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SUMMARY

Fluorescent in situ hybridization (FISH) is used in many medical settings to identify the genetic or chromoso-
mal abnormality characterizing a disease. FISH techniques may be used to classify a sample of a patients cells
into genomic categories, one or more of which is associated with the disease. The clinical goalis to determine
whether there is a positive proportion of diseased cells in the patient, or to estimate this proportion. Unfortu-
nately, such data are often subject to classification error inherent in FISH methodology. However, when addi-
tional data are available from cells of known type, typically from normal subjects, this information may be
combined with the patient’s data to perform the desired inference while correcting for misclassification. We
provide a method for estimating the proportions of cells of each category and testing whether a particular
proportion is positive in each of several patients when such background data are available. Our approach is
to model the misclassification probabilities, jointly to estimate the model parameters and each patient’s cell
type proportions by using maximum likelihood and to use this to obtain likelihood ratio tests and confidence
intervals. The method is applied to blood cell count data from chronic myelogenous leukaemia patients, where
FISH is used to identify the chromosomal translocation characterizing the disease.

Keywords: Classification error; Fluorescent in situ hybridization; Leukaemia; Maximum likelihood; Product
multinomial

1. Introduction

Fluorescent in situ hybridization (FISH) has become a powerful tool for identifying
specific regions of the human genome. FISH uses coloured fluorescent markers to
determine whether one or more specific deoxyribonucleic acid sequences are present
in a chromosomal region (domain) in a cell. An important application of this tech-
nology arises in the diagnosis of haematologic diseases which may be characterized
by a specific genetic alteration or chromosomal abnormality. FISH probes char-
acterizing the abnormality may be used to classify each of a sample of blood or bone
marrow cells taken from a patient into specific categories, one or more of which is
associated with the disease. In practice, inference from the resulting multinomial data
may be complicated by classification errors that are often inherent in the use of FISH
probes. Consequently, one is faced with the problem of testing whether any diseased
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cells are present in the patient, or of estimating the proportion of diseased cells, on
the basis of a multinomial sample with possible misclassification. When additional
multinomial data are available from cells of known type, typically cells from normal
subjects, this information may be used in conjunction with the patient’s data to
perform the desired inference while correcting for misclassification. This paper is
motivated by such an application.

Seong et al. (1994) recently applied FISH to assist in the diagnosis of chronic
myelogenous leukaemia (CML) by identifying the translocation between chromo-
somes 9 and 22 which characterizes CML. The simultaneous use of two FISH probes
of different colours for the break points on these two chromosomes associated with
this translocation produces two observable genomic domains in normal cells, and
three domains in CML cells. As there are non-zero probabilities of missing domains
or of seeing domains not actually present, cells with either one or four domains
are also observed. Table 1 presents data of this form, taken from Table 1 of Seong
et al. (1994). We include five CML patients for illustration, although the methods
described here accommodate an arbitrary number of patients. Whereas the statistical
development is presented in terms of probabilities, the tables give the data and
estimates as percentages, as is customary among cytogeneticists.

The general statistical problem is to test whether the proportion of three-domain
cells in an individual patient is non-zero and, if so, to estimate this proportion. These
inferences may serve in turn as the basis for deciding whether a newly examined
patient has CML, or whether a CML patient previously brought into remission has
relapsed and requires therapeutic intervention. The statistical problem of determin-
ing adequate sample sizes for FISH studies is also very important, since classifying
and counting cells is extremely labour intensive.

Various aspects of the problems of estimating multinomial probabilities in the
presence of classification error and of evaluating FISH probes have been addressed
by several researchers. In a study of sex-mismatched bone marrow transplantation
(BMT), Durnam et al. (1989) used bone marrow samples from normal males and
normal females to test the sensitivity of a Y-chromosome-specific FISH assay and
also assessed the ability of the proportion of host cells in the patient measured with
this assay to predict relapse or acute graft versus host disease. Jenkins et al. (1992)
discussed the use of interphase and metaphase FISH methods to estimate the
proportion of cells with trisomy 8, an abnormality of the eighth chromosome

TABLE 1
Domain counts for normal subjects and five CML patients?t

No. of Normal Counts for the following patients:
domains (k) subjects

1 2 3 4 5
1 46 (4.23) 31 (5.20) 22 (5.47) 28 (7.69) 4 (2.04) 38 (8.17)
2 1008 (92.6) 110 (18.5) 376 (93.5) 226 (62.1) 13 (6.63) 402 (86.5)
3 21 (1.93) 453 (76.0) 3 (0.746) 109 (29.9) 174 (88.8) 20 (4.30)
4 13 (1.19) 2 (0.336) 1 (0.249) 1(0.275) 5(2.55) 5(1.08)
n 1088 596 402 364 196 465

+Percentages, out of the total number » of cells classified, are given in parentheses.
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associated with certain haematologic disorders, accounting for laboratory error,
disagreement between FISH and conventional cytogenetic methods, and interobser-
ver variability. Kibbelaar et al. (1993) assessed the ability of three statistical tests to
discriminate between test and control FISH probes, while also considering inter-
observer variability. Sopor and Troilo (1992) developed a test to distinguish true
FISH binding sites from non-specific binding sites, by first partitioning chromosomes
into bins of equal length and counting the number of binding sites in each bin. Zelen
and Haitovsky (1991) studied the asymptotic relative efficiency of tests for comparing
two binomial populations when the binary variables are subject to misclassification.
Lakshmi and Smith (1993) used power and sample size criteria based on the two-
sample binomial test with an inverse sine transformation to evaluate false positive
and false negative rates arising in classifying normal and abnormal cells by using flow
cytometry.

