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ABSTRACT
Medical therapy often consists of multiple stages, with a treatment chosen by the physician at each stage
based on the patient’s history of treatments and clinical outcomes. These decisions can be formalized as
a dynamic treatment regime. This article describes a new approach for optimizing dynamic treatment
regimes, which bridges the gap between Bayesian inference and existing approaches, like Q-learning. The
proposed approach fits a series of Bayesian regression models, one for each stage, in reverse sequential
order. Each model uses as a response variable the remaining payoff assuming optimal actions are taken
at subsequent stages, and as covariates the current history and relevant actions at that stage. The
key difficulty is that the optimal decision rules at subsequent stages are unknown, and even if these
decision rules were known the relevant response variables may be counterfactual. However, posterior
distributions can be derived from the previously fitted regression models for the optimal decision rules
and the counterfactual response variables under a particular set of rules. The proposed approach averages
over these posterior distributions when fitting each regression model. An efficient sampling algorithm
for estimation is presented, along with simulation studies that compare the proposed approach with
Q-learning. Supplementary materials for this article are available online.

1. Introduction

In medical practice, therapy often consists of a series of treat-
ments assigned in multiple stages. The physician chooses each
treatment adaptively based on the patient’s history of treatments
and clinical outcomes at that stage. For example, oncologists typ-
ically choose an initial (frontline) treatment based on disease
severity and other prognostic covariates. At the times of one
or more subsequent disease progressions, a salvage treatment is
chosen based on the patient’s prior treatments and responses.
Most statistical methods for treatment evaluation ignore this
process and focus on evaluating the treatments given at a sin-
gle stage, which most often is either frontline or first salvage.
Because this strategy does not reflect the actual therapeutic pro-
cess, it is of limited use to practicing physicians. In the above
oncology example, if survival is the main outcome of interest
then evaluating only frontline treatment options ignores the
effects of salvage treatments on the patient’s survival. Although
it is well known that this myopic approach is likely to lead to
sub-optimal therapeutic decisions (Lavori and Dawson 2004;
Chakraborty 2011), it is commonly used because evaluating
treatments given at a single stage is much simpler than evalu-
ating a series of treatments given at multiple stages.

Multi-stage treatment decisions can be formalized as a
dynamic treatment regime (DTR), which is a set of decision
rules, one for each stage, that stipulate which treatment to
assign (or action to take) based on the patient’s history at
that stage. Prior to the seminal papers by Murphy (2003) and
Robins (2004), there was a dearth of statistical methods for opti-
mizing DTRs. In recent years, many approaches for defining,
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estimating, and optimizing DTRs have been proposed. These
include Moodie, Richardson, and Stephens (2007), Zhao,
Kosorok, and Zeng (2009), Chakraborty, Murphy, and Strecher
(2010), Arjas and Saarela (2010), Wang et al. (2012), Zajonc
(2012), Zhang et al. (2013), Huang et al. (2015), Zhao et al.
(2015), and Xu et al. (2016). We provide a brief survey of
existing methods for optimizing DTRs below, in Section 2.

This article describes a new approach that bridges the present
gap between Bayesian inference and approximate dynamic pro-
gramming methods from machine learning, like Q-learning
(Watkins 1989; Moodie, Richardson, and Stephens 2007). Our
proposed approach, which we call Bayesian Machine Learning
(BML), is a novel approximate dynamic programming approach
that fits a series of Bayesian regression models, one for each
stage, in reverse sequential order. Each model uses as a response
variable the remaining payoff assuming optimal actions (or
treatments) are taken at subsequent stages, and as covariates
the current history and relevant actions at that stage. One diffi-
culty in fitting a regression model for a nonterminal stage is that
the optimal decision rule at each subsequent stage is unknown.
Another difficulty is that, even if the optimal decision rule at
each subsequent stage was known, the relevant response vari-
able is counterfactual for a sample observation that did not fol-
low the optimal action at each subsequent stage. The proposed
approach relies on the critical observation that posterior dis-
tributions can be derived from the previously fitted regression
models for the unknown optimal decision rule at each subse-
quent stage, and for the counterfactual response variables that
arise for a particular set of decision rules at subsequent stages.
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One distinguishing feature of our proposed BML approach is
that it treats the counterfactual response variables asmissing val-
ues, and multiply imputes them from their posterior predictive
distribution, which is derived from the previously fitted regres-
sion models. Our proposed BML approach also accounts for
uncertainty in the optimal decision rules at subsequent stages
by integrating over their corresponding posterior distributions,
which are derived from the previously fitted regression models
as well. Our proposed approach uses all of the available informa-
tion while accounting for the uncertainty due to the counterfac-
tual response variables for sample observations corresponding
to sub-optimal actions at subsequent stages, and the uncertainty
due to the optimal decision rules at subsequent stages being
unknown. By accounting for the uncertainty in the optimal deci-
sion rules, our proposed BML approach obviates the nonregu-
lar inferential challenges associated with Q-learning (see, e.g.,
Chakraborty,Murphy, and Strecher 2010). Because the Bayesian
regression models may be quite general, with their particular
forms chosen to accommodate the structure of the dataset being
analyzed, the proposed BML approach facilitates using Bayesian
regression modeling to investigate DTRs, including robust non-
parametric modeling.

The remainder of the article is as follows. In Section 2, we use
the two-stage setting to motivate the problem, establish nota-
tion, and describe limitations of many existing approaches. In
Section 3, we formalize the BML approach by giving modeling
requirements and defining the posterior quantities that are used
to identify optimal DTRs and measure uncertainty. In Section
4, we describe the backward induction Gibbs (BIG) sampler for
actually applying the BML approach in practice. In Section 6, we
report the results of two simulation studies that contrast various
implementations of the BML approach and comparable versions
of Q-learning. In Section 7, we conclude with a brief discussion.

2. Background and Notation

To focus on the main ideas, we restrict attention to the two-
stage setting. Extending the proposed approach to the general
K-stage setting is formally straightforward, but requires addi-
tional regression modeling and computation. Let Ak ∈ Ak
denote the action taken at stage k, for k = 1, 2, O1 ∈ O1 denote
baseline covariates, observed before stage 1, O2 ∈ O2 interim
covariates, observed or updated between stages 1 and 2, and
Y ∈ Y the payoff. Depending on the particular application, part
of the payoffY may be observed between stages 1 and 2. In this
case, we let Y = Y1 +Y2, where Y1 ∈ Y1 is observed between
stages 1 and 2, and Y2 ∈ Y2 is observed after stage 2. For exam-
ple, if the payoff Y is overall survival and stage 2 initiates at
disease progression, then Y1 is the time to disease progression,
and Y2 is the time from disease progression to death, so that
Y = Y1 +Y2 is overall survival. We refer to Y1 as the initial
payoff, and Y2 as the subsequent payoff. In other applications,
no part of Y is observed between stages 1 and 2; rather, Y is
observed only after stage 2. In this case, we let Y1 = 0 and thus
Y = Y2. For example, in a study of two-stage anti-hypertensive
drug regimes, Y may be systolic blood pressure at the end of
stage 2. In the two-stage setting, a general schematic for the full

sequence of possible observables and actions is

O1 → A1 → (Y1,O2) → A2 → Y2.

We use an over-bar to denote accumulated history, with
O2 = (O1,A1,Y1,O2) ∈ O2 the patient’s history at stage 2,
prior to A2, andO1 = O1 the history at the start of stage 1, prior
to A1. Because Ok is observed before Ak, k = 1, 2, it can be
used to choose Ak. There are many multi-stage settings, and we
envision that the BML approach can be used for investigating
DTRs in any such setting.

Themulti-stage inferential problem is defined in terms of the
following parameters. GivenO1, we denote themean initial pay-
off under action a1 at stage 1 by

μ1(a1 |O1) = E[Y1 |O1,A1 = a1].

Given O2, we denote the mean subsequent payoff under action
a2 at stage 2 by

μ2(a2 |O2) = E[Y2 |O2,A2 = a2].

