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Summary. A Bayesian model and design are described for a phase I–II trial to optimize jointly
the doses of a targeted agent and a chemotherapy agent for solid tumours. A challenge in
designing the trial was that both the efficacy and the toxicity outcomes were defined as four-
level ordinal variables.To reflect possibly complex joint effects of the two doses on each of the two
outcomes, for each marginal distribution a generalized continuation ratio model was assumed,
with each agent’s dose parametrically standardized in the linear term. A copula was assumed to
obtain a bivariate distribution. Elicited outcome probabilities were used to construct a prior, with
variances calibrated to obtain small prior effective sample size. Elicited numerical utilities of the
16 elementary outcomes were used to compute posterior mean utilities as criteria for selecting
dose pairs, with adaptive randomization to reduce the risk of becoming stuck at a suboptimal
pair. A simulation study showed that parametric dose standardization with additive dose effects
provides a robust reliable model for dose pair optimization in this setting, and it compares
favourably with designs based on alternative models that include dose–dose interaction terms.
The model and method proposed are applicable generally to other clinical trial settings with
similar dose and outcome structures.

Keywords: Adaptive design; Bayesian design; Combination trial; Ordinal variables; Phase I–II
clinical trial; Utility

1. Introduction

This paper was motivated by the problem of designing an early phase clinical trial of a three-
agent combination for treatment of cancer patients with advanced solid tumours. The first
agent is a novel molecule M designed to inhibit the protein kinase complexes mTORC1 and
mTORC2, and thus to interfere with cancer cell proliferation and survival, among other cancer
properties. M also has antiangiogenic properties, through which it deprives the cancer of essential
blood vessels that invest the tumours. The other two treatment components are the widely used
chemotherapeutic agents carboplatin and paclitaxel. Paclitaxel, when given weekly, has been
shown to act as an angiogenesis inhibitor as well. The property of antiangiogenesis that is
shared by M and weekly paclitaxel motivates this combination regimen, through which a more
powerful antiangiogenic, and therefore anticancer, effect is hypothesized. All three drugs also
are expected to target the cancer cells directly through additional different mechanisms, thereby
complementing each other.

For the three-agent regimen in this trial, carboplatin is administered at a fixed dose based
on the patient’s age, weight and kidney function. The doses of the two agents that are varied
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Table 1. Definitions of overall toxicity severity levels by grades of individual toxicities†

Illness Grades for the following overall toxicity severity
levels YT:

Mild Moderate High Severe

Fatigue Grade 1 Grade 2 Grade 3 Grade 4
Nausea Grade 1 Grade 2 Grade 3 —
Neuropathy — Grade 1 Grade 2 Grade � 3
Hyperglycaemia Grade 2 Grade 3 Grade 4 —
Rash Grade 1 Grade 2 Grade 3 Grade 4
Diarrhoea Grade 1 Grade 2 Grade 3 Grade 4
Stomatitis Grade 1 Grade 2 Grade 3 Grade 4
Pneumonitis Grade 1 Grade 2 Grade 3 Grade 4
Febrile neutropaenia — — Grade 3 Grade 4
Other non-haematologic illness Grade 1 Grade 2 Grade 3 Grade 4
Hyperlipidaemia Grade 1 Grade 2 Grade 3 Grade 4
Anaemia Grade 3 Grade 4 — —
Thrombocytopaenia Grade 2 Grade 3 — —
Neutropaenia Grade 3 Grade 4 — —
Liver toxicity AST/ALT‡ Grade 2 Grade 3 Grade 4 —
Blindness — — — Grade 4
Myocardial infarction — — — Grade 4
Stroke — — — Grade 4
Regimen-related death — — — Grade 5

†Overall toxicity is scored as the maximum individual severity level. Grades are defined
by using National Cancer Institute criteria.
‡AST/ALT is the ratio between the concentrations of the enzymes aspartate transaminase,
AST, and alanine transaminase, ALT, in the blood, used as an index of liver toxicity.

are dM = 4, 5, 6 mg of M given orally each day, and dP = 40, 60, 80 mg m−2 of paclitaxel
given intravenously twice weekly. A total of nine (M, paclitaxel) dose pairs d = .dM, dP/ are
studied, with the goal to find the optimal d. Our proposed method will define ‘optimal’ d by
assigning joint utilities to toxicity and efficacy, assuming a Bayesian model, and identifying the d
having largest posterior mean utility. Toxicity is defined as a four-level ordinal variable YT, with
possible levels yT ∈ {mild, moderate, high, severe}. As shown in Table 1, YT is defined in terms
of the severity grades of many qualitatively different toxicities, with the level of YT determined
by the highest level of any individual toxicity experienced by the patient. Reducing the many
toxicities in Table 1 to the four-level ordinal outcome YT required many subjective decisions
by the clinical oncologist planning the trial (the third author of this paper, RGZ). Efficacy is
a four-level ordinal variable YE, with possible values yE ∈ {PD, SD1, SD2, PR/CR}, where
PD = [progressive disease] = [> 20% increase in tumour size], SD1 = [stable disease level 1] =
[0–20% increase in tumour size], SD2 = [stable disease level 2] = [0–30% reduction in tumour
size] and PR/CR = [partial or complete response] = [> 30% reduction in tumour size]. This is a
refinement of the commonly used three-category definition where SD1 and SD2 are combined
as SD ≡ stable disease, sometimes with the 30% replaced by 20% so that SD is a change of
20% or less in tumour size in either direction. In the trial, both YE and YT are scored within 42
days from the start of treatment. Thus, a criterion for determining an optimal dose pair must
be defined in terms of the joint effect of d on Y = .YE, YT/, which has 16 possible values.

An ordinal categorization of solid tumour response is used commonly in oncology to compute
descriptive statistics but almost never is used for decision making by dose finding designs. The
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most common practice is to define YT and YE as binary variables. In the present setting, this
would be done by defining YE to indicate a ‘response’ event, which could be PR/CR, {PR/CR
or SD2} or {PR/CR, SD2 or SD1}. Most commonly, YT indicates a composite adverse event,
‘dose limiting toxicity’. These assumptions usually are made for phase I–II designs (see Braun
(2002), Thall and Cook (2004), Bekele and Shen (2005), Zhang et al. (2006) and Yin et al.
(2006)). A further reduction is the conventional approach of ignoring efficacy and conducting
a phase I trial based on the probability of dose limiting toxicity as a function of dose (see Storer
(1989), O’Quigley et al. (1990) and Babb et al. (1998)). Curve-free dose finding methods have
been proposed by Gasparini and Eisele (2000) and Whitehead et al. (2010) for phase I trials, and
by Whitehead et al. (2011) for phase I–II combination trials. Bekele and Shen (2005) and Zhou
et al. (2006) proposed parametric model-based phase I–II methods to accommodate binary YT
and continuous YE.

The utility-based two-agent phase I–II design of Houede et al. (2010) accounts for bivariate
ordinal Y and models marginal dose–dose interactions by using a generalization of the Aranda-
Ordaz model (1981), which is given in Appendix A. Since this design deals with the same general
problem as that addressed here, it is a natural comparator to our proposed methodology. The
main differences between our methodology and that of Houede et al. (2010) are that

(a) we account for joint effects of two doses on each marginal outcome distribution by using
parametric dose standardization, and

(b) we use adaptive randomization to reduce the probability of becoming stuck at a subop-
timal dose pair.

Additionally, our motivating application has an outcome of dimension (4,4) whereas that in
the application of Houede et al. (2010) is (3,3) dimensional. Our simulations comparing the
methods show that our proposal has more consistent performance across a range of dose–
outcome scenarios and in particular has better worst-case performance (Tables 5 and 6, and
Fig. 5 in Section 4).

Medically, the trial that is considered here is similar to the trial motivating the phase I–II
design of Riviere et al. (2015), in that both trials aim to find an optimal dose pair of a targeted
agent and a chemotherapy agent. Key differences are that Riviere et al. (2015) addressed settings
where toxicity is a binary variable and efficacy is a time-to-event variable and, assuming a
proportional hazards model, the dose–efficacy curve may increase initially but then reach a
plateau. The problem of optimizing the doses of a two-agent combination based on bivariate
binary .YE, YT/ outcomes has been addressed in the phase I–II designs that were proposed by
Yuan and Yin (YY) (2011) and Wages and Conaway (WC) (2014). Our computer simulations,
which are reported in Section 4 and Table 6 there, show that defining efficacy and toxicity as
ordinal variables with three or more levels is more informative than collapsing categories and
defining two binary indicators, e.g. by dichotomizing YE in one of the ways noted above and
defining binary YT = I(high or severe toxicity).