Our goal here is to use the background data to account formally for mis-
classification error and thus to obtain more reliable estimates and tests of the cell
type proportions in the patient. We do this by first modelling the misclassification
probabilities, and then estimating the parameters of the model and the patient’s cell
type proportions jointly by using maximum likelihood. We provide a likelihood ratio
test to determine whether the proportion of three-domain cells in the patient is non-
zero and a confidence interval for estimating this proportion. The properties of these
methods are examined in the context of the CML application by a simulation study.

2. General Model

For simplicity, we first describe estimation based on background data and data
from one patient, and subsequently treat the case of several patients. Let K denote
the number of observed cell types. Each patient’s data consist of the counts W =
(W1, . .., Wg), where W is the number of cells out of » classified that are observed
to be of type &, for k=1, ..., K. The background data consist of a vector Z =
(Z1, . . ., Zg), from m cells of known type, typically from normal subjects. Our
objective is to form inferences about the vector w = (ry, . . ., mx_;) of the patient’s
true cell type proportions based on Z and W. A central point is that the event that a
cell is truly of type k is not the same as the event that it is observed to be of type k.

Denote the probability that a cell is observed to be of type k by ¢, fork =1, . . ., K,
with ¥ = (41, . . ., ¥x-1) and Ay = Pr(a cell is observed to be of type k |the cell is
truly of type ;). In general, w # 1, but
K
e = Y Ay, k=1,...,K, (1
j=1
where g = 1 — 7 ... — mg_1; Pk and Ag; are defined similarly.

Our estimation scheme requires an explicit representation for each element of the
K x K matrix A =();) of conditional probabilities in terms of a vector 8 of
parameters, based on a fundamental model for misclassification. The basic idea is
to model A parsimoniously and to estimate the misclassification parameters 6
jointly with . We apply two such misclassification models in Section 5 to analyse
the CML data given in Table 1. In general, we assume that the misclassification
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probabilities are the same for all cells, from both normal subjects and CML patients,
and that classifications are independent from cell to cell. In particular, this implies
that the probability a normal cell is classified to be of type k equals ), and these
proportions are the same for all normal subjects. The background data consist of the
domain counts from cells known to be normal, i.e. known to have two domains.
The counts from normal subject 1 of Seong et al. (1994) were excluded from
the background data considered here, because a different laboratory worker obtained
the data on this initial subject (personal communication from David Seong).
Consequently, the misclassification rates for this subject differed from those for the
other normal subjects and for subsequent CML patients. This is shown by an exact
permutation test (see Mehta and Patel (1983)) for homogeneity among all nine
normal subjects’ count vectors in Table 1 of Seong et al. (1994), which has p-value
0.036, whereas the same test for subjects 2-9 has p-value 0.343.

Joint maximum likelihood estimators (MLEs) of 7 and @ are obtained from the
likelihood L(0|Z) x L(, 8| W), where

K
£6)Z) = [[ M(0)* )
k=1

is the multinomial product based on the vector Z of genomic category counts from m
known normal cells and

K K K Wi
L(w, 8|W) = H Yi(m, O = H {Z /\kj(o)ﬂ'j} 3)
k=1 1 J=1

k=

is the likelihood based on the patient’s counts W. This is a version of the likelihood
considered by several researchers (Viana (1994), section 2). Our emphasis is on
parameterization of A, and we consider settings in which certain elements of 7 are 0.
Although each cell from each patient is not of known type, the counts W provide
information for estimating the misclassification parameters @ as well as 7 because the
category observation probabilities 3 are functions of A and hence 6. In contrast, the
background counts Z do not provide any information about the true category
proportions 7 of the patient; rather they only contain information about the mis-
classification parameters 6. Thus, if no background data are available, L(m, 8| W)
per se is not identifiable in both @ and w, i.e. they cannot be separately estimated.
There are two important points here. The first is that 7 characterizes the individual
patient, and therapeutic decisions for that patient will be based on the numerical
value of a particular entry of 7, such as the proportion 73 of cancer cells in a CML
patient. Thus the primary goal is to obtain an accurate estimate of w. The second
point is that 8 characterizes a particular FISH procedure performed by an individual
cytogeneticist, so both the background data and the patient data must be obtained by
the same laboratory worker. A realistic extension is that € characterizes the classifica-
tion distribution for all workers in the same laboratory, provided that the particular
FISH procedure has been well standardized in that laboratory, as established by a
preliminary analysis of interobserver agreement for known cell types. If this is not the
case, then background data obtained by one worker in combination with patient
data obtained by another worker may produce misleading results. To apply the
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methodology proposed here, both the background and the patient data must be
obtained from the same worker or standardized laboratory.

