, using a criterion similar to
that of the time-to-event continual reassessment method (TiTE
CRM, Cheung, and Chappell 2000). Li et al. (2008) proposed
an approach to optimizing dose and schedule for two nested
schedules and bivariate binary outcomes, using an isotonic trans-
formation to obtain matrix ordered toxicity probabilities with
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order-restricted inferences. While few of these methods include
within-patient adaptive rules applied after the first cycle, the
phase I design proposed by Zhang and Braun (2013) to op-
timize dose and schedule accounts for multiple within-patient
administrations.

Here, we address the problem of adaptively optimizing each
patient’s dose in each of two cycles of therapy in a phase I/II trial
based on binary efficacy and toxicity. This is the simplest case
of the general multicycle phase I/II trial design problem, which
may be formulated with ordinal or time-to-event outcomes and
an arbitrary number of cycles. We address the simpler two-cycle
problem because it still is much more complicated than the one-
cycle case. Our goals are to provide a practical trial design and
establish a basis for subsequently developing methods for more
complex settings. We employ a model-based Bayesian objec-
tive function, defined in terms of (efficacy, toxicity) utilities,
structurally similar to reinforcement learning (Sutton and Bar-
tow 1998) or Q-learning functions (Watkins 1989). Our method
chooses a dose in each cycle to maximize the posterior expected
mean of the objective function, applying a modified recursive
Bellman equation (1957) that assumes, for the decision in cycle
1, that one will behave optimally in cycle 2. At the end of the
trial, the method provides an optimal two-stage regime consist-
ing of an optimal cycle 1 dose, and an optimal function of the
patient’s cycle 1 dose and outcomes that either chooses a cycle
2 dose or says to not treat the patient in cycle 2. This is very dif-
ferent from simply choosing two “optimal” doses, one for each
cycle, with the “optimal” cycle 2 dose ignoring each patient’s
cycle 1 data. Because all decisions are based on posterior quan-
tities computed using all patients’ data, the method is adaptive
both within and between patients.

Section 2 describes the proposed decision-theoretical two-
cycle method, DTM2, including the Bayesian probability model,
an algorithm for prior calibration, and posterior computation.
Utility-based decision criteria are presented in Section 3. A
simulation study is summarized in Section 4. We close with a
discussion in Section 5.

2. DOSE-OUTCOME MODEL

The model used by DTM2 exploits the idea underlying the
multivariate probit model, introduced by Ashford and Sowden
(1970). A vector of unobserved, correlated latent multivariate
normal variables is defined to induce association among a vector
of observed binary variables, by defining each observed variable
as the indicator that its corresponding latent variable is greater
than 0. The DTM2 model is an elaboration of a multivariate
probit model that includes hierarchical structures. It provides
a computationally feasible basis for the task at hand. We will
exploit the MCMC methods for computing posteriors for la-
tent variable models provided by Albert and Chib (1993) and
developed further by Chib and Greenberg (1998) for posterior
computation via Gibbs sampling.

Let nt denote the number of patients accrued and given at
least one cycle of treatment up to trial (calendar) time t, and
index patients by i = 1, . . . , nt . Our dose-outcome model does
not depend on numerical dose values, and we identify the doses
under consideration by the indexes 1, . . . , m. For treatment cy-

cle c = 1, 2, denote the ith patient’s dose by di,c, outcome in-
dicators Yi,c ∈ {0, 1} for toxicity and Zi,c ∈ {0, 1} for efficacy,
and the 2-cycle vectors di = (di,1, di,2), Y i = (Yi,1, Yi,2), and
Zi = (Zi,1, Zi,2). LetXt = {(Y i , Zi , di) : i = 1, . . . , nt } denote
the observed data from all patients at t.Although the doses d i are
actions rather than parameters or random outcomes, throughout
the article we will abuse probability notation slightly by in-
cluding them to the right of the conditioning bar. Since actual
clinical decision rules must allow a given patient’s therapy to be
terminated, for example, if the patient is cured, has progressive
disease, or unacceptable toxicity (see Wang et al. 2012), here
possible actions in cycle c may be either a dose, di,c, or the
decision to give no treatment, which we index by 0. We denote
the possible actions in either cycle by D = {0, 1, . . . , m}.

We construct a joint distribution for [Yi, Zi |di] by defin-
ing these binary outcomes in terms of four real-valued latent
variables, ξ i = (ξi,1, ξi,2) for Y i and ηi = (ηi,1, ηi,2) for Zi ,
with (ξ i , ηi) following a multivariate normal distribution hav-
ing means that vary with di . Denoting the indicator of event A
by I(A), we assume Yi,c = I(ξi,c > 0) and Zi,c = I(ηi,c > 0), so
the distribution of [Y i , Zi |di] is induced by that of [ξ i , ηi |di].
The structure of our hierarchical model for two cycles is sim-
ilar to the nonhierarchical model for multiple toxicities in one
cycle of therapy used by Bekele and Thall (2004). To construct
the model, we first define a conditional likelihood for the cycle-
specific latent variable pairs [ξi,c, ηi,c|di,c], for c = 1, 2 by using
patient-specific random effects (ui, vi) that characterize depen-
dence among the outcomes between and within cycles. Denote
the univariate normal distribution with mean μ and variance σ 2

by N (μ, σ 2), with pdf φ(·|, μ, σ 2).
We begin the construction by assuming the following Level 1

and Level 2 priors:
Level 1 Priors on the Latent Variables. For patient i in cycle

c given dose di,c = d,

ξi,c|ui, ξ̄c,d , σ 2
ξ ∼ N(ξ̄c,d + ui, σ

2
ξ )

and ηi,c | vi, η̄c,d , σ 2
η ∼ N(η̄c,d + vi, σ

2
η ), (1)

with ξ i and ηi conditionally independent given (ui, vi) and fixed
σ 2
ξ and σ 2

η . Level 2 priors of the patient effects, (ui, vi), and mean
cycle-specific dose effects, (ξ̄c,d , η̄c,d ), are as follows:

Level 2 Priors on (ui, vi). For patients i = 1, . . . , n,

ui, vi |ρ, τ 2 iid∼ MVN2(02, �u,v), (2)

where MVNk denotes a k-variate normal distribution, 02 =
(0, 0) and �u,v is the 2×2 matrix with all diagonal elements
τ 2 and all off-diagonal elements ρτ 2. The hyperparameters,
ρ ∈ (−1, 1) and τ 2, are fixed. This Level 2 prior induces asso-
ciation, parameterized by (ρ, τ 2), among (ξi,1, ηi,1, ξi,2, ηi,2) via
the latent variable model (1), and thus among the corresponding
toxicity and efficacy outcomes, (Yi,1, Zi,1, Yi,2, Zi,2).

Level 2 Priors on (ξ̄c,d , η̄c,d ). Let ξ̄ c = (ξ̄c,1, . . . , ξ̄c,m) and
η̄c = (η̄c,1, . . . , η̄c,m). Denote by ξ̄ c,−d the vector ξ̄ c with ξ̄c,d
deleted, and let η̄c,−d denote η̄c with η̄c,d deleted.
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We assume

p(ξ̄c,d |ξ̄ c,−d ) ∝ φ(ξ̄c,d |ξc,0, σ 2
ξc,0

)1(ξ̄c,d−1 < ξ̄c,d < ξ̄c,d+1)

p(η̄c,d |η̄c,−d ) ∝ φ(η̄c,d |ηc,0, σ 2
ηc,0

)1(η̄c,d−1 < η̄c,d < η̄c,d+1).