Formulating a probability model and decision rules that use a (4,4) dimensional bivariate
ordinal outcome to choose dose pairs in a sequentially adaptive phase I–II trial is challenging.
In this trial, a maximum of 60 patients will be accrued, treated in 20 cohorts of size 3, starting at
d = .4,60/. Denote an elementary outcome by y = .yE, yT/, with the efficacy outcomes ordered
from worst to best by yE = 0, 1, : : : , LE, and the toxicity outcomes ordered from least to most
severe by yT = 0, 1, : : : , LT. Even if the trial’s 60 patients were distributed evenly among the
16 possible y pairs at completion, there would be only about four patients per outcome. This
sample size allocation is an unrealistic ideal, however, because the elementary outcomes are
not equally likely for any d, and moreover dose pairs are assigned in a sequentially adaptive
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Table 2. Elicited numerical utilities of the 16
joint (efficacy, toxicity) outcomes

Toxicity Utilities for the following
disease statuses (efficacy):

PD SD1 SD2 PR/CR

Mild 25 55 80 100
Moderate 20 35 70 90
High 10 25 50 70
Severe 0 10 25 40

manner. Unavoidably, in practice, the final distribution of patients among the 144 possible (d, y)
combinations will be very unbalanced. Consequently, a dose–outcome modelπ.y, d, θ/=Pr.Y=
y|d, θ/, parameterized by θ, must borrow strength across many possible (d, y) values. We shall
take the common practical approach of modelling the marginal probabilities πk.yk, d, θk/ =
P.Yk = yk|d, θk/ for k = E and k = T, and using a bivariate copula (Nelsen, 2006) to induce
association between YE and YT and to obtain π.y, d, θ/.

Our goal in modelling the marginals is to obtain a dose finding design with desirable properties.
Each marginal model must account for four outcome level main effects, two dose effects on each
outcome level and possibly complex dose–dose interactions. The most difficult dose–outcome
scenarios are those where the optimal pair d is located in a middle portion of the two-dimensional
domain, rather than at one of its four corners. To address these issues in a practical way, we
assume a generalized continuation ratio (GCR) model (Fienberg, 1980; Cox, 1988) for each
marginal. Our main departure from conventional approaches to constructing a dose finding
model is that we standardize each agent’s dose parametrically in the linear term of each marginal.
This gives a robust model that accounts for a wide variety of possible effects of d on πE.yE, d, θE/

and πT.yT, d, θT/.
Once the 16 possible elementary outcomes y = .yE, yT/ had been established, their numerical

utilities U.y/ were elicited from RGZ to quantify their relative desirability. These elicited utilities
subsequently were reviewed by members of the Department of Investigational Cancer Thera-
peutics at the MD Anderson Cancer Center, and a consensus was obtained without changing
any of the numerical values. In practice, utility elicitation may be carried out more formally
by using the so-called ‘Delphi method’ (Dalkey, 1969; Brook et al., 1986) or, for example, the
methods that were described by Hunink et al. (2014) or Swinburn et al. (2010). Our elicited
utilities are given in Table 2. A general admissibility criterion for any utility function U.yE, yT/

in this setting is that it should increase as either yE or yT becomes more desirable on its ordinal
scale, i.e. one should not use a utility function that does not make sense. These utilities are used
during the trial as a basis for computing the posterior mean utility of each dose pair, which
is the design’s optimality criterion. Adaptive randomization (AR) among nearly optimal dose
pairs is used to avoid becoming stuck at a suboptimal pair (see Azriel et al. (2011) and Thall
and Nguyen (2012)). Our simulations, which are given below in Section 4, show that paramet-
rically standardizing the two doses and including them additively in the model’s linear terms
provides a robust basis for dose finding for a wide variety of πk.y|d/ probability surfaces. In
particular, our design’s performance compares favourably with what is obtained by assuming a
more conventional model with multiplicative dose–dose interaction terms.
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The dose–outcome model is given in Section 2. Decision criteria and algorithms for conduct
of the trial are presented in Section 3. The methodology is applied to the motivating trial in
Section 4, including a simulation study. We close with a discussion in Section 5.

2. Dose–response models

2.1. Parametric dose standardization
In phase I–II trials, a key issue is modelling the effects of intermediate doses on both πE.y, d, θE/

and πT.y, d, θT/. First, consider a single-agent trial with lowest dose d1, highest dose dM and
mean dose d̄. For a given intermediate dose dj between d1 and dM , and each k = E, T, the
actual value of πk.dj, θ/ may be, approximately, close to πk.d1, θ/, midway between πk.d1, θ/

and πk.dM , θ/ or close to πk.dM , θ/. If πE and πT both are defined by using the same standardized
dose, say x = d − d̄ or d=d̄, a problem arises from the facts that the shapes of the two curves
πE.x, θ/ and πT.x, θ/ may be very different, and the desirabilities of an intermediate dj in terms
of πE.xj, θ/ and πT.xj, θ/ also may be very different. For example, dj may have desirably low
πT.dj, θ/ close to πT.d1, θ/, and low, intermediate or high πE.dj, θ/. An important case is one
where πT.dj, θ/ is close to πT.d1, θ/ and πE.dj, θ/ is close to πE.dM , θ/, so dj is optimal for any
reasonable criterion. If the model does not accurately reflect the different shapes of πT.d, θ/

and πE.d, θ/ as functions of d, the utility-based method may not select dj with sufficiently high
probability.

Next, consider a phase I–II combination trial. For each agent, a = 1, 2, denote the dose
vector by da = .da,1, : : : , da,Ma/ with mean d̄a = .da,1 +: : : + da,Ma/=Ma. The modelling prob-
lem here is to characterize the joint effects of .d1,j, d2,r/ on both YE and YT. An intermediate
dose pair is any d = .d1,j, d2,r/ that is not located at one of the four corners of the rectan-
gular dose pair domain, i.e. 1 < j < M1 and 1 < r < M2. Standardizing each dose as xa,j =
da,j − d̄a or da,j=d̄a suffers from the same limitations as described above for an individual
agent. Consequently, the problems that were described above for a single agent are more com-
plex in that they now are elaborated in terms of the two probability surfaces πE.d1,j, d2,r/ and
πT.d1,j, d2,r/.

These problems motivate the use of two parametrically standardized versions of each dose:
one with parameters corresponding to πE and the other with parameters corresponding to πT.
For each outcome k = E,T and agent a, we define parametric dose standardization (PDS) for
da,j to be

dλ
k,a,j = da,1

d̄a

+
(

da,j −da,1

da,Ma −da,1

)λk,a da,Ma −da,1

d̄a

.1/

where all entries of the dose standardization parameter vector λ = .λE,1, λE,2, λT,1, λT,2/ are
positive valued. This construction gives two parametrically standardized versions of each dose of
each agent: one for each outcome, mapping each d1,j for agent 1 to .dλ

E,1,j, dλ
T,1,j/, j =1, : : : , M1,

and each d2,r for agent 2 to .dλ
E,2,r, dλ

T,2,r/, r =1, : : : , M2. Formula (1) is a two-agent version of
that used by Thall et al. (2013) in the context of a design for optimizing the dose and schedule
of one agent.

For each agent a, the lowest and highest standardized doses in equation (1) are dλ
k,a,1 =da,1=d̄a

and dλ
k,a,Ma

=da,Ma=d̄a. Thus, the parametrically standardized doses at the lower and upper limits
of the dose domain are usual standardized doses and do not depend on either λ or the outcome
k. These serve as anchors for the intermediate doses, 1 <j<Ma, where the PDS involves λ and
k, and dλ

k,a,j is a parametric, outcome-specific modification of the commonly used form da,j=d̄a,
which corresponds to λk,a ≡1. Exponentiating the proportion .da,j −da,1/=.da,Ma −da,1/ by the
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model parameter λk,a in equation (1) shifts each intermediate dose da,j=d̄a either up towards
da,Ma=d̄a or down towards da,1=d̄a. Since λ is updated along with the other model parameters in
the posterior, formulation (1) provides a data-driven refinement of dose effects on each outcome
that is not obtained if we use the usual standardized values da,j=d̄a or da,j − d̄a.