In practice, data from several patients will be available. Under our model each
patient’s data vector contains information for estimating the misclassification
parameters. Hence a more reliable estimator of @ is obtained by extending the
likelihood (3) to accommodate data from several patients. Denote the data
and probability vectors of N patients by {(W;, m), i=1,..., N}, where m; =
(mit, . . ., T k1) and W; = (W, . . ., Wix), recalling that each patient has a different
r; but the misclassification parameters 8 are intrinsic to the cell classification process
and hence are common to all patients. Denote the probability that cell type k is
observed in patient i by

B
b= Ng(0) .
Jj=1
Then the full likelihood in (8, 7y, . . ., 7y) is
N N K
£O1Z) x [ £em, 01W) = £©12) [T T wic™. O
i=1 i=1 k=1

General expressions for the log-likelihood, scores and information matrix are
given in Appendix A. To maximize the full likelihood (4) we used the following two-
stage iterative procedure:

(a) fix @ and separately maximize each L(mr;, 8|W,) in =;
(b) fix (my, . . ., wy) and maximize the full likelihood in 6.

Good starting values are n), = W;;/n; with the entries of 6° similarly obtained by
equating them to the empirical rates in the background data. We do not recommend
simultaneous maximization of the full likelihood in all parameters, since we found
this method to be numerically unstable, and the problem grows in severity with the
number of patients.

3. One Binary Outcome with Misclassification

The simplest application of the general approach is to the case of a single binary
outcome subject to misclassification. One example arises from the use of a single
probe for the Y-chromosome in sex-mismatched allogeneic BMT, where the donor
and patient are of opposite sex. When BMT is used as a therapeutic strategy for
haematologic malignancies, such as leukaemia, lymphoma or myelodysplastic syn-
drome, high dose chemotherapy and possibly radiotherapy are first employed to
ablate (eradicate) the patient’s bone marrow. In an allogeneic transplant, a donor’s
marrow cells are then introduced into the patient. Any of the patient’s original (host)
bone marrow cells that remain after the transplant may interfere with the process of
engraftment, whereby the donor cells repopulate the patient’s marrow, and host cells
may also contribute to relapse. When the patient and donor are of opposite sex, one
way to determine whether host cells remain in the patient and, if so, to estimate the
proportions of host and donor cells is to classify a sample of cells from the patient by
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their sex chromosomes. Since human male blood cells have one X- and one Y-
chromosome whereas female cells have two X-chromosomes, a FISH probe for a
genetic domain found only on the Y-chromosome may be used to characterize each
cell.

For this application, the relevant probabilities are ¢ = Pr(observe Y), 7 = Pr(Y
truly present) and A\ = Pr(observe Y|Y truly present). Since it is impossible to
observe the Y-probe if no Y-chromosome is present in the cell, the probability of
observing Y is simply 1) = An. Here the binomial variable W is the number of the
patient’s cells observed to have a Y-domain out of # classified, Z is the number of
known male cells with an observed Y-domain out of m classified and the likelihood is

Lm, ) =0 A=A A\Z 1 - "2

The MLEs are (7, ):) = (Wm/Zn, Z /m) with asymptotic variance—covariance matrix

(1l — Am) + (1 = X) _7r(1 —A)
An Am m

w(l = X) Al = X)
 m m

If misclassification is ignored and the incorrect estimator W/n is used for =, this is
too small by the factor A = Z/m. The variance of W/n is not n(l — 7)/n but
Am(l — Aw)/n, which is smaller than the variance of the MLE #. For example, if 7 =
0.80 and A = 0.95, corresponding to a 5% misclassification rate, then W/n is an
unbiased estimator of Ax = 0.76 rather than 0.80 and has variance 0.182/n. The
estimator of m which accounts for misclassification is asymptotically unbiased,
however, and has variance 0.202/n + 0.034/m.

One caveat here, pointed out by a referee, is that, although W/n has mean Ar and
Z/m has mean ), there is a non-zero probability that W/n > Z/m. The numerical
solution 7 is then greater than 1, which is of course inadmissible. We must be aware
of this possibility when » is relatively small or 7 is close to 1. In such a circumstance,
a reasonable solution is to compute a confidence interval for =, using the general
method described below based on # = 1 and the above variance estimate for 7.

4. Inference

The primary focus in a given application is the proportion 7; of a particular type of
abnormal cell. Hence our goals are to test the hypotheses m; = 0 versus m; > 0, or
simply to estimate ;. A likelihood ratio statistic 2 (In LryLL — In L) for this test
for each patient may be obtained from the likelihood maximized under the full model
and maximized assuming 7; = 0 for that patient. This statistic is distributed approx-
imately as a 50:50 mixture of a point mass at 0 and a xl-dlstrlbutlon as n — oo and
m — oo (Self and Liang, 1987) because the null value of (7, 8) is on the boundary of
the parameter space. In the CML application, there are four categories and m; is the
patient’s proportion of cancer cells. The clinical goal is to determine whether a new
patient has CML, or whether a formerly treated CML patient is in relapse. Under
each of several assumed models, depending on which actual domain probabilities
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may be positive and the underlying misclassification model, we perform likelihood
ratio tests of w3 = 0 versus w3 > 0 for each of the patients.