Given O1, we denote the mean payoff under action a1 at stage 1
and a2 at stage 2 by

μ(a1, a2 |O1)

= E[Y |O1,A1 = a1,A2 = a2]
= E[Y1 |O1,A1 = a1] + E[Y2 |O1,A1 = a1,A2 = a2]

= μ1(a1 |O1)+
∫
μ2(a2 |O1,A1 = a1,Y1 = y1,O2 = o2)

×g2(y1, o2 |O1,A1 = a1) d(y1, o2),

where we denote the joint conditional distribution of (Y1,O2)

given (O1,A1) asG2. In the sequel, without loss of generality we
assume that larger payoffs are better. Therefore, ifμ2(a2 |O2) >

μ2(a′
2 |O2), then a2 is a better action than a′

2 for a patient
with current history O2 at stage 2, and similarly for other
comparisons.

In the two-stage setting, a DTR consists of two decision
rules,

d1 : O1 → A1 at stage 1 and d2 : O2 → A2 at stage 2.

The decision rules, dk(Ok), k = 1, 2, define amapping from cur-
rent patient history to an action at the corresponding stage. We
use the notational convention of replacing a1, a2, or (a1, a2)with
d1, d2, or d = (d1, d2), respectively, to mean that the action or
actions are taken according to the corresponding decision rules.
For example, we useμ2(d2 |O2) to denote the mean subsequent
payoff when the stage 2 action is taken according to the deci-
sion rule d2 given O2. The primary objective is to identify the
optimal DTR, dopt , which is defined as the set of decision rules,
doptk (Ok), k = 1, 2, that provide the largest mean payoff. Follow-
ing dynamic programming (Bellman 1957),

dopt2 (O2) = arg sup
a2∈A2

μ2(a2 |O2) ∀ O2 ∈ O2,

dopt1 (O1) = arg sup
a1∈A1

μ(a1, d
opt
2 |O1) ∀ O1 ∈ O1.

That is, dopt2 (O2) assigns the stage 2 action that achieves the
largest mean subsequent payoff, Y2, given O2, and dopt1 (O1)
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assigns the stage 1 action that achieves the largest mean payoff,
Y = Y1 +Y2, given O1 and assuming that the optimal action is
taken at stage 2. In particular, dopt1 depends on dopt2 , but not con-
versely. Because the above quantities are unknown in practice,
they must be estimated using observed data.

Many approaches have been proposed for identifying opti-
mal DTRs. Q-learning (Watkins 1989) is a parametric approach
for optimizing DTRs that is easy to implement and understand,
and that has received a great deal of attention (Murphy 2005). In
the two-stage setting, Q-learning requires regression models for
the two Q-functions, which are related to the previously defined
quantities as follows:

Q2(O2,A2) = μ2(A2 |O2),

Q1(O1,A1) = μ(A1, d
opt
2 |O1)

= μ1(A1 |O1)+ sup
a2∈A2

μ2(a2 |O2).

In practice, approximate dynamic programming is used to esti-
mate the optimal DTR (see, e.g., Nahum-Shani et al. 2012).
Because linear regression models typically are used for the Q-
functions, model misspecification is a concern.

Murphy (2003) and Robins (2004) proposed semiparamet-
ric approaches that are more robust to model misspecification
thanQ-learning.Moodie, Richardson, and Stephens (2007) pro-
vided a review of these approaches, and showed that they are
closely related. Briefly, both approaches iteratively identify opti-
mal decision rules by estimating contrasts like μ2(a2 |O2)−
μ2(d

re f
2 |O2) and μ(a1, d

opt
2 |O1)− μ(dre f1 , dopt2 |O1), where

dre fk , k = 1, 2 are particular reference decision rules. These con-
trasts often are referred to as “blip” functions (Robins 2004)
or “regrets” (Murphy 2003). As Chakraborty, Murphy, and
Strecher (2010) discussed, Q-learning and these semiparametric
approaches suffer from nonregularity due to the need to com-
pute the supremum over A2 in the definitions of Q1(O1,A1)

and μ(a1, d
opt
2 |O1)− μ(dre f1 , dopt2 |O1) in the context of fre-

quentist inference. As a result, these methods encounter dif-
ficulties in quantifying uncertainty about Q1(O1,A1) and
μ(a1, d

opt
2 |O1)− μ(dre f1 , dopt2 |O1).

Zhao et al. (2015) proposed three nonparametricmethods for
optimizing DTRs based on outcome weighted learning (OWL),
which treats identifying optimal decision rules as a classification
problem. In contrast with the above methods, which infer opti-
mal decision rules from certain models fit to the observed data,
these OWL methods retrospectively investigate the differences
between subjects with observed high and low rewards to deter-
mine what the optimal actions should be relative to the actual
actions taken for different groups of patients (Zhao et al. 2015).
In the two-stage setting, the OWL methods derive the optimal
DTR by maximizing the mean payoff through the identity

μ(d) = E

[(∑2
k=1Yk

) ∏2
k=1 1{Ak = dk(Ok)}∏2

k=1 Prob(Ak = ak |Ok)

]
,

where 1{·} is a binary indicator andμ(d) denotes themean pay-
off under d. An important limitation shared by the backward
(BOWL) and iterated (IOWL) versions of the OWL approach
is that, to optimize the stage 1 action, these methods only use

the sample observations corresponding to the estimated opti-
mal stage 2 action. Because the number of sample observations
corresponding to the optimal actions for a particular set of deci-
sion rules quickly diminishes as the number of stages increase,
BOWL and IOWL can be inefficient. OWL methods, and the
related doubly robust augmented value search method of Zhang
et al. (2013), also are limited by the fact that they do not easily
accommodate more than two actions at each stage.

Many likelihood-basedmethods, both Bayesian and frequen-
tist, have been used in practice to identify optimal DTRs. See,
for example, Thall, Millikan, and Sung (2000), Thall et al.
(2007), Arjas and Saarela (2010), Zajonc (2012), Lee et al.
(2015), and Xu et al. (2016). Likelihood-based methods esti-
mate the joint distribution of (Y2,O2,Y1) given (A2,A1,O1),
and then either apply dynamic programming or a full numer-
ical search of the action space to identify the optimal DTR,
which can be nontrivial. Typically, a sequence of conditional
regression models are fitted to the observed data, for exam-
ple, Y2 given (O1,A1,Y1,O2,A2), O2 given (O1,A1,Y1), and
Y1 given (O1,A1). Chakraborty and Murphy (2014) referred to
this as a “dynamical systems model.” Likelihood-based meth-
ods require modeling that becomes increasingly complex in the
dimension of O2, which can be large in practice. This prob-
lem becomes worse as the number of stages increases as well.
Moreover, the conditional distribution of O2 given (O1,A1,Y1)
is not of direct interest, and misspecifying this aspect of the
model may prove detrimental for identifying the optimal DTR.
The greater modeling burden of likelihood-based methods is
a disadvantage compared to the other approaches mentioned
above.

Our proposedBMLapproach obviatesmany of the challenges
associated with the approaches mentioned above, in the follow-
ing ways:

(i) In contrast with Q-learning and the related semipara-
metric approaches, it produces measures of uncertainty
with good coverage in nonregular settings.

(ii) In contrast with value search methods like OWL, it uses
the available information from sample observations that
did not follow the DTR under investigation.

(iii) In contrast with likelihood-based methods, it does not
require directly modeling the covariate processes.

Our proposed BML approach is most closely related to
approximate dynamic programming methods like Q-learning,
but it naturally exploits flexible Bayesian regression modeling.
This helps to alleviate concerns about model misspecification, a
major criticism of Q-learning. We envision that our proposed
BML approach can be used to develop methods for identify-
ing optimal DTRs in many settings with various payoff struc-
tures, including real-valued, count, binary, and time-to-event
outcomes. We focus on settings with payoffs that are either real-
valued or binary, however.