(3)

The order constraints ensure that ξi,c and ηi,c increase stochas-
tically in dose, hence the per-cycle probabilities of toxicity and
efficacy both increase with dose. If this assumption is not appro-
priate, such as trials of biologic agents, these constraints may
be dropped.

Collecting terms from (1), (2), and (3), the 12 fixed parame-
ters that determine all of the Level 1 and Level 2 priors are θ̃ =
(ξ 0, η0, σ

2
ξ0
, σ 2

η0
, σ 2

ξ , σ
2
η , τ

2, ρ) where ξ 0 = (ξ1,0, ξ2,0), η0 =
(η1,0, η2,0), σ 2

ξ0
= (σ 2

ξ1,0
, σ 2

ξ2,0
), and σ 2

η0
= (σ 2

η1,0
, σ 2

η2,0
). Denote

ξ̄ = (ξ̄ 1, ξ̄ 2), η̄ = (η̄1, η̄2), μdi = (ξ̄1,di,1 , ξ̄2,di,2 , η̄1,di,1 , η̄2,di,2 ), and
the covariance matrix

�ξ,η =

⎡
⎢⎢⎣
σ 2
ξ + τ 2 τ 2 ρτ 2 ρτ 2

σ 2
ξ + τ 2 ρτ 2 ρτ 2

σ 2
η + τ 2 τ 2

σ 2
η + τ 2

⎤
⎥⎥⎦.

The joint distribution of [ξ i , ηi |di , ξ̄ , η̄, θ̃ ] is computed by inte-
grating over (ui, vi), yielding

ξ i , ηi |di , ξ̄ , η̄, θ̃ iid∼ MVN4
(
μd i
, �ξ,η

)
. (4)

The mean vector μd is a function of the dose levels, and does
not depend on numerical dose values. The hyperparameters,
τ 2 and ρ, induce associations between cycle 1 and cycle 2 and
between efficacy outcomes and toxicity outcomes. For example,
if −1 < ρ < 0 (0 < ρ < 1), this model implies that efficacy and
toxicity are negatively (positively) associated, that is, higher
(lower) toxicity is associated with lower efficacy.

Denote θ = (ξ̄ , η̄). Integrating over (ui, vi) and suppressing
θ̃ and patient index i, the joint likelihood for the observables of
a patient is given by

p( y, z|d, θ ) = Pr(Y1 = y1,Y2 = y2,Z1 = z1,Z2 = z2|d, θ )

= Pr(γ1,y1 ≤ ξ1 < γ1,y1+1, γ1,y2 ≤ ξ2 < γ1,y2+1,

γ2,z1 ≤ η1 < γ2,z1+1, γ2,y2 ≤ η2 < γ2,z2+1|d, θ )

=
∫ γ1,y1+1

γ1,y1

∫ γ1,y2+1

γ1,y2

∫ γ2,z1+1

γ2,z1

∫ γ2,z2+1

γ2,z2

φ(ξ , η|μd, �ξ,η)dη2dη1dξ2dξ1,

where the cutoff vectors (γ10, γ11, γ12) for Yc and (γ20, γ21, γ22)
for Zc both are (−∞, 0,∞), for c = 1, 2. The conditional dis-
tribution of the cycle 2 outcomes (Y2, Z2) given the cycle 1
outcomes (Y1 = y1, Z1 = z1) is

p(y2, z2|y1, z1, d, θ ) = Pr(Y2 = y2,Z2 = z2

|Y1 = y1, Z1 = z1, d)

= Pr(γ1y2 ≤ ξ2 < γ1,y2+1, γ2z2 ≤ η2

< γ2,z2+1|γ1y1 ≤ ξ1 < γ1,y1+1, γ2,z1

≤ ηi1 < γ2,z1+1, d)

= p( y, z|d, θ )

p(y1, z1|d1, θ )
, (5)

where the cycle 1 bivariate marginal is computed as the double
integral

p(y1, z1|d1, θ )=
∫ γ1,y1+1

γ1y1

∫ γ2,z1+1

γ2z1

φ([ξ1, η1]|μ1
d1
, �1

ξ,η)dη1dξ1

(6)

with

μ1
d1

=
[
ξ̄1,d1

η̄1,d1

]
and �1

ξ,η =
[
σ 2
ξ + τ 2 ρτ 2

ρτ 2 σ 2
η + τ 2

]
.

3. DECISION CRITERIA

3.1 Adaptive Dose Selection

To define our decision rules, we distinguish between doses
and actions. The action in cycle 1 either chooses a dose from
the set {1, . . . , m} of doses under consideration or makes the
decision to not give the patient any treatment. Recall that we
denote this decision by 0 for convenience, and we will denote
the possible actions by D = {0, 1, . . . , m}. If the optimal cycle
1 action is d1 = 0 at any point in the trial then the study is termi-
nated. Otherwise, the patient receives d1 for cycle 1 and d2 ∈ D
for cycle 2, where d2 is a function of the cycle 1 dose and out-
comes, (d1, Y1, Z1), and the current data, X, from all patients.
For example, if the cycle 1 dose d1 produced toxicity, Y1 = 1,
then a possible cycle 2 action is d2(d1, 1, 1, X) = d1 − 1 if Z1

= 1, and d2(d1, 1, 0, X) = 0 if Z1 = 0. Similarly, if d1 = 1, the
lowest dose level, and Y1 = 1 was observed, then it may be that
d2(d1, 1, Z1, X) = 0 regardless of whether Z1 = 0 or 1. In gen-
eral, a two-cycle regime is far more general than a dose pair cho-
sen fromD ×D, and a regime for which d2 ignores the patient’s
cycle 1 dose and outcomes, (d1, Y1, Z1), is unlikely to be opti-
mal. In the DTR literature, (d1, Y1, Z1) would be called “tailor-
ing variables.” Optimizing d = (d1, d2) is the focus of our design.

3.2 Objective Function

We construct an objective function by using the basic ideas
in Bellman (1957), starting in cycle 2 and working backward.
Our method relies on per-cycle utilities U (y, z) that quantify
the desirability of outcome (Yc, Zc) = (y, z) in cycle c = 1 or 2.
Depending on the level of marginalization and aggregation over
cycles and patients, many variations of the objective function
defined below may be obtained. We will generically refer to all
of these as “utility” or “objective function” when we want to
highlight that a particular expected utility is a function of known
quantities and the action only, and thus can be used to select the
optimal action. For convenience, one may fix U (0, 1) = 100
and U (1, 0) = 0, which are the respective utilities for the best
and worst possible outcomes, and elicit the intermediate values
U (0, 0) and U (1, 1) from the physicians planning the trial, al-
though any function withU (1, 0) < U (1, 1), U (0, 0) < U (0, 1)
may be used. In our simulations, we will use the numerical util-
ities U (1, 0) = 0, U (0, 0) = 35, U (1, 1) = 65, U (0, 1) = 100.

In the language of Q-learning (Watkins 1989; Murphy 2005;
Zhao et al. 2011), for cycle c, dc is the “action” andU (Yc, Zc) is
the “reward,” with (d1, Y1, Z1) the “state” prior to taking action
d2 in cycle 2. Ideally, baseline covariates such as age, disease
severity, or performance status would comprise the patient’s
state for c = 1, although in practice even in the single-cycle
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phase I-II setting choosing covariate-specific doses is quite com-
plicated (see Thall, Nguyen, and Estey 2008).