2.2. Generalized continuation ratio models
Reviews of GCR models, and of copulas that are used to obtain bivariate distributions having
given marginals, are given in Appendix A. Given the PDS form (1), we may stabilize numer-
ical computations by using either xλ

k,a,j = log.dλ
k,a,j/ or xλ

k,a,j = dλ
k,a,j − 1 in the model’s linear

component. For a given dose pair .d1,j, d2,r/, when no meaning is lost we shall suppress the
dose indices j = 1, : : : , M1 and r = 1, : : : , M2, and use the generic notation d = .d1,j, d2,r/ and
xλ

k = .xλ
k,1,j, xλ

k,2,r/. Denote the conditional probabilities

γk.y, d, θk/=P.Yk �y|Yk �y −1, d, θk/, for k =E,T, y =0, : : : , Lk: .2/

To construct the GCR model with PDS, we define the linear components

ηk.yk, xλ
k , θk/=αk,y +βk,y,1xλ

k,1,j +βk,y,2xλ
k,2,r, for k =E,T, yk =1, : : : , Lk: .3/

To enhance robustness, we use the parametric link function of Aranda-Ordaz (1981), which
defines a probability p in terms of a real-valued linear term η and parameter φ> 0 as

p=1−{1+φ exp.η/}−1=φ: .4/

The Aranda-Ordaz link gives a very flexible model for p as a function of η, with φ = 1 cor-
responding to the logit link and the complementary log–log-link obtained as the limiting case
when φ→0. For the GCR model with PDS, we define the marginal of [Yk|d] by the equation

γk.y, xλ
k , θk/=1− [1+φk exp{ηk.y, xλ

k , θk/}]−1=φk for k =E,T, y =1, : : : , Lk,

i.e. we assume an Aranda-Ordaz link with PDS in the linear terms. We define ηk.0, xλ
k , θk/=∞

and ηk.Lk +1, xλ
k , θk/=−∞ to ensure that γk.Lk +1, xλ

k , θk/=0. We require βk,y,1, βk,y,2 >0 for
each y � 1 to ensure that γk.y, xλ

k , θk/ increases with each dose. Writing αk ={αk,y, y = 1, 2, 3}
and βk = {βk,y,a, y = 1, 2, 3, a = 1, 2}, the marginal parameter vector is θk = .αk, βk, λk,1, λk,2,
φk/. The key components of the marginal model are that the linear components (3) include the
doses of the two agents additively by using PDS (1), it has a GCR form (2) and it uses an
Aranda-Ordaz link (4). In what follows, for brevity we shall abuse the notation slightly by
identifying this model and the corresponding dose finding method by using the abbreviation
‘PDS’.

Since each intermediate standardized dose dλ
k,a,j varies between the positive values da,1=d̄a

and da,Ma=d̄a, we may consider 1 to be the middle numerical dose value. Mapping each dλ
k,a,j

to either xλ
k,a,j = log.dλ

k,a,j/ or xλ
k,a,j =dλ

k,a,j −1 has the same effect as centring the covariates at
their means to reduce collinearity in conventional regression. Similarly, we define xλ

k,a,j so that
it varies around 0 rather than 1 to improve numerical stability. If, instead, we were to transform
dλ

k,a,j to maximize numerical stability at either the minimum or maximum of the dose domain,
this would have the effect of destabilizing computations at the other end. Consequently, it is
very desirable to transform dλ

k,a,j to stabilize computations in the middle portion of the dose
domain, and for values of γk.y, xλ

k , θk/ near 1
2 . For xλ

k,a,j = log.dλ
k,a,j/, this implies that

exp{ηk.y, xλ
k , θk/}= exp.αk,y/.dλ

k,1,j/βk,y,1.dλ
k,2,j/βk,y,2 ,
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Fig. 1. Illustration of the probability surface γE.1, d,θE/ as a function of dose pair d, for four different values
of the dose standardization parameters .λE,1,λE,2/: (a) λ1 Dλ2 D1 (as a basis for comparison); (b) λ1 D0.2,
λ2 D0.5; (c) λ1 D8, λ2 D2; (d) λ1 D8, λ2 D0.5

with γk.y, xλ
k , θk/ = 1

2 is obtained if ηk.y, xλ
k , θk/ = 0 and φk = 1, corresponding to a logit link

in equation (2). In this case, exp.αk,y/.dλ
k,1,j/βk,y,1.dλ

k,2,j/βk,y,2 = 1, and if dλ
k,1,j =dλ

k,2,j = 1 then
αk,y =0. Thus, numerical stability is greatest in this dose pair neighbourhood, equivalently for
xλ

k,1,j =xλ
k,2,j =0. Alternatively, we could use xλ

k,a,j =dλ
k,a,j −1.

Fig. 1 illustrates possible shapes of the probability surface γE.1, d, θE/=Pr.YE �1|d, θE/ as a
function of the pair d = .dM, dP/= (dose of targeted agent, dose of paclitaxel), for each of four
different numerical dose standardization parameter pairs .λE,1, λE,2/. The surface in Fig. 1(a)
for λE,1 =λE,2 =1 corresponds to the additive model with linear term

ηE{1, .d1,j, d2,r/, θk}=αE,1 +βE,1,1
d1,j

d̄1
+βE,1,2

d2,r

d̄2
,

which may be used as a basis for visual comparison. Other probability surfaces as functions
of d may be drawn similarly, such as γE.y, d, θE/, γT.y, d, θT/, πE.y, d, θE/ or πT.y, d, θT/, for
integer y �1. Fig. 1 shows that parametrically standardizing the doses in this way gives a very
flexible model for the probabilities that are the basis for the dose finding design.

Index patients by i= 1, : : : , n for interim sample size n�N, and denote the dose pair given
to the ith patient by d[i]. The likelihood is the product
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Table 3. Elicited prior mean marginal outcome probabilities, for each dose pair

(dM ,dP ) Probabilities for efficacy Probabilities for toxicity

PD SD1 SD2 PR/CR Mild Moderate High Severe

(4,40) 0.70 0.10 0.10 0.10 0.70 0.20 0.05 0.05
(5,40) 0.50 0.10 0.20 0.20 0.60 0.20 0.10 0.10
(6,40) 0.30 0.20 0.20 0.30 0.50 0.20 0.15 0.15
(4,60) 0.50 0.10 0.20 0.20 0.60 0.20 0.10 0.10
(5,60) 0.30 0.20 0.20 0.30 0.50 0.20 0.15 0.15
(6,60) 0.20 0.20 0.20 0.40 0.30 0.20 0.30 0.20
(4,80) 0.30 0.20 0.20 0.30 0.50 0.20 0.15 0.15
(5,80) 0.20 0.20 0.20 0.40 0.30 0.20 0.30 0.20
(6,80) 0.10 0.20 0.20 0.50 0.20 0.20 0.30 0.30

L.datan|θ/=
n∏

i=1
π.Yi,E, Yi,T, d[i], θ/

and the posterior is

p.θ|datan/∝L.datan|θ/p.θ|θ̃/,

where p.θ|θ̃/ denotes the prior with fixed hyperparameters θ̃. Collecting terms, for k = E,T,
y=1, 2, 3 and a=1, 2, the model parameters are λ={λk,a} for parametric dose standardization,
the intercepts α = {αk,y}, the dose effects β = {βk,y,a}, the Aranda-Ordaz link parameters
φ={φE, φT} and the copula’s association parameter ρ. Thus θ= .λ, α, β, φ, ρ/.

2.3. Establishing priors
Normal priors were assumed for the real-valued parameters {αk,y}, the positive-valued dose
main effect coefficients {βk,y,a} were assumed to follow normal priors truncated below at 0,
the copula association parameter was assumed to be uniform on [−1, 1] and each λk,a and the
Aranda-Ordaz link parameter φ were assumed to follow log-normal priors. Prior means were
estimated from the elicited probabilities given in Table 3 by using the pseudosampling method
that was described in Thall et al. (2011), section 4.2, and Thall and Nguyen (2012), section 4.3.
Prior variances were calibrated to make the effective sample size, as defined by Morita et al.
(2008, 2010), of the prior of each marginal probability πk.y, d, θk/ suitably small, and to give a
design with good operating characteristics over a diverse set of scenarios. The effective sample
size of each prior was approximated by equating the prior mean and variance of πk.y, d, θk/ to
the mean μ̃=a=.a+b/ and variance σ̃2 = μ̃.1− μ̃/=.a+b+1/ of a beta.a, b/ distribution. Thus,
a+b was used to approximate the effective sample size of the prior of πk.y, d, θk/. The overall
mean of these effective sample size values was 0.09 for the selected prior standard deviation of
20. Detailed descriptions of the prior parameters are given in the on-line supplementary Table
S1.