3. Proposed Approach

To develop the proposed BML approach, we use the potential
outcome notation of Rubin (1974). We let Y (a1, a2) denote
the payoff that would be observed when action a1 is taken at
stage 1 and action a2 is taken at stage 2. We similarly denote
the three other potential outcomes in the two-stage setting,
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Y2(a1, a2), Y1(a1), and O2(a1). We assume the potential out-
comes are consistent, that is, an observed outcome corresponds
to the potential outcome for the action(s) actually taken. For
example, if we observe (o1, a1, y1, o2, a2, y2), then Y1(a1) = y1,
O2(a1) = o2, Y2(a1, a2) = y2, and Y (a1, a2) = y (= y1 + y2).
We assume Prob(Ak = ak |Ok), k = 1, 2, does not depend on
subsequent potential outcomes, that is, the sequential random-
ization assumption. These assumptions facilitate identifying the
causal effects of the actions at each stage (Rubin 1990).

We use Y (a1, d
opt
2 ) to denote the payoff that would be

observed when action a1 is taken at stage 1 and the corre-
sponding optimal action is taken at stage 2 as stipulated by dopt2 ,
which depends on the patient history at stage 2 that would be
observed when action a1 is taken at stage 1, that is, O2(a1) =
(o1, a1,Y1(a1),O2(a1)).WedefineY2(a1, d

opt
2 ) similarly.Weuse

Y1(d
opt
1 ) and O2(d

opt
1 ) to denote the interim payoff and covari-

ates that would be observed at stage 2 when the optimal action
is taken at stage 1 as stipulated by dopt1 . We useY (dopt ) to denote
the payoff that would be observed when the optimal actions are
taken at both stages 1 and 2. We defineY2(dopt ) similarly.

A brief overview of the proposed approach is as follows. The
stage 2 regression model uses Y2(A1,A2) as the response vari-
able and (O2,A2) as covariates. The stage 1 regression model
usesY (A1, d

opt
2 ) as the response variable and (O1,A1) as covari-

ates. The stage 2 regressionmodel is estimated first, and it is used
to identify dopt2 and the relevant potential payoff that defines the
response variable in the stage 1 regression model for each sam-
ple observation. For example, if dopt2 (o2) = a2, thenY (a1, a2) is
the relevant stage 1 response variable for a sample observation
with O2 = o2 = (o1, a1, y1, o2). The stage 1 regression model is
estimated second, and it is used to identify dopt1 . Together, the
fitted stage 1 and 2 regression models provide a statistical basis
for identifying the optimal two-stageDTR, and computing other
quantities of interest, including the posterior probability that a
certain action is optimal for a specific patient history at a partic-
ular stage.

As described in detail below, for a sample observation with
(o1, a1, y1, o2, a2, y2), the consistency assumption ensures that
O2(a1) = o2. Therefore, given dopt2 , the relevant potential pay-
off that defines the stage 1 response variable, that is,Y (a1, d

opt
2 ),

can be determined for this observation. This critical result facil-
itates actually fitting the stage 1 regression model to a particular
set of sample observations. The value ofY (a1, d

opt
2 )may or may

not be observed, however. In particular, for a sample observa-
tion corresponding to the optimal action at stage 2, Y (a1, d

opt
2 )

is the observed payoff. By contrast, for a sample observation
corresponding to a sub-optimal action at stage 2, Y (a1, d

opt
2 ) is

counterfactual. Because the posterior predictive distribution for
this unobserved payoff can be derived from the previously fitted
stage 2 regressionmodel, we average over this distribution when
fitting the stage 1 regression model. Moreover, because the pos-
terior distribution for dopt2 can be derived from the previously
fitted stage 2 regression model, we average over this distribu-
tion when fitting the stage 1 regression model as well. Thus, the
stage 2 regression model has a dual purpose, to provide infor-
mation about (i) the optimal decision rule at stage 2, and (ii)
the counterfactual response variables in the stage 1 regression
model that result for a particular decision rule at stage 2. The
proposed approach accounts for uncertainty in the optimal stage

2 decision rule and incorporates all the available information
about the value of the counterfactual response variables when
fitting the stage 1 regression model. We formalize the proposed
approach below, and then in Section 4 we describe an efficient
sampling algorithm that facilitates using the proposed approach
in practice.

3.1. Stage 2 RegressionModel

Our BML approach requires a stage 2 regression model for the
distribution of the subsequent payoff conditional on the current
history and the viable actions at stage 2. This model is defined
generally as follows:

Y2(A1,A2) |O2,A2; θ2 ∼ f2(y2 |O2,A2; θ2),

θ2 ∼ p2,0(θ2), (1)

where θ2 is an unknown parameter vector, with prior distri-
bution p2,0. This model can be a standard Bayesian regres-
sion model based on a linear predictor although, if desired,
a Bayesian nonparametric regression model can be used
to enhance robustness (see, e.g., Müller et al. 2015). We
discuss choosing a specific f2 and p2,0 in greater detail
below, in Section 5. Denote the observed data as Dn =
{(o1,i, a1,i, y1,i, o2,i, a2,i, y2,i)}ni=1, which we assume consists of
n independent sample observations. The consistency assump-
tion implies that Y2,i(a1,i, a2,i) = y2,i and O2,i(a2,i) = o2,i, for
i = 1, . . . , n. Therefore, applying Bayes’ theorem, the stage 2
posterior distribution is

p2,n(θ2 |Dn) ∝ p2,0(θ2)×
n∏

i=1

f2(y2,i |O2 = o2,i,A2 = a2,i; θ2),

(2)
and the stage 2 posterior predictive distribution is

f2,n(y2 |O2,A2; Dn) =
∫

f2(y2 |O2,A2; θ2) p2,n(θ2 |Dn) dθ2.

(3)
Other posterior quantities arising from the stage 2model that

we use later are as follows. Given θ2, the model-based optimal
decision rule at stage 2 is

dopt2 (O2; θ2) = arg sup
a2∈A2

μ2(a2 |O2; θ2)

= arg sup
a2∈A2

E[Y2(A1,A2) |O2,A2 = a2; θ2],

where the expectation is with respect to f2(y2 |O2,A2; θ2)

defined in (1), that is, the conditional density function assumed
for the subsequent payoff in the stage 2 regression model.
Because dopt2 (O2; θ2) depends on θ2, the optimal decision rule
at stage 2 has a posterior distribution, which we denote as
p2,n(d

opt
2 |Dn). The posterior optimal decision rule at stage 2 is

d̂opt2 (O2) = arg sup
a2∈A2

μ̂2(a2 |O2)

= arg sup
a2∈A2

E[Y2(A1,A2) |O2,A2 = a2; Dn], (4)

where the expectation is taken with respect to
f2,n(y2 |O2,A2; Dn) defined in (3), that is, the stage 2
posterior predictive distribution. In (4), μ̂2(a2 |O2) is the
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posterior analog of the previously defined μ2(a2 |O2), that is,
the mean subsequent payoff when A2 = a2 given O2. Given
O2, the posterior probability that a2 is the optimal action at
stage 2 is

π(a2 |O2;Dn) = Prob
[
a2 = dopt2 (O2) |O2;Dn

]
=

∫
1
{
a2 = dopt2 (O2; θ2)

}
p2,n(θ2 |Dn) dθ2. (5)

We refer to π(a2 |O2;Dn) as the “posterior optimality probabil-
ity” of action a2 at stage 2 for a patient with O2.

3.2. Stage 1 RegressionModel

Our BML approach requires a stage 1 regression model for the
distribution of the payoff conditional on the baseline covari-
ates and viable actions at stage 1, assuming that the optimal
action will be taken at stage 2. This model is defined generally as
follows:

Y
(
A1, d

opt
2

)
|O1,A1; θ1

ind∼ f1(y |O1,A1; θ1),

θ1 ∼ p1,0(θ1), (6)

where θ1 is an unknown parameter vector, with prior p1,0.
Because the stage 1 regression model does not include the
interim variables (Y1(A1),O2(A1)) as covariates, it facilitates
causal inference for the stage 1 actions, assuming the cor-
responding optimal action will be taken at stage 2. How-
ever, the stage 1 response variable, Y (A1, d

opt
2 ), depends on

(Y1(A1),O2(A1)) through dopt2 . Therefore, to actually fit this
model using the observed data, wemust establish that it is possi-
ble to identify the relevant stage 1 response variable correspond-
ing to each sample observation.