To estimate 73 we adapt a method first proposed by Ghosh (1979) in the context of
constructing an approx1mate confidence interval for a simple binomial proportion
m. Ghosh showed via simulation that, denotmg A =72 /n where z, is the upper
100(1 — «/2) standard normal percentile and &> = w(l — @)/n, the approximate
100(1 — )% confidence interval

R+ A2 F 2a(62 + 4)4n)'
1+4

is superior to the usual large sample interval 7  z,8,. This superiority is especially
pronounced for very small #, which is important in the present context. Ghosh
motivated the improved interval (5) by pointing out that it is based on the shrinkage
estimators

®)

#=a/(1+A4)+054/(1 + A)
and
G2+ A/4n
(1+4)7

We adapt this approach to the present problem by using the maximum likelihood
estimators of 73 and o*(m;), obtained under the models accounting for misclassifica-
tion, in place of # and &2 in expression (5). A small simulation study of both the
likelihood ratio test and the adapted Ghosh confidence interval, described below in
the context of our application, shows that for small values of 73 the adapted Ghosh
interval is substantially more accurate than the usual large sample interval.

&) =

5. Analysis of Chronic Myelogenous Leukaemia Data

For the data in Table 1, £k = 1, 2, 3 or 4 FISH domains may be observed in each
cell, with normal and leukaemic cells indexed by k =2 and k =3 respectively.
The background data consist of the single vector Z = (Z, Zz, Z3, Z4) of observed
counts from a sample of cells known to be normal, m = X}_, Z, and L£(8|Z) =

n_ 1)\k2(6) *. The model for = depends on which of three different biological
viewpoints is adopted. The first is that only diploid or leukaemic cells can occur, so
that one or four domains are observed only as a consequence of technical errors in
the FISH process, and m, + 73 = 1. Alternatively, we may assume that all observed
categories are possible, i.e. all 7; > 0. A third possibility, suggested by the data, is
that w4 =0 and m +m + 7 = 1. Since there is some disagreement among
cytogeneticists about what is possible in these and similar settings, we shall consider
all three sets of assumptions.

We consider two models for A, each based on the idea that the misclassification
probabilities {Ay;, kK #j and j# 2} may be obtained from the probabilities {A.,
k # 2} for normal cells under the assumption that the conditional probability of
wrongly adding or deleting a given number of domains is the same for patient and
normal cells. Model 1 for A is based on the assumptions that any given actual
domain is missed with some probability «, an extra domain not actually present is
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observed with probability 3, the events of missing or adding two or more domains
are independent and A\; =0 if |k —j| > d, for some integer d. Thus 8 = (w, ),
Mj =&/ *if k < jand 87 if k > j and the diagonal elements of A are determined by
the fact that each column must sum to 1. Under model 1,

1—5~52—53 o az Oz3
8 l-a-p-p3 o a?
A___—__
iz B l—-a—-a?-3 !
B3 62 ﬁ 1——0{-—-0[2—0(3

The parameters must satisfy the constraints a + 8+ 5> < 1 and a+a?+ 5 < 1.
Reasonable starting values for computation are o = Z;/m and 3° = Z3/m, and in
general ©° = W/n.

Our second model for A is based on the assumptions that at most two extra
domains may be observed and at most one may be lost. Specifically, we let A\;; = a,
Ap =08, =vand Ap =1—oa— -1, and we assume that \,; =0ifi<j—1or
i > j+ 2. This produces model 2, given by

1-08—~v a 0 0

A= B8 l-a—-0F8—7v o 0
¥ I} l-a-0 «a
0 y 8 l -«

A more symmetric version of this model would have a fourth parameter, say 7, for
the probability of missing two domains, with A;3 = Ay = 7. As there is no zero-
domain category, and hence no Zy or Ay, such a model is inappropriate here.
Starting values for computing the MLEs are o® = Z,/m, ° = Z3;/m and 4° = Z,/m.

Assume first that each patient cell can have either two or three domains. Thus
my + m3 = 1 and non-zero values of Z;, Z; or Z4 are due to classification error. The
individual patient likelihood (3) is

4

L(m, 0|W) = [ [ a(0)(1 — m3) + s (6) w3} .

k=1

Table 2 summarizes likelihood ratio tests of w3 = 0 versus m > 0 together with
point estimates and 99% confidence intervals Iy for m; for each patient under
each misclassification model. The uncorrected estimates and intervals assuming
no misclassification, i.e. when m; =13, are also included for comparison. If a
misclassification model is not assumed, however, then ¢; = 7; foreach j =1, 2, 3 and
4. Under this approach, the only multinomial model without positive mis-
classification probabilities which conforms to the observed data is that in which all
four m;s are positive. If we do not allow the possibility of misclassification and
moreover assume that m, + w3 == 1, then the observation of cells with one or four
domains is considered impossible even though such cells are observed. Thus we only
consider likelihood ratio tests under the misclassification models, since they allow
positive values of all ;.
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TABLE 2
Estimates of parameters for two misclassification models and proportion w3 of leukaemic cells in each of
five CML patients; estimates of 13 assuming no misclassificationt

Estimates for the following patients:

1 2 3 4 5
Model 1: & = 7.05 (0.653), B = 2.68 (0.461)
m 81.9 (2.09) 0.00 (1.06) 30.6 (2.72) 98.6 (2.46) 2.98 (1.29)
Iy 76.2-86.9 0.00-3.62 24.0-37.9 90.7-100 0.309-6.98
p-value} 0.000 1.000 0.000 0.000 0.002
Model 2: & = 6.77 (0.353), B = 1.37 (0.237), 4 = 0.858 (0.641)
e 80.3 (2.05) 0.00 (0.750) 31.1 (2.65) 95.1 (2.53) 3.25 (1.10)
Igg 74.7-85.2 0.00-2.88 24.7-38.2 87.1-100 1.02-6.79
p-value} 0.000 1.000 0.000 0.000 <0.001
Uncorrected§
s 76.0 (1.75) 0.746 (0.429) 29.9 (2.40) 88.8 (2.25) 4.30 (0.941)
Iy 71.2-80.2 0.167-2.70 24.2-36.5 81.7-93.4 2.40-7.34

tAssumes m, + 73 = 1. Standard errors are given in parentheses. Iy is an adapted Ghosh 99% confidence interval for

3.
{Likelihood ratio test of w3 = 0 versus m3 > 0.
§Assumes no misclassification.

It appears that model 2 gives a better fit to these data than model 1 does. Although
models 2 and 1 are not nested, their respective maximized log-likelihoods are
—1580.26 and —1606.49. In terms of the observed background normal cell rates of
1.93% for three and 1.19% for four domains (Table 1), the estimates 3 = 1.37% and
4 = 0.858% under model 2 are closer than the estimates 3 =2.68% and 3 =
0.072% under model 1.

For patients 1 and 4, both misclassification models give estimates of w3 that are
substantially larger than the uncorrected values. The reverse is true for patients 2 and
5, whose observed proportions of cells with three domains are small. The standard
errors of the corrected estimates are larger than those of the uncorrected estimates in
all cases. Under either model 1 or model 2, the likelihood ratio tests of w3 = 0 versus
m3 > 0 strongly support the null hypothesis for patient 2 and the alternative for each
of the other patients. However, the confidence intervals provide more information.

For patient 2, the misclassification models lead to a conclusion that is different
from that of the uncorrected model, since the lower confidence bound (LCB) for
patient 2 is 0 under both misclassification models, whereas the LCB based on the
uncorrected model is positive. Thus, on the basis of a 0.01-level test corresponding to
the Ghosh confidence interval, we conclude that 7; = 0 for this patient, whereas
ignoring misclassification leads to the conclusion that 73 > 0, i.e. that patient 2 has a
positive proportion of leukaemia cells. A sensitivity analysis in which counts are
shifted from the two-domain to the three-domain category for this patient, i.e. the
data W = (22, 376 — x, 3 + x, 1) are analysed for each x = 3, 4, . . ., shows that the
99% LCB is first positive for W = (22, 356, 23, 1) under model 1 (fyy of 0.079%—
7.40%), and for W = (22, 362, 17, 1) under model 2 (ly of 0.166%—6.35%). Thus
the models accounting for misclassification require a larger number of three-domain
cells to declare a patient to have any leukaemic cells.
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To examine the behaviour of the likelihood ratio test of 73 = 0 versus 3 > 0, and
to compare the Ghosh and conventional confidence intervals, we performed a
simulation study. This was carried out under misclassification model 2 and assuming
that m +m = 1. Under the full model with m3 >0, ¥ =a(l —m), ¥v» = (1-
B—a—y)(-m)+am, ¢p3=0(01-m)+(1—a-p)m and Y4 =v(1-m)+Fm.
Thus, under the null model with 73 =0, the MLEs of the misclassification prob-
abilities are the simple multinomial proportions &° = (Z; + W))/(m, +ny),
= (Z3+ W3)/(m3 +n3) and ° = (Z4 + Wy)/(ms +ns4). To reflect the observed
classification rates in the simulations, we fixed the misclassification parameters at
these null empirical values; moreover, the background data vector Z = (46, 1008, 21,
13) was used throughout. For each case, we generated W ~ multinomial(n, 1), with
n = 50, 100 or 200, and =3 varied along the domain from 0 to 0.20. Each case was
simulated 400 times. Fig. 1 presents the resulting power curves for the 0.025-level test
based on the x? mixture approximation, i.e. the test which rejects the hypothesis
w3 = 0 if the likelihood ratio statistic is greater than 3.8415. We also recorded the
empirical coverage probabilities and widths of the Ghosh and conventional 95%
confidence intervals for these cases and also for n =500 at m; = 0.001, 0.01, 0.05,
0.10, 0.20 and 0.50 to obtain a more complete empirical evaluation of the relative
merits of these two procedures. The power functions are graphed in Fig. 1, and the
confidence interval coverage rates and widths are given in Table 3.