3. Posterior decision criteria and trial design

3.1. Utility-based decision criteria
Given the Bayesian dose–outcome model and elicited numerical utilities U.y/ in Table 2, the
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Fig. 2. Posterior distributions of the mean utilities u.θjdata60/ for each of the nine dose pairs, based on a
selected 60-patient data set obtained from one trial simulated under scenario 5: (a) posterior utilities ( ,
(4,40); , (5,40); , (6,40); , (4,60); , (5,60); , (6,60); , (4,80); ,
(5,80); , (6,80)); (b) posterior mean utilities with 95% credible intervals (�, true mean utility)

trial is conducted by using the following decision criteria. Given θ, the mean utility of dose pair
d is

Ū.d, θ/=∑
y

U.y/Pr.Y =y|d, θ/,

where the sum is over all y-pairs in the support of Y. Since θ is not known, we compute each
dose pair’s posterior mean utility

u.d|datan/=
∫

θ
Ū.d, θ/p.θ|datan/ .5/

given the data on n patients available when an interim decision must be made. This integral is
approximated by generating a posterior sample θ.1/, : : : , θ.M/ by using Markov chain Monte
Carlo sampling (Robert and Casella, 1999) and computing the sample mean of Ū.d, θ.1//, : : : ,
Ū.d, θ.M//.

The posterior mean utilities that are given by equation (5) are the basis for the design’s
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Fig. 3. Distributions of the final posterior mean utility u.θjdata60/ ( , (4,40); , (5,40); ,
(6,40); , (4,60); , (5,60); , (6,60); , (4,80); , (5,80); , (6,80)) and (b)
95% probability intervals (�, true mean utility) for each of the nine dose pairs for the PDS-model-based method
proposed, based on a sample of 10000 trials, each of size nD60, with the data for each trial generated under
scenario 5

sequential decision rules to select dose pairs during the trial. It is very important to bear in
mind that each posterior mean utility is a statistic that can be quite variable. This is illustrated by
Fig. 2, which plots the distributions of u.d|data60/ and corresponding 95% probability intervals
for each of the nine dose pairs, based on one 60-patient data set from a trial simulated under
scenario 5. To illustrate how such final utility distributions may vary across trials, Fig. 3 provides
similar plots based on a sample of 10000 trials, each of size n = 60, with the data generated
under scenario 5. From a Bayesian perspective, the randomness of each distribution in Fig. 2
is due to posterior uncertainty about θ, whereas the randomness of each distribution in Fig.
3 is due to the random variation in the data. It is also important to bear in mind that, for the
smaller sample sizes that are the basis for interim decisions during the trial, the variability of
u.d|datan/ for each d is greater than that shown by Fig. 2 for the final data of n= 60 patients.
In general, the substantial variability of each u.d|datan/ also would be the case for any statistic
that is used as a decision criterion in this or similar small-scale trial settings using any other
adaptive design. These considerations motivate, in part, our use of adaptive randomization



Parametric Dose Standardization 11

between nearly optimal dose pairs in the trial design. The general point is that, in early phase
trials, decision making must be done under great uncertainty.

3.2. Dose acceptability criteria and adaptive randomization
To ensure that the trial is ethically acceptable, rather than simply choosing d from the nine
pairs to maximize u.d|datan/, we impose additional constraints to ensure that any dose pair
that is used to treat patients is both acceptably safe and acceptably efficacious. This follows the
approach that was used by Thall and Cook (2004) and many others. We use the following two
posterior acceptability criteria. For each k = E or k = T, denote π̄k.y, d, θk/= Pr.Yk � y|d, θk/.
Indexing the toxicity levels by y=0, 1, 2, 3 for mild, moderate, high and severe, π̄T.2, d, θ/ is the
probability of high or severe toxicity with d. A dose pair d is considered unacceptably toxic if

Pr{π̄T.2, d, θ/> 0:45|datan}> 0:90, .6/

i.e. d is not acceptable if, on the basis of the current data, it is likely that d has a probability of
high or severe toxicity that is above 0.45. For the efficacy rule, we similarly index the outcomes
{PD, SD1, SD2, PR/CR} by 0, 1, 2 and 3, so that π̄E.2, d, θ/ is the probability of SD2 or better
with dose pair d. A dose pair d is considered unacceptably inefficacious if

Pr{π̄E.2, d, θ/< 0:40|datan}> 0:90: .7/

This says that d is not acceptable if, given the current data, it is likely that achieving SD2 or
better occurs at a rate below 40%. A dose pair d is considered acceptable if it has both acceptable
toxicity and acceptable efficacy, and we denote the set of acceptable dose pairs based on datan

by An. As data are acquired during the trial and the posterior becomes more reliable, An may
change, so a given d that is not in An may be in An+k, or conversely. The events that are
used to define conditions (6) and (7) and the corresponding numerical probabilities 0.45 and
0.40 are specific to the solid tumour trial. These particular values were determined by RGZ in
collaboration with oncologist colleagues who are involved in planning the trial. In other trials,
different toxicity and efficacy events and probability cut-offs should be chosen as appropriate.

Given the acceptability criteria, it may seem that we simply may choose the d ∈ An that
maximizes u.d|datan/. This may lead to a design with undesirable properties, in some cases, due
to the well-known ‘optimization-versus-exploration’ dilemma in sequential decision making
(see Gittins (1979) and Sutton and Barto (1998)). The problem is that, given some optimality
criterion, a ‘greedy’ sequential decision rule that always takes the empirically optimal action
on the basis of the current data carries a risk of becoming stuck at a truly suboptimal action.
The problem that greedy sequential algorithms are ‘sticky’ in this sense only recently has been
discussed in the context of dose finding trials, by Azriel et al. (2011), Thall and Nguyen (2012),
Oron and Hoff (2013), Braun et al. (2013) and Thall et al. (2014).

We address the problem of stickiness by applying AR among d having u.d|datan/ close to the
maximum, similarly to Thall and Nguyen (2012). Denote the acceptable dose pair maximizing
u.d|datan/ by dopt

n . Although nominally this dose pair is ‘optimal’, it is only empirically optimal
on the basis of the most recent data, and it may not be the truly optimal pair that would
maximize Ū.d, θ/ if θ were known. In practice the truly optimal dose pair cannot be known, but
in a simulation study all assumed πtrue.y|d/ are specified, so the dopt under this assumed state of
nature is known, and design performance can be evaluated accordingly. Although this distinction
may seem obvious, the difference between an empirically optimal action and the truly optimal
action is at the heart of the optimization-versus-exploration dilemma. A general form for AR
probabilities for dose pair dÅ based on the posterior mean utilities of the acceptable dose pairs is
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rn.dÅ/= u.dÅ|datan/∑
d∈An

u.d|datan/
:

We studied several modified versions of AR, called AR.m/, which is limited to randomizing
between only the best m dose pairs on the basis of their current posterior mean utilities, for m=1
(a greedy design with no AR), 2, 3, 4, 9. The results are summarized in on-line supplementary
Table S5. Additionally, we studied the required difference between the subsample sizes of the
empirically best and other acceptable dose pairs, to ensure that an adequate number of patients
have been treated at dopt

n before applying any AR rule. On the basis of this preliminary study, for
the actual trial design, we used AR(2), with AR applied only if at least three or more patients
have been treated at the current dopt

n than at any other acceptable d. Denote the empirically
second-best acceptable dose pair by dsecond

n , i.e. u.dsecond
n |datan/ is the second-largest posterior

mean utility. For our implementation of AR(2), the next cohort of patients are treated with dose
pair dopt

n with probability

rn = u.dopt
n |datan/

u.dopt
n |datan/+u.dsecond

n |datan/
,

and treated with dose pair dsecond
n with probability 1− rn.