To explain our approach, we assume temporarily that dopt2 is
known. Once we have established the proposed BML approach
for the case where dopt2 is known, we will explain how to
deal with the case where dopt2 is not known. We rely on
the assumption that the potential outcomes are consistent,
which implies that Y1,i(a1,i) = y1,i and O2,i(a1,i) = o2,i, for i =
1, . . . , n. Therefore, aopt2,i = dopt2 (o2,i) is the optimal action at
stage 2 corresponding to the ith sample observation, and thus,
{Yi(a1,i, aopt2,i )}ni=1 are the relevant stage 1 response variables cor-
responding to the observed data. The value of eachYi(a1,i, a

opt
2,i ),

i = 1, . . . , n, may or may not be known, however. In particular,
if aopt2,i = a2,i, then Yi(a1,i, a

opt
2,i ) = yi. By contrast, if aopt2,i �= a2,i,

thenYi(a1,i, a
opt
2,i ) = y1,i +Y2,i(a1,i, a

opt
2,i ), whereY2,i(a1,i, a

opt
2,i ) is

counterfactual. Therefore, if a sample observation corresponds
to the optimal action at stage 2, then the value of the stage 1
response variable for this sample observation is known;whereas,
if a sample observation corresponds to a sub-optimal action at
stage 2, then the value of the stage 1 response variable for this
sample observation is not known. The key insight is that we
can use the previously fitted stage 2 regression model to derive
the posterior predictive distribution for the counterfactual stage
1 response variables, {Y2,i(a1,i, aopt2,i ) : a2,i �= aopt2,i }ni=1. Our pro-
posed BML approach exploits the stage 2 regressionmodel when
calculating the stage 1 posterior distribution by averaging over

the posterior predictive distribution for the counterfactual stage
1 response variables.

To ease notation, we denote ymis
2 = {Y2,i(a1,i, aopt2,i ) : a2,i �=

aopt2,i }ni=1. The stage 1 posterior distribution is

p1,n
(
θ1 | dopt2 ; Dn

)
∝ p1,0(θ1)

×
∏

{i:a2,i=aopt2,i }
f1

(
y1,i + y2,i | o1,i, a1,i; θ1

)

×
∫ ⎡⎢⎣ ∏

{i:a2,i �=aopt2,i }
f1

(
y1,i + ymis

2,i | o1,i, a1,i; θ1
)⎤⎥⎦

× f2,n
(
ymis
2 |Dn

)
dymis

2 , (7)

where f1(y |O1,A1; θ1) and p1,0(θ1) are specified in (6), and
f2,n(ymis

2 |Dn) is the posterior predictive distribution for the
counterfactual stage 1 response variables, ymis

2 . The stage 1 pos-
terior predictive distribution is

f1,n
(
y |O1,A1, d

opt
2 ; Dn

)
=

∫
f1(y |O1,A1; θ1) p1,n

(
θ1 | dopt2 ;Dn

)
dθ1. (8)

Because the stage 1 posterior distribution in (7), and the stage 1
posterior predictive distribution in (8), depends on the optimal
stage 2 decision rule through the stage 1 response variable, we
include dopt2 to the right of the conditioning bar.

Given θ1, themodel-based optimal decision rule at stage 1 is

dopt1 (O1; θ1) = arg sup
a1∈A1

μ(a1, d
opt
2 |O1; θ1)

= arg sup
a1∈A1

E[Y (A1, d
opt
2 ) |O1,A1 = a1; θ1],

where the expectation is with respect to f1(y |O1,A1; θ1)

defined in (6), that is, the conditional density function assumed
for the payoff in the stage 1 regression model. Because
dopt1 (O1; θ1) depends on θ1, the optimal decision rule at stage 1
has a posterior distribution, which we denote as p1,n(d

opt
1 |Dn).

The posterior optimal decision rule at stage 1 is

d̂opt1 (O1) = arg sup
a1∈A1

μ̂
(
a1, d

opt
2 |O1

)
= arg sup

a1∈A1

E
[
Y

(
A1, d

opt
2

)
|O1,A1 = a1; Dn

]
, (9)

where the expectation is taken with respect to
f1,n(y |O1,A1, d

opt
2 ;Dn) defined in (7), that is, the stage 1

posterior predictive distribution. In (9), μ̂(a1, d
opt
2 |O1) is the

posterior analog of the previously defined μ(a1, d
opt
2 |O1), that

is, the mean payoff when A1 = a1 and the optimal action is
taken at stage 2, given O1. While d̂opt1 (O1) in (9) is a mapping
from the baseline covariates to a stage 1 action, it explicitly
reflects the assumption that the optimal action is taken at stage
2. The posterior optimal two-stage DTR, d̂

opt
, consists of the

posterior optimal rules at stages 1 and 2, that is, d̂optk (Ok),
k = 1, 2. The posterior optimality probability of action a1 at
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stage 1 for a patient with O1 is

π(a1 |O1;Dn) = Prob
[
a1 = dopt1 (O1) | dopt2 ;Dn

]
=

∫
1
{
a1 = dopt1 (O1; θ1)

}
p1,n(θ1 | dopt2 ;Dn) dθ1.

(10)

So far, the derivations of the stage 1 posterior quantities have
relied on the assumption that the optimal decision rule at stage 2
is known. To deal with the case where the optimal decision rule
at stage 2 is not known, we calculate the stage 1 posterior dis-
tribution using the model-based optimal stage 2 decision rule,
dopt2 (O2 | θ2), and average over the stage 2 posterior distribution
for θ2. That is, when dopt2 is unknown, the stage 1 posterior dis-
tribution is

p1,n
(
θ1 | dopt2 ; Dn

)
∝ p1,0(θ1)

×
∫ { ∏

{i:a2,i=dopt2 (o2,i;θ2)}
f1(y1,i + y2,i | o1,i, a1,i; θ1)

×
∫ [ ∏

{i:a2,i �=dopt2 (o2,i;θ2)}
f1(y1,i + ymis

2,i | o1,i, a1,i; θ1)

]

× f2,n(ymis
2 |Dn) dymis

2

}
p2,n(θ2 |Dn)dθ2, (11)

where p2,n(θ2 |Dn) is the stage 2 posterior distribution defined
in (2). The other stage 1 posterior distributions and quantities
retain the samedefinitions as before, but are derivedwith respect
to the revised stage 1 posterior distribution in (11). In this way,
the stage 1 posterior distribution accounts for uncertainty that
results from the optimal decision rule at stage 2 being unknown.

4. The BIG Sampler for Posterior Estimation

Because the response variables in the stage 2 regression model
are not counterfactual, sampling from and estimating the stage
2 posterior distribution defined in (2) is feasible using standard
Bayesian methods and software (see, e.g., Carlin and Louis
2009). By contrast, because the response variables in the stage
1 regression model may be counterfactual, sampling from and
estimating the stage 1 posterior distribution defined in (11)
is not immediately feasible using standard Bayesian methods
and software. To address this problem, we propose a general
sampling algorithm, which we call the backward induction
Gibbs (BIG) sampler. This sampling algorithm greatly facil-
itates computation through Bayesian data augmentation. In
particular, we sample an optimal stage 2 decision rule from its
posterior distribution, and then we sample the counterfactual
response variables in the stage 1 regression model that result
for this rule from their joint posterior predictive distribution.
Augmenting the dataset in this way makes sampling from the
stage 1 posterior distribution feasible using standard methods,
and thus the BIG sampler is a practical tool for actually using
the proposed BML approach in practice.

The BIG sampler consists of three steps:
Step 1. Sample θ2 ∼ p2,n(θ2 |Dn) and set aopt2,i =

dopt2 (o2,i; θ2), for i = 1, . . . , n, where p2,n(θ2 |Dn) is

the stage 2 posterior distribution and dopt2 (o2,i; θ2) is
the model-based optimal decision rule at stage 2.