Given a patient’s cycle 1 data (d1, Y1, Z1), the mean utility of
action d2 in cycle 2 is

Q2(d2, d1, Y1, Z1, θ ) = E{U (Y2, Z2)|d2, d1, Y1, Z1, θ}

=
1∑

y2=0

1∑
z2=0

U (y2, z2)p(y2, z2

| d2, d1, Y1, Z1, θ ), (7)

and we define the cycle 2 objective function

q2(d2, d1, Y1, Z1, X) = E{Q2(d2, d1, Y1, Z1, θ )

| d2, d1, Y1, Z1, X}. (8)

If d2 = 0, that is, no treatment in cycle 2, then p(Y2 = 0, Z2 =
0 | d2 = 0, d1, Y1, Z1, θ ) = 1 and q2(d2 = 0, d1, Y1, Z1, X) =
U (0, 0), the utility of having neither toxicity nor efficacy. If
d2 �= 0, then q2(d2, d1, Y1, Z1, X) is a posterior expected util-
ity of giving dose d2 in cycle 2 given (d1, Y1, Z1). This un-
derscores the importance of requiring U (0, 0) > U (1, 0), that
it is more desirable to have neither toxicity nor efficacy than
to have toxicity and no efficacy. Given (d1, Y1, Z1) and cur-
rent data X, the optimal cycle 2 action, dopt

2 (d1, Y1, Z1, X)
= argmaxd2q2(d2, d1, Y1, Z1, X), subject to dose acceptability
rules discussed in Section 3.3.

Next, we move backward to the cycle 1 optimization assuming
that q2(dopt

2 , d1, Y1, Z1, X) is known for all (d1, Y1, Z1). The
expected utility of giving dose d1 given θ is

Q1(d1, θ ) = E{U (Y1, Z1)|d1, θ}

=
1∑

y1=0

1∑
z1=0

U (y1, z1)p(y1, z1|d1, θ ).

To define the overall objective function, we discount the cycle
2 payoff using the fixed parameter 0 < λ < 1, as is done tra-
ditionally in Q-learning. The expected entire future utility of
giving dose d1 in cycle 1, assuming that dopt

2 will be taken in
cycle 2, is

q1(d1, X) = E
[
E{U (Y1, Z1) + λq2

(
d

opt
2 (d1, Y1, Z1, X),

d1, Y1, Z1, X
)|θ , d1}|d1, X

]
= E{Q1(d1, θ )|d1, X}

+ λ

1∑
y1=0

1∑
z1=0

q2(dopt
2 (d1, y1, z1, X),

d1, y1, z1, X)p(y1, z1|d1, X), (9)

where p(y1, z1|d1, X) is the posterior expected density for
(y1, z1). Letting q1(d1, X) = (1 + λ)U (0, 0) for d1 = 0, the op-
timal cycle 1 action, dopt

1 , maximizes this quantity over D.
Maximizing q1 and q2 yields the optimal actions dopt =

(dopt
1 , d

opt
2 ), where dopt

1 is either a dose or 0, dopt
2 is applica-

ble only when dopt
1 �= 0, dopt

2 is a function of (dopt
1 , Y1, Z1), and

both are functions of X. If new data from other patients are
obtained between administration of dopt

1 and optimization of
q2(d2(d1), X), so X changes while waiting to evaluate the pa-
tient’s cycle 1 outcomes (Y1, Z1), then the posterior and hence
the patient’s dopt

2 might change. This may be made precise by
elaborating the notation to account for relationships between

timing of the patient’s cycles and calendar time. We avoid this
complexity since the point is clear.

3.3 Dose Acceptability

We include dose acceptability criteria, motivated by ethical
considerations, since maximizing a posterior utility-based ob-
jective function, per se, is not enough to allow a dose to be
administered. The problem is that, while the optimal policy un-
der a given utility function is mathematically well-defined, it is
only an indirect solution of an optimization in expectation. An
important case is that where no dose is acceptably safe and effi-
cacious in either cycle 1 or cycle 2, consequently it is not ethical
to treat a patient using any dose and the trial must be stopped.
Moreover, in some applications, the decision-theoretical solu-
tion might turn out to have undesirable features not anticipated
when specifying the outcomes, model, and utility function. This
problem is one reason why many physicians are reluctant to use
formal decision-theoretical methods for clinical decision mak-
ing. Spiegelhalter et al. (2004, chap. 3.14) discuss this issue. We
mitigate these concerns by adding three additional dose accept-
ability criteria that restrict the set of solutions when maximizing
(8) and (9).

The first constraint is that an untried dose level may not
be skipped when escalating. This says that one does not fully
trust decisions based on any assumed model and decision cri-
teria, especially with the small amounts of data available early
in the trial. Let dM1 denote the highest dose among those that
have been tried in cycle 1 and dM2 the highest dose among
those that have been tried in either cycle. The search for op-
timal actions is constrained so that 1 ≤ d1 ≤ min(dM1 + 1,m)
and 1 ≤ d2 ≤ min(dM2 + 1,m). The second constraint does not
allow escalating a patient’s dose in cycle 2 if toxicity was
observed in cycle 1, Y1 = 1. The third criterion, defined in
terms of expected utility, is to avoid giving undesirable dose
pairs. For cycle 2, we say that action d2 is unacceptable if
it violates the no-skipping rule, escalates after Y1 = 1, or
q2(d2, d1, Y1, Z1, X) < U (0, 0), that is, the posterior expected
utility of treating the patient with d2 given (d1, Y1, Z1, X) is
smaller than that obtained by not treating the patient at all. We
denote the set of acceptable cycle 2 doses for a patient with
cycle 1 data (d1, Y1, Z1) by A2(d1, Y1, Z1, X). Thus, a given d2

may be acceptable for some (d1, Y1, Z1) but not acceptable for
others.

Table 1 illustrates true expected cycle 2 utilities of d2 condi-
tional on (d1, Y1, Z1) using simulation Scenario 4, discussed
below in Section 4. Assume that θ true and θ̃

true
are known,

and suppress θ̃
true

. The Q2(d2, d1, Y1, Z1, θ
true) in Table 1 is

similar to (7). For example, the values of Q2(a2, d1 = 3, Y1 =
0, Z1 = 0, θ true) given in the first row of the third box from
the top are (35.98, 39.49, 39.70, 36.30, 27.17) for d2 =(1,
2, 3, 4, 5), respectively. Since Q2(5, 3, 0, 0, θ true) < U (0, 0),
d2 = 5 is not acceptable. The other dose levels are accept-
able, so A2(3, 0, 0, θ true) = {1,2,3,4}, with dopt

2 (d1 = 3, Y1 =
0, Z1 = 0, θ true) = 3. When (d1, Y1, Z1) = (3, 1, 0), no d2 ∈
{1, . . . , m} produces expected utility greater than U (0, 0),
and d2 = 3, 4, 5 are not allowed due to the no-escalation-
after toxicity rule. Thus, A2(3, 0, 0, θ true) is the empty set
and dopt