Since the misclassification models are most useful for true values of 73 near 0, the
power curves indicate that, in the present setting, at least 200 cells must be classified
to have a reasonable probability of detecting positive values of 73 below 0.05 on the
basis of the 0.025-level likelihood ratio test. The empirical sizes were 0.028, 0.015 and
0.018 for n =50, 100 and 200 respectively, indicating that the test is somewhat
conservative for n > 100. For estimation, the adapted Ghosh confidence interval is

0.4 0.6 0.8
I

Power of 0.025 level LR test

0.2

T T T T T

0.0 0.056 0.10 0.15 0.20

True Probability of Three Domains
Fig. 1. Power functions of a likelihood ratio test of m3 = 0 versus 73 > 0 under misclassification model

2, assuming m + 73 = 1 (each point is based on 400 simulated 0.025-level tests): ¢, #n = 200 cells; O,
n = 100 cells; A, n = 50 cells
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TABLE 3
Empirical mean coverage probabilities and widths of Ghosh (1979) and conventional 95% confidence
intervals for mst

Results for the following true values of my:

0.001 0.01 0.05 0.10 0.20 0.50

n=350

0.948 (0.102) 0.962 (0.109) 0.950 (0.147) 0.935 (0.187) 0.968 (0.233) 0.930 (0.283)
1.00 (0.059) 1.00 (0.066) 0.842 (0.118) 0.908 (0.178) 0.940 (0.238) 0.930 (0.295)
n=100

0.935 (0.063) 0.982 (0.070) 0.978 (0.097) 0.960 (0.134) 0.960 (0.169) 0.968 (0.206)
1.00 (0.042) 1.00 (0.050) 0.925 (0.097) 0.915 (0.133) 0.940 (0.171) 0.958 (0.295)
n=200

0.985 (0.040) 0.975 (0.047) 0.948 (0.077) 0.968 (0.096) 0.950 (0.120) 0.958 (0.148)
0.995 (0.030) 0.988 (0.037) 0.938 (0.075) 0.965 (0.096) 0.948 (0.121) 0.958 (0.149)
n=500

0.980 (0.024) 0.980 (0.033) 0.948 (0.050) 0.945 (0.062) 0.948 (0.077) 0.942 (0.095)
0.993 (0.021) 0.998 (0.029) 0.950 (0.050) 0.960 (0.062) 0.952 (0.077) 0.942 (0.095)

tBased on 400 simulations per case under misclassification model 2 with m;, + 7 = 1. For each #, the first row
corresponds to the Ghosh intervals and the second row to the conventional intervals. The widths of the intervals are
given in parentheses.

far superior to the conventional interval in terms of coverage probability for =3 =
0.001-0.01 or n =50-100, although the Ghosh intervals are slightly wider. Even
when » is large or 73 is closer to 0.50, however, the Ghosh interval is still either
slightly more accurate or essentially identical with the conventional interval. These
results are analogous to those obtained by Ghosh (1979) in the simple binomial
context.

Table 4 presents results that are analogous to those of Table 2, but under
the alternative assumption that one or four domains are possible and not purely
artefacts of classification error; equivalently that all m; > 0. In this case, to allow
unconstrained maximization of the likelihood, in the numerical computations we
transformed 7 to ¢ given by ¢; = log(m;1/7;),j = 1, 2, 3. Under model 1, the Ghosh
intervals and likelihood ratio tests are very close to the corresponding values
obtained earlier assuming m; = m4 = 0. In general, allowing the possibility of cells
with four domains has the effect of decreasing the estimated proportion of three-
domain cells under either misclassification model. Under model 1 this leads to a
different conclusion for patient 5, since here the 99% interval for this patient now has
LCB 0, which implies that this patient may be free of leukaemia cells. The likelihood
ratio test p-value, although still small, has increased from 0.0024 to 0.0144 for this
patient. The LCB is positive for patient 5 under model 2, however, and the test p-
value is very small. Moreover, since the upper bound of the 99% interval is 5.74%
under model 1, it seems reasonable to conclude that this patient has a positive
proportion of leukaemia cells under either misclassification model or set of as-
sumptions regarding .

As most values of 74 in Table 4 are 0 or very small, we consider one more set of
assumptions, that m + m, + m3 = 1. Analysing the data under this condition with
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TABLE 4
Parameter estimates and 99% confidence intervals for 73 = Pr(CML cell) in five CML patientst

Parameter Results for the following patients:

1 2 3 4 5
Model 1: & = 4.17 (0.606), 3 = 2.48 (0.449)
# 4.50 (0.951) 1.40 (1.38) 5.05 (1.54) 1.80 (1.05) 4.42 (1.49)
7 16.1 (1.83) 98.4 (1.72) 65.1 (2.87) 2.80 (2.09) 92.5 (1.91)
fr, 79.4 (2.07) 0.00 (0.980) 29.9 (2.65) 95.2 (2.62) 211 (1.13)
s 0.00 (0.722) 0.189 (0.258) 0.00 (0.514) 0.199 (1.29) 1.01 (0.502)
Iy 73.8-84.4 0.00-3.43 23.5-37.0 87.0-100 0.00-5.74
p-valuel 0.000 1.000 0.000 0.000 0.014
Model 2: & = 3.30 (0.339), 8 = 1.27 (0.284), ¥ = 0.888 (0.541)
s 5.19 (0.956) 4.39 (1.24) 7.19 (1.49) 2.05 (1.06) 7.34 (1.38)
T 17.9 (1.69) 93.6 (1.70) 63.2 (2.78) 5.77 (1.91) 89.3 (1.89)
s 76.9 (1.84) 0.00 (0.584) 29.6 (2.48) 90.6 (2.35) 3.31 (1.00)
s 0.00 (0.533) 0.00 (1.06) 0.00 (0.905) 1.58 (1.18) 0.00 (0.967)
Isg 71.8-81.2 0.00-2.50 23.6-36.3 83.2-95.4 1.32-6.61
p-valuel 0.000 0.494 0.000 0.000 <0.001

tAssumes 7; > 0 for j =1, 2, 3, 4. Iy denotes 99% Ghosh confidence intervals for =;.
tLikelihood ratio test of 73 = 0 versus m3 > 0.