Step 2. Sample ymis
2 ∼ f2,n(ymis

2 |Dn), where ymis
2 =

{Y2,i(a1,i, aopt2,i ) : a2,i �= aopt2,i }ni=1, and f2,n(ymis
2 |Dn)

is the posterior predictive distribution for ymis
2 . For

i = 1, . . . , n, if a2,i = aopt2,i , then set yopt2,i = y2,i, and if
a2,i �= aopt2,i , then set yopt2,i = ymis

2,i .
Step 3. Sample θ1 ∼ p1,n(θ1 |Dopt

n ), where Dopt
n =

{(o1,i, a1,i, y1,i, yopt2,i }ni=1,

p1,n
(
θ1 |Dopt

n

)
∝ p1,0 (θ1)×

n∏
i=1

f1
(
y1,i + yopt2,i | o1,i, a1,i; θ1

)
,

f1(y |O1,A1; θ1) is the conditional density function
assumed for the payoff in the stage 1 regression
model, and p1,0(θ1) is the prior for θ1 in the stage 1
regression model.

In Step 1, θ2 is sampled from its posterior distribution, and
the optimal stage 2 action for each sample observation is deter-
mined using the corresponding model-based optimal decision
rule at stage 2. In Step 2, given the optimal actions at stage 2 that
were determined in Step 1, the counterfactual response variables
in the stage 1 regressionmodel are sampled from their posterior
predictive distribution, which is derived from the previously
fitted stage 2 regression model as well. Depending on the spe-
cific stage 2 regression model, often this step can be carried out
first by sampling θ2 ∼ p2,n(θ2 |Dn), and second by sampling
ymis
2,i ∼ f2,n(ymis

2,i | θ2;Dn), for i = 1, . . . , n. In Step 3, θ1 is sam-
pled from its full posterior distribution conditional on the aug-
mented datasetDopt

n thatwas obtained in Steps 1 and 2.Critically,
the full conditional stage 1 posterior distribution, p1,n(θ1 |Dopt

n ),
has the same structure as the posterior distribution that would
arise when the response variables in the stage 1 regressionmodel
are not counterfactual. Therefore, sampling from p1,n(θ1 |Dopt

n )

is straightforward using standard Bayesian methods and soft-
ware. Sampling from the stage 1 posterior distribution defined
in (11) is carried out simply by iterating Steps 1–3.

Because the augmented dataset, Dopt
n , changes with each

iteration of the BIG sampler, if a Markov chain Monte Carlo
(MCMC) algorithm is needed in Step 3 to sample from the full
conditional stage 1 posterior distribution, then posterior con-
vergence must be attained at every iteration of the BIG sam-
pler to ensure that the resulting samples are actually from the
stage 1 posterior distribution. In practice, because Dopt

n does
not change substantially between iterations, by initializing the
MCMC algorithm in Step 3 at its previous state, posterior con-
vergence tends to be very fast. Moreover, because information
need not be shared between iterations of the BIG sampler, par-
allelization can be used to reduce computing time.

For completeness, we provide explicit sample-based calcula-
tions for the posterior quantities derived in Section 3. We use
{θ(g)2 }Gg=1 to denote G samples from (2), obtained using a Gibbs
sampler, and {θ(g)1 }Gg=1 to denote G samples from (11), obtained
using the BIG sampler. To calculate the posterior quantities
required by the proposed method, these samples can be used as
follows:
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μ̂2(a2 |O2) = G−1
G∑

g=1

μ2

(
a2 |O2; θ

(g)
2

)
,

π(a2 |O2;Dn) = G−1
G∑

g=1

1
{
a2 = dopt2

(
O2; θ

(g)
2

)}
,

μ̂
(
a1, d

opt
2 |O1

)
= G−1

G∑
g=1

μ
(
a1, d

opt
2 |O1; θ

(g)
1

)
,

π(a1 |O1;Dn) = G−1
G∑

g=1

1
{
a1 = dopt1

(
O1; θ

(g)
1

)}
,

where μ2(a2 |O2; θ2), dopt2 (O2; θ2), μ(a1, d
opt
2 |O1; θ1),

dopt2 (O2; θ2), and dopt1 (O1; θ1) are defined previously in
Section 3.

5. Establishing RegressionModels and Priors

While theBMLapproach for optimizingDTRs and theBIG sam-
pler for computing posteriors both are very general, as in any
Bayesian data analysis the regression models and priors must be
chosen carefully. This should be done to reflect both the covari-
ates and the range of the response variable at each stage in the
dataset at hand, and also to ensure a reasonable degree of robust-
ness. That is, the problem of Bayesian regression modeling is
not obviated by our proposed approach. While we cannot give
exhaustive guidelines for regression modeling and prior specifi-
cation here, we do offer advice for specifying Bayesian regression
models and priors when applying the proposed BML approach
in some common multi-stage settings.

The structure of the response variable at each stage is impor-
tant for determining an appropriate series of regression models
to implement the BML approach. Common structures are real-
valued (e.g., log mean arterial pressure), binary (e.g., resolution
of infection), count (e.g., number of seizures), and time-to-event
(e.g., survival). A series of regression models that is appropriate
for a real-valued response variable, is not appropriate for a
binary, count, or time-to-event response variable. That said,
the generic Bayesian regression problem is to determine the
conditional distribution of the response variable given the
covariates, with particular interest in the mean. In the two-stage
setting, the stage 2 Bayesian regression problem is to determine
the conditional distribution of Y2(A1,A2) given (O2,A2), and
the stage 1 Bayesian regression problem is to determine the
conditional distribution of Y (A1, d

opt
2 ) given (O1,A2). Because

the optimal decision rules are identified through the means of
these conditional distributions, it is critical that the mean in
each regression model is robust. If the mean is not robust and
misspecified, then the identified decision rules may be far from
optimal. Motivated by this concern, we suggest implementing
our BML approach with a series of Bayesian nonparametric
(BNP) regression models chosen to reflect the structure of the
response variable at each stage in the dataset at hand. Critically,
BNP regression models facilitate robust estimation of the mean,
and if desired, of the entire conditional distribution. For an
overview of BNP regression, see Müller et al. (2015, , sec.
4). We recommend some robust BNP regression models for
implementing the BML approach below.

For a multi-stage setting with a real-valued payoff, Bayesian
additive regression trees (BART) (Chipman, George, and
McCulloch 2010) offer a powerful framework for implementing
the BML approach. BART assumes a nonparametricmean func-
tion, and thus can identify nonlinear associations and interac-
tions between covariates and the mean of the response variable.
Because we use BART in our simulation study in Section 6,
we provide some details here. Using Z to denote the response
variable, and x a realization of the covariates, BART assumes

Z =
m∑
j=1

g(x;Tj,Mj)+ ε, ε ∼ Normal(0, σ 2),

where ε is the residual, g(x;Tj,Mj) is a binary regression
tree, and m is the number of trees. Each binary regression
tree is determined by a series of splitting rules (Tj) and the
set of quantities associated with each terminal node (Mj). For
example, if x is a single covariate, Tj might be defined by the
binary splitting rule, x < 0 versus x ≥ 0, and then Mj given
Tj consists of the two quantities, μ j,1, corresponding to x < 0,
and μ j,2, corresponding to x ≥ 0. As another example, if x
includes two covariates x1 and x2, Tj might be defined by the
binary splitting rules, x1 < 0 versus x1 ≥ 0, and for x1 < 0,
x2 < 0 versus x2 ≥ 0, and then Mj given Tj consists of the
three quantities,μ j,1, corresponding to x1 < 0 and x2 < 0,μ j,2,
corresponding to x1 < 0 and x2 ≥ 0, and μ j,3, corresponding
to x1 ≥ 0. BART assumes the mean function is a sum ofm trees,
and thus the mean response at a particular x is the sum of them
quantities associated with the terminal node that corresponds
to x in each of the m trees. Chipman, George, and McCulloch
(2010) showed that BART is a robust model that can capture
nonlinear trends and interactions between the covariates and
the mean response. Although they recommend a default model
with m = 200 trees or selecting m via cross-validation, in our
experience BART models with between 20 and 50 trees often
are adequately flexible and computationally efficient. Other
potentially useful BNP regression models for implementing
the BML approach in multi-stage settings with a real-valued
payoff include Gaussian processes and fully nonparametric
conditional regression, see, for example, Müller et al. (2015, ,
sec. 4); we do not explore these options in the sequel, however.