2 (d1 = 3, Y1 = 1, Z1 = 0, θ true) = 0. The last column
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Table 1. True expected utilities in Scenario 4 assuming that θ true is
known. q1(d1, θ

true) = the true expected total utility. Entries under d2

in columns 4–8 are the true expected cycle 2 utilities, q2(d2, θ
true)

d2

d1 q1(d1, θ
true) (Y1, Z1) 1 2 3 4 5 d

opt
2

1 66.19 (0,0) 37.32 41.40 41.85 38.54 29.66 3
(0,1) 48.18 55.07 56.80 54.00 45.04 3
(1,0) 30.60 33.58 33.07 29.57 23.27 NT
(1,1) 41.20 47.16 47.96 44.80 38.23 NT

2 73.38 (0,0) 36.53 40.33 40.66 37.30 28.38 3
(0,1) 45.06 51.39 52.92 50.08 41.15 3
(1,0) 30.13 32.88 32.26 28.70 22.28 NT
(1,1) 38.36 43.71 44.31 41.12 34.54 1

3 80.61 (0,0) 35.98 39.49 39.70 36.30 27.17 3
(0,1) 43.31 49.20 50.62 47.73 38.69 3
(1,0) 30.29 32.82 32.12 28.43 21.53 NT
(1,1) 37.34 42.27 42.75 39.46 32.48 2

4 69.71 (0,0) 37.17 40.90 41.40 38.19 28.65 3
(0,1) 44.37 50.46 52.14 49.47 40.09 3
(1,0) 32.13 34.89 34.39 30.68 22.91 NT
(1,1) 39.17 44.32 45.02 41.74 33.91 3

5 68.16 (0,0) 38.08 42.02 42.80 39.83 30.06 3
(0,1) 45.26 51.52 53.46 51.04 41.51 3
(1,0) 33.00 35.88 35.52 31.85 23.69 2
(1,1) 40.05 45.32 46.16 42.95 34.75 3

NOTE: Expected utilities in bold are those for d2 violating the no-escalation-after-Y1 =
1 rule. Expected utilities in italics are those for unacceptable d2 based on the utility-based
criterion.

of the table lists dopt
2 (d1, Y1, Z1, θ

true) for all combinations of
(d1, Y1, Z1).

To identify acceptable cycle 1 dose levels, we assume that
d

opt
2 (d1, Y1, Z1, X) is chosen from A2(d1, Y1, Z1, X). For cycle

1, we say that action d1 is unacceptable if it violates the no-
skipping rule or satisfies the utility-based criterion

q1(d1, X) < U (0, 0) + λU (0, 0). (10)

This says that d1 is unacceptable in cycle 1 if it yields a smaller
posterior expected utility than not treating the patient. We denote
the set of acceptable cycle 1 doses by A1 ⊂ D. Note that, while
A1(X) is adaptive between patients since it is a function of other
patients’ data, A2(d1, Y1, Z1, X) is adaptive both between and
within patients.

The second column of Table 1 illustrates true expected total
utilities over two cycles under simulation Scenario 4. Assuming
that θ trueare known, the column gives values of

E{U (Y1, Z1) + λQ2(dopt
2 (d1, Y1, Z1, θ

true),

d1, Y1, Z1, θ
true)|θ true, d1},

where dopt
2 (d1, Y1, Z1, θ

true) can be derived in the last column
of the table. The true expected total utility satisfies (10) for all
the d1 ∈ D, hence all d1 are acceptable. From the table, the
optimal pair of actions is dopt

1 = 3 and dopt
2 = 3, 3, 0, and 2 for

(Y1, Z1) = (0, 0), (0, 1), (1, 0), and (1, 1), respectively, listed in
the fourth row of Table 3.

3.4 Adaptive Randomization

While dopt yields the best clinical outcomes, the reliability of
the process over the entire trial can be improved by including
adaptive randomization (AR) among d giving values of the ob-
jective function near the maximum at dopt. While this may seem
counterintuitive, using AR decreases the probability of getting
stuck at a suboptimal d and also has the effect of treating more
patients at doses having larger utilities, on average. The problem
that a “greedy” search algorithm may get stuck at suboptimal
actions, and the simple solution of introducing some additional
randomness into the search process, have been known for years
in the optimization literature (see Tokic 2010). However, this
has been dealt with only very recently in dose-finding (Bartroff
and Lai 2010; Azriel, Mandel, and Rinott 2011; Braun, Kang,
and Taylor 2012; Thall and Nguyen 2012).

To implement AR, we first define εi to be a function decreas-
ing in patient index i, and denote ε = (ε1, . . . , εn). We define
the set of εi-optimal doses for cycle 1 to be

Di,1 = {d1 : |q1(dopt
1,i , X) − q1(d1, X)| < εi, d1 ∈ Ai,1(X)}.

The set Di,1(X) contains d1 in Ai,1(X) having posterior mean
utility within εi of the maximum posterior mean utility. Simi-
larly, we define the set of (εi/2)-optimal doses for cycle 2 given
(di,1, Yi,1, Zi,1) to be

Di,2 = {d2 : |q2(dopt
i,2 (di,1, Yi,1, Zi,1, X), Yi,1, Zi,1, di,1, X)

− q2(d2, di,1, Yi,1, Zi,1, X)| < εi/2,

d2 ∈ Ai,2(di,1, Yi,1, Zi,1, X)}.
We use εi/2 because q2(d2, d1, Y1, Z1, X) is the posterior ex-
pected utility for cycle 2 only. For cycles c = 1, 2, patients are
randomized fairly among the doses inDi,c , which we call AR(ε).
In practice, the numerical values of εi depend on the numerical
range of U (y, z), and must be determined by preliminary trial
simulations.

3.5 Trial Design

Our illustrative trial studied in the simulations is constructed
to mimic a typical phase I-II chemotherapy trial with five dose
levels, but accounting for two cycles of therapy. The maximum
sample size is n = 60 patients with a cohort size of 2. Based
on preliminary simulations, we set εi = 20 for the first 10 pa-
tients, εi = 15 for the next 10 patients, and εi = 10 for the
remaining 40 patients. An initial cohort of 2 patients is treated
at the lowest dose level in cycle 1, their cycle 1 toxicity and
efficacy outcomes are observed, the posterior of θ is computed,
and actions are taken for cycle 2 of the initial cohort. Posterior
computations are described in the supplementary material. If
Di,2 = {0}, then patient i does not receive a second cycle of
treatment. If Di,2 �= {0}, then AR(ε) is used to choose an ac-
tion for cycle 2 from Di,2. When (Y2, Z2) are observed from
cycle 2, the posterior of θ is updated. The second cohort is not
enrolled until the first cohort has been evaluated for cycle 1.
For all subsequent cohorts, the posterior is updated after the
outcomes of all previous cohorts are observed, and the poste-
rior expected utility, qi,1(d1, X), is computed using λ = 0.8. If
Di,1(X) = ∅ for any interim X, then di,1(X) = 0, and the trial
is terminated. If Di,1 �= ∅, then a cycle 1 dose is chosen from
Di,1 using AR(ε). Once the outcomes in cycle 1 are observed,
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the posterior is updated. Using (di,1, Yi,1, Zi,1, X) and εi , Di,2

is searched. If Di,2 contains 0 only, then di,2 = 0 and a cycle 2
dose is not given to patient i. Otherwise, di,2 is selected from
Di,2(di,1, Yi,1, Zi,1, X) using AR(ε). All adaptive decisions are
made based on the most recent data X, hence a new dselect

may be chosen using partial data from recent patients for whom
(Y1, Z1) but not (Y2, Z2) have been evaluated. The above steps
are repeated until either the trial has been stopped early or N =
60 has been reached, and in this case a final optimal two-cycle
regime dselect is chosen. The aim is that dselect should be the true
d

opt
1 ∈ {1, . . . , m} and dopt

2 (dopt
1 , y1, z1) ∈ D. The recommenda-

tion for phase III is dselect, rather than a single “optimal” dose
as is done conventionally.