3.3. Trial conduct
Using the above decision criteria, the trial is conducted as follows. Recall that the maximum
sample size is N =60, and the cohort size is c=3.

Step 1: the first cohort is treated at d = .dM, dP/= .4, 60/.
Step 2: for each cohort after the first, the posterior decision criteria (5), (6) and (7) are
computed on the basis of the most current data.
Step 3: when escalating, an untried dose of either agent may not be skipped.
Step 4: if no d is acceptable, the trial is terminated with no d selected.
Step 5: if exactly one d is acceptable, the next cohort is treated at that dose pair.
Step 6: for cohort size c, if two or more ds are acceptable and the number of patients treated
at dopt

n minus the largest number of patients treated at any other acceptable dose is

(a) c or greater, then apply AR(2) to choose randomly between dopt
n and dsecond

n , or
(b) less than c, then treat the next cohort at dopt

n .

4. Simulations

4.1. General design performance evaluation
The trial design was simulated under each of 12 dose–outcome scenarios, given in the on-line
supplementary Table S2, assuming an accrual rate of 1.5 patients per month. Each scenario is
specified in terms of fixed true four-level marginal efficacy and toxicity probabilities, which are
not based on the design’s model or any other model. Association was induced by assuming a
Gaussian copula with true association parameter 0.10. Additional simulations were conducted
by using alternative models, or different cohort size or maximum sample size. For each case
studied, the trial was replicated 3000 times, and all posterior quantities were computed by using
Markov chain Monte Carlo with Gibbs sampling.

We use the following summary statistics, given by Thall and Nguyen (2012), to quantify
overall design performance. For given d and assumed true outcome probabilities {πtrue.y|d/},
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we define the true mean utility of d to be

Ū
true

.d/=∑
y

U.y/πtrue.y|d/:

Thus, Ū
true

.d/ is analogous to, but different from, the mean utility Ū.d, θ/ based on the unknown
parameter θ, and the posterior mean utility u.d|datan/, which is a statistic. Let Ū

true
max and Ū

true
min

denote the largest and smallest possible true mean utilities among all dose pairs. To quantify the
method’s reliability for selecting a dose pair with high true utility, which benefits future patients,
denoting the final selected dose pair by dselect, we use the statistic

Rselect =100

{
Ū

true
.dselect/− Ū

true
min

Ū
true
max − Ū

true
min

}
:

To quantify benefit to the patients enrolled in the trial, we use the statistic

Rtreat =100

{ .1=N/
N∑

i=1
Ū

true
.d[i]/− Ū

true
min

Ū
true
max − Ū

true
min

}
,

where d[i] is the dose pair given to the ith patient, and N is the final sample size. For both
statistics, a larger value in the domain [0, 100] corresponds to better performance. We report
also the selection percentage of the best acceptable d, denoted by %Best.

Simulation results for six selected scenarios are summarized in Table 4. The results for all 12
scenarios are given in the on-line supplementary Table S3 and supplementary Fig. S1. In terms
of true utilities and selection percentages of the nine dose pairs, Table 4 shows that the design
does a reliable job of selecting acceptable dose pairs having true mean utility at or near the
maximum, while also reliably avoiding unacceptable dose pairs. Fig. 4 illustrates how the utility
function U.y/ maps the eight assumed true outcome probability pairs .πtrue

E .yE, d/, πtrue
T .yT, d//

for yE =0, 1, 2, 3 and yT =0, 1, 2, 3 to Ū
true

.d/ for each d, in scenario 5. For each outcome, the
assumed probabilities πtrue

k .y, d/ for y = 0, 1, 2, 3 are represented by successively darker shades
of red for k = T and green for k = E. Fig. 4 shows, for the PDS-model-based design, how the
dose pair selection probabilities follow the magnitudes of the true mean utilities. A key point
is that, if we wish to compare dose pairs, inevitably a one-dimensional criterion is needed. The
utility function provides this in a way that makes sense medically, provided that we accept the
particular numerical utilities that are given in Table 2.

4.2. Comparison with models with qualitatively different dose–dose effects
The generalized Aranda-Ordaz (GAO) model that was used by the two-agent phase I–II design
of Houede et al. (2010) to account for dose–dose interactions is given in Appendix A. As noted
earlier, because this design addresses the same problem of choosing optimal d on the basis of
ordinal .YE, YT/, it is a natural comparator to the PDS-model-based design that is proposed
here. Another comparator may be obtained from the more conventional model formulation in
which all λk,a =1 in the PDS linear components and a multiplicative dose–dose interaction term
is inclued in the linear term, using the usual standardized doses xa,j = log.da,j=d̄a/. The linear
components then would take the commonly assumed form

ηk.y, d, θk/=αk,y +βk,y,1x1,j +βk,y,2x2,r +βk,12x1,jx2,r, k =E,T:
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Table 4. Simulation results for the PDS–GCR partial orders model-based design†

dM Results for the following Results for the following
values of dP: values of dP:

40 60 80 40 60 80

Scenario 1 Scenario 2
Ū

true
.d/ 4 56.0 51.8 48.3 43.2 44.4 37.9

Selection percentage 32 25 9 8 17 3
Number of patients 9.4 14.8 8.4 3.5 12.2 5.3
Ū

true
.d/ 5 51.8 47.2 44.7 49.7 46.8 38.9

Selection percentage 15 7 2 28 24 2
Number of patients 7.4 6.8 3.2 8.7 10.5 5.2
Ū

true
.d/ 6 48.3 44.7 39.4 45.5 39.7 33.6

Selection percentage 8 2 0 10 5 0
Number of patients 6.0 2.6 0.9 6.7 5.6 1.7
% none selected 2 2

Scenario 3 Scenario 5
Ū

true
.d/ 4 39.4 40.1 36.7 30.4 44.4 43.7

Selection percentage 1 3 1 1 15 9
Number of patients 1.1 8.6 3.2 1.2 11.7 6.3
Ū

true
.d/ 5 48.9 47.6 42.7 44.4 51.3 44.3

Selection percentage 12 17 3 10 39 9
Number of patients 6.1 9.1 5.7 4.4 12.7 8.5
Ū

true
.d/ 6 52.6 49.8 44.6 43.7 44.3 39.1

Selection percentage 32 27 3 6 10 1
Number of patients 10.0 11.2 4.7 4.0 7.8 3.4
% none selected 1 1

Scenario 8 Scenario 9
Ū

true
.d/ 4 33.8 45.4 48.2 43.8 50.8 52.6

Selection percentage 1 9 15 1 2 4
Number of patients 0.8 10.0 7.6 0.5 8.3 5.3
Ū

true
.d/ 5 37.2 48.9 53.2 50.8 52.6 58.4

Selection percentage 2 21 33 1 4 17
Number of patients 2.6 9.7 12.6 1.6 5.9 11.5
Ū

true
.d/ 6 41.3 45.9 45.6 52.6 58.4 64.0

Selection percentage 3 9 6 4 18 48
Number of patients 2.5 6.2 7.9 3.4 8.6 14.7
% none selected 1 0

†For each dose pair d = .dM, dP/, selection percentage and number of patients treated. Utilities of unac-
ceptable doses are in italics. The highest utility among acceptable doses is given in bold.

The βk,12s are real valued and assumed to have normal priors. The element βk,12x1,jx2,r of this
linear term is widely considered to be an ‘interaction’ between two covariates in their joint effect
on the outcome in a regression model. Here, the interaction is the joint effect of d1 and d2 on the
marginal probability distribution of Yk. We shall refer to this as the conventional multiplicative
interaction (CMI) model.