A particular BART model is determined by
(T1,M1), . . . , (Tm,Mm) and σ , and these require careful
prior specification. Chipman, George, and McCulloch (2010)
provided detailed guidance in this regard. Briefly, they suggested
specifying the joint prior such that

p0((T1,M1), . . . , (Tm,Mm), σ ) = p0(σ )
∏
j

p0(Mj|Tj)p0(Tj),

where p0(Mj|Tj) and p0(Tj) have the same form for each
j = 1, . . . ,m. Following Chipman, George, and McCulloch
(1998), they define p0(Tj) such that each variable in x
has an equal probability of being selected for a splitting
rule, the value where the split occurs is uniformly dis-
tributed over the eligible domain for the selected covari-
ate, and the probability that a particular split is terminal is
equal to α/(1 + d)β , where α ∈ (0, 1), β ∈ [0,∞), and d ∈
{0, 1, 2, . . .} is the depth of the split (i.e., the number of
preceding splits). They recommend the default values α =
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0.95 and β = 2, which encourage individual trees to be small
(i.e., ≤ 5 terminal nodes), but do not prohibit large individual
trees a posteriori. They define p0(Mj|Tj) such that each quantity
associated with a particular terminal node is assigned the same
prior distribution, namely, a conjugate Normal(μ0, σ

2
0 ) distri-

bution. They develop a strategy for specifying μ0 and σ0 based
on the prior probability that E[Z |X = x] is between the mini-
mum and maximum for the response variable in the dataset at
hand, and they recommend setting this prior probability equal
to 0.95. For p0(σ ), they recommend using a conjugate inverse-
chi-square distribution with a substantial prior probability, for
example, 0.90, that σ is less than the sample standard devia-
tion. Posterior inference for BART can be carried out using the
R package BayesTree.

For similar reasons described above, the probit BART model
(Chipman,George, andMcCulloch 2010) is appealing for imple-
menting the BML approach in amulti-stage settingwith a binary
payoff. Becausewe use the probit BARTmodel in one of our sim-
ulation studies in Section 6, we provide some details here. The
probit BART model assumes

Prob (Z = 1 | x) = �

⎡⎣ m∑
j=1

g(x;Tj,Mj)

⎤⎦ ,
where �(·) is the standard normal cumulative distribu-
tion function. The probit BART model is determined
by (T1,M1), . . . , (Tm,Mm), and Chipman, George, and
McCulloch (2010) suggested a similar prior as before. One
difference is that they recommend specifying p(Mj|Tj) based
on the prior probability that Prob(Z = 1 |X = x) is between
�(−3 + q) and �(3 + q), where q is an offset such that the
prior mean is �(q). Posterior inference for the probit BART
model also can be carried out using the BayesTree package
in R.

Formulti-stage settings with a time-to-event payoff, the BML
approach could be implemented with BART survival models
proposed by Sparapani et al. (2016), or dependent Dirichlet pro-
cess models with Gaussian process base measures (DDP-GP)
proposed by Xu et al. (2016). For multi-stage settings with other
payoff structures, although we do not have detailed recommen-
dations for implementing theBMLapproach,we expect it to per-
formwell when using robust Bayesian regressionmodels that are
appropriate for the payoff in the dataset at hand.

6. Simulation Studies

We conducted two simulation studies that compare imple-
mentations of the proposed BML approach with Q-learning in
various two-stage settings. Our first simulation study consid-
ered a setting with a real-valued payoff, and the nine cases used
by Chakraborty, Laber, and Zhao (2013) and Laber et al. (2014),
which are categorized as nonregular (NR), near-nonregular
(NNR), or regular (R). The main purpose of this study was to
assess the performance of the BML approach for characteriz-
ing uncertainty about μ(a1, d

opt
2 |O1) in nonregular settings.

We implemented our BML approach using Bayesian linear
regression models with noninformative priors, and Q-learning
using linear regression models and an m-out-of-n bootstrap
(Chakraborty, Laber, and Zhao 2013). This comparison isolates

the differences between the two approaches for identifying
optimal rules and characterizing uncertainty. Our second simu-
lation study considered two other two-stage settings, each with
a different payoff structure. The first setting had real-valued
initial and subsequent payoffs, and the second setting had
binary initial and subsequent payoffs, where only observations
with Y1 = 0 move on to stage 2. The main purpose of our
second simulation study was to demonstrate the applicability
of the BML approach, and secondarily, to investigate the utility
of regression models with a nonparametric mean function for
identifying optimal decision rules. In both settings of our sec-
ond simulation study, we contrasted two implementations of the
BML approach with comparable versions of Q-learning, (i) the
BML approach using generalized linear regression models with
noninformative priors (“BML-GLM”) versus (ii) Q-learning
using generalized linear regression models (“QL-GLM”), and
(iii) the BML approach using BART models (“BML-BART”)
versus (iv) Q-learning using generalized additive regression
models (“QL-GAM”). We provide additional details and the
results for each simulation study in turn below. We also provide
R software to implement eachmethod and reproduce the results
of these simulation studies, see the supplementary material.

6.1. Simulation Studywith Nonregular Scenarios

Our first simulation study considered datasets with the
sequential structure, O1 → A1 → O2 → A2 → Y , where Ok ∈
{−1, 1}, Ak ∈ {−1, 1} and Y ∈ R. We implemented Q-learning
by assuming,

μ2(A2 |O2;β2)

= β2,0 + β2,1O1 + β2,2A1 + β2,3O1 × A1 + β2,4O2

+β2,5A2 + β2,6A2 × O1 + β2,7A2 × A1 + β2,8A2 × O2,

μ(A1, d
opt
2 |O1;β1) = β1,0 + β1,1O1 + β1,2A1 + β1,3O1 × A1,

and using the least-square estimates for βk, k = 1, 2. Q-learning
derives the estimate for β1 by using the pseudo-outcomes, ỹi =
supa2∈{−1,1} μ2(a2 | o2,i; β̂), as the response variable. To calcu-
late confidence intervals for μ2(A2 |O2;β2), we used the per-
centile bootstrap; whereas, to calculate confidence intervals for
μ(A1, d

opt
2 |O1;β1), we used the fixed α = 0.05 version of the

m-out-of-n bootstrap proposed by Chakraborty, Laber, and
Zhao (2013). Similarly, we implemented the BML approach by
assuming,

Y (A1,A2) = β2,0 + β2,1O1 + β2,2A1 + β2,3O1 × A1 + β2,4O2

+β2,5A2 + β2,6A2 × O1 + β2,7A2 × A1

+β2,8A2 × O2 + ε2,

Y (A1, d
opt
2 ) = β1,0 + β1,1O1 + β1,2A1 + β1,3O1 × A1 + ε1,

where εk ∼ Normal(0, σ 2
k ) and pk(βk, σ

2
k ) ∝ 1/σ 2

k , for
k = 1, 2. To sample from the stage 1 posterior distribution,
we used the BIG sampler described previously. The above
methods use the same specifications for the mean functions,
but different approaches for estimating and characterizing
uncertainty about these mean functions.

Following Laber et al. (2014) and Chakraborty, Laber, and
Zhao (2013), we generated observations as follows,
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Table . Simulation averages for  datasets each with n = 300 observations. POA= proportion of optimal actions assigned by the identified optimal decision rule for
observations with {ok,i}ni=1 , Bias= bias and RMSE= root mean square error of the estimatedmean evaluated at {ok,i}ni=1 and ak ∈ Ak , andW= average width and C
= coverage rate of the % interval for the mean evaluated at {ok,i}ni=1 and ak ∈ Ak .

BML (proposed approach) using linear regression models with noninformative priors

Stage  Stage 

Case Type POA Bias RMSE W C POA Bias RMSE W C

 NR . . . . . . − . . . .
 NNR . . . . . . − . . . .
 NR . . . . . . − . . . .
 NNR . . . . . . − . . . .
 NR . . . . . . − . . . .
 R . − . . . . . − . . . .
A R . − . . . . . − . . . .
B NR . . . . . . − . . . .
C NNR . . . . . . − . . . .