We compared DTM2 design with four other designs: two-
cycle extensions of the continual reassessment method (CRM,
O’Quigley, Pepe, and Fisher 1990), a Bayesian phase I-II
method using toxicity and efficacy odds ratios (TEOR, Yin,
Li, and Ji 2006), and two (3 + 3) methods. One (3 +
3) method implicitly targets a dose with P(Y1 = 1) ≤ 0.17,
called (3 + 3)a, and the other implicitly targets a dose with
P(Y1 = 1) ≤ 0.33, called (3 + 3)b. We extended each one-
cycle method to account for a second cycle. For both (3 +
3) methods, we used the deterministic rule in cycle 2 that
if Y1 = 1 then the dose is lowered by 1 level (d2 = d1 − 1)
and if Y1 = 0 then the first dose is repeated (d2 = d1). The
(3 + 3)a method, coupled with this deterministic rule for cy-
cle 2, is a very commonly used method in actual phase I
clinical trials.

For cycle 1 in the extended CRM (ECRM), we assumed
the usual model Pr(Y1 = 1|d1) = pexp(α)

d1
and α ∼ N(0, 2) where

0 < p1 < · · · < p5 < 1 are fixed values, sometimes called the
model’s “skeleton.” We calibrated the skeleton using the “get-
prior” subroutine in the package “dfcrm,” setting the target
toxicity probability to be 0.30, the prior guess of maximum
tolerated dose 4, and the desired halfwidth of the indiffer-
ence intervals 0.05 (Cheung 2011). The resulting skeleton is
(p1, . . . , p5) = (0.063, 0.123, 0.204, 0.300, 0.402). Using this
model, each patient’s cycle 1 dose is that with posterior mean
toxicity probability closest to 0.30. We implemented this us-
ing the R function,“crm”in dfcrm, but also imposing the no-
skipping rule for cycle 1. To determine a cycle 2 dose, we used
the same deterministic rule as for the extended (3 + 3) methods,
with one more safety requirement. For ECRM, a cycle 2 dose
is not given if Pr{Pr(Y1 = 1 or Y2 = 1) > pT|X, d} > ψT , with
pT = 0.5 and ψT = 0.9, assuming independence of P(Y1 = 1)
and P(Y2 = 1) for simplicity. For example, following the deter-
ministic rule, a patient treated in cycle 1 at d1 may be treated at
d2 ∈ {d1 − 1, d1} depending on the cycle 1 toxicity outcome. In
particular, we repeat d1 in cycle 2 if Y1 = 0. If (d1, d1) does not
satisfy the safety requirement, then the cycle 2 treatment is not
given to a patient with d1 and Y1 = 0. In addition, if the cycle 2
treatment is not allowed for any d1 regardless of Y1, that is, no
(d1, d2) with d2 ∈ {d1 − 1, d1} satisfies the safety rule, then we
lower d1 until the cycle 2 treatment is safe for either of Y1 = 0
or Y1 = 1.

We extended TEOR to 2-cycles similarly to ECRM, and
named this ETEOR. For ETEOR, d2 = 0 if Pr{Pr(Y1 =
1 or Y2 = 1) > pT|X, d} > ψT or Pr{Pr(Z1 = 0 and Z2 = 0) >

pE|X, d} > ψE with pT = 0.6, pE = 0.8, andψT = ψE = 0.9,
assuming independence of the two cycles for simplicity. In ad-
dition, we calibrated the priors of Yin, Li, and Ji (2006) using
the concept of prior effective sample size (see the supplemen-
tary material for details), resulting in their σ 2

φ = 20, σ 2
ψ = 5 and

σ 2
θ = 10. We set π̄T = 0.35, πE = 0.5, pescl = 0.5, p� = 0.25

and q� = 0.1, and used ω(3)
d to select a dose for the next patient.

4. SIMULATION STUDY

4.1 Simulation Design

We simulated trials under each of eight dose-outcome sce-
narios using each of the five designs: DTM2, and the extended
3+3, ECRM, and ETEOR methods. The first seven scenar-
ios were obtained using the model underlying DTM2, with
the eighth obtained from a very different model to study ro-
bustness. To specify 2-cycle simulation scenarios, one must
specify a joint distribution of (Y1, Z1) for each d1 and a
joint distribution of (Y2, Z2) as a function of (d1, d2, y1, z1).
For Scenarios 1–7, the marginal probabilities of toxicity and
efficacy in each cycle are given in Table 2, and we simu-
lated data using (4), with assumed values σ 2,true

ξ = σ 2,true
η =

0.52, τ 2,true = 0.32 and ρ true = −0.2. We determined ξ̄
true

and
η̄true by matching Pr(Yc < 0) = �(0 | ξ̄ true

dc
, σ

2,true
ξ + τ 2,true) and

Pr(Zc < 0) = �(0 | η̄true
dc
, σ 2,true

η + τ 2,true). We used (ξ̄
true
, η̄true)

and the assumed nuisance parameters to simulate (Y , z), gen-
erated (Y1, Z1) from (6) using the true values of σ 2

ξ , σ 2
η , τ 2, ρ,

and used (5) to generate (Y2, Z2) conditional on (Y1, Z1).
To apply DTM2, we first calibrated the hyperparameters, θ̃ ,

using the notion of the expected sample size (ESS) as described
in Morita et al. (2010). We simulated 1000 pseudosamples of
θ , setting σ 2

ξc0
= σ 2

ηc0
= 62, and computed probabilities of in-

terest, such as P(Yc = 0|dc) and P(Zc = 0|dc), based on the
pseudosamples, setting σ 2

ξ = σ 2
η = 22, τ 2 = 1, and ρ = −0.5.

We determined θ̃ that gave ESS ranging from 0.5 to 2 for the
quantities of interest, and used this θ̃ to determine the prior for
all simulations.

To study robustness, in Scenario 8 we simulated data using
the following logistic regression model. The cycle 1 marginal
probabilities (pT (d1), pE(d1)) are the same as those of Scenario
5, with outcomes generated using true probabilities

Pr(Y1 = 1 | d1) = pT (d1),

Pr(Z1 = 1 | d1,Y1) = logit−1{logit(pE(d1))

− 0.34(Y1 − 0.5)},
Pr(Y2 = 1 | d1, d2,Y1,Z1) = logit−1{logit(pT(d1))

+ 0.33d2 + 0.4(Y1 − 0.5)

− 0.3(Z1 − 0.5)},
Pr(Z2 = 1 | d1, d2,Y1,Z1,Y2) = logit−1{logit(pE(d1))

+ 0.76d2 − 0.22(Y1 − 0.5)

+ 2.4(Z1 − 0.5)

− 1.8(Y2 − 0.5)}.