Table 5 summarizes how well the design performs assuming each of these three alternative
models, for (4,4) dimensional bivariate ordinal outcomes. All three designs reliably stop the
trial early if no d-pairs are acceptable, in scenarios 11 and 12. For scenarios 1–10, Fig. 5 shows
the comparative Rselect-results graphically. In the five scenarios {2, 4, 5, 6, 8} where dopt is a
middle dose pair, not located at one of the four corners of the 3 × 3 matrix of d-pairs, the PDS
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Fig. 4. Illustration of true marginal outcome probabilities {πtrue
T .y , d/,πtrue

E .y , d/, y D0, 1, 2, 3}, the resulting
true mean utility Ū true.d/, and simulation results percentage selection %Sel and percentage of patients
treated %Pat in the trial for each dose pair, using the PDS-model-based method proposed, under scenario
5 (πtrue

k .y , d/ for y D 0, 1, 2, 3 are represented by successively darker shades of red for k DT and green for
k DE): (a) dose pair (4,40); (b) dose pair (4,60); (c) dose pair (4,80); (d) dose pair (5,40); (e) dose pair (5,60);
(f) dose pair (5,80); (g) dose pair (6,40); (h) dose pair (6,60); (i) dose pair (6,80)

model gives much larger Rselect-values than the other two designs. The differences Rselect(PDS)
− Rselect(GAO) vary from 5 to 13 (7–20%), whereas Rselect(PDS) −Rselect(CMI) vary from 9 to
16 (13–26%). In the four scenarios {1, 3, 7, 9} where dopt is located at one of the four corners of
the matrix of d-pairs, the GAO and the CMI model give Rselect-values that are larger than those
of the PDS model by the smaller differences 5–7 (6–9%). The Rtreat and %Best d selected values
also follow these general patterns. Scenario 10 corresponds to the prior and has three acceptable
dose pairs all having the same maximum true utility. An important property of the PDS method
is that it gives much more stable behaviour across scenarios 1–10, with Rselect-values in the range
[76, 89], compared with ranges [65, 88] for the GAO method and [62, 92] for the CMI model.
Similarly, the %Best d selected values have range [28, 48] for the PDS method versus ranges [8,
67] for the GAO model and [2, 68] for the CMI model. It thus appears that using parametrically
standardized doses gives much more stable behaviour across a range of scenarios and provides
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Table 5. Comparison of design performance by using three alternative GCR models for (4,4) dimensional
bivariate ordinal outcomes†

Parameter Results for the following scenarios:

1 2 3 4 5 6 7 8 9 10 11 12

PDS
Rselect 76 77 80 78 78 78 81 78 80 89 93 94
Rtreat 65 63 61 72 70 67 70 70 65 85 79 67
%None 2 2 1 0 1 7 1 1 0 0 95 96
%Best 32 28 32 46 39 34 39 33 48 44 — —
Number of patients 59.4 59.4 59.6 59.9 59.8 57.9 59.7 59.8 59.9 59.9 26.5 27.7
Efficacy number 36.9 27.1 29.3 29.4 30.2 24.1 29.8 30.0 31.9 31.9 13.2 5.0
Toxicity number 28.6 25.2 23.6 19.2 22.9 20.8 22.1 22.1 19.8 22.6 18.1 7.7

GAO model
Rselect 82 72 86 69 65 72 88 72 74 87 93 95
Rtreat 71 65 63 68 65 63 75 68 57 82 79 66
%None 2 3 1 0 1 6 1 1 1 0 94 94
%Best 49 25 64 31 8 19 67 22 47 54 — —
Number of patients 59.5 59.3 59.7 60.0 59.8 58.4 59.7 59.7 59.8 59.9 27.1 32.2
Efficacy number 36.2 25.8 28.1 27.9 28.3 23.3 29.2 28.7 30.9 30.5 13.5 5.7
Toxicity number 25.7 22.9 21.2 17.6 22.1 20.6 19.7 20.8 19.0 20.9 18.5 8.9

CMI
Rselect 83 66 85 66 62 69 87 68 86 92 95 97
Rtreat 69 60 61 67 62 64 73 68 65 85 80 68
%None 1 3 1 0 1 6 1 1 1 0 91 95
%Best 56 14 62 20 2 9 65 11 68 50 — —
Number of patients 59.7 59.3 59.7 59.9 59.7 58.3 59.7 59.7 59.8 60.0 29.3 29.0
Efficacy number 36.8 26.0 28.8 29.4 28.9 24.0 29.9 29.9 31.9 32.2 14.6 5.3
Toxicity number 26.9 24.8 23.1 19.6 24.2 21.6 22.0 23.0 19.7 22.9 19.9 8.1

†Scenarios 11 and 12 have no acceptable dose, so Rselect-values are less relevant and thus are in italics.

insurance against very poor performance in some scenarios. The PDS model gives substantially
larger Rselect-values in the more difficult cases where dopt is a middle dose pair, with the price
being smaller Rselect-values in the easier cases where dopt is at a corner of the rectangular dose
pair domain.

4.3. Comparison with designs that reduce the ordinal outcomes
We next compare our proposed method, based on the (4,4) dimensional ordinal outcome Y =
.YE, YT/, with alternative designs that reduce this outcome by combining categories. The first
two comparators are versions of the PDS and GAO designs based on (3,3) ordinal outcomes
that are obtained by combining SD2 and CR/PR for YE and combining high and severe events
for YT. We obtained a (2,2) outcome by also combining the YE-events PD and SD1 so that
YE became the binary indicator of [CR/PR or SD2], and combining the YT-events mild and
moderate so that YT became the binary indicator of [high or severe]. For each of these (3,3)
and (2,2) cases, in each scenario the outcome probabilities were obtained from those in on-line
supplementary Table S2 by summing the corresponding elementary event probabilities. For the
(2,2) case, in addition to the reduced version of the PDS design, we also included as comparators
the phase I–II designs of Yuan and Yin (2011), YY, and Wages and Conaway (2014), WC, both
of which rely on bivariate binary Y. A final comparator is the partial orders CRM of Wages
et al. (2011), which uses only a binary version of YT to choose optimal d.
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Fig. 5. Rselect-values for designs based on three different bivariate ordinal outcome models (�, PDS; ,
GAO; , CMI) that account for dose–dose interactions differently: all three designs determine an optimal
dose pair based on (4,4) dimensional bivariate ordinal outcomes under GCR models for the marginals

The YY design uses a copula to model the probability of toxicity as a function of d in phase I
and chooses a set of admissible d for subsequent efficacy evaluation in parallel treatment arms
in phase II. The design applies AR on the basis of the probability of a binary efficacy outcome
in phase II, assuming a hierarchical binomial–beta–gamma model. At the end of phase II, the
YY design selects the dose pair with acceptable toxicity that has highest posterior mean efficacy.
Since the YY design allows us to vary the cohort size c and subsample sizes nI and nII in phases I
and II, for comparison with the PDS-model-based design, we first simulated versions of the YY
design with .c, nI, nII/= .3, 30, 30/, .1, 30, 30/, .1, 20, 40/, given in on-line supplementary Table
S8. Since the YY design with .c, nI, nII/= .1, 30, 30/ has slightly better overall performance than
the other two, this version is used for comparison with the PDS design.

The WC design is based on partial orderings of d. Like the YY design, the WC design also
chooses the dose pair d with acceptable toxicity that maximizes the probability of efficacy. We
simulated both the YY and the WC designs by using the same toxicity probability acceptability
upper limit, 0.45, and efficacy probability lower limit, 0.40, as those used by the PDS design. Since
the total number of possible partial orderings in the rectangle of d-pairs is impractically large,
a subset must be chosen. For comparison with the PDS-model-based design, we first simulated
versions of the WC design with either six partial orderings, starting the trial at d = .1, 2/ as in
our design, or 26 partial orderings, starting the trial at either d= .1, 2/ or d= .1, 1/, summarized
in on-line supplementary Table S9. Since the version with 26 partial orderings, starting the trial
at d = .1, 2/, had slightly better overall performance than the other two, it is included in Table 6.

An important point is that both the YY and the WC designs choose d that has acceptably
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low toxicity and maximum efficacy, whereas the PDS design chooses d that has acceptably
low toxicity, acceptably high efficacy and maximum posterior mean utility, i.e. the criteria are
qualitatively different. The three designs have the same ‘best’ d in scenarios 5, 6, 8, 9 and 10, and
different best d in scenarios 1, 2, 3, 4 and 7. To compare the methods, we used the same utility-
based criteria, namely Rselect, Rtreat and true mean utility Ū

true
.d/, to define %Best d selected.

The results are given in Table 6. Comparing the PDS-model-based design with (4,4) versus
(3,3) dimensional outcomes shows that the Rselect-values differ by at most ±3 for scenarios 1–8
and 10, but in scenario 9 using a (3,3) outcome greatly reduces Rselect, from 80 to 66. A similar
pattern is seen for Rtreat and %Best d selected. Comparison of the PDS model, with either (4,4) or
(3,3) outcomes, with the GAO model with (3,3) outcomes shows that the latter has much larger
variability between scenarios in terms of Rselect, Rtreat and %Best. Thus, as in Table 5, it appears
that the PDS model provides a much more stable design, and in particular protects against very
poor performance in some cases, as seen in scenarios 4, 5 and 9 with the GAO model.