Q-Learning using linear regression models

Stage  Stage 

Case Type POA Bias RMSE W C POA Bias RMSE W C

 NR . . . . . . − . . . .
 NNR . . . . . . − . . . .
 NR . . . . . . − . . . .
 NNR . . . . . . − . . . .
 NR . . . . . . − . . . .
 R . − . . . . . − . . . .
A R . − . . . . . − . . . .
B NR . . . . . . − . . . .
C NNR . . . . . . − . . . .

Prob(O1 = 1) = 1 − Prob(O1 = −1) = 0.5

Prob(A1 = 1 |O1) = 1 − Prob(A1 = −1 |O1) = 0.5

Prob(O2 = 1 |A1) = 1 − Prob(O2 = −1 |A1) = expit{δ1O1 + δ2A1}
Prob(A2 = 1 |O2) = 1 − Prob(A2 = −1 |O2) = 0.5

Y (A1,A2) = α0 + α1O1 + α2A1 + α3O1 × A1 + α4O2

+α5A2 + α6A2 × O1 + α7A2 × A1

+α8A2 × O2 + ε,

where ε ∼ Normal(0, 1), and α and δ are specified in each case
to exhibit varying degrees of nonregularity (the values for α and
δ in each case are reported in the supplement). Case 1 is an
extreme nonregular setting where neither the covariates nor the
action at either stage affects the payoff. Case 2 is very similar
to Case 1, except that the stage 2 action now has a minuscule
effect on the payoff and dopt2 (O2) = 1. Case 3 is a nonregular
setting where the stage 2 action affects the payoff only for cur-
rent histories at stage 2 with A1 = 1, and assuming the optimal
action at stage 2, the stage 1 action has no effect on the payoff.
Case 4 is very similar to Case 3, except that the action at each
stage now has a small effect on the payoff, and dopt2 (O2) = 1
and dopt1 (O1) = −1. Case 5 is a nonregular setting where the
stage 2 action affects the payoff only for current histories with-
out A1 = −1 and O2 = −1, and assuming the optimal action at
stage 2, the stage 1 action has no effect on the payoff. Cases 6 and
A are regular settings, that is, where the stage 2 action affects the
payoff for all current histories at stage 2, and assuming the opti-
mal action at stage 2, the stage 1 action also affects the payoff.
Case B is a nonregular setting where the stage 2 action does not
affect the payoff for current histories at stage 2 with A1 = −1,
but assuming the optimal action at stage 2, the stage 1 action
has a modest effect on the payoff. Case C is very similar to Case

B, except that the stage 2 action has a minuscule effect on the
payoff for current histories at stage 2 with A1 = −1.

For each case, we applied the two methods to 1000 datasets
with either n = 100, 300, or 500 observations. For each dataset
andmethod, we calculated five metrics at each stage: (1) POA=
the proportion of sample observations that would be assigned
the optimal action based on the identified optimal decision rule
at that stage, (2) Bias = the average difference, and (3) RMSE =
the square root of the average squared difference between the
estimated mean and the true mean evaluated at each sample
observation’s current history and each action at that stage, and
(4)W95= the average width and (5) C95= coverage of the 95%
interval for the mean evaluated at each sample observation’s
current history and each action at that stage. POA ismeasure for
how well each method identifies the optimal decision rule, Bias
and RMSE are measures for how well each method estimates
the mean function, and W95 and C95 are measures for how
well each method characterizing uncertainty about the mean
function.

Table 1 contains the results of our first simulation study for
datasets with n = 300 observations. The results for datasets with
n = 100 and 500 observations are reported in the supplement.
Excepting Monte Carlo error associated with the BML method,
which can be made arbitrarily small by drawing additional
posterior samples, the two methods result in the same estimate
for μ2(A2 |O2), and thus have the same POA, Bias, and RMSE
at stage 2. The two methods result in intervals with similar
width and coverage rates as well, but the percentile bootstrap
for Q-learning is slightly anti-conservative. By contrast, the two
methods do not result in the same estimate for μ(A1, d

opt
2 |O1),

and thus do not necessarily had the same POA, Bias, and RMSE
at stage 1. In Case 4, the BMLmethod had a worse POA at stage
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1 than the Q-learning method, but in Cases A, B, and C it had a
slightly better POAat stage 1. The BMLmethod had smaller Bias
and RMSE in every NR and NNR case, but slightly larger Bias
and RMSE in the two R cases. Both methods resulted in more
conservative intervals at stage 1 for cases 1 and 2, which are
extreme null and near-null cases where the true regression coef-
ficients are all zero, or nearly zero. Although the BML method
tended to provide wider, more conservative intervals in the NR
and NNR cases than Q-learning based on them-out-of-n boot-
strap, it provided tighter intervals with the correct coverage rate
in R cases 6 and A. Similar patterns were present for the other
sample sizes that we considered. As the sample size increased,
both methods had larger POA and smaller Bias, RMSE, and
W95 at both stages. For all cases and sample sizes, the BML
method provided intervals with coverage rates near the nomi-
nal 95% rate, whereas when n = 100, the Q-learning method
provided intervals at both stages with coverage rates below the
nominal 95% rate. Regarding computational efficiency, the BML
method took 1 sec per dataset with n = 300 observations and
2000 posterior samples, whereas the Q-learning method took 7
sec per dataset with n = 300 observations and 2000 bootstrap
samples. That is, the BML method was about seven times faster
than the Q-learning method. Because direct sampling from the
relevant posterior distributions was feasible in this context, the
BML method was very fast.

6.2. Simulation Studywith Other Payoff Structures

We conducted a second simulation study that considered two
two-stage settings that differ from our first simulation study. In
the first setting, the sequential structure is O1 → A1 → Y1 →
A2 → Y2, where O1 ∈ (−1, 1), Ak ∈ {−1, 1} and Yk ∈ R,
k = 1, 2. The key difference between this setting and
our first simulation study is the initial payoff, Y1. After
exchanging O2 with Y1 in the stage 2 regression model
and Q-function, we implemented the BML-GLM and
QL-GLM methods similarly as before. We implemented the
BML-BART method using the default prior specifications and
m = 40 regression trees for both models, which we selected
after preliminary investigation based on one particular dataset.
We implemented the QL-GAMmethod by assuming,

μ2(A2 |Y 1) = ψ2,1(O1 |A1)+ ψ2,2(O1 |A2)+ φA2

×A1 + ψ2,3(Y1 |A2),

μ(A1, d
opt
2 |O1) = ψ1,1(O1 |A1),

where ψ2,1, ψ2,2, ψ2,3, and ψ1,1 are penalized splines. To fit
the above QL-GAM method, we used the mgcv package in R,
and to characterize uncertainty, we used the percentile boot-
strap.

In the second setting, the sequential structure isO1 → A1 →
Y1 → O2 → A2 → Y2, where Ok ∈ (−1, 1), Ak ∈ {−1, 1}, and
Yk ∈ {0, 1}, k = 1, 2. Moreover, subjects with Y1 = 1, that is,
subjects that responded in stage 1, did not continue onto stage
2, and thus Y ∈ {0, 1}. Because subjects with Y1 = 1 do not
provide information for the stage 2 regression model, for each
method we used the subset of subjects with Y1 = 0 to fit the
stage 2 regression model or Q-function. We implemented the

BML-GLM method using logistic regression models, and we
used theBayesLogit package inR for posterior sampling.We
implemented the BML-BARTmethod using probit BARTmod-
els with the default prior specifications and m = 20 regression
trees for both models. We specified the binary offset for each
probit BART model so that the prior mean was equal to the
empirical response rate. Because the pseudo-outcomes for the
stage 1 Q-function are a mixture of one’s and numerical values
between zero and one, we implemented the QL-GLM and QL-
GAM methods using quasi-binomial regression models. As far
as we are aware, implementing Q-learning with quasi-binomial
regression models is novel (see Moodie, Dean, and Sun 2014).
We used the percentile bootstrap for the QL-GLM method, but
this was not feasible for the QL-GAM method, likely because
the optimization routine was unstable for a dataset with repli-
cate observations and binary response variables.