Table 3 shows the optimal actions, dopt
1 and dopt

2 (dopt
1 , Y1, Z1),

under each scenario. For example, in Scenario 3, the optimal
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Table 2. True marginal probabilities of toxicity and efficacy under the first seven scenarios for the simulation studies, (pT , pE)true for cycles 1
and 2

Doses

Scenario Cycles 1 2 3 4 5

1 1 (0.10, 0.02) (0.15, 0.03) (0.30, 0.05) (0.45, 0.08) (0.55, 0.10)
2 (0.13, 0.01) (0.18, 0.02) (0.33, 0.04) (0.48, 0.07) (0.58, 0.09)

2 1 (0.30, 0.50) (0.32, 0.60) (0.35, 0.70) (0.38, 0.80) (0.40, 0.90)
2 (0.33, 0.45) (0.35, 0.55) (0.38, 0.65) (0.41, 0.75) (0.43, 0.85)

3 1 (0.05, 0.10) (0.18, 0.13) (0.20, 0.25) (0.40, 0.26) (0.50, 0.27)
2 (0.30, 0.20) (0.31, 0.35) (0.32, 0.45) (0.45, 0.65) (0.65, 0.70)

4 1 (0.13, 0.06) (0.15, 0.18) (0.25, 0.35) (0.55, 0.38) (0.75, 0.40)
2 (0.20,0.14) (0.25, 0.23) (0.35, 0.29) (0.50, 0.32) (0.80, 0.35)

5 1 (0.52, 0.01) (0.61, 0.15) (0.71, 0.20) (0.82, 0.25) (0.90, 0.30)
2 (0.53,0.04) (0.55, 0.20) (0.62, 0.25) (0.85, 0.27) (0.95, 0.33)

6 1 (0.25, 0.10) (0.28, 0.13) (0.30, 0.25) (0.40, 0.35) (0.50, 0.45)
2 (0.30, 0.20) (0.31, 0.35) (0.32, 0.45) (0.43,0.65) (0.56, 0.70)

7 1 (0.25, 0.10) (0.28, 0.13) (0.30, 0.25) (0.40, 0.38) (0.65, 0.40)
2 (0.30, 0.20) (0.31, 0.35) (0.32, 0.45) (0.43,0.65) (0.66, 0.67)

NOTE: The true marginal probabilities of Scenario 8 are identical to those of Scenario 5.

cycle 1 action is dopt
1 = 3, and the optimal cycle 2 action is

d
opt
2 (d1 = 3, Y1 = 0, Z1) = 4 and dopt

2 (d1 = 3, Y1 = 1, Z1) = 2,
regardless of Z1.

4.2 Evaluation Criteria

We used the following summary statistics to evaluate each
method’s performance. Denote the outcomes of the n patients
in a given trial who received at least one cycle of therapy by
{(Yi,1, Zi,1), (Yi,2, Zi,2), i = 1, . . . , n}, where n < 60 if the trial
was stopped early. The empirical mean total utility for the n
patients is Ū = ∑n

i=1{U (Yi,1, Zi,1) + U (Yi,2, Zi,2)}/n, where
we set U (Yi,2, Zi,2) = U (0, 0) for patients who did not receive
a second cycle of therapy. Indexing the N simulated replications
of the trial by r = 1, . . . , N, the empirical mean total payoff for
all patents in the trial is ¯̄U = N−1 ∑N

r=1 Ū
(r). One may regard

Table 3. Optimal treatment sequences under the eight simulation
scenarios using the simulation truth, θ true

d
opt
2

Scenario d
opt
1 (0,0) (0, 1) (1,0) (1,1)

1 0 0 0 0 0
2 5 5 5 4 4
3 3 4 4 2 2
4 3 3 3 0 0
5 0 0 0 0 0
6 5 4 4 4 4
7 4 4 4 3 3
8 5 5 3 4 4

NOTE: Based on assumption that dopt
1 is given, dopt

2 is searched for each cycle 1 outcome
combination.

¯̄U as an index of the ethical desirability of the method for the
patients in the trial, given the utility U (y, z).

To evaluate performance in terms of future patient benefit,
recall that DTM2 selects an optimal dose d1,select for cycle 1,
and an optimal function d2,select for use in cycle 2 assuming
that d1,select is given, with d2,select not defined if d1,select = 0.
Let θ true be the true parameter vector assumed for a simula-
tion scenario. Under θ true, the expected payoff in cycle 1 of
giving action d1,select to a future patient is Q1,select(d1,select) =
E{U (Y1, Z1)|d1,select, θ

true}, for d1,select �= 0. If the rule d2,select

is used, the expected payoff in cycle 2 is

Q2,select(d2,select) =
∑

(y1,z1)∈{0,1}2

E{U (Y2, Z2)|d1,select,

d2,select(y1, z1), y1, z1, θ
true}

×p(y1, z1 | d1,select, θ
true),

where E{U (Y2, Z2)|d1,select, d2,select(y1, z1), y1, z1, θ
true} be-

comes U (0, 0) if d2,select(y1, z1) = 0. The total expected pay-
off to a future patient treated using the selected regime
dselect = (d1,select, d2,select) is defined to be Qselect(dselect) =
Q1,select(d1,select) + λQ2,select(d2,select).

In addition to the criteria ¯̄U and Qselect, we evaluated the
empirical toxicity and efficacy rates, defined as follows. Let δi,2
= 1 if patient i was treated in cycle 2. For each simulated trial
with each method, for patients who received at least one cycle
of therapy, we computed

Pr(Tox) = 1

n

n∑
i=1

1(Yi,1 = 1) + δi,21(Yi,2 = 1)

1 + δi,2
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Table 4. Simulation results for the proposed method DTM2, and for 2-cycle extensions (3 + 3)a, (3 + 3)b, ECRM of standard phase I methods,
and the 2-cycle extension ETEOR of the phase I–II method of Li et al. (2006)

Scenarios Criterion DTM2 (3+3)a (3+3)b ECRM ETEOR

1 ¯̄U 66.48 59.27 58.81 56.56 61.90
Qselect 57.77 54.36 52.30 51.75 52.43

Pr(Tox) 0.25 0.22 0.23 0.27 0.25
Pr(Eff) 0.07 0.03 0.03 0.05 0.07

% completed trials 2.3 88.6 96.5 99.6 4.4

2 ¯̄U 136.35 124.36 118.32 115.86 122.13
Qselect 135.76 103.85 104.48 102.43 108.47