Simulation results for four designs in Table 6 are illustrated graphically for Rselect in Fig.
6, which shows that, in general, dichotomizing the ordinal outcomes substantively decreases

Table 6. Comparison of summary statistics for two-agent dose finding designs, with (4,4), (3,3) or (2,2)
dimensional bivariate outcomes†

Design Parameter Results for the following scenarios:

1 2 3 4 5 6 7 8 9 10 11 12

4 efficacy and 4 toxicity Rselect 76 77 80 78 78 78 81 78 80 89 93 94
levels, PDS Rtreat 65 63 61 72 70 67 70 70 65 85 79 67

%None 2 2 1 0 1 7 1 1 0 0 95 96
%Best 32 28 32 46 39 34 39 33 48 44 — —

3 efficacy and 3 toxicity Rselect 77 75 83 75 76 81 84 77 66 88 91 92
levels, PDS Rtreat 66 63 63 70 69 67 71 69 59 85 79 67

%None 2 2 1 0 1 6 1 1 1 0 94 95
%Best 35 28 38 36 33 40 47 35 25 46 — —

3 efficacy and 3 toxicity Rselect 84 71 87 67 63 72 89 73 60 87 93 97
levels, GAO Rtreat 72 64 64 67 64 63 76 68 51 81 77 67

%None 2 3 1 0 1 4 1 1 0 1 94 93
%Best 53 25 67 24 5 19 70 26 25 61 — —

2 efficacy and 2 toxicity Rselect 77 79 72 67 80 77 75 78 61 84 89 89
levels, PDS Rtreat 67 67 60 69 72 67 67 70 58 83 79 66

%None 3 2 1 0 1 7 1 1 1 0 95 96
%Best 34 30 19 13 43 30 23 32 15 46 — —

2 efficacy and 2 toxicity Rselect 81 77 67 65 75 72 71 73 57 86 91 51
levels, Yuan and
Yin (2011) design

Rtreat 74 66 57 59 63 67 53 58 62 81 96 64
%None 20 10 8 2 12 14 7 11 9 2 100 8
%Best 31 29 20 8 26 22 23 21 18 48 — —

2 efficacy and 2 toxicity Rselect 74 77 70 69 76 65 77 74 51 86 100 77
levels, Wages and Conaway
(2014) design

Rtreat 73 69 60 66 68 58 64 62 47 79 97 61
%None 0 2 1 0 2 5 0 2 0 0 71 63
%Best 12 34 21 11 29 13 33 23 9 62 — —

No efficacy and 2 toxicity Rselect 79 73 55 64 71 64 60 61 61 90 100 81
levels, partial orders
CRM, target 0.35

Rtreat 78 68 49 62 63 57 56 55 55 84 99 71
%None 0 0 0 0 0 0 0 0 0 0 0 0
%Best 27 28 21 3 20 17 13 15 19 65 — —

†Scenarios 11 and 12 have no acceptable dose, so Rselect-values are less relevant and thus are in italics.



Parametric Dose Standardization 19

1 2 3 4 5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

Scenario

R
se

le
ct

Fig. 6. Rselect-values of competing phase I–II designs to choose an optimal dose pair, given (4,4) dimen-
sional ordinal (efficacy, toxicity) outcomes: �, PDS four-levels design proposed; �, PDS two-levels di-
chotomized outcomes design; , Yuan and Yin (2011) design; , Wages and Conaway (2014) design

Rselect-values in some scenarios, regardless of the design that is used. Fig. 6 also illustrates
that the PDS-model-based design using the full (4,4) dimensional ordinal outcome is robust, in
the sense that the Rselect-values stay consistently high across all scenarios. In the special case of
scenario 10, which corresponds to the prior, three of the nine d-pairs are optimal; hence selecting
an optimal d-pair is much easier for all designs. On-line supplementary Table S10 shows that
the partial orders CRM has greatly inferior performance compared with the PDS-based design.
This may be attributed to the general fact that using binary toxicity alone for dose finding may
ignore useful efficacy information.

4.4. Additional sensitivity analyses
On-line supplementary Table S6 shows that the PDS-based design’s behaviour is insensitive
to cohort size c = 1, 2, 3. Supplementary Table S4 summarizes the PDS-model-based design’s
sensitivity to maximum sample sizes N = 30–300. The design’s operating characteristic improves
greatly as N increases. For example, in scenario 1, for N =30, 60, 300, the corresponding Rselect-
values are 67, 76 and 95 and Rtreat-values are 61, 76 and 78. The same pattern is seen for all
other scenarios with acceptable dose pairs. In the two scenarios 11 and 12, where there is no
acceptable d, the simulated probability that no pair is selected is 1 for N � 120. These results
provide an empirical validation of the method’s consistency, in terms of both optimal dose pair
selection and stopping the trial early for futility or safety in cases where this should be done.
These numerical results also show that the maximum sample size 60 cannot reliably achieve
Rselect-values of 80 or larger across the scenarios that were studied, in this particular setting,
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Table 7. Case-by-case example of a 60-patient trial†

Patient Dose pair Outcomes Posterior mean utility u(d|datan) for each (d1,d2)‡

d1 d2 YE YT (4,40) (4,60) (4,80) (5,40) (5,60) (5,80) (6,40) (6,60) (6,80)

(Prior) — — — — 34.8 37.3 38.0 36.3 39.0 39.7 36.8 39.5 40.2
(22.3) (25.5) (26.4) (24.2) (27.3) (28.1) (24.8) (27.9) (28.7)

1 4 60 1 0 49.2 54.2 54.8 51.0 55.9 56.5 51.6 56.4 56.9
(11.8) (6.0) (10.9) (14.8) (13.2) (16.1) (15.7) (14.9) (17.6)

2 4 60 1 0 49.8 54.7 55.2 51.5 56.3 56.7 52.0 56.7 57.1
(11.1) (3.5) (9.9) (14.2) (12.3) (15.5) (15.2) (14.2) (17.0)

3 4 60 0 2 33.6 35.5 35.5 33.8 34.9 34.9 33.3 34.0 34.1
(9.9) (8.5) (12.3) (14.5) (14.4) (16.6) (15.5) (15.3) (17.3)

4 4 80 1 1 35.2 37.2 37.4 37.9 39.6 39.7 38.7 40.2 40.3
(9.4) (7.2) (8.1) (12.5) (11.6) (12.5) (13.2) (12.5) (13.4)

5 4 80 0 1 31.7 33.7 31.8 35.3 37.4 35.5 36.3 38.3 36.5
(8.3) (6.4) (6.8) (13.2) (12.6) (13.0) (14.1) (13.5) (14.0)

6 4 80 0 1 30.4 31.4 29.6 32.5 33.6 32.3 32.9 34.0 33.0
(6.9) (5.7) (5.9) (11.4) (11.4) (11.7) (12.3) (12.3) (12.7)

7 5 60 1 1 30.4 31.8 30.0 34.2 35.5 34.8 34.6 36.0 35.4
(7.4) (5.5) (5.5) (10.4) (7.6) (8.2) (11.0) (8.7) (9.3)

8 5 60 1 0 30.4 32.9 31.7 37.8 40.0 38.7 37.6 39.4 38.3
(7.4) (5.3) (5.5) (10.6) (6.4) (7.4) (11.2) (8.0) (9.0)

9 5 60 0 2 31.5 31.6 30.7 32.3 31.9 31.1 34.5 33.8 33.0
(7.2) (4.9) (5.3) (7.9) (5.5) (6.1) (10.6) (9.5) (10.1)

10 6 40 2 2 30.9 31.9 30.4 31.3 32.3 31.1 48.4 50.2 49.6
(6.4) (5.2) (5.5) (7.5) (6.6) (7.1) (16.7) (17.8) (18.4)

11 6 40 2 2 31.7 32.2 29.5 30.9 31.4 29.0 52.7 54.7 53.3
(6.6) (5.3) (5.6) (7.9) (6.8) (7.1) (12.6) (14.1) (15.4)