For both settings, we generated datasets with n = 300 obser-
vations such that O1 ∼ Unif(−1, 1) and Prob(Ak = 1) = 1 −
Prob(Ak = −1) = 0.5, k = 1, 2. We generated the remaining
random variables in each setting, for example, (Y1,Y2) and
(Y1,O2,Y2), assuming either (i) linear or (ii) nonlinear associ-
ations with the preceding variables. We provide the exact data
generation models for each linear and nonlinear scenario in the
supplement. For each dataset and method, we calculated five
metrics at each stage, which we defined previously, POA, Bias,
RMSE, W95, and C95. Because the BML-GLM and QL-GLM
methods assumed a linear association between the mean and
covariates at each stage, we expected these methods to perform
well when the data generationmodelwas linear andpoorlywhen
it was nonlinear. By contrast, we expected the BML-BART and
QL-GAM methods to perform slightly worse than the linear
methods when data generationmodel was linear, andmuch bet-
ter when it was nonlinear.

Table 2 contains the results of our second simulation study. In
Scenario 1, with a real-valued payoff that has linear associations
with the covariates and actions, the BML-GLM and QL-GLM
methods performed very similarly, and as expected, better than
the more flexible BML-BART and QL-GAM methods. For
example, both methods had slightly larger POA, smaller RMSE
and W95, and C95 near the nominal 95% rate. By contrast,
in Scenario 2, with a real-valued payoff that has nonlinear
associations with the covariates and actions, the BML-GLM
and QL-GLM methods performed much worse at stage 2 for
POA, RMSE, and C95, and at stage 1 for Bias, RMSE, and C95.
BML-BART compared with QL-GAM had slightly worse POA
and RMSE, and wider intervals at both stages. Because the true
optimal decision rule at stage 1 was dopt1 (O1) = sign(O1), the
GLM methods were able to perform well for identification, but
not for estimation or characterizing uncertainty. In Scenario
3, with a binary payoff that has linear associations with the
covariates and actions, the BML-GLM and QL-GLM methods
had similar POA at both stages, but the QL-GLM had a C95
far below the 95% rate at both stages. The BML-BART method
had a POA at both stages similar to the correctly specified GLM
methods, but large W95 and conservative C95; whereas, the
QL-GAM method performed the worst for every measure. In
Scenario 4, with a binary payoff that has nonlinear associations
with the covariates and actions, as expected, the BML-GLM and
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Table . Simulation averages for  datasets each with n = 300 observations. BML-GLM = proposed approach and QL-GLM = Q-learning using generalized linear
models, BML-BART = proposed approach using BART models, QL-GAM = Q-learning using generalized additive models. POA = proportion of optimal actions assigned
by the identified optimal decision rule for observations with {ok,i}

nk
i=1 , Bias = bias and RMSE = root mean square error of the estimated mean evaluated at {ok,i}

nk
i=1 and

ak ∈ Ak , and W= average width and C= coverage rate of the % interval for the mean evaluated at {ok,i}
nk
i=1 and ak ∈ Ak .

Scenario 1: Real-valued payoff with linear associations

Stage  Stage 

Method POA Bias RMSE W C POA Bias RMSE W C

BML-GLM . . . . . . − . . . .
QL-GLM . . . . . . − . . . .
BML-BART . − . . . . . − . . . .
QL-GAM . . . . . . − . . . .

Scenario 2: Real-valued payoff with nonlinear associations

Stage  Stage 

Method POA Bias RMSE W C POA Bias RMSE W C

BML-GLM . − . . . . . . . . .
QL-GLM . − . . . . . . . . .
BML-BART . − . . . . . . . . .
QL-GAM . − . . . . . . . . .

Scenario 3: Binary payoff with linear associations

Stage  Stage 

Method POA Bias RMSE W C POA Bias RMSE W C

BML-GLM . . . . . . − . . . .
QL-GLM . . . . . . − . . . .
BML-BART . − . . . . . − . . . .
QL-GAM . . . — — . − . . — —

Scenario 4: Binary payoff with nonlinear associations

Stage  Stage 

Method POA Bias RMSE W C POA Bias RMSE W C

BML-GLM . − . . . . . . . . .
QL-GLM . − . . . . . . . . .
BML-BART . − . . . . . . . . .
QL-GAM . − . . — — . . . — —

QL-GLM performed poorly relative to the more robust BML-
BART and QL-GAM methods. BML-BART compared with
QL-GAM had a slightly higher POA at stage 1, but a slightly
lower POA at stage 2.

Figure 1 depicts some of the posterior information provided
by the BML-BART approach. The top panels (1a) and (2a)
depict the true mean functions at each stage for Scenario 2,
along with the posterior 95% credible intervals at each sample
observation’s current history and each action for one particular
dataset. As shown by panels (1a) and (2a), the BML-BART
method was able to detect the nonlinear association between
the mean of the response and the covariates and actions at each
stage. The bottom panels (1b) and (2b) depict the posterior
optimality probability for A1 = 1 and A2 = 1 at each sample
observation’s current history, respectively. Current histories
marked with “×” that are below (above) the horizontal gray
line would be assigned the optimal (sub-optimal) action under
the identified optimal decision rule at each stage, and vice versa
for those marked with “•.” As shown by panels (1b) and (2b),
current histories that had a posterior optimality probability for
Ak = 1 near zero or one would be assigned the optimal action
at each stage. By contrast, a small proportion of the current
histories that had a posterior optimality probability between
0.1 and 0.9 would be assigned the sub-optimal action at each

stage. This indicates that the posterior optimality probabilities
derived from BML-BART are reliable quantities that could be
used as an aid for decision-making in practice.

7. Discussion

The proposed BML approach is a general framework that facil-
itates using Bayesian regression modeling to optimize DTRs.
This approach bridges the gap between Bayesian inference and
existing machine learning methods, like Q-learning, and thus
provides a new avenue for addressing a wide variety of sequen-
tial decision-making problems. While the BML approach is
extremely general in that it can be applied using any reason-
able series of regression models for the problem at hand, we
recommendusingBayesian nonparametric regressionmodels to
enhance robustness.

In a simulation studies that considered real-valued and
binary payoffs, we implemented the BML approach using gener-
alized linear regression models, and more robust BARTmodels.
The simulations demonstrated that the BML approach can be
used to develop effective and robust methods for optimizing
DTRs. Although we focused on settings where the actions were
randomly assigned, the proposed BML approach could be used
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Figure . Posterior information from the BML-BARTmethod fit to one particular dataset from Scenario  of our second simulation study. The top panels (a) and (a) depict
the mean functions for the two actions at stages  and , and the posterior % credible intervals at {o1,i}n1=1 and {(o1,i, y1,i)}n1=1 , respectively. The bottom panels (b) and
(b) display the posterior optimality probability forAk = 1 at {o1,i}n1=1 and {(o1,i, y1,i)}n1=1 , respectively. In panels (b) and (b), the observationsmarkedwith “•”correspond
to a true optimal action Ak = 1, and those marked with “×” correspond to a true optimal action Ak = −1.

for optimizing DTRs based on an observational dataset. In this
case, so that the causal effect of the actionsmay be identified, the
regression models will need to account for potential confound-
ing between the actions and the response variable at each stage.

To assist physicians in identifying optimal actions (or treat-
ments), it would be useful to develop tools based on the BML
approach, tailored to particular medical settings, that provide
the identified optimal action and the posterior optimality prob-
abilities of the relevant actions for the current stage and patient.
The physician could use this information when deciding with
the patient which action is most appropriate. This procedure
makes an allowance for the patient’s own desires and the physi-
cian’s expert knowledge that may not be captured adequately
by the regression models and data used to identify the optimal
action and calculate the posterior optimality probabilities of
the relevant actions. In this way, the proposed BML approach
could engender robust, practical tools for improving medical
practice.

SupplementaryMaterial

Software: R software to reproduce the results of the two simu-
lation studies reported in the article. (BML-Software.zip)

Supplement: Supplemental text that contains the additional
results for the first simulation study, and the data generation
models that we used for the second simulation study, as men-
tioned in Section 6. (BML-Supplement.pdf)
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