Pr(Tox) 0.39 0.30 0.33 0.36 0.35
Pr(Eff) 0.72 0.58 0.55 0.56 0.60

% completed trials 99.4 39.2 64.7 95.6 78.2

3 ¯̄U 94.23 85.95 85.75 89.93 88.04
Qselect 84.39 77.98 80.14 78.43 78.47

Pr(Tox) 0.38 0.27 0.27 0.30 0.26
Pr(Eff) 0.38 0.27 0.27 0.33 0.28

% completed trials 79.4 96.6 99.2 100.0 78.50

4 ¯̄U 75.84 81.81 80.12 85.40 84.94
Qselect 69.49 74.92 75.76 78.67 78.87

Pr(Tox) 0.51 0.25 0.26 0.29 0.28
Pr(Eff) 0.29 0.22 0.21 0.29 0.27

% completed trials 96.7 83.2 94.7 99.4 81.7

5 ¯̄U 66.65 52.87 52.72 50.41 NA
Qselect 50.64 40.66 40.70 40.61 NA

Pr(Tox) 0.84 0.43 0.44 0.53 NA
Pr(Eff) 0.35 0.08 0.04 0.03 NA

% completed trials 0.4 6.8 20.0 9.0 0.0

6 ¯̄U 96.43 82.82 79.27 81.50 86.14
Qselect 92.78 70.30 71.28 71.29 76.24

Pr(Tox) 0.45 0.28 0.32 0.32 0.32
Pr(Eff) 0.41 0.24 0.23 0.25 0.29

% completed trials 90.9 51.5 74.7 97.6 58.3

7 ¯̄U 91.88 82.66 79.31 80.99 86.32
Qselect 84.91 70.28 71.27 71.16 76.34

Pr(Tox) 0.47 0.28 0.32 0.32 0.32
Pr(Eff) 0.38 0.24 0.22 0.25 0.29

% completed trials 90.3 51.4 73.6 97.5 58.7

8 ¯̄U 95.92 80.24 76.09 79.83 80.75
Qselect 93.22 68.23 69.26 69.28 70.73

Pr(Tox) 0.54 0.34 0.36 0.37 0.34
Pr(Eff) 0.45 0.25 0.22 0.27 0.27

% completed trials 84.7 49.4 73.2 97.6 57.9

NOTE: ¯̄U = mean empirical utility, Qselect = mean payoff of dselect. Empirical percentages Pr(Tox) and Pr(Eff) include patients who received at least cycle 1 of treatment.

and

Pr(Eff) = 1

n

n∑
i=1

1(Zi,1 = 1) + δi,21(Zi,2 = 1)

1 + δi,2
.

4.3 Simulation Results

A total ofN = 1000 trials were simulated under each scenario
for each of the five designs studied. The simulation results are

summarized in Table 4. For the each of the five trial designs,
Table 4 gives ¯̄U , Qselect, the empirical per-cycle toxicity and
efficacy probabilities and the percent of trials completed with
d1,select ∈ {1, . . . , m}. A difference in ¯̄U or Qselect that may be
considered “large” is about 5, since this translates to, on average,
a difference of about 0.13 in Pr(Tox), while a difference 1 may
be considered small.

In Scenario 1, Table 2 shows that doses d = 1,2,3 are safe,
d = 4,5 are overly toxic, and all doses have very low efficacy.
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In this case there is little benefit from any dose. The value
¯̄U = 66.48 for DTM2 in Table 4 is close to the utilityU (0, 0) +

0.8U (0, 0) = 66 of (d1 = 0, d2 = 0). The utility-based stopping
rule of DTM2 correctly terminates the trial 97.7% of the time.
Similarly, ETEOR terminates 95.6% of the trials before reaching
the maximum number of patients due to the low efficacy rates.
In contrast, the extended versions of the 3 + 3 and ECRM are
very likely to run the trial to completion, essentially because
they ignore efficacy. This provides a stark illustration of the fact
that there is little benefit in exploring the safety of an agent
if it is inefficacious, and methods that ignore efficacy are very
likely to make this mistake. This has little to do with the two-
cycle structure, and it also can be seen when comparing one-
cycle phase I-II (efficacy and toxicity) to phase I (toxicity only)
methods. Thus, DTM2 and ETEOR are the only reasonable
designs in Scenario 1, and DTM2 is superior in terms of both ¯̄U
and Qselect.

In Scenario 2, Table 2 shows that the toxicity probabilities
increase with dose from 0.30 to 0.40 in cycle 1 and from 0.33
to 0.43 in cycle 2, while the efficacy probabilities are quite
high in both cycles, increasing with dose from 0.50 to 0.90 in
cycle 1 and from 0.45 to 0.85 in cycle 2. Thus, if one considers
toxicity probabilities around 0.40 to be acceptable tradeoffs for
these very high efficacy rates, then there is a substantial payoff
for escalating to higher doses. The utility function reflects this,
with the optimal action dopt

1 = 5 and dopt
2 (5, Y1, Z1) = 4 or 5

(Table 3). DTM2 obtains larger values of ¯̄U and Qselect due to
much larger Pr(Eff) and slightly larger Pr(Tox), compared to all
of the four methods.

In Scenario 3, dopt
1 = 3, with dopt

2 = 4 if Y1 = 0 in cycle 1
and dopt

2 = 2 if Y1 = 1 (Table 3). This illustrates the within-
patient adaptation of DTM2. The (3 + 3)a, (3 + 3)b, and ECRM
methods select dopt

1 = 3 often since the toxicity probability of
d1 = 3 is close to 0.30, but they never select dopt

2 = 2 for patients
with (d1, Y1) = (3, 0) because their deterministic rules ignore
Z1 and do not allow escalation of dose levels for cycle 2 even
with Y1 = 0. Again, DTM2 achieves the largest ¯̄U , Qselect, and
Pr(Eff), with slightly larger Pr(Tox).

Scenario 4 is a challenging scenario for DTM2, and is fa-
vorable for the other four designs. In Scenario 4, dopt

1 = 3
since its toxicity probability 0.25 is closest to 0.30. In addi-
tion, dopt

2 (dopt
1 , Y1, Z1) is exactly the same as the cycle 2 dose

levels chosen by the deterministic rules of (3 + 3)a, (3 + 3)b and
ECRM, except for (Y1, Z1) = (0, 1), which only occurs about
5% of the time. From Table 1, the true expected utility of d2 = 2
given (d1, Y1, Z1) = (3, 0, 1) is 32.82, which is very close to
U (0, 0). Thus, the three methods, (3 + 3)a, (3 + 3)b, and ECRM,
are likely to select dopt

1 by considering only toxicity outcomes
and select dopt

2 following their deterministic rules. CRM se-
lects dopt

1 = 3 most of time, leading to the largest ¯̄U andQselect.
Similar performance is observed for ETEOR as well because
d

opt
1 is considered optimal by ETEOR, and it uses the same de-

terministic rule for cycle 2. The smaller values of ¯̄U and Qselect

for DTM2 are because it does a stochastic search to determine
the optimal actions, using much more general criteria than the
other methods. Table 1 shows that, for (d1, Y1) = (3, 1), the ex-
pected cycle 2 utilities are smaller than or very close to U (0, 0)
for all the cycle 2 doses, so all cycle 2 doses are barely ac-

ceptable or not acceptable. However, d1 = 5 is acceptable and,
given d1 = 5, many cycle 2 doses are acceptable, and DTM2
often explores higher doses in cycle 1 than dopt

1 . This scenario
illustrates the price one may pay for using more of the available
information to explore the dose domain more extensively based
on an efficacy-toxicity utility-based objective function.

In Scenario 5, the lowest dose is too toxic and, therefore, even
d1 = 1 is unacceptable. As expected, all methods terminate the
trial early most of time, with DTM2 stopping trials due to the
low posterior expected utilities caused by the high toxicity rate
at d1.

Scenarios 6 and 7 have identical true toxicity and efficacy
rates for doses 1, 2, and 3, while for doses 4 and 5, Scenario
7 has higher toxicity rates and lower efficacy rates so that its
d

opt
1 is a dose lower than dopt

1 of Scenario 6. Since dose 3 has a
toxicity rate closest to 0.3 in the both scenarios, the other four
methods perform very similarly in the two scenarios. However,
DTM2 again has much higher ¯̄U andQselect values compared to
all of the other methods in these scenarios.