model 2, summarized in Table 5, produces the same substantive conclusions as
obtained by assuming 74 > 0, in terms of both the tests and the confidence intervals.
The assumption that 7, = 0 has the effect of decreasing the standard error of #; for
all but patient 3 and also produces a more precise estimate of . Once again, the
analyses indicate that patient 2 is leukaemia free and that the other four patients have
a positive proportion of leukaemia cells.

When it is assumed that all w; > 0, an alternative method for estimating 7 is first to
estimate v empirically with 4 = n~'W, and then tq maximize £(6|Z) alone in 0. As
7 and 7 are of the same dimension, the equations 9 = A(#)7 may then be solved for
the K — 1 unknowns 7, . . ., mx_;, An essential difference between this approach
and that given earlier is that here 6 is based solely on the background data Z and
does not involve the patients’ counts. Other researchers have taken analogous

TABLE 5
Parameter estimates and 99% confidence intervals for my = Pr(CML cell) in five CML patientst

Parameter Results for the following patients:

1 2 3 4 5
7 4.63 (0.912) 1.29 (0.923) 5.07 (1.32) 1.97 (1.03) 4,35 (1.17)
72 15.9 (1.61) 98.7 (1.05) 64.5 (2.64) 2.80 (1.51) 92.5(1.47)
73 79.4 (1.75) 0.00 (0.570) 30.4 (2.50) 95.2 (1.78) 3.18 (0.987)
I 74.6-83.6 0.00-2.47 24.4-37.2 89.0-98.5 1.24-6.44
p-valuel 0.000 1.000 0.000 0.000 <0.001

tAssumes m; > 0 forj = 1, 2, 3 and 74 = 0, under misclassification model 2 (& = 4.24 (0.614), B = 138 (0.354) and ¥
= (.873 (0.241)). Iy denotes 99% Ghosh confidence intervals for ;.
{Likelihood ratio test of w3 = 0 versus my > 0.
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approaches to similar problems involving misclassified data. These include a method
for correcting for misclassification in matched pair studies (Greenland, 1989), a
model for estimation of relative risk in case—control studies with misclassification
(Duffy et al., 1989) and a method discussed by Selen (1986). Given a probability
vector 1 and non-singular transition probability matrix A, however, it is well known
that the unique solution 7* to 1) = Am may not be a probability vector (Viana,
1994). As shown below, this approach gives negative values of n4 for our CML data.
We examine the method’s application, however, to see why it does not work, since it
may be a reasonable alternative to maximum likelihood when a given data set and
model for A do produce a solution which is a probability vector.

Given A and 1, first express ¥» = A as the system of K — 1 independent equa-
tions

wi—A,-K=Z(,\,-, — )T, i=1,...,K-1. (6)

Temporarily regard the vectors 7 and % in their (K — 1)-dimensional forms and
let A= (Ay, - - )\K_lj) and T = (A — Ak, . . ., Ax-1 — Ak), so that the matrix
form of equat1on (6) is ¥ — Ag = I'm. The empmcal probabilities 1/: =n"'W are
approximately normal with mean 1 and covariance matrix V,, written ¢~N(1/J
V), where V,, ; = ¥i(1 — 4;)/n for i = j and — ¢);/n for i # j. The MLEs 6 ~ N(6,
V) obtained by max1mlzat1on of [Z(9|Z) alone yield A(6) and I‘(G) where Vg =
(E[-&*{log £(6HZ)}/800T D', not the 1nverse of the matrix Z4 based on_the full
likelihood given earlier. Regardmg = I‘(B) {1,(; AK(O)} as a function of 6 and w,
under suitable regularity conditions (Serfling (1980), pages 122-124) that are easily
satisfied in the present context, and using the fact that Y and Z are independent, it
follows that

# ~ N(m, DyV,D}, + DgV,D}), 7

where Dy, = 97/0vy and Dy = 0m/06. Because of the linearity of the derivative
operator,

D, =I"

®
A
Crw-Ag T 2%

where OT'/08 = (OI'/06, . 81‘/89,) is the (K— 1) x (K—1)J block matrix of
derivatives and D, has jth column = (81‘/80 L' (@ — Ag) — T7'(OXAk/88)), for
j=1, ,J. Given a model expressing the entries of A as functions of 8, the
problem is thus reduced to estimating @ from equation (2), computing 0A /96 and
evaluating the asymptotic variance-covariance matrix of 7 given by expressions (7)
and (8).