12 6 40 3 2 31.3 31.8 29.6 30.8 31.4 29.4 57.0 62.9 62.7
(6.5) (5.6) (5.9) (7.7) (7.0) (7.4) (13.9) (16.8) (17.8)

15 6 60 1 2 32.0 32.6 30.4 32.1 32.8 31.2 56.0 56.9 57.3
(6.9) (6.2) (6.4) (9.5) (9.1) (9.3) (10.6) (10.3) (12.0)

30 6 80 2 1 35.8 36.2 36.1 38.9 39.1 39.1 53.7 53.6 53.9
(7.4) (6.3) (6.7) (10.4) (9.6) (10.0) (5.7) (5.9) (6.2)

45 6 40 1 0 33.6 33.6 28.2 34.6 34.3 28.5 55.5 55.4 48.7
(6.2) (6.0) (6.1) (9.6) (9.4) (9.6) (4.7) (4.7) (6.1)

60 6 60 3 1 36.7 37.9 31.5 37.2 38.2 32.1 56.1 57.0 50.4
(6.9) (6.4) (7.7) (10.3) (9.9) (10.5) (4.0) (3.8) (5.5)

Total number of patients assigned 0 3 3 0 3 0 21 24 6

†The largest current posterior mean utility is given in bold.
‡Standard deviations are given in parentheses.

and that N �90 is needed to achieve Rselect �80, and N roughly 200–240 is needed if Rselect �90
is desired.

Supplementary Table S12 summarizes the behaviour of the PDS-based design when the trial is
conducted by using each of three different numerical utilities. One is the elicited utility in Table 2,
and two are hypothetical, given in supplementary Table S11, constructed to place greater value
on either lower toxicity or greater efficacy. The simulations show that, across the 12 scenarios, the
three resulting designs behave differently, but with no general pattern favouring one utility over
the others. The utility favouring higher efficacy gives a design that escalates more aggressively
and thus has greater observed toxicity and efficacy. Analogously, the utility favouring lower
toxicity results in less toxicity but also less efficacy. A general conclusion is that the design
behaves in a way that reflects the numerical values of U.y/, which is the intention.
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Table 7 gives a patient-by-patient illustration of how the design may behave as the trial plays
out, and what the interim estimates look like during the trial, for patients 1–12, 15, 30, 45
and 60. Since the maximum posterior mean utility after the first cohort is u.4, 80 |data3/ =
35:5, the pair d = .4, 80/ is used to treat cohort 2. Although u.6, 60 |data6/ = 34:0 is largest
for n = 6, the constraint that an untried dose may not be skipped when escalating results in
d= .5, 60/ being used to treat cohort 3. The trial continues similarly, applying the AR method as
described in step 6 of the design in Section 3.3. For each d, the posterior variability of u.d|datan/

decreases with sample size n, but not monotonically. At the end of the trial, d= .6, 60/ is optimal
with u.6, 60 |data60/=57:0, but d = .6, 40/ also is a good choice since it is nearly optimal with
u.6, 40 |data60/=56:1.

5. Discussion

Because the GCR model given by expression (2) links the conditional probability γk.y, xλ
k , θk/

to the linear term ηk.y, xλ
k , θk/, it has the computational advantage that there are no order

constraints on the intercept parameters αk,1, : : : , αk,Lk
. An alternative model may be defined by

π̄k.y, xλ
k , θk/=1− [1+φk exp{ηk.y, xλ

k , θk/}]−1=φk :

This generalizes the proportional odds model (McCullagh, 1980) by replacing the logit link with
the Aranda-Ordaz link. Because this model links the unconditional probability π̄k.y, xλ

k , θk/

rather than the conditional probability γk.y, xλ
k , θk/ to the linear term, it requires the order

constraints αk,1 >: : : >αk,Lk
for the probabilities to be well defined. Using this model for dose

finding, the need to impose these constraints on each parameter vector αk = .αk,1, : : : , αk,Lk
/,

k = E,T makes the Markov chain Monte Carlo computations to obtain posteriors much more
difficult, especially for small amounts of data. This is one important motivation for our use of
the GCR model.

Various special cases or alternative formulations of the PDS model can be obtained by chang-
ing one or more of its components. A natural question is whether adding a multiplicative dose–
dose interaction term to the model with parametric dose standardization would improve the
design’s behaviour. This model would have linear components

ηk.y, xλ
k , θk/=αk,y +βk,y,1xλ

k,1,j +βk,y,2xλ
k,2,r +βk,12xλ

k,1,jxλ
k,2,r:

It may be considered a hybrid of the PDS and CMI model, in that it includes both parametric
dose standardization and a conventional multiplicative interaction term. Supplementary Table
S7 shows that, compared with the PDS model, the hybrid model gives a design with Rselect-
values 1–6 smaller in eight scenarios, 1–3 larger in two scenarios and slightly larger incorrect
early stopping probabilities. Thus, on average, this more complex hybrid model produces a
design with slightly worse performance than the PDS model.

A computer program named ‘U2OET’ for implementing this methodology is available from
https://biostatistics.mdanderson.org/SoftwareDownload.

Acknowledgements

This research was supported by National Institutes of Health National Cancer Institute grant
RO1-CA-83932. We thank Nolan Wages and Mark Conaway for providing computer programs
to simulate their designs. We also are grateful to two referees and the Associate Editor for their
constructive comments and suggestions.



22 P. F. Thall, H. Q. Nguyen and R. G. Zinner

Appendix A: Review of generalized continuation ratio models and copulas

Recall that γk.y, d, θk/ = P.Yk � y|Yk � y − 1, d, θk/, for y = 0, : : : , Lk. For given link function and linear
term η.y, d, θk/, a GCR model defines this conditional probability as

γk.y, d, θk/= link{η.y, d, θk/}:

The marginal probabilities of a GCR model are given by

πk.0, d, θk/=1−γk.1, d, θk/,

πk.y, d, θk/={1−γk.y +1, d, θk/}
y∏

r=1
γk.r, d, θk/, for y =1, : : : , Lk,

π̄k.y, d, θk/=
y∏

r=1
γk.r, d, θk/, for y =1, : : : , Lk:

Since

P.Yk �y|Yk �y −1, d, θk/=1− P.Yk =y −1|d, θk/

P.Yk �y −1|d, θk/
,

the GCR model may be specified equivalently in the more commonly used form

Pr.Yk =y|d, θk/

Pr.Yk �y|d, θk/
=1−γk.y +1, d, θk/, for y =0, : : : , Lk −1:

In general, the joint probability distribution of Y = .YE, YT/ given by a copula (Nelsen, 2006) can be
defined in terms of the marginal cumulative distributions functions

Fk.y|d, θk/=Pr.Yk �y|d, θk/=1− π̄k.y +1, d, θk/, for y =0, : : : , Lk −1, k =E,T,

by applying the formula

Pr.YE =yE, YT =yT|d, θ/=
2∑

a=1

2∑

b=1
.−1/a+b Cρ.ua, vb/

where Cρ.ua, vb/ denotes the copula and u1 =FE.yE|d, θ/, v1 =FT.yT|d, θ/, u2 =FE.yE − 1|d, θ/ and v2 =
FT.yT − 1|d, θ/. To obtain a bivariate distribution under the PDS model, we assume a Farlie–Gumbel–
Morgenstern copula

Cρ.u, v/=uv{1+ρ.1−u/.1−v/}, for 0�u, v�1, −1�ρ�1:

The GCR model that was given by Houede et al. (2010) accounts for the joint effects of the two doses
on each ordinal outcome in a qualitatively different way. First, a conventional linear term for each agent
a=1, 2, level y of outcome Yk for k =E,T and dose d.a/ is defined as

η.a/
k,y =α.a/

k,y,0 +α.a/
k,y,1d

.a/:

A GAO link is then defined as

γk.y, d, θk/=1− [1+λk{exp.η.1/
k,y/+ exp.η.2/

k,y/+κ exp .η.1/
k,y +η.2/

k,y/}]−1=λk

where κ>0 is a dose–dose interaction parameter. Houede et al. (2010) obtained bivariate distributions by
assuming a Gaussian copula,

Cρ.u, v/=Φρ{Φ−1.u/, Φ−1.v/},

where Φρ denotes a bivariate normal cumulative distribution function with correlation ρ and Φ denotes
an N.0, 1/ cumulative distribution function.
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