Recall that Scenario 8 is included to evaluate robustness, with
joint probabilities generated using a model very different from
that underlying DTM2. It thus is remarkable that, in terms of
both ¯̄U and Qselect, DTM2 has far superior performance com-
pared to all four other methods. Essentially, this is because
DTM2 allows a higher rate of toxicity as a tradeoff for much
higher efficacy, while the phase I methods (3 + 3)a, (3 + 3)b,
and ECRM all ignore efficacy, and the other phase I-II method,
ETEOR, terminates the trial early much more frequently. The
superior performance of DMT2 in Scenario 8 may be attributed
to its use of a 2-cycle utility function to account for efficacy-
toxicity tradeoffs and also as a basis for its early stopping rule.
More generally, it appears that DTM2 is quite robust to the
actual probability mechanism that generates the outcomes.

To assess sensitivity to association among the outcomes
Y1, Z1, Y2, Z2 in the two cycles, we evaluated each method’s
performance with and without association in Scenarios 3, 6, and
7. We let the true (σ 2

ξ , σ
2
η , τ

2, ρ) be either (0.2, 0.05, 1,−0.5) or
(0.52, 0.52, 0, 0). The first set of values induces high association
between outcomes both within and across cycles, while the sec-
ond set of values induces no association. This leads to different
true expected utilities in each cycle and thus to different optimal
decisions, as shown in Table 5. The results are summarized in
Table 6. While performance changes depending on the assumed

Table 5. Optimal sequence of treatments under scenarios 3, 6, and 7,
assuming different values of (σ 2,true

ξ , σ 2,true
η τ 2,true, ρ true) to induce

either high association or no association between outcomes

d
opt
2

Scenario d
opt
1 (0,0) (0, 1) (1,0) (1,1)

3-High Assoc. 3 4 3 NT 2
3-No Assoc. 3 4 4 2 2
6-High Assoc. 5 5 4 NT 3
6-No Assoc. 5 4 4 4 4
7-High Assoc. 4 4 4 NT 3
7-No Assoc. 4 4 4 3 3
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Table 6. Simulation results under scenarios 3, 6, and 7, assuming different values of (σ 2,true
ξ , σ 2,true

η τ 2,true, ρ true) to induce either high association
or no association between outcomes

Scenarios Criterion DTM2 (3 + 3)a (3 + 3)b ECRM ETEOR

3 ¯̄U 97.06 85.68 85.24 88.56 89.85
Qselect 86.18 78.53 80.53 76.58 79.27

Pr(Tox) 0.37 0.27 0.28 0.31 0.26
High Assoc. Pr(Eff) 0.38 0.26 0.26 0.33 0.29

% completed trials 97.7 96.6 99.2 99.9 77.5

3 ¯̄U 92.05 85.96 85.44 90.06 87.88
Qselect 82.22 77.83 80.04 79.35 78.75

Pr(Tox) 0.41 0.27 0.27 0.30 0.26
No Assoc. Pr(Eff) 0.36 0.26 0.26 0.33 0.28

% completed trials 98.2 96.6 99.2 99.9 77.5

6 ¯̄U 101.37 85.54 81.74 83.20 89.87
Qselect 95.18 72.43 73.35 71.40 77.67

Pr(Tox) 0.42 0.26 0.29 0.31 0.31
High Assoc. Pr(Eff) 0.43 0.25 0.22 0.26 0.31

% completed trials 91.1 51.5 74.7 97.5 59.9

6 ¯̄U 94.63 82.45 78.73 81.51 85.11
Qselect 90.85 69.76 70.75 71.53 76.11

Pr(Tox) 0.46 0.29 0.32 0.33 0.32
No Assoc. Pr(Eff) 0.40 0.24 0.22 0.26 0.28

% completed trials 91.6 51.5 74.7 98.2 57.0

7 ¯̄U 96.67 85.40 81.63 82.94 90.00
Qselect 87.63 72.44 73.35 71.28 77.84

Pr(Tox) 0.44 0.26 0.29 0.31 0.31
High Assoc. Pr(Eff) 0.41 0.25 0.22 0.26 0.31

% completed trials 90.7 51.4 73.6 97.9 60.2

7 ¯̄U 89.91 82.25 78.64 81.34 85.29
Qselect 82.89 69.74 70.74 71.23 76.20

Pr(Tox) 0.48 0.29 0.32 0.32 0.32
No Assoc. Pr(Eff) 0.37 0.24 0.22 0.25 0.28

% completed trials 90.8 51.4 73.6 97.5 57.3

true values, in all cases DTM2 is again superior to all four other
methods.

5. DISCUSSION

Practical application of DTM2 requires substantial input from
the physicians, including specification of outcomes, doses, prior
values, and numerical utilities. Such key input from the physi-
cians, and preliminary validation by computer simulation, have
provided a practical basis for use of model-based outcome-
adaptive methods in many actual phase I-II dose-finding trials
(see de Lima et al. 2008). In the design process, computer sim-
ulation also may be used to conduct sensitivity analyses in the
prior or the numerical utilities so that the physicians may ad-
just their values. For trial conduct, a database and data entry
procedure must be established, with the database updated in
real time as patients are treated and evaluated in each cycle.
The actual data used by DTM2 are simple, however, consist-
ing of (d1, Y1, Z1, d2, Y2, Z2). Accounting for two cycles rather
than only one is not a substantial complication compared to

usual adaptive trials, since all clinical protocols contain rules
for adaptive within-patient decision making.

DTM2 provides the 2-cycle regime dselect for phase III evalu-
ation, rather than only a selected d1 or 2-cycle pair (d1, d2). This
is an important improvement, since it more accurately reflects
actual clinical practice and is likely to improve the chance of
success in phase III. This is because phase I methods based on
toxicity alone are likely to fail to identify higher doses having
higher efficacy and acceptable toxicity, and thus are more likely
to select an ineffective dose for phase II evaluation. Moreover,
our comparisons to the 2-cycle extension ETEOR of the phase
I-II design of Yin, Li, and Ji (2006), which also uses efficacy,
show the advantage of optimizing a utility-based Q-function for
decision making.

Several important practical extensions should be noted. While
DTM2 uses recent patients’ partial data if only their cycle 1 out-
comes have been evaluated, this may be refined by using event
time data to enhance inferences. A useful extension would to use
toxicity or efficacy follow up times from patients treated and but
not fully evaluated, employing predictive probabilities similarly
to Bekele et al. (2008), or taking the approach of Zhao et al.
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(2011). Bivariate ordinal (Yc, Zc) outcomes with more than two
levels may be accommodated by extending the model to include
more cutoffs in the latent variables, and eliciting corresponding
utilities, as in Thall and Nguyen (2012). Extension to accom-
modate this case is complex, however, since there would be
many more elementary outcomes and thus many more model
parameters. Numerous ad hoc adaptive methods for choosing a
patient’s doses in cycles after the first actually are used in clini-
cal practice. For example, if Y and Z each have four levels, then
for two cycles there would be 16 elementary outcomes, rather
than 4, (ξ, η) would be eight-dimensional, and�ξ,η would be an
8 × 8 matrix. Since many actual regimes involve more than two
cycles, while in theory the decision criterion can be generalized
to accommodate this in a straightforward manner, the dimen-
sions of the outcomes and decisions become much larger. This
strongly suggests that, to deal with the general multicycle case
in a practical way, a more parsimonious model will be needed.

6. SUPPLEMENTARY MATERIALS

Supplementary materials discuss prior calibration and poste-
rior computation.

[Received April 2013. Revised January 2014.]
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