The solution vector for patient 1 is # = (4.33, 15.38, 82.44, —2.15)%, which is not
a probability vector. A comparison with the solution in Table 4 for this patient shows
that performing unconstrained optimization in the ¢;s and then transforming back to
the probability scale yields 7; = 0, if the numerical value of ¢; is sufficiently large.
Although the use of this numerical device in the context of maximum likelihood

Dy= 1 &I or
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estimation precludes numerical estimators which are outside the admissible domain,
it is more useful inferentially to provide a confidence interval rather than a point
estimate.

On fundamental grounds and aside from numerical issues, however, the likelihood
approach based on equations (1)-(4) seems preferable to that based on equations (6)—
(8). This is because the purely empirical estimate 1) used at the start of the latter
approach ignores the probabilistic relationship (1) between 1) and 7. Instead, it is
based on the implicit assumption that W follows a multinomial distribution with
probability vector 1 which is unrelated to the true category probabilities 7. Thus the
idea underlying equations (6)—(8) is to begin with an incorrect estimator and then
to correct it, whereas the likelihood-based approach accounts for the relationship
between 1 and 7 from the start. Although a general comparison of the empirical
merits of these two approaches is beyond the scope of the present paper, it may be
the subject of future investigation.

6. Discussion

The models discussed in this paper can be extended to accommodate more general
situations. For example, if zero domains are observed in the CML application, then
each probability vector has five entries and A is 5 x 5. In this case, for example,
A= o, l—a—c2-3-3, 6, /)" under model 1, whereas A\, = (1, «,
1—7—a—-LB-7,8,v)" under model 2.

In certain applications there may be background data on more than one type of
cell. For example, in sex-mismatched BMT the use of FISH probes of different
colours for each of the X- and Y-chromosomes allows identification of the comple-
ment of sex chromosomes in each cell. In addition to the normal male XY- and
female XX-complements, however, various other categories such as X, XXX, XXY
and XYY may also be observed owing to laboratory error. In this application there
may be six or more observed categories; moreover background data may be obtained
from both normal males and normal females. To accommodate such settings in
general, let N denote the set of indices corresponding to known cell types in the
background data. In this case A has two elements, say 1 and 2, identifying known
male and known female cells in the background data. Thus the single vector Z in the
earlier formulation is now replaced by Z, and Z,. In general, let Z; = (Zy;, . . ., Zx))
denote the background counts from m; cells known to be of type j for each index
je N. The component of the likelihood given earlier by equation (2) is now
generalized to the product multinomial

c©12)=1] J] »®™. ©)

jeN k=1

We have applied this more general method to a data set of this form by using a model
for A that accounts for missing or observing extra X- or Y-chromosomes. The
estimated misclassification rates were too low to affect substantively the estimators of
m, however. Hence, numerical details of this analysis are not reported here.
Central to the approach applied in this paper is the assumption that misclassifica-
tion arises only from errors in the experimental procedure, e.g. staining or micros-
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copy, in particular that the probabilities of such errors for a given cell do not depend
on its clinical origin. Should pathophysiology affect the misclassification probabil-
ities, however, the use of normal subjects to establish the background misclassifica-
tion rates may be inappropriate. Without some estimate of the change in the
misclassification rates due to disease status, the method employed in this paper could
not be applied. Even when the above assumptions hold, interobserver differences
must be minimized and laboratory procedures standardized for the background and
patient data.
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Appendix A
From equations (2) and (3), the log-likelihood for a single patient is
I(r, 0)=>" Z Zi; log A(6) + Z W, log { Z M(6) n,} (10)
jeN k=1
Let ¢y, = 8Akj/80 . Then the scores are

¢kr X Wk K
ZZ - +Z¢k2¢k,rm, r=1,...,J, (1)
k= 1

JeN k=1 1

and

ol K wy
U,,,——:Zw—(xk,—Ak,() j=1,...,K-1. (12)

aﬂ'j =1

The asymptotic variance-covariance matrix of the MLEs (7, 5) is the inverse of the
information matrix
Tiw Tw
1' — T T ,
(Ion Ioo)
where the submatrices have elements

K
Tom =1 3 % Oy — Ai)ha — M), (13)
=1

K ¢k‘ ¢k' K K K K
IP,,Q, = Z mj Z ( j‘/(kj Ll Okj, rs) Z <; ¢ij,r; d)ik,s - ; Oijrs 7rj> (14)

and

K

Iw/-,G, n Z {d)_ ()‘1} - /\IK) Z ¢lkr7rk (d)tjr ¢1Kr)} (15)

i=1
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for 1 <j<k<K-1,1<r<s<Jand oy, =6 \,;/80,00;.

To accommodate several patients indexed by i = 1, , N, the scores may be obtained by
substituting { Wy, ¥, 7} for (W, wk, e} In equatlons (1 1) and (12), summing over i in the
second double sum in the expression for U, in equatlon (11) and noting that U,
generalized to Uy, for j =1, ,K—landi=1, , N. The information matrix may be
obtained from the facts that

&l BUOIZ) N EN: 8 l(r;, 01Y))
06,80, 06, 90, — 08, 06,
and 821/8@87&7: =0 for i# i, so that Z,, is the (K— 1)N x (K — 1)N block diagonal
matrix diag(Z s - - -» Layry) a0d Lo = (L0 - . . Lryo)